148 research outputs found

    Ant colony optimization and its application to the vehicle routing problem with pickups and deliveries

    Get PDF
    Ant Colony Optimization (ACO) is a population-based metaheuristic that can be used to find approximate solutions to difficult optimization problems. It was first introduced for solving the Traveling Salesperson Problem. Since then many implementations of ACO have been proposed for a variety of combinatorial optimization. In this chapter, ACO is applied to the Vehicle Routing Problem with Pickup and Delivery (VRPPD). VRPPD determines a set of vehicle routes originating and ending at a single depot and visiting all customers exactly once. The vehicles are not only required to deliver goods but also to pick up some goods from the customers. The objective is to minimize the total distance traversed. The chapter first provides an overview of ACO approach and presents several implementations to various combinatorial optimization problems. Next, VRPPD is described and the related literature is reviewed, Then, an ACO approach for VRPPD is discussed. The approach proposes a new visibility function which attempts to capture the “delivery” and “pickup” nature of the problem. The performance of the approach is tested using well-known benchmark problems from the literature

    Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care

    Get PDF
    International audienceThis paper addresses a vehicle scheduling problem encountered in home health care logistics. It concerns the delivery of drugs and medical devices from the home care company's pharmacy to patients' homes, delivery of special drugs from a hospital to patients, pickup of bio samples and unused drugs and medical devices from patients. The problem can be considered as a special vehicle routing problem with simultaneous delivery and pickup and time windows, with four types of demands: delivery from depot to patient, delivery from a hospital to patient, pickup from a patient to depot and pickup from a patient to a medical lab. Each patient is visited by one vehicle and each vehicle visits each node at most once. Patients are associated with time windows and vehicles with capacity. Two mixed-integer programming models are proposed. We then propose a Genetic Algorithm (GA) and a Tabu Search (TS) method. The GA is based on a permutation chromosome, a split procedure and local search. The TS is based on route assignment attributes of patients, an augmented cost function, route re-optimization, and attribute-based aspiration levels. These approaches are tested on test instances derived from existing VRPTW benchmarks

    Low Carbon Logistics Optimization for Multi-depot CVRP with Backhauls - Model and Solution

    Get PDF
    CVRP (Capacitated Vehicle Routing Problems) is the integrated optimization of VRP and Bin Packing Problem (BPP), which has far-reaching practical significance, because only by taking both loading and routing into consideration can we make sure the delivery route is the most economic and the items are completely and reasonably loaded into the vehicles. In this paper, the CVRP with backhauls from multiple depots is addressed from the low carbon perspective. The problem calls for the minimization of the carbon emissions of a fleet of vehicles needed for the delivery of the items demanded by the clients. The overall problem, denoted as 2L-MDCVRPB, is NP-hard and it is very difficult to get a good performance solution in practice. We propose a quantum-behaved particle swarm optimization (QPSO) and exploration heuristic local search algorithm (EHLSA) in order to solve this model. In addition, three groups of computational experiments based on well-known benchmark instances are carried out to test the efficiency and effectiveness of the proposed model and algorithm, thereby demonstrating that the proposed method takes a short computing time to generate high quality solutions. For some instances, our algorithm can obtain new better solutions

    A Tabu Search algorithm for the vehicle routing problem with discrete split deliveries and pickups

    Get PDF
    The Vehicle Routing Problem with Discrete Split Deliveries and Pickups is a variant of the Vehicle Routing Problem with Split Deliveries and Pickups, in which customers’ demands are discrete in terms of batches (or orders). It exists in the practice of logistics distribution and consists of designing a least cost set of routes to serve a given set of customers while respecting constraints on the vehicles’ capacities. In this paper, its features are analyzed. A mathematical model and Tabu Search algorithm with specially designed batch combination and item creation operation are proposed. The batch combination operation is designed to avoid unnecessary travel costs, while the item creation operation effectively speeds up the search and enhances the algorithmic search ability. Computational results are provided and compared with other methods in the literature, which indicate that in most cases the proposed algorithm can find better solutions than those in the literature

    Waste Collection Vehicle Routing Problem: Literature Review

    Get PDF
    Waste generation is an issue which has caused wide public concern in modern societies, not only for the quantitative rise of the amount of waste generated, but also for the increasing complexity of some products and components. Waste collection is a highly relevant activity in the reverse logistics system and how to collect waste in an efficient way is an area that needs to be improved. This paper analyzes the major contribution about Waste Collection Vehicle Routing Problem (WCVRP) in literature. Based on a classification of waste collection (residential, commercial and industrial), firstly the key findings for these three types of waste collection are presented. Therefore, according to the model (Node Routing Problems and Arc Routing problems) used to represent WCVRP, different methods and techniques are analyzed in this paper to solve WCVRP. This paper attempts to serve as a roadmap of research literature produced in the field of WCVRP
    corecore