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The vehicle routing problem with divisible deliveries and pickups is a new and interesting 

model within reverse logistics. Each customer may have a pickup and a delivery demand that 

have to be served with capacitated vehicles. The pickup and the delivery quantities may be 

served, if beneficial, in two separate visits. The model is placed in the context of other 

delivery and pickup problems. In this paper we study the savings that can be achieved by 

allowing the pickup and delivery quantities to be served separately with respect to the case 

where the quantities have to be served simultaneously. A reactive tabu search heuristic is 

proposed and the results analysed in depth for a better understanding of the problem 

structure and an average estimation of the savings due to the possibility of serving pickup and 

delivery quantities separately. 

Keywords: vehicle routing, divisible deliveries and pickups, metaheuristics, tabu search. 

 

 

1.  Introduction   

This paper focuses on an extension of the class of vehicle routing problems (VRP) known as the 

vehicle routing problems with deliveries and pickups (VRPDP).  The main difference between these 

problems and the VRP is that customers may receive or send goods, while in the VRP all customers 

just receive goods from a depot.  In the context of these problems, customers who only receive goods 

are called delivery or linehaul customers, while those only sending goods are called pickup or 

backhaul customers – in many applications, however, customers will both send and receive goods.  

Given customer distances and demands (these include both pickup and delivery demands) we must 

find a set of routes to minimise the total travelling cost while meeting customer demands.  The main 

constraint is that the capacity of the vehicle cannot be exceeded; however other constraints such as 
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maximum distance or time windows may exist.  From a practical point of view, the VRPDP fall 

within the field of reverse logistics, a field that is gaining increasing importance due to more people 

becoming environmentally conscious.  From a mathematical point of view, this problem is an NP-

hard combinatorial optimisation problem.  

We assume that all delivery goods come from depots and all pickup goods are taken to depots.  This 

excludes the possibility of goods travelling directly from one customer to another and implies that 

delivery goods and pickup goods are not substitutable.  In the VRPDP the vehicle may often carry a 

mixture of delivery and pickup goods: it starts from the depot carrying only delivery goods, at some 

stage a mixture of goods may occur, finally the vehicle returns to the depot carrying pickup goods 

only.  At each customer location the load on the vehicle may increase or decrease, resulting in a 

fluctuating load.  Hence, checking feasibility must be carried out for each route leg.  Thus, the 

VRPDP is conceptually a harder problem than the VRP, where checking feasibility needs only be 

done for the first arc of each route.  In fact, one of the main difficulties in solving the VRPDP lies in 

checking load feasibility.   

In this paper, we focus on an interesting, but rarely addressed, model within the VRPDP, called the 

VRP with Divisible Deliveries and Pickups (VRPDDP), comparing and contrasting it to its more 

common counterpart, the VRP with Simultaneous Deliveries and Pickups (VRPSDP).  As these are 

not well-known VRP variants, and often the terminology used in the subject literature is confusing, 

we devote the next section to properly define these models.   

The aims of this paper will become clearer once the problem is properly defined.  As a quick 

summary, we are interested in:  

1.  What characterises problem instances where the VRPDDP is a more appropriate model than the 

VRPSDP? 

2.  What characterises the customers that are treated differently in the VRPDDP as compared to the 

VRPSDP? 

3.  What shapes do VRPDDP routes take?  (Note that unlike in the classical VRP, routes may take 

shapes other than the classical “petals”.)   

The next section presents a classification of the various VRPDP models and re-states our aims in a 

more precise manner.  This is followed by a detailed literature review.  Section 4 describes a 

heuristic based on reactive tabu search.  The computational analysis is given in section 5.  Finally, 

we present some conclusions and future research directions.   
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2.  The Vehicle Routing Problem with Divisible Deliveries and Pickups 

In the VRPDDP a set of customers is given requesting for a delivery and/or a pickup service. A fleet 

of homogenous vehicles, located at a single depot, are available to serve these customers. All 

delivery goods come from the depot and all pickup goods are transported to the depot. Each vehicle 

can transport both pickup and delivery goods and has a maximum capacity limit. Each pickup or 

delivery request has to be satisfied by a single visit. However, a customer requiring both a pickup 

and a delivery service can be served by two different visits. The objective is to find a set of vehicle 

routes satisfying the demands of all customers, never exceeding the vehicle capacity and such that 

the total distance travelled is minimized.  

In order to better understand the structure of the VRPDDP, we first put it into the context of other 

pickup and delivery problems.  Then, we discuss some research issues and this will enable us to re-

state the research aims of this paper more precisely.   

 

2.1. Classification of VRPDP  

A classification of vehicle routing problems with deliveries and pickups can be given according to 

the patterns of goods movement, the characteristics of the customers and restrictions on goods 

transported on vehicles.  Unfortunately, names of problem versions in the literature are often 

confusing – different authors may use the same term to mean different problems.  While two recent 

reviews on the VRPDP both present a clear taxonomy, their simultaneous appearance means that the 

names adopted for the same problem are often different.  To help the reader, we will make reference 

to both taxonomies.  For the sake of conciseness, we shall refer to Berbeglia, Cordeau, Gribkovskaia 

and Laporte (2007) as BCGL and to Parragh, Doerner and Hartl (2008) as PDH.   

The first classification is according to the transport pattern of goods.   

1. In some problems, an item needs to be moved from a customer to another customer.  The depot 

here serves as a basis for the vehicles but these leave the depot empty and return empty.  This 

transport pattern is relevant to dial-a-ride and courier problems.  It is called “transportation 

between customers (VRP with Pickup and Delivery – VRPPD)” by PDH.  BCGL divides this 

problem into two classes called “many-to-many” and “one-to-one” (referred to as “unpaired” and 

“paired” by PDH).  This is in fact a quite different problem to the VRPDP as defined in section 1.  

As here vehicles perform pickups before deliveries we prefer to refer to this problem as the VRP 

with pickups and deliveries (VRPPD) to distinguish it from the VRPDP.  For a review of 
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literature, we refer to the surveys mentioned above and do not consider this type of problem any 

further.    

2. Our focus is on the transport pattern where all goods must either originate from, or be destined 

to, a depot.  Goods may not be taken directly from one vehicle to another.  In these problems 

depots serve as hubs or sorting centres.  This is typical in mail transportation or where there are 

two distinct types of goods (e.g. bottled drinks coming from a depot and empty bottles returning 

there).  It is called “one-to-many-to-one” by BCGL and “transportation to/from a depot (VRP 

with Backhauling – VRPB)” by PDH.  

 

The second basis of our taxonomy is the characteristics of the customers.   

1. In some problems, customers may either receive or send goods, but not both.  These customers 

are referred to as linehauls and backhauls, respectively.  BCGL refers to this problem class as 

“single demands”.  

2. In other problems, there is at least one customer who wishes to both send and receive goods.   

BCGL refers to this problem class as “combined demands”. 

Thirdly, we may have some restrictions on the travel pattern of the vehicles.  One such restriction is 

that a vehicle may not carry delivery and pickup goods on board at the same time.  (Otherwise, the 

physical design of the vehicles may necessitate having to unload some recently picked up goods to 

access delivery goods that are stuck behind them on board, leading to delays.  This is known as the 

“load-shuffling problem”.)  The second restriction is that customers may request that when a delivery 

is made to them the pickup goods are taken away at the same time.  (A separate visit for delivery and 

pickup may be deemed inconvenient.)  Clearly, the first restriction is more applicable to the case of 

single demands and the second to the case of combined demands.  This yields the following four 

classes of the VRPDP.  

1. The Vehicle Routing Problem with Backhauling (VRPB) arises when all customers are either 

linehaul or backhaul and delivery and pickup goods cannot be transported together.  This implies 

that each vehicle tour visits linehauls first and then backhauls.  PDH calls this the “VRP with 

Clustered Backhauls”.   

2. The Vehicle Routing Problem with Mixed Deliveries and Pickups (VRPMDP) allows linehauls 

and backhauls to occur in any order on a vehicle tour.  PDH calls this the “VRP with Mixed 

Linehauls and Backhauls”.  
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3. The Vehicle Routing Problem with Simultaneous Deliveries and Pickups (VRPSDP) arises when 

customers wish to both receive and send goods and specify that the pickup must be taken away at 

the same time when the delivery is made.  For this class of problems and the terminology used in 

this paper is the same as that of PDH.  

4. The Vehicle Routing Problem with Divisible Deliveries and Pickups (VRPDDP) allows two visits 

to a customer: one for delivery and another for pickup.  Note that we still assume that all of the 

delivery to a customer is made in a single visit (and same for pickup).  Literature does not have 

any papers with the contrary assumption, but we will briefly look at a problem where deliveries 

may be split into more than one visit (see section 2.4).  We also note that literature often – 

confusingly – includes this problem class into the previous one.  (Even the authors of this paper 

also referred to this problem as VRPSDP previously.  After all, customers here do simultaneously 

have delivery and pickup needs, even if they may be served separately.  The recent PDH review 

suggested the term “divisible”, an expression we gratefully adopt, since it points to the essential 

difference between this problem and the VRPSDP.)    

Finally, we note that several articles in the literature, especially those seeking theoretical results, 

restrict themselves to the case of a single vehicle.  This is called the Travelling Salesman Problem 

with Deliveries and Pickups (TSPDP); its subproblems are referred to by the abbreviations TSPB, 

TSPMDP, TSPSDP and TSPDDP.  

 

2.2. Relationships between various VRPDP versions  

It is important to note that the above problems are not isolated from each other.  One particular 

observation – and a very important one for our research – is that they may sometimes be modelled in 

terms of another problem.   

1. The VRPDDP may be modelled as a VRPMDP by creating two fictitious customers, one purely 

linehaul and one purely backhaul, co-located at the location of each original customer.  Note that 

this doubles the number of customers which is likely to be detrimental on any solution method 

(be it exact or heuristic).  

2. The VRPSDP cannot be modelled as a VRPMDP as the requirement of simultaneous service may 

not be satisfied.  
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3. The VRPMDP may be modelled as a VRPSDP by adding a pickup of zero to each linehaul and a 

delivery of zero to each backhaul.  This does not make the model unduly more complicated.  

(This also implies that the VRPDDP may be modelled as a VRPSDP.)  

4. Although the VRPB and the VRPMDP are totally incompatible with each other, they may both 

be generalised to a model that is currently gaining recognition, the VRP with Restricted Mixing 

of Deliveries and Pickups (VRPRMDP), in which there is some restriction on having a mixture 

of delivery and pickup goods on board.    

5. While the “all-deliveries-before-pickups” assumption is somewhat at odds with the VRPDDP 

and wholly incompatible with the VRPSDP, the idea of restricted mixing could be applied to the 

VRPDDP.  This is likely to force some customers to be served twice.    

 

2.3. Research issues in the VRPDDP  

A central research issue in the VRPDDP is the shape of vehicle routes.  Our terminology and 

discussion follows to a large extent the paper of Gribkovskaia et al. (2007).  

1.  A Hamiltonian route is where all customers are served simultaneously.   

2.   A double-path route begins with a path from the depot traversing all customers belonging to the 

route making deliveries only, then follows this path in the opposite direction making pickups 

only.  (In such a route, only one customer is served simultaneously, and no delivery and pickup 

goods are ever carried together.)   

3.  A lasso route consists of three segments.  The first contains deliveries only.  In the second 

segment, both deliveries and pickups are made.  The third segment follows the path of the first in 

the reverse direction, satisfying the pickup needs of these customers.   

4.  A figure-of-eight route is similar to a Hamiltonian one, except that a single customer is served 

twice.   

5.  A general route is one of no pre-determined shape.  Note that all the previous route shapes 

assume that customers are not split between routes; if they are, the route shapes are deemed to 

belong to this category.  

The following observations were made by researchers on the VRPDDP.  

1.  Comparing the best route length for different route shapes for the same problem instance, general 

is better than lasso which is better than Hamiltonian which is better than double-path 

(Gribkovskaia et al., 2007).  
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2.  Although the optimal general solution is better than the optimal lasso one, the special lasso 

structure allows for faster heuristics.  Thus, in practice better lasso solutions than general ones 

may be found in the same computing time (Hoff et al., 2009).  

3.  Relatively few customers are served twice in good quality solutions.  Often only one customer is 

served twice, with a figure-of-eight route shape (Gribkovskaia et al., 2007).  

4.  Lasso solutions were found to be beneficial in combating the load-shuffling problem, as their 

structure means that free space is created on the initial deliveries-only route segment (Hoff and 

Løkketangen, 2006).  

 

2.4. Relations with the Split Delivery Vehicle Routing Problem 

In the VRPDDP, a customer may be served in more than one visit, but this is restricted to two visits: 

one for delivery and one for pickup.  The delivery and pickup quantities themselves cannot be split 

into several visits.  Relaxing this restriction would yield the VRPPD with Splitting (VRPPDS).  This 

problem has not been investigated.  However, research has been done on a special case of this 

problem, in which there are no pickups – the Split Delivery VRP (SDVRP).  Here, the demand of a 

customer may be served in more than one visit.    

Dror and Trudeau (1989) have shown that, if the distances satisfy the triangle inequality, then there 

always exists an optimal solution of the SDVRP where no two routes have more than one customer 

in common. This property does not hold for the VRPDDP as shown by the following example. 

Consider a VRPDDP instance with 4 customers and vehicle capacity equal to 10.  Let the customers 

be located on a straight line at distances 1, 2, 3 and 4 from the depot.  Let the delivery and pickup 

requests of each customer be the following (the first figure is the delivery request while the second is 

the pickup request): (10,1) for customer 1, (4,5) for customer 2, (5,4) for customer 3 and (1,10) for 

customer 4.  The optimal solution uses only two vehicles and the only way is to build the following 

two routes: the first route serves customer 1 completely and then the pickup requests of customers 2 

and 3.  The second route serves the delivery requests of customers 2 and 3 and then serves customer 

4 completely.  Thus, customers 2 and 3 are visited by both routes.  

 

2.5. Research aims 

Having defined the problem properly, we can now re-state our research aims more precisely.  

1.  What characterises problems where splitting gives significant cost reductions? This will show in 

which situations the VRPDDP is applicable.  As the VRPDDP is harder to solve than the 
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VRPSDP, if a problem appears to yield a Hamiltonian solution anyway, it will be easier to solve 

it straightaway as a VRPSDP.  Previous studies on the SDVRP show that cost reductions of up to 

50% are possible from the VRP.  Would the VRPDDP yield such improvements as compared to 

the VRPSDP?  Would the average demand level be a predictor for cost reductions, as it is in the 

SDVRP?  

2.  What characterises the customers that are being served in more than one visit?  On one hand, the 

answer to this question will enable the logistics company to focus on these customers and 

investigate any issues of inconvenience arising out of two visits.  On the other hand, it will enable 

us to design more efficient solution algorithms.  As stated before, finding general solutions to the 

VRPDDP can be time-consuming.  If we could identify customers that are unlikely to be served 

twice in good solutions, we could restrict our problem by not allowing splitting for such 

customers.  As one way of solving the VRPDDP is by converting it into a VRPMDP, if instead of 

doubling the size of the problem we could just duplicate those customers into fictitious linehauls 

and backhauls that are likely to be served twice, this would reduce the size of the resulting 

VRPMDP.  We hypothesise that customers’ demands are likely to play a part.  Do their locations 

matter?  Previous research on the VRPDDP suggests that they do, but studies on the SDVRP 

suggest that they do not.  

3.  What shapes do routes take? We wish to identify a pattern (if there is any) of split and non-split 

customers on a route.  Again, such analysis will enable us to design more efficient algorithms.  If 

route shapes are restricted to some given patterns, we can create algorithms that are simple 

modifications of VRPSDP methods, thus faster than general VRPDDP algorithms.  Previous 

studies suggest that lasso and figure-of-eight route shapes often occur in good VRPDDP 

solutions.  

 

 

3.  Literature Review   

According to our focus on the VRPDDP, and its comparison to the VRPSDP, our survey will be 

more detailed on these topics, and fairly brief on the VRPB, the VRPMDP and the SDVRP.  The 

reader is referred to the two comprehensive surveys of the VRPDP by Berbeglia, Cordeau, 

Gribkovskaia and Laporte (2007) and by Parragh, Doerner and Hartl (2008).  The SDVRP is 

reviewed by Archetti and Speranza (2008) and Archetti and Speranza (2012).  For a comprehensive 

introduction to vehicle routing, the reader may wish to consult Toth and Vigo (2002).  
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3.1. The Vehicle Routing Problem with Backhauling (VRPB)  

The VRPB has a long history: it was proposed in 1988 by Casco, Golden and Wasil (1988), who 

created linehaul routes by a savings method and then inserted backhauls into these.  However, the 

more common heuristic approach later became creating separate linehaul and backhaul routes and 

then merging these.  The standard references on exact results for the VRPB are the works of Toth 

and Vigo (1997) and Mingozzi, Giorgi and Baldacci (1999).  The former used Lagrangean branch-

and-bound; the latter branch-and-price.  Lately, most researchers applied some sort of a meta-

heuristic for the VRPB: Osman and Wassan (2002) used reactive tabu search, Brandão (2006) tabu 

search, Ropke and Pisinger (2006) large neighbourhood search, Wassan (2007) reactive tabu search 

and adaptive memory programming, Gajpal and Abad (2009a) multi ant colony system and 

Zachariadis and Kiranoudis (2012) rich neighbourhoods.  Ganesh and Narendran (2007) extended 

the VRPB to the case where some customers have simultaneous delivery and pickup; all such 

customers must be served after the pure linehauls but before the pure backhauls.  (Due to this strong 

restriction, we characterise this work as an extension to the VRPB rather than a version of the 

VRPSDP.)  

 

3.2. The Vehicle Routing Problem with Mixed Deliveries and Pickups (VRPMDP)  

It was pointed out already by Casco, Golden and Wasil (1988), that it is not necessary always to 

serve all linehauls before commencing servicing the backhauls.  Some authors in the 90s applied 

neighbourhood search methods to solve this problem, see Mosheiov (1998) and Salhi and Nagy 

(1999).  Afterwards meta-heuristics became the method of choice: Wade and Salhi (2003) used ant 

colony optimisation, Ropke and Pisinger (2006) relied on large neighbourhood search, Bianchessi 

and Righini (2007) applied tabu search with complex neighbourhoods, Wassan, Nagy and Ahmadi 

(2008) chose reactive tabu search, while Gajpal and Abad (2009b) opted for ant colony optimisation.  

However, an exact method, based on a flow formulation and branch-and-cut, was given by Baldacci, 

Hadjiconstantinou and Mingozzi (2003) for the TSPMDP.   

Casco, Golden and Wasil (1988) also observed that in practice some restrictions may apply to mixing 

delivery and pickup goods on board (but not necessarily going as far as forbidding mixing them as in 

the VRPB).  This version of the VRPMDP is also known as the VRP with Restricted Mixing of 

Deliveries and Pickups (VRPRMDP).  This issue was however forgotten until Wade and Salhi (2002) 

revisited it and applied a neighbourhood search method for this problem.  Reimann and Ulrich 

(2006) solved this problem using ant colony optimisation, Tütüncü, Carreto and Baker (2009) used 
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GRASP with guidance, while Nagy, Wassan and Salhi (2013) opted for reactive tabu search.       

Hoff and Løkketangen (2006) and Hoff et al. (2009) addressed this issue in the context of the 

TSPDDP/VRPDDP (see Section 3.4).   

 

3.3. The Vehicle Routing Problem with Simultaneous Deliveries and Pickups (VRPSDP)  

The VRPSDP was introduced by Min (1989) who solved a small-scale real-world problem using an 

ad hoc procedure that does not guarantee a feasible solution.  Gendreau, Laporte and Vigo (1999) 

and Dethloff (2001) also tackled this problem using simple heuristics.   

Three papers present exact solution procedures for the VRPSDP.  Angelelli and Mansini (2002) 

created a set covering formulation for the VRPSDP with time windows.  They applied a variety of 

pricing and branching strategies and solved some small problems to optimality.  Dell’Amico, Righini 

and Salani (2006) proposed a branch-and-price algorithm.  They used a variety of heuristic pricing 

procedures and an exact one based on bidirectional labelling algorithms.  This algorithm can solve 

medium-sized problems to optimality.  Subramanian et al. (2011) observe that the VRPSPD requires 

additional constraints as compared to the VRP or the VRPB, namely feasibility must be checked for 

each arc rather than once for the whole route.  Their branch-and-cut algorithm adds these constraints 

in a lazy fashion.   

Most of the papers on the VRPSPD use some sort of a metaheuristic.  For the sake of brevity, these 

are summarised briefly as follows: Crispim and Brandão (2005) [hybrid tabu search and variable 

neighbourhood search], Tang and Galvão (2006) [tabu search with short- and long-term memory], 

Chen and Wu (2006) [tabu search], Bianchessi and Righini (2007) [tabu search with complex and 

variable neighbourhoods], Wassan, Wassan and Nagy (2008) [reactive tabu search], Zachariadis, 

Tarantilis and Kiranoudis (2009) [hybrid guided local search and tabu search], Ai and 

Kachitvichyanukul (2009) [particle swarm optimisation], Gajpal and Abad (2009b) [ant colony 

system], Çatay (2010) [ant colony optimisation], Subramanian et al. (2010) [variable neighbourhood 

descent and iterated local search], Souza et al. (2011) [iterated local search and GENIUS],  

Zachariadis and Kiranoudis (2011) [static move descriptor and promises concept] and Maquera et al. 

(2011) [scatter search].  Nearly all of these works use the operators Shift (insert) and Swap 

(exchange), many also use the Crossover (splitting and splicing two routes) and 2-opt moves.  The 

VRPPD-specific operator Reverse, introduced by Nagy and Salhi (2005), is also used by Wassan, 

Wassan and Nagy (2008), Zachariadis, Tarantilis and Kiranoudis (2009), Subramanian et al. (2010) 
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and Souza et al. (2011).  We note that Crispim and Brandão (2005) and Bianchessi and Righini 

(2007) allow the search to traverse infeasible solutions.    

Finally, Alshamrani, Mathur and Ballou (2007) tackled a version of the VRPSDP, namely the 

stochastic, periodic TSPSDP.  In this problem delivery figures are only known probabilistically 

while pickup figures are known – as each day, the pickup from a customer equals to its delivery the 

previous day. A pickup request can be delayed but this incurs in a penalty. The problem is to 

establish which pickup point to serve and to construct the pickup and delivery route.  First, a feasible 

travelling salesman tour is constructed.  Then, this tour is improved using Or-opt.   

 

3.4. The Vehicle Routing Problem with Divisible Deliveries and Pickups (VRPDDP)  

Compared to the previous problem classes, the VRPDDP has only been investigated by a handful of 

authors, many of whom restricted themselves to the single vehicle case.   

Mosheiov (1994) addressed the TSPDDP by converting it into a TSPMDP creating fictitious co-

located linehauls and backhauls.  He proved that any tour can be made feasible by reinserting the 

depot into a different edge on the tour.  This suggests a simple solution approach: find the optimal 

TSP tour and insert the depot to the nearest such arc that results in a feasible TSPMDP tour.  

Optimality of course is lost: the nearest such arc may be located very far from the depot.  An 

alternative insertion-based heuristic is also given.  

Anily (1996) also decomposed customers with both a pickup and a delivery demand into pairs of 

customers.  However, somewhat surprisingly, she also assumed that all deliveries must be made 

before pickups, yielding a VRPB model.  This forces customers with combined demands to be 

served twice, unless they happen to be the last linehaul and first backhaul.  A region-division scheme 

called circular regional partitioning is proposed.  An assignment problem is solved to connect 

linehaul and backhaul routes.   

Salhi and Nagy (1999) and Nagy and Salhi (2005) modelled the VRPDDP directly.  The problem is 

initially solved as a VRPSDP using a route-first cluster-second heuristic.  The “divisible” aspect is 

accounted for by a pair of improvement routines called Neck and Unneck: the first splits a customer 

into a linehaul and backhaul entity, the second merges these.  Neck inserts the backhaul entity into 

the best position on the vehicle route, hence creating a figure-of-eight shaped route.  (It is noted that 

disabling these routines solves the VRPSDP.)  The improvement heuristic also includes standard 

VRP routines such as 2-Opt, 3-Opt, Shift, Exchange and Perturb.  There are two more VRPDP-

specific routines, Reverse and Reinsert.  Reversing the direction of a route can reduce load levels; 
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this may enable a subsequent insertion of customers.  Reinsert, motivated by the work of Mosheiov 

(1994), inserts the depot to its best possible position on a route.  One variant of the heuristic allows 

infeasible solutions to occur subject to a penalty proportional to the value of maximum load 

constraint violation in a strategic oscillation framework.  An insertion-based method is also 

developed for comparison purposes.  It models the VRPDDP as a VRPMDP and is based on the 

concept of inserting more than one backhaul at a time, called cluster insertion.  Both methods can 

also cater for multiple depots.   

Halskau, Gribkovskaia and Myklebost (2001) introduced the concept of lasso solutions (described 

previously in section 2.3).  A lasso construction heuristic is proposed for the TSPDDP.  It builds a 

TSP route sequentially (using e. g. the nearest-neighbour method).  Each time a load feasibility 

violation is encountered, a sufficient number of pickups are removed from the beginning of the route 

to eliminate the violation.  Once all customers are on the route, all removed pickups are served on the 

return way, in the opposite order of deliveries.  This method can be adapted to turn a TSP tour into a 

TSPDDP tour; one just needs to check the tour arc-by-arc for feasibility violations.  If one is 

encountered, the above idea is used to turn the Hamiltonian tour into a lasso.  For the VRPDDP, the 

authors suggest that a cluster-first route-second approach is best, as for each cluster a TSPDDP can 

be solved using the above ideas.       

Hoff and Løkketangen (2006) investigated the TSPDDP with Restricted Mixing.  In their model, a 

mixture of delivery and pickup goods is only allowed if there is sufficient free space to combat the 

load shuffling problem.  They suggest that lasso solutions are beneficial for this model, as the load 

level on the vehicle can decrease on the outbound spoke of the lasso until sufficient free space is 

available for deliveries and pickups to be carried out simultaneously.   Initial solutions are found 

using the algorithm of Mosheiov (1994); these are then improved using a tabu search method based 

on the 2-opt operator.  The authors found that lasso solutions can be an acceptable compromise 

between the reduction of route length and the complications due to load shuffling.       

Gribkovskaia et al. (2007) discuss various route shapes that may occur in the TSPDDP (our 

terminology in section 2.3 is based to a large extent on this paper).  Some theoretical properties of 

these route shapes are presented.  An initial TSP solution is found using nearest-neighbour or sweep.  

This tour is then converted to a number of TSPDDP solutions by removing one of its edges.  These 

solutions follow the TSP tour till the removed edge, then return to the first customer, move to the last 

customer, then follow the TSP tour backwards till the other side of the removed edge and finally 

return along the tour to the depot.  Such tours have far too many double visits and hence a merging 

procedure is used to eliminate them; each vertex is scanned in turn and if it can feasibly be served in 
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just one of the directions (forward or backward) then it will be bypassed in the other direction.  A 

shift operator is applied to improve on the best result found.  The authors also present a tabu search 

metaheuristic.  This finds an initial TSPSDP solution using Mosheiov’s (1994) reinsertion heuristic.  

The objective function caters for feasibility violation by means of a penalty term.  The 

neighbourhood structure consists of the operators Neck and Unneck, while a reoptimisation 

procedure based on Shift is carried out after each improving move or periodically.  The results show 

that the best solutions are often non-Hamiltonian; such solutions for most instances contain just one 

customer who is served twice, in a “figure-of-eight” shape.   

Gribkovskaia, Laporte and Shyshou (2008) tackled the TSPSDP with selective pickups.  In this 

model all deliveries must be served but pickups are optional.  Each pickup generates a certain 

revenue; balancing the revenue from these pickups and any detour needed to serve these pickups 

forms the objective function of the model.  A classical heuristic is given, based on an initial 

Hamiltonian solution.  Each customer may be assigned one of three states: simultaneous delivery and 

pickup, separate delivery and pickup, delivery only – if a customer’s status can be changed from 

delivery-only to simultaneous without creating a feasibility violation, then this is done.  

Improvement operators include Shift, Neck, Unneck, and “Shifting Pickups”: changing the status of 

a simultaneous customer to separate, if it helps, turns the status of some other customer from 

delivery-only to simultaneous.  The tabu search metaheuristic of Gribkovskaia et al. (2007) is also 

modified to cater for this model.    

Hoff et al. (2009) extend the model of Hoff and Løkketangen (2006) to the case of several vehicles.  

A tabu search metaheuristic creating lasso solutions is proposed based on the operators Shift and 

Swap, and 2-opt as post-optimiser.  Infeasible solutions are allowed and attract a penalty.  The 

authors compare the lasso solutions on the one hand to VRPSDP solutions and on the other hand to 

general (no predetermined route shape) solutions.  The latter are found by converting the VRPDDP to 

a VRPMDP.  This doubles the size of the problem and, the authors observe, slows down the heuristic. 

 

3.5. The Split Delivery Vehicle Routing Problem (SDVRP)  

The SDVRP was independently introduced by Brenninger-Göthe (1989) and Dror and Trudeau 

(1989). The former proposed a cluster-first route-second heuristic.  The latter proposed a heuristic 

solution procedure and observed that high demand is a good predictor for splitting and customers 

which are close to the depot have a higher chance to be split.  Archetti, Savelsbergh and Speranza 

(2006) carried out a worst-case analysis and proved that a SDVRP solution may be up to twice as 
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good as a VRP solution.  Archetti, Hertz and Speranza (2006) solved the SDVRP using tabu search, 

the results of which were fed into a heuristic-exact hybrid method by Archetti, Savelsbergh and 

Speranza (2008a).  Archetti, Savelsbergh and Speranza (2008b) extended their previous worst-case 

analysis and showed that the number of SDVRP routes may also be up to 50% fewer than the 

corresponding VRP routes; in fact they suggested that the route length reduction achievable by 

splitting is due to the reduction of the number of delivery routes.  Their computational experiments 

also suggest that splitting gives the largest benefit when the average customer demand is between 

50% and 75% of the vehicle capacity and the demand variance is small.  The experiments do not 

suggest that customer location is a useful predictor of splitting.  For a recent survey on SDVRP the 

reader is referred to Archetti and Speranza (2012). 

Delivery and pickup aspects are rarely addressed in the SDVRP literature.  Mosheiov (1998) solved 

the VRPMDP with split loads.  His model created di fictitious co-located customers each with unit 

demand for each original customer of demand di, resulting in a VRPMDP and a huge increase in 

problem size.   

 

 

4.  Solution Method  

We modelled the VRPDDP as a VRPMDP by creating a fictitious linehaul and backhaul entities for 

each customer, a valid approach as discussed in section 2.2., and in line with previous studies, see 

e.g. Mosheiov (1994), Salhi and Nagy (1999) and Hoff et al. (2009).  The approach has the drawback 

of having twice as many customers, however our aim here is to analyse split solutions with the view 

of creating more efficient solution algorithms.  Section 2.2 also stated that a VRPMDP can be 

modelled as a VRPSDP, hence have adopted the VRPSDP algorithm of Wassan, Wassan and Nagy 

(2008) to solve the VRPDDP.   

Initially, we experimented with a modified sweep method for creating initial solutions.  However, 

this proved to be inefficient.  Having twice as many customers to cope with, the VRPDDP method 

struggled to find competitive solutions with the VRPSDP.  Hence, we decided to take the solution of 

the corresponding VRPSDP as the initial solution.  This approach guarantees that our algorithm will 

always yield a non-negative improvement.   
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4.1. Reactive tabu search    

For complex combinatorial problems heuristics and meta-heuristics are the best way forward for 

tackling large sized instances.  We adapted a reactive tabu search meta-heuristic (RTS) for the 

VRPDDP.  This is based on the RTS heuristic originally developed by Wassan, Wassan and Nagy 

(2008) for the VRPSDP.  Tabu search, see Glover and Laguna (1997), is one of the intelligent 

mechanisms used to avoid being trapped in local optima.  Reactive tabu search, originally put 

forward by Battiti and Tecchioli (1994), see also the survey of Battiti, Brunato and Mascia (2008), 

entails dynamically controlling the tabu list size, also known sometimes as tabu tenure, which is one 

of the crucial components of tabu search.  The inclusion of the reactive elements (reactive to cycling) 

into the tabu search components makes this method dynamic that brings a balanced intensification 

and diversification to the search process.  This kind of guiding the search which includes a regular 

updating of the parameters makes the method self-contained and less sensitive to parameter values.   

RTS has been shown to be robust in producing good results for a variety of combinatorial 

optimisation problems.  In particular, it is one of the best methods in the literature for a variety of 

VRP problems (VRP: Wassan (2006); VRP with time windows: Chiang and Russell (1997); VRP 

with mix fleet: Wassan and Osman (2002); VRPB: Osman and Wassan (2002), Wassan (2007); 

VRPSDP: Wassan, Wassan and Nagy (2008); VRPMDP: Wassan, Nagy and Ahmadi (2008)).  We 

may also justify the choice of our heuristic by referring to the experiments of Nagy, Wassan and 

Salhi (2011), where it was found that on small (n≤32) instances our RTS heuristic yields an 

optimality gap of about 1%.  Moreover, on the special-structure instances of section 4 our heuristic 

yielded an optimality gap of about 1%.  

 

4.2. The RTS-VRPDDP algorithm  

The main steps of the RTS-VRPDDP algorithm are shown below. 

Step 1: Initialisation phase (reading in the initial solution which is the Hamiltonian solution found 

by the algorithm of Wassan, Wassan and Nagy (2008) and initialising RTS parameters) 

Step 2:   Neighbourhood search phase 

Step 3:   The RTS updating phase  

Step 4:   Fine tuning phase   

Step 5:   Stopping phase (stop if stopping criteria are met, otherwise go to Step 2) 

Steps 2, 3 and 4 are explained in detail in the following sections.    
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4.3. The neighbourhood search phase  

The improvement phase of the algorithm (Step 2) is built around two well-known moves, namely 

Shift and Swap.   

Shift entails moving a customer i from a route to the best possible position on another route.   All 

customers are considered for shifting and the move with the largest decrease in total route length is 

implemented.  The shift process can result in drastic reduction of total distance travelled.  It can also 

be very useful in the sense that it could produce an empty route if a customer is shifted from a single 

customer route.  The computational complexity of this move is O(n
2
).  The main difference from the 

VRP version of this operator is in checking the feasibility of proposed moves.  While in the VRP it is 

enough to check if the total customer demand is less than the vehicle capacity, for the VRPPD the 

load can vary from arc to arc.  Calculating the arc load for each arc for each possible customer 

insertion would be excessively time-consuming.  We developed a procedure that checks feasibility 

without increasing the computational complexity of this routine (see Wassan, Wassan and Nagy 

(2008) for details).     

Swap involves reallocating two customers, say i and j, which are currently on different routes.  

Customer i is removed from its route and inserted to a position on the route from which j is removed.  

Customer j is moved to a position on the route formerly containing i.  All pairs of customers are 

considered for this operation within an iteration.  The computational complexity of this move is 

O(n
4
).  Feasibility check is carried out in a similar fashion to the Shift move.  

In Step 2, the entire neighbourhood defined by the moves Shift and Swap is evaluated.  If the best 

move found is not tabu (see section 4.4) or is tabu but surpasses our aspiration criterion (i.e., it yields 

a better solution than the best one recorded), it is carried out.  Otherwise, the best non-tabu move is 

implemented.  Note that the tabu search framework allows for non-improving moves.   

 

4.4. The reactive tabu search updating phase  

We define the tabu status of moves using a tabu list.  If the move in Step 2 was a Shift move, where 

customer i was removed from route r, we put (i, r) onto the tabu list for the next tls iterations, where 

tls is the size of the tabu list (also known as tabu tenure).  This means that customer i cannot re-enter 

route r, unless an aspiration criterion (see previous section) is met.  If the move in Step 2 was a Swap 

move, the same principle applies.   
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The remainder of this phase is concerned with dynamically updating the value of tls.  The new 

solution is checked against previously found solutions.  If the search stumbles upon the same 

solution over and over again, it is appropriate to increase the value of tls to avoid this.  This is known 

as the fast reaction of RTS.  In our implementation, tls is multiplied by a constant (>1), if the number 

of iterations between now and the last time the same solution was found is lower than a threshold.  

Conversely, if the search progresses well, with no repetitions, we should adjust the tls to a lower 

value.  This is known as the slow reaction of RTS.  In our implementation, tls is multiplied by a 

constant (<1), if its value was constant for more than a set number of iterations.  Finally, if the search 

appears to be totally stuck (there are many frequent repetitions), a diversification scheme is 

implemented – the tabu list is deleted and the search restarted from a randomly chosen solution from 

the list of previously chosen solutions.      

For more details, the reader is referred to Wassan, Wassan and Nagy (2008).  The parameter settings 

used in this research are the same as given in that paper.  

 

4.5.  The fine-tuning phase  

This phase contains two operators, reverse and local-shift.  These are applied in turn repeatedly to the 

two routes that were affected in Step 2, until no improvement is found.  Note that tabu status of 

customers is neither checked nor updated during this phase.     

Reverse is specific to the VRPDP.  It does not, in itself, change the solution quality, but was found to 

be helpful for guiding the search.  Operator Reverse entails simply reversing the direction of a route, 

if this results in a decrease in the maximum load on that route.  This then makes it easier for 

customer insertion into the route later on.  The computational complexity of this move is O(n).    

Local-shift is an intra-route move that relocates a customer to a different position within the route, if 

this improves the solution quality.  (Non-improving moves are not considered.)  The computational 

complexity of this operator is O(n
2
).  Checking feasibility is done similarly to the shift procedure 

(section 4.3).  
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5.  Computational Analysis    

We carried out our analysis on a well-known data set, focusing on the three research aims set in 

section 2.5.  The next section introduces our experiments while the three subsequent ones focus on 

each of the research questions in turn.  

 

5.1. Computational experiments 

We chose one of the most commonly used set of VRPSDP test instances, namely that proposed by 

Salhi and Nagy (1999).  This set originally contains 28 instances, ranging from 50 to 199 customers.  

Distances are Euclidean, and, to eliminate any problem associated with computer precision, are 

rounded to the nearest integer.  Note that instances 6 to 10, 13 and 14 have a maximum time 

constraint, while instances 11 to 14 are clustered.  A particular characteristic of this data set is that in 

some instances there are pairs of customers located at the same coordinates.  In instances 4 and 9, 

customers 80 & 150 and 99 & 104 are co-located.  In instances 5 and 10, customer pairs at the same 

locations are: 3 & 158, 4 & 155, 10 & 189, 58 & 182, 80 & 150, 92 & 151, 99 & 104 and 138 & 154.  

Our initial experimentation did not show significant benefits of splitting, hence we devised further 

instances.  Although various sets of instances were tested, for the sake of conciseness and simplicity, 

we report here only on two in detail.  Firstly, we noticed the average demand and pickup values are 

very small in the Salhi and Nagy (1999) data set, on average 4% of the vehicle capacity and none 

larger than 22% of the vehicle capacity, leading to a few long routes.  Therefore we kept the 

locations of the Salhi and Nagy (1999) data set, but changed the delivery and pickup values by 

multiplying all values by four and adding 0.1C to them.  This new data set has delivery and pickup 

values between 10% and 98% of the vehicle capacity, averaging 26%, leading to many short routes.  

Secondly, noting the example in section 4 that gave a 50% cost improvement, where the difference 

between delivery and pickup figures was large, we created such a data set.  We added 0.75C to the 

delivery and 0.2C to the pickup of every odd customer, and 0.2C to the delivery and 0.75C to the 

pickup of every even customer.  Coordinates were retained.  Thus for every customer either the 

delivery or the pickup value is between 75% and 97% of the vehicle capacity, while the other value 

is between 20% and 42%.  This means we expect several very short routes.     

The RTS algorithm was implemented in Fortran 90 and the experiments executed on a Sun-Fire-

V440 with UltraSPARC-IIIi processor, CPU speed 1062 MHz, running Solaris 9.  The total number 

of iterations was set to 1500 for all instances.   
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Table 2 compares the simultaneous (Hamiltonian) and divisible (general) solutions for each instance.  

The former were found using the RTS algorithm of Wassan, Wassan and Nagy (2008), with exactly 

the same parameters as above.  As these were taken as the initial solution to our RTS algorithm, the 

VRPDDP solution will never be worse than the corresponding VRPSDP solution – instances with a 

positive improvement are highlighted.  Table 3 then presents detailed VRPDDP solutions for the 

latter instances.  These will be analysed in section 5.4 with regard to route shapes.  It shows that even 

in solutions where splitting gives an improvement, only a minority of the customers are served twice.  

All these customers are tabulated in Table 4 and analysed (see section 5.3) with the aim of finding 

out why they were split.    

 

7.2. What characterises problems where splitting gives significant cost reductions? 

Comparing VRPDDP solutions to VRPSDP solutions (see Table 1), on the original instances more 

than one third (10 out of 28, 36%) of the instances experienced some cost reduction, although the 

average reduction was only 0.16% (maximum 1.32%, on CMT2X).  The number of vehicles was 

never reduced.  We think this is explained by the delivery and pickup figures being too small, thus 

reducing the need for splitting.   

Looking at the results of the data set where delivery and pickup figures are much larger (up to nearly 

the vehicle capacity), the situation improves.  Route length on average is reduced by 1.93% 

(maximum 6.16%) and the number of vehicles by 3.12% (maximum 8.57%).  For every instance, the 

route length was reduced; for 18 out of 28 instances, the number of vehicles was also reduced.  This 

already shows that the savings achievable by splitting are significant.  (We note that in this data set 

all delivery and pickup values are ≥0.1C.  On a very similar data set, not reported here in detail for 

the sake of brevity, where the range for deliveries and pickups was between 0% and 88% (rather than 

10%–98%), the average saving by splitting was only 0.60%.  This shows that the absence of very 

small deliveries and pickups is a significant factor for splitting to be useful.)       

The best results were achieved when customers had a large difference between their delivery and 

pickup, i.e. half of the customers had large deliveries and small pickups, while the other had large 

pickups and small deliveries.  On this dataset, an average route length reduction of 11.69% and an 

average vehicle number reduction of 16.41% were achieved.  (Maximum values were 16.07% and 

22.22%, respectively.)  This is a very significant saving, especially when compared to the theoretical 

limit of 50%.  Even larger savings could be achieved with such type of instances, see e.g. the 32% 
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achieved in section 4.  However, it is unlikely that such instances occur in realistic situations.  

Already in this instance set, most (78%) VRPSDP routes contain only a single customer.        

It does not appear that the presence of a maximum time constraint is a predictor of splitting.  The 

reduction in the number of vehicles was the same for constrained and non-constrained instances on 

all three datasets.  The difference in average reduction of route length was insignificant.  However, 

one should expect that if there are very tight maximum time constraints applied, then splitting is 

unlikely to be beneficial, as vehicles will not be filled to capacity anyway.    

There is some evidence that splitting gives more benefit to clustered instances.  On the second 

dataset, where there is a large variation in delivery and pickup figures, and there are many short 

routes, the reduction in the number of routes is 4.43% for the clustered instances (as opposed to only 

2.60% for the non-clustered instances).  On the third dataset, where customers have a large imbalance 

between their delivery and pickup, the reduction in route length is 14.75% for the clustered instances 

(as opposed to 10.47% for the non-clustered instances).  This is sensible, as in clustered instances the 

inter-customer distances, and hence the detour lengths required to serve a customer twice, are small.    

 

5.3. What characterises the customers that are being served in more than one visit? 

We hypothesised that the customers who are served separately for delivery and pickup may have one 

or more of the following characteristics: being near the depot, having a large demand or pickup, or 

being located in a densely populated area.  (Our analysis here is based only on the original Salhi and 

Nagy (1999) instances, since in the additional instances too many customers were split for a 

meaningful analysis.)  Table 4 lists for each of the 61 split customers these characteristics.  For each 

instance, all customers were ranked according to increasing distance from the depot, decreasing 

demand and decreasing pickup.  Customers in the top quarter of each list are classified as “near-

depot”, “large-demand” and “large-pickup”.  The final column classifies the customer as part of a 

cluster.  A customer is considered to be in a cluster if it has at least five neighbours, where a 

neighbour is defined as a customer that is within a distance of 10% of the average depot-to-customer 

distance for that instance.   

We found that being near the depot is the most important characteristic: about four fifths (48 out of 

61, 79%) of split customers exhibit this characteristic.  This was expected as it is easy to insert a 

near-depot delivery to the beginning of a route or a near-depot pickup at the end of a route without 

greatly increasing the total distance travelled.  
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Having a high demand or pickup is also important: about half (31 out of 61, 51%) of split customers 

have a high demand or pickup.  As load feasibility is the major constraint in our problem, such large 

customers are the most difficult to place on a route.  Hence, splitting them gives additional flexibility 

and thus leads to better solutions.  

Being located in a densely populated area has also proved to be a predictor for splitting: about half 

(29/61, 48%) of split customers have at least five other customers nearby.  This makes sense as in 

dense clusters making a detour to serve a split customer yields only a small increase in route length.   

Our hypothesis explained the occurrence of splitting for most (55 out of 61, 90%) split customers.  

We then looked at the remaining six to see if any other factor existed contributing to their splitting.  

For five of them we found that the reason they are served twice is that they are co-located with 

another customer.  For a pair of co-located customers it makes sense to first deliver to them both then 

carry out the two pickups, resulting in one or both of them being split.  For easier visualisation, such 

co-located customers are highlighted in italics in Table 2.  This is a particular characteristic of the 

data set, but if in practice such co-located customers exist then they are certainly good candidates for 

splitting.   

Only one split customer (60 in CMT5X) is not explained by any of the above reasons.  Therefore, a 

promising avenue for further research would be to consider splitting only for customers that exhibit 

one of the above characteristics.   

 

5.4. What shapes do routes take? 

On the instances where splitting gives significant benefits, the routes contain too few customers for a 

meaningful analysis.  Hence, in this section again we focus on the more realistic original Salhi and 

Nagy (1999) instances.  Table 2 presents all the 119 routes on the instances where splitting occurred.  

The second column shows the number of split customers on a route, while the third describes the 

shape of the route.  We note that slightly more than half the routes (68 out of 119, 57%) contain one 

or more split customers.  From now on, we look at these routes only.  

In line with expectations, nearly two thirds (44 out of 68, 65%) of routes contain just one split 

customer, with very few (4/68, 6%) containing more than three.  

Most (56/68, 82%) routes are in the shape of a simple cycle, denoted by “C” in Table 3.  (To avoid 

confusion with the terminology of Gribkovskaia et al. (2007), we do not refer to such routes as 

Hamiltonian; this term is reserved for routes where every customer receives a simultaneous service.)  
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Having taken a closer look at the remaining 12 routes, we saw that the issue of co-located customers, 

a characteristic of instances 4, 5, 9 and 10, plays a part here.  For example, on a cursory look at the 

first route in CMT5X, it appears that the route zig-zags between customers 10 and 189.  A closer 

look reveals that these customers are located at the same coordinates.  Hence, if we represent both 

with a single vertex, this route actually will have a cyclical shape.  To highlight this issue, co-located 

customers are marked in italics in Table 2.  Routes that become cyclical once visiting such customer 

pairs is considered as a single stop are denoted by “Y”.  Including such routes, all but two routes can 

be described as cyclical-shaped.  This is in marked difference to studies on the TSPDDP, where lasso 

and figure-of-eight solutions are common.  Of course, in the TSPDDP, a customer cannot be split 

between two routes; while in our experiments, if we disregard co-located customers, only 3 

customers are served by the same vehicle for delivery and pickup while the remaining 46 are split 

between routes.            

One of the remaining routes (the first route in CMT10X) is lasso-shaped, with one split customer 

(28) that is served for delivery at the very beginning of the route and for pickup at the very end.  

Between these stops, there is one delivery-only customer and nine non-split customers.  The other 

route (the first route in CMT10Y, 0–166–199P–125D–45–125P–199D–18–0, length 58) has a more 

surprising shape and even has a pickup before a delivery.  On closer observation, we notice that all 

its customers are placed nearly on a straight line.  Due to using integer distances, this tour has the 

same length as the optimal (Hamiltonian) TSP tour 0–166–199–125–45–18–0.  The total of delivery 

and pickup demand is much less than the vehicle capacity, thus the order of deliveries and pickups 

does not matter.     

Split customers tend to occur at the beginning or the end of the routes – which makes sense as they 

also tend to be near the depot.   However, for about a quarter of the routes (19/68, 28%) they occur 

mid-route.  

Future research on an improved solution algorithm can benefit from the above observations.  As 

customers tend to be split between routes rather than within a route, we should develop an operator 

that can achieve this.  For example, “Splitshift” would duplicate a simultaneous customer and insert 

either its linehaul or its backhaul into another route.  (In this case customers would not be duplicated 

at the start but by this operator.)  Such an operator may work best in an environment where infeasible 

solutions are allowed, as it could help to achieve/restore feasibility.  (However, if the instance 

contains a few co-located customers these should be modelled as separate linehaul and backhaul 

entities straightaway to facilitate serving their delivery needs before their pickup needs.)  Finally, we 
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must allow split customers to occur freely – allowing them to be placed only at the beginning or the 

end of a route would be too restrictive. 

 

 

6.  Conclusions and Suggestions  

We investigated the Vehicle Routing Problem with Divisible Deliveries and Pickups (VRPDDP), a 

rarely-addressed extension of the VRP.  We placed the VRPDDP in the context of other VRP 

extensions and presented a reactive tabu search metaheuristic.  Our computational experiments led us 

to the following three main conclusions.        

1.  Serving customers twice can often reduce costs and – perhaps even more importantly – the 

number of vehicles required.  It appears that the presence of very small deliveries and pickups is 

not conducive to splitting.  Route length and the number of vehicles are reduced considerably 

when the delivery and pickup figures vary within a wide range.  The benefits of splitting are 

shown to be even more significant for instances where there is a large difference between 

delivery and pickup values.  Splitting seems more beneficial for clustered instances, however, the 

presence of a maximum time constraint does not appear to be a predictor for splitting.        

2.  Three important characteristics of customers who are served twice were observed: they are near 

the depot, they have a high delivery or pickup demand, or they are located in a dense cluster of 

customers, with the first factor being especially significant.  These observations lead us to believe 

that good solutions could be achieved if we consider splitting only for customers with such 

characteristics.  

3.  Almost all routes take the shape of a cycle, with customers being split across (rather than within) 

routes.  Split customers very often, but not always, occur at the beginning or the end of a route.  

We plan to take forward this research as follows. 

1. Incorporate the findings of our analysis to an improved solution algorithm.  Such a method may 

only allow splitting customers with the characteristics described in the previous section.  This 

way, we have a good chance of still having the optimum solution within the feasible set, but by 

not doubling the number of customers the method should work faster and have a better chance of 

finding good solutions.     

2.  Extend the scope of our analysis to the VRPDDPS, allowing customers’ delivery and pickup 

requests to be served in several visits.  
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3.  Merging our lines of research in this paper and in Nagy, Wassan and Salhi (2013), we wish to 

investigate the VRPDDP with Restricted Mixing.  This model, introduced by Hoff and 

Løkketangen (2006), forces customers to be served separately to avoid situations where there is a 

mixture of delivery and pickup goods on board but not enough space to have access to both kinds 

of goods.            
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Table 2.  Comparison of VRPSDP and VRPDDP results 

 

  original  large variation in deliveries and pickups  large difference between delivery and pickup 

instance size 
 VRPSDP VRPDDP improvement  VRPSDP VRPDDP improvement  VRPSDP VRPDDP improvement 

 z k z k z k  z k z k z k  z k z k z k 

CMT1X 50  478 3 478 3 0.00% 0.00%  1185 19 1169 19 1.35% 0.00%  2315 45 1943 35 16.07% 22.22% 

CMT1Y 50  476 3 476 3 0.00% 0.00%  1101 18 1093 18 0.73% 0.00%  2245 45 1968 35 12.34% 22.22% 

CMT2X 75  713 7 712 7 0.14% 0.00%  2074 38 1978 36 4.63% 5.26%  3586 74 3217 60 10.29% 18.92% 

CMT2Y 75  694 7 694 7 0.00% 0.00%  2028 35 1903 32 6.16% 8.57%  3586 74 3292 63 8.20% 14.86% 

CMT3X 100  727 5 726 5 0.14% 0.00%  2055 32 2009 30 2.24% 6.25%  4210 80 3805 69 9.62% 13.75% 

CMT3Y 100  723 5 723 5 0.00% 0.00%  1884 28 1860 28 1.27% 0.00%  4146 80 3728 64 10.08% 20.00% 

CMT4X 150  901 8 901 8 0.00% 0.00%  2884 47 2806 45 2.70% 4.26%  6263 121 5738 105 8.38% 13.22% 

CMT4Y 150  859 7 859 7 0.00% 0.00%  2612 42 2605 42 0.27% 0.00%  6017 116 5328 97 11.45% 16.38% 

CMT5X 199  1090 11 1083 11 0.65% 0.00%  3865 68 3843 68 0.57% 0.00%  8366 167 7554 147 9.71% 11.98% 

CMT5Y 199  1053 10 1052 10 0.10% 0.00%  3403 59 3371 58 0.94% 1.69%  8080 163 7391 142 8.53% 12.88% 

CMT6X 50  555 6 555 6 0.00% 0.00%  1185 19 1169 19 1.35% 0.00%  2315 45 1943 35 16.07% 22.22% 

CMT6Y 50  556 6 556 6 0.00% 0.00%  1101 18 1093 18 0.73% 0.00%  2245 45 1968 35 12.34% 22.22% 

CMT7X 75  899 11 899 11 0.00% 0.00%  2083 38 2027 36 2.69% 5.26%  3586 74 3217 60 10.29% 18.92% 

CMT7Y 75  902 11 902 11 0.00% 0.00%  2028 35 1903 32 6.16% 8.57%  3586 74 3292 63 8.20% 14.86% 

CMT8X 100  874 9 874 9 0.00% 0.00%  2055 32 2009 30 2.24% 6.25%  4210 80 3805 69 9.62% 13.75% 

CMT8Y 100  867 9 867 9 0.00% 0.00%  1884 28 1860 28 1.27% 0.00%  4146 80 3728 64 10.08% 20.00% 

CMT9X 150  1200 15 1193 15 0.59% 0.00%  2884 47 2806 45 2.70% 4.26%  6263 121 5738 105 8.38% 13.22% 

CMT9Y 150  1215 15 1215 15 0.00% 0.00%  2612 42 2605 42 0.27% 0.00%  6017 116 5328 97 11.45% 16.38% 

CMT10X 199  1439 19 1438 19 0.07% 0.00%  3865 68 3843 68 0.57% 0.00%  8366 167 7554 147 9.71% 11.98% 

CMT10Y 199  1467 19 1452 19 1.03% 0.00%  3403 59 3371 58 0.94% 1.69%  8080 163 7391 142 8.53% 12.88% 

CMT11X 120  1009 5 1009 5 0.00% 0.00%  3941 32 3894 31 1.19% 3.13%  10024 90 8608 77 14.13% 14.44% 

CMT11Y 120  905 4 905 4 0.00% 0.00%  3333 29 3309 28 0.72% 3.45%  9727 89 8372 75 13.93% 15.73% 

CMT12X 100  680 6 680 6 0.00% 0.00%  2609 37 2535 34 2.84% 8.11%  5328 83 4523 68 15.11% 18.07% 

CMT12Y 100  632 5 632 5 0.00% 0.00%  2289 33 2233 32 2.45% 3.03%  5114 80 4304 68 15.84% 15.00% 

CMT13X 120  1647 11 1644 11 0.18% 0.00%  3941 32 3894 31 1.19% 3.13%  10024 90 8608 77 14.13% 14.44% 

CMT13Y 120  1710 12 1708 12 0.12% 0.00%  3333 29 3309 28 0.72% 3.45%  9727 89 8372 75 13.93% 15.73% 

CMT14X 100  842 10 831 10 1.32% 0.00%  2609 37 2535 34 2.84% 8.11%  5328 83 4523 68 15.11% 18.07% 

CMT14Y 100  854 11 854 11 0.00% 0.00%  2289 33 2233 32 2.45% 3.03%  5114 80 4304 68 15.84% 15.00% 

average      0.16% 0.00%      1.93% 3.12%      11.69% 16.41% 

z: solution value, k: number of vehicles, improvement: 
)(

)()(

VRPSDPz

VRPDDPzVRPSDPz 
 or 

)(

)()(

VRPSDPk

VRPDDPkVRPSDPk 
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Table 3.  Characteristics of split customers 

instance 
custo- 

mer 

near 

depot? 

large 

demand? 

large 

pickup? 

cluster?  
instance 

custo- 

mer 

near 

depot? 

large 

demand? 

large 

pickup? 

cluster? 

CMT2X 
67 YES YES NO NO  

CMT10X 

28 YES YES NO NO 

75 YES YES NO NO  53 YES NO NO YES 

CMT3X 30 NO YES NO NO  80 NO NO NO YES 

CMT5X 

10 NO NO NO NO  92 NO NO NO YES 

27 YES YES NO NO  111 YES YES NO NO 

28 YES YES NO NO  152 YES YES NO YES 

53 YES NO NO NO  156 YES YES NO YES 

60 NO NO NO NO  196 YES YES NO YES 

80 NO NO NO NO  

CMT10Y 

28 YES NO YES NO 

111 YES YES NO NO  53 YES YES NO YES 

112 YES YES NO NO  69 YES NO NO YES 

138 YES NO NO NO  96 YES NO NO YES 

146 YES NO NO NO  104 YES NO NO YES 

150 NO NO NO NO  111 YES YES NO NO 

154 YES YES NO NO  125 NO NO YES YES 

156 YES YES NO NO  138 YES NO NO NO 

167 YES YES NO NO  154 YES NO YES NO 

189 NO NO NO NO  199 NO NO NO YES 

196 YES YES NO YES  
CMT13X 

89 YES NO NO YES 

CMT5Y 

10 NO NO NO NO  99 YES NO NO YES 

28 YES NO YES NO  

CMT13Y 

39 NO NO NO YES 

68 NO YES YES NO  87 YES YES YES YES 

156 YES NO YES NO  90 YES NO YES YES 

190 YES YES YES NO  91 YES NO NO YES 

CMT9X 

1 YES NO NO NO  92 YES YES NO YES 

28 YES YES NO YES  94 YES NO NO YES 

53 YES NO NO YES  97 YES YES NO YES 

96 YES NO NO YES  105 YES NO NO YES 

104 YES NO NO YES  CMT14X 43 YES NO NO YES 

111 YES YES NO YES        

138 YES NO NO YES        

146 YES NO NO NO        
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Table 4.  Detailed configurations for routes with split solutions

instance t S Route  instance t S Route 

CMT 

2X 

1 C 0–75P–68–2–62–73–1–43–41–42–64–22–61–28–74–0  

CMT 

9X 

1 C 0–138D–109–54–130–55–25–149–26–0 

1 C 0–75D–30–48–21–47–36–69–71–60–70–20–37–5–0  1 C 0–53D–110–4–139–39–67–23–56–75–72–21–0 

1 C 0–67P–34–52–27–13–54–57–15–29–45–4–0  1 C 0–105–40–73–74–133–22–41–145–115–2–58–53P–0 

1 C 0–67D–35–14–59–19–8–46–0  2 Y 0–96D–104D–99–104P–6–0 

CMT 

3X 

1 C 0–27–69–1–50–33–81–9–51–30D–32–90–63–10–62–19–11–64–49–36–47–46–

45–17–84–5–60–89–0 

 1 C 0–96P–59–93–85–61–17–45–125–83–60–118–89–0 

1 C 0–146D–52–106–7–82–48–124–46–8–114–18–0 

1 C 0-28-76-77-3-79-78-34-35-71-65-66-20-30P-70-31-88-7-48-82-8-83-18-52-0  

CMT 

10X 

2 L 0–28D–76–196D–77–3–158–29–121–68–116–184–28P–0 

CMT 

5X 

4 Y 0–132–69–162–101–70–30–20–188–66–128–160–131–32–181–63–126–90–

108–189D–10D–189P–10P–31–167P–146D–0 

 1 C 0–156D–112–183–96–99–104–93–85–61–173–5–147–0 

1 Y 0–94–92D–151–92P–98–91–16–86–141–191–193–59–6–0 

1 C 0–111P–50–102–157–9–135–35–136–65–71–161–103–51–122–1–0  1 C 0–156P–13–87–172–42–142–43–15–57–144–137–0 

3 C 0–27P–176–33–81–120–164–34–78–169–129–79–185–196P–184–28P–0  1 Y 0–152D–58–152P–0 

5 Y 0–111D–76–196D–116–77–3–158–121–29–24–134–163–68–80D–150D–80P–

150P–177–109–12–154P–0 

 1 C 0–53D–180–198–110–4–155–25–55–165–130–54–179–149–0 

2 Y 0-138-154-12-80P-150-80D-134-24-163-177-109-195-26-105-53P-0 

1 C 0–53D–105–180–198–110–155–4–139–187–39–67–170–25–55–165–130–54–

179–149–26–0 

 2 C 0–111P–50–102–157–33–81–164–34–78–169–129–79–196P–0 

1 C 0–111D–9–161–71–65–136–35–135–120–185–0 

4 Y 0–28D–138P–154D–138D–195–21–72–197–56–186–23–75–133–22–41–145–

171–74–73–40–53P–0 

 

CMT 

10Y 

2 O 0–166–199P–125D–45–125P–199D–18–0  

2 Y 0–147–5–84–173–17–113–61–93–104D–99–104P–96D–6–0 

1 C 0–112D–183–94–95–117–97–87–172–43–15–57–178–115–2–58–152–0  1 C 0–183–96P–59–85–16–86–141–191–193–91–98–92–151–0 

1 C 0-137-144-42-142-14-38-140-44-119-192-91-61-85-93-59-104-99-96-6-112P-0  1 C 0–53P–2–115–178–57–15–43–142–42–172–144–137–0 

2 C 0–156P–13–151–92–37–98–100–193–191–141–16–86–113–17–173–84–5–118–

60P–166–89–0 

 1 C 0–53D–180–21–73–72–171–74–75–133–22–41–145–40–0 

1 C 0–105–149–179–110–4–155–25–55–165–130–54–109–154D–0 

3 C 0–156D–147–60D–83–199–125–45–174–46–36–143–49–64–107–123–182–7–

194–106–153–52–146P–0 

 2 Y 0–26–195–134–24–163–150–80–177–12–138D–154P–138P–0 

1 C 0–196–77–3–158–79–129–169–29–121–68–116–184–28D–0 

2 C 0-27D-167D-127-190-88-148-62-159-11-175-19-168-47-124-48-82-8-114-18-0  2 C 0–111D–50–102–157–33–81–120–164–34–78–185–76–28P–0 

CMT 

5Y 

1 C 0-27-176-1-122-51-103-161-71-65-136-35-135-9-120-185-77-196-76-28P-0  1 C 0–111P–9–135–35–136–65–71–161–103–51–0 

1 C 0–167–127–190D–88–148–62–159–90–126–63–181–32–131–160–128–66–

188–20–30–70–101–162–69–132–0 

 1 C 0–27–176–1–122–128–66–188–20–30–69D–132–0 

1 C 0–167–108–126–63–90–32–131–160–70–101–69P–0 

2 Y 0–153–106–194–7–82–48–47–36–143–49–64–107–175–11–108–10D–189–

10P–31–190P–146–0 

 

CMT 

13X 

1 C 0–99D–98–59–65–61–57–54–52–110–97–95–0 

1 C 0–99P–40–43–45–48–51–50–49–44–41–37–0 

1 C 0-52-182-123-19-168-124-46-174-8-114-125-45-199-83-18-166-89-156D-0  1 C 0–109–26–32–35–36–34–31–28–23–20–89D–0 

1 C 0–156P–13–117–97–87–42–43–15–57–178–2–115–145–41–22–133–75–74–

171–73–152–58–0 

 1 C 0–89P–114–17–22–24–27–33–30–25–19–16–0 

CMT 

13Y 

1 C 0–105D–106–103–73–76–77–78–80–79–68–98–99–0 

2 C 0–53–105–180–198–110–155–25–55–165–130–54–134–163–24–29–121–68P–

116–184–28D–0 

 2 C 0–94D–97D–115–40–43–45–59–57–54–52–53–0 

3 C 0–94P–41–44–46–49–47–50–51–48–42–39P–97P–0 

1 C 0–111–50–102–157–33–81–164–34–78–169–129–79–3–158–68D–150–80–

177–109–12–138–154–0 

 5 C 0-105P-107-104-116-110-39D-38-37-109-114-90D-91D-87P-0 

1 C 0–92D–26–28–31–30–33–34–36–35–32–29–0 

CMT 

9X 

1 C 0–27–127–31–10–108–90–63–126–107–19–123–146P–0  1 C 0–87D–17–16–19–25–22–24–27–23–20–21–0 

1 C 0–69–101–70–30–32–131–128–66–20–122–1P–0  3 C 0–86–85–84–5–4–3–6–118–18–90P–91P–92P–0 

1 C 0–9–13–35–136–65–71–103–51–1D–132–0  CMT 

14X 

1 C 0–43D–42–44–45–46–48–51–50–52–49–47–0 

2 C 0–111P–50–102–33–81–120–34–78–129–79–3–77–28D–0  1 C 0–67–65–66–62–74–72–61–64–68–41–43P–0 

3 C 0–111D–76–116–68–121–29–24–134–150–80–12–138P–28P–0      



 

 30 

t: number of split customers on the route, S: route shape, C: cycle, Y: cycle with co-located customer pairs, L: lasso, O: other, D: delivery service only, P: pickup service only. 
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