143 research outputs found

    SiMoNa: A Proof-of-concept Domain-Specific Modeling Language for IoT Infographics

    Get PDF
    The Internet of Things (IoT)is a prominent concept in academic and technology business discourse in recent times reflecting a wider trend to connect physical objects to the Internet and to each other. This idea of connect things started in the beginning of the 2008 through RFID. But after the open hardware initiatives (as Arduino), it gained more visibility and access to experiments with sensors in the environment. The IoT is already generating an unprecedented volume of data in greater varieties and higher velocities. Making sense of such data is an emerging and significant challenge. Infographics are visual representations that provide a visual space for end users to compare and analyze data, information, and knowledge in a more efficient form than traditional forms. The nature of IoT requires a continuum modification in how end users see information to achieve such efficiency gains. Conceptualizing and implementing infographics in an IoT system can thus require significant planning and development for both data scientists, graphic designers and developers resulting in both costs in terms of time and effort. To address this problem, this paper presents SiMoNa, a domain-specific modeling language (DSML) to create, connect, interact, and build interactive infographic presentations for IoT systems efficiently based on the model-driven development (MDD) paradigm. The language and approach are validated using real-world use cases

    A Model-Driven Approach for the Design, Implementation, and Execution of Software Development Methods

    Full text link
    [EN] Software development projects are diverse in nature. For this reason, software companies are often forced to define their methods in-house. In order to define methods efficiently and effectively, software companies require systematic solutions that are built upon sound methodical foundations. Providing these solutions is the main goal of the Method Engineering discipline. Method Engineering is the discipline to design, construct, and adapt methods, techniques, and tools for the development of information systems. Over the last two decades, a lot of research work has been performed in this area. However, despite its potential benefits, Method Engineering is not widely used in industrial settings. Some of the causes of this reality are the high theoretical complexity of Method Engineering and the lack of adequate software support. In this thesis, we aim to mitigate some of the problems that affect Method Engineering by providing a novel methodological approach that is built upon Model-Driven Engineering (MDE) foundations. The use of MDE enables a rise in abstraction, automation, and reuse that allows us to alleviate the complexity of our Method Engineering approach. Furthermore, by leveraging MDE techniques (such as metamodeling, model transformations, and models at runtime), our approach supports three phases of the Method Engineering lifecycle: design, implementation, and execution. This is unlike traditional Method Engineering approaches, which, in general, only support one of these phases. In order to provide software support for our proposal, we developed a Computer-Aided Method Engineering (CAME) environment that is called MOSKitt4ME. To ensure that MOSKitt4ME offered the necessary functionality, we identified a set of functional requirements prior to developing the tool. Then, after these requirements were identified, we defined the architecture of our CAME environment, and, finally, we implemented the architecture in the context of Eclipse. The thesis work was evaluated by means of a study that involved the participation of end users. In this study, MOSKitt4ME was assessed by means of the Technology Acceptance Model (TAM) and the Think Aloud method. While the TAM allowed us to measure usefulness and ease of use in a subjective manner, the Think Aloud method allowed us to analyze these measures objectively. Overall, the results were favorable. MOSKitt4ME was highly rated in perceived usefulness and ease of use; we also obtained positive results with respect to the users' actual performance and the difficulty experienced.[ES] Los proyectos de desarrollo de software son diversos por naturaleza. Por este motivo, las compañías de software se ven forzadas frecuentemente a definir sus métodos de manera interna. Para poder definir métodos de forma efectiva y eficiente, las compañías necesitan soluciones sistemáticas que estén definidas sobre unos fundamentos metodológicos sólidos. Proporcionar estas soluciones es el principal objetivo de la Ingeniería de Métodos. La Ingeniería de Métodos es la disciplina que aborda el diseño, la construcción y la adaptación de métodos, técnicas y herramientas para el desarrollo de sistemas de información. Durante las dos últimas décadas, se ha llevado a cabo mucho trabajo de investigación en esta área. Sin embargo, pese a sus potenciales beneficios, la Ingeniería de Métodos no se aplica ampliamente en contextos industriales. Algunas de las principales causas de esta situación son la alta complejidad teórica de la Ingeniería de Métodos y la falta de un apropiado soporte software. En esta tesis, pretendemos mitigar algunos de los problemas que afectan a la Ingeniería de Métodos proporcionando una propuesta metodológica innovadora que está basada en la Ingeniería Dirigida por Modelos (MDE). El uso de MDE permite elevar el nivel de abstracción, automatización y reuso, lo que posibilita una reducción de la complejidad de nuestra propuesta. Además, aprovechando técnicas de MDE (como por ejemplo el metamodelado, las transformaciones de modelos y los modelos en tiempo de ejecución), nuestra aproximación da soporte a tres fases del ciclo de vida de la Ingeniería de Métodos: diseño, implementación y ejecución. Esto es a diferencia de las propuestas existentes, las cuales, por lo general, sólo dan soporte a una de estas fases. Con el objetivo de proporcionar soporte software para nuestra propuesta, implementamos una herramienta CAME (Computer-Aided Method Engineering) llamada MOSKitt4ME. Para garantizar que MOSKitt4ME proporcionaba la funcionalidad necesaria, definimos un conjunto de requisitos funcionales como paso previo al desarrollo de la herramienta. Tras la definción de estos requisitos, definimos la arquitectura de la herramienta CAME y, finalmente, implementamos la arquitectura en el contexto de Eclipse. El trabajo desarrollado en esta tesis se evaluó por medio de un estudio donde participaron usuarios finales. En este estudio, MOSKitt4ME se evaluó por medio del Technology Acceptance Model (TAM) y del método Think Aloud. Mientras que el TAM permitió medir utilidad y facilidad de uso de forma subjetiva, el método Think Aloud permitió analizar estas medidas objetivamente. En general, los resultados obtenidos fueron favorables. MOSKitt4ME fue valorado de forma positiva en cuanto a utilidad y facilidad de uso percibida; además, obtuvimos resultados positivos en cuanto al rendimiento objetivo de los usuarios y la dificultad experimentada.[CA] Els projectes de desenvolupament de programari són diversos per naturalesa. Per aquest motiu, les companyies es veuen forçades freqüenment a definir els seus mètodes de manera interna. Per poder definir mètodes de forma efectiva i eficient, les companyies necessiten solucions sistemàtiques que estiguin definides sobre uns fundaments metodològics sòlids. Proporcionar aquestes solucions és el principal objectiu de l'Enginyeria de Mètodes. L'Enginyeria de Mètodes és la disciplina que aborda el diseny, la construcció i l'adaptació de mètodes, tècniques i eines per al desenvolupament de sistemes d'informació. Durant les dues últimes dècades, s'ha dut a terme molt de treball de recerca en aquesta àrea. No obstant, malgrat els seus potencials beneficis, l'Enginyeria de Mètodes no s'aplica àmpliament en contextes industrials. Algunes de les principals causes d'aquesta situació són l'alta complexitat teòrica de l'Enginyeria de Mètodes i la falta d'un apropiat suport de programari. En aquesta tesi, pretenem mitigar alguns dels problemes que afecten a l'Enginyeria de Mètodes proporcionant una proposta metodològica innovadora que està basada en l'Enginyeria Dirigida per Models (MDE). L'ús de MDE ens permet elevar el nivell d'abstracció, automatització i reutilització, possibilitant una reducció de la complexitat de la nostra proposta. A més a més, aprofitant tècniques de MDE (com per exemple el metamodelat, les transformacions de models i els models en temps d'execució), la nostra aproximació suporta tres fases del cicle de vida de l'Enginyeria de Mètodes: diseny, implementació i execució. Açò és a diferència de les propostes existents, les quals, en general, només suporten una d'aquestes fases. Amb l'objectiu de proporcionar suport de programari per a la nostra proposta, implementàrem una eina CAME (Computer-Aided Method Engineering) anomenada MOSKitt4ME. Per garantir que MOSKitt4ME oferia la funcionalitat necessària, definírem un conjunt de requisits funcionals com a pas previ al desenvolupament de l'eina. Després de la definició d'aquests requisits, definírem la arquitectura de l'eina CAME i, finalment, implementàrem l'arquitectura en el contexte d'Eclipse. El treball desenvolupat en aquesta tesi es va avaluar per mitjà d'un estudi on van participar usuaris finals. En aquest estudi, MOSKitt4ME es va avaluar per mitjà del Technology Acceptance Model (TAM) i el mètode Think Aloud. Mentre que el TAM va permetre mesurar utilitat i facilitat d'ús de manera subjectiva, el mètode Think Aloud va permetre analitzar aquestes mesures objectivament. En general, els resultats obtinguts van ser favorables. MOSKitt4ME va ser valorat de forma positiva pel que fa a utilitat i facilitat d'ús percebuda; a més a més, vam obtenir resultats positius pel que fa al rendiment objectiu dels usuaris i a la dificultat experimentada.Cervera Úbeda, M. (2015). A Model-Driven Approach for the Design, Implementation, and Execution of Software Development Methods [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/53931TESI

    Managing Evolutionary Method Engineering by Method Rationale

    Get PDF
    This paper explores how to integrate formal meta-models with an informal method rationale to support evolutionary (continuous) method development. While the former provides an exact and computer-executable specification of a method, the latter enables concurrent learning, expansion, and refinement of method use (instances of meta-models) and meta-models (evolution of method specifications). We explain the need for method rationale by observing the criticality of evolving method knowledge in helping software organizations to learn, as well as by the recurrent failure to introduce rigid and stable methods. Like a design rationale, a method rationale establishes a systematic and organized trace of method evolution. Method rationale is located at two levels of type-instance hierarchy depending on its type of use and the scope of the changes traced. A method construction rationale garners a history of method knowledge evolution as part of the method engineering process, which designs and adapts the method to a given organizational context. A method use rationale maintains knowledge of concrete use contexts and their history and justifies further method deployment in alternative contexts, reveals limitations in its past use, and enables sharing of method use experience. The paper suggests how a method rationale helps share knowledge of methods between method users and engineers, explores how method engineers coordinate the evolution of the existing method base through it, and suggests ways to improve learning through method rationale

    The State of the Art in Language Workbenches. Conclusions from the Language Workbench Challenge

    Get PDF
    Language workbenches are tools that provide high-level mechanisms for the implementation of (domain-specific) languages. Language workbenches are an active area of research that also receives many contributions from industry. To compare and discuss existing language workbenches, the annual Language Workbench Challenge was launched in 2011. Each year, participants are challenged to realize a given domain-specific language with their workbenches as a basis for discussion and comparison. In this paper, we describe the state of the art of language workbenches as observed in the previous editions of the Language Workbench Challenge. In particular, we capture the design space of language workbenches in a feature model and show where in this design space the participants of the 2013 Language Workbench Challenge reside. We compare these workbenches based on a DSL for questionnaires that was realized in all workbenches

    Coping with Semantic Variation Points in Domain-Specific Modeling Languages

    Get PDF
    International audienceEven if they exhibit differences, many Domain-Specific Modeling Languages (DSMLs) share elements from their concepts, notations and semantics. StateCharts is a well known family of DSMLs that share many concepts but exhibit notational differences and many execution semantics variants (called Semantic Variation Points – SVPs –). For instance, when two conflicting transitions in a state machine are enabled by the same event occurrence, which transition is fired depends on the language variant (Harel original StateCharts, UML, Rhapsody, etc.) supported by the execution tool. Tools usually provide only one implementation of SVPs. It complicates communication both between tools and end-users, and hinders the co-existence of multiple variants. More generally, Language Workbenches dedicated to the specification and implementation of eXecutable Domain-Specific Modeling Languages (xDSMLs) often do not offer the tools and facilities to manage these SVPs, making it a time-consuming and troublesome activity. In this paper, we describe a modularized approach to the operational execution semantics of xDSMLs and show how it allows us to manage SVPs. We illustrate this proposal on StateCharts

    A Formal Specification of the Horus Modeling Language Using FDMM

    Get PDF
    In this paper we show how a modeling language from the area of business process engineering can be formally specified using meta modeling concepts. This serves as a basis for the implementation on an industry-scale meta modeling platform. For this purpose we revert to the Horus modeling method and the FDMM formalism that has recently been introduced to formally describe meta models and models. Subsequently we report on the implementation of the modeling language on the ADOxx meta modeling platform and discuss the lessons learned by the application of this approach

    The Requirements Editor RED

    Get PDF

    MODELING REQUIREMENTS FOR FUTURE: ISSUES AND IMPLEMENTATION CONSIDERATIONS

    Get PDF
    In this paper, we discuss some requirements for future CASE (Computer Aided Software/Systems Engineering) environments. These requirements include increased modifiability and flexibility as well as support for task and agent models. We claim that they can only be addressed by developing more powerful representation and modeling techniques. As a possible basis for a modeling technique, we propose the GOPRR (Graph-Object-Property-Relationship-Role) data model, which addresses some of these requirements. In addition, a general information architecture for a future CASE environment is outlined. It includes three kinds of models for methodology specification: meta-datamodels, activity (task) models, and agent models. These models are defined using the GOPRR model with some additional concepts for IS development process and agent participation
    corecore