
Association for Information Systems
AIS Electronic Library (AISeL)

Wirtschaftsinformatik Proceedings 2013 Wirtschaftsinformatik

2013

A Formal Specification of the Horus Modeling
Language Using FDMM
Hans-Georg Fill
University of Vienna, Research Group Knowledge Engineering, Vienna, Austria, hans-georg.fill@dke.univie.ac.at

Susan Hickl
Karlsruhe Institute of Technology, Institute of Applied Informatics and Formal Description Methods, Karlsruhe, Germany,
susan.hickl@kit.edu

Dimitris Karagiannis
University of Vienna, Research Group Knowledge Engineering, Vienna, Austria, dimitris.karagiannis@dke.univie.ac.at

Andreas Oberweis
Karlsruhe Institute of Technology, Institute of Applied Informatics and Formal Description Methods, Karlsruhe, Germany,
andreas.oberweis@kit.edu

Andreas Schoknecht
Karlsruhe Institute of Technology, Institute of Applied Informatics and Formal Description Methods, Karlsruhe, Germany,
andreas.schoknecht@kit.edu

Follow this and additional works at: http://aisel.aisnet.org/wi2013

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in
Wirtschaftsinformatik Proceedings 2013 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Fill, Hans-Georg; Hickl, Susan; Karagiannis, Dimitris; Oberweis, Andreas; and Schoknecht, Andreas, "A Formal Specification of the
Horus Modeling Language Using FDMM" (2013). Wirtschaftsinformatik Proceedings 2013. 73.
http://aisel.aisnet.org/wi2013/73

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwi2013%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2013?utm_source=aisel.aisnet.org%2Fwi2013%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi?utm_source=aisel.aisnet.org%2Fwi2013%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2013?utm_source=aisel.aisnet.org%2Fwi2013%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2013/73?utm_source=aisel.aisnet.org%2Fwi2013%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

1165

11th International Conference on Wirtschaftsinformatik,
27th February – 01st March 2013, Leipzig, Germany

A Formal Specification of the Horus Modeling Language
Using FDMM

Hans-Georg Fill1, Susan Hickl2, Dimitris Karagiannis1, Andreas Oberweis2,
and Andreas Schoknecht2

1 University of Vienna, Research Group Knowledge Engineering, Vienna, Austria
{hans-georg.fill,dimitris.karagiannis}@dke.univie.ac.at

2 Karlsruhe Institute of Technology, Institute of Applied Informatics and
Formal Description Methods, Karlsruhe, Germany

{susan.hickl,andreas.oberweis,andreas.schoknecht}@kit.edu

Abstract. In this paper we show how a modeling language from the area of
business process engineering can be formally specified using meta modeling
concepts. This serves as a basis for the implementation on an industry-scale me-
ta modeling platform. For this purpose we revert to the Horus modeling method
and the FDMM formalism that has recently been introduced to formally de-
scribe meta models and models. Subsequently we report on the implementation
of the modeling language on the ADOxx meta modeling platform and discuss
the lessons learned by the application of this approach.

Keywords: Modeling, Meta Modeling, Business Process Engineering

1 Introduction

For many years the field of business informatics has developed a multitude of model-
ing methods and tools to support the representation and analysis of complex business-
IT relationships [1]. When implementing such modeling methods in the form of mod-
eling tools, meta modeling concepts and platforms today greatly facilitate the imple-
mentation of the contained modeling languages [2-5]. Based on formal specifications
of the model, object and data types together with their respective attributes, a model-
ing language can thus be realized very efficiently with no or little programming effort.
In the paper at hand we describe how the modeling language of the Horus modeling
method is implemented using such meta modeling concepts [3]. For this purpose we
created a formal specification of the Horus modeling language for exactly describing
meta models and models [6]. This formal specification is then used for the implemen-
tation on an industry-scale meta modeling platform. Subsequently, we discuss our
experience of using this approach for the realization of modeling methods.

The remainder of the paper is structured as follows: In section 2 the foundations for
our approach will be outlined. These will encompass a characterization of the Horus
modeling method for business process engineering, the FDMM formalism and the
ADOxx meta modeling platform. In section 3 it will be shown how the FDMM for-

1166

malism has been applied to Horus to establish the basis for the implementation on the
ADOxx meta modeling platform. The lessons learned from this application will then
be discussed in section 4. In section 5 we will discuss related work concerning similar
modeling methods and related meta modeling approaches. The paper is concluded
with an outlook on the future work in section 6.

2 Foundations

In this section we will briefly describe the foundations used for our approach. This
includes at first the foundations of the Horus modeling method, then the FDMM for-
malism and finally the ADOxx meta modeling platform.

2.1 The Horus Modeling Method

The Horus modeling method for business process engineering comprises steps for an
integrated modeling of business processes and for the improvement and further use of
the created models [8]. The application of this method always considers a business
process in terms of its organizational environment. This is realized by using a set of
interrelated models describing different aspects of the business process which are part
of the Horus modeling method.

The Horus modeling method classifies the business process engineering into four
phases. In phase 0 the engineering project has to be prepared. During the phases 1 and
2 the integrated Horus process model is created. In phase 1 the strategic aspects and
the description of the enterprise and system architecture are represented by the model
types: goal model, context model, supply- & services model, SWOT model, strategy
model, risk model, key figure model, object model, rule model, business unit model,
business process architecture model and system architecture model. Based on this set
of models, the business process analysis has to be done in phase 2. Besides improved
models of phase 1, the results of this phase are a resource model, an organization
model and a procedure model. The models created in phase 2 describe the business
process in more detail and from a technical point of view. In phase 3 the use of the
integrated process model for implementation and further activities follows.

A special feature of the Horus modeling method is the use of XML nets for process
descriptions. XML nets [9] are high-level Petri nets where tokens represent identifia-
ble objects. The places are typed by an XML schema whereby places can be interpret-
ed as containers for XML documents describing relevant process objects. The edges
are labeled with filter schemas that can be expressed by an XQuery expression, which
describes the relevant process objects for the following transitions. The flow of an
XML document is defined by the occurrences of transitions. A transition is activated
if every place in the pre-set of the transition contains a valid XML document, which
observes both conditions specified in the filter-schema of the adjacent edge and in the
logical expression of the transition. Then the transition may fire and the respective
XML documents will be assigned to the post-set of the transition. Using XML nets

1167

enables the integrated modeling of structured business objects and object flows as
well as process simulation.

2.2 The FDMM Formalism

According to a framework introduced in [3], modeling methods are comprised of a
modeling technique and mechanisms and algorithms. The modeling technique can
then be further detailed by a modeling language and a modeling procedure that de-
fines the way how to apply the modeling language together with the mechanisms and
algorithms to achieve results. In the following we will focus on the aspects of the
modeling language and in particular the description of its syntax by using meta mod-
els and models.

In order to exactly describe meta models and models independently of their actual
implementation, the FDMM formalism has been developed [6]. It can be used to de-
scribe meta models and models in a mathematical way. In this way, the resulting for-
mal descriptions can serve as input for the implementation of the meta models and
models in an IT environment. In FDMM a meta model MM contains the following
parts:

 (1)

Thereby the set MT comprises the set of model types specified for this meta model:

 (2)

Each model type MTi is a tuple of a set of object types Oi
T, a set of data types Di

T and
a set of attributes Ai:

 (3)

All object types, data types, and attributes of the model types are parts of the sets O
T,

D
T and A whereby object types may also exist independently of model types:

 (4) 棋 is an ordering on the set of object types, O
T, i.e. if o1

t 棋 o2
t then we denote object

type o1
t as a ‘subtype’ of object type o2

t.
For assigning attributes to object types the domain function maps attributes to the
power set of object types:

 (5)

Similarly, the range function maps attributes to the power set of all pairs of object
types and model types, to data types, and to model types. It thus constrains what val-
ues an attribute can take in the model instances. Apart from the assignment of data
types, e.g. for strings and integers, this mapping also permits to link to object types of
the same or other model types and to model types:

 (6)

The card function constrains how many attribute values an object may have:

1168

 (7)

The sets O
T, D

T, A are pairwise disjoint. For any attribute it is defined that a corre-
sponding domain function must point to an object type of the same model type:

 (8)

The instantiation of a meta model MM is a tuple:

 (9)

where づmt is a mapping from model types MT to the power set of model instances mt

 (10)

with the set mt being the union of all mappings of model types to model instances so
that every element of the set of model instances mt has to be derived from a model
type:

 (11)

The function づO maps object types of a particular model type to the power set of ob-
ject instances O :

 (12)

where O is the union of all object instances so that there is no object instance without
a mapping to an object type and a model type :

 (13)

An object type ot 樺 O
T can be defined as an abstract type. This means that for all

model types MTi which contain the object type o
t (o

t 樺 Oi
T) the object type can only

be instantiated through one of its subtypes:

 (14)

The function づ D maps the data types to the power set of data objects. The data objects
themselves are not further defined or constrained. The FDMM formalism thus leaves
it to the user to further specify the nature and valid content of a data type:

 (15)

For describing the model instances FDMM uses triple statements ぷ defined as:

 (16)

The function く is then used to map the set of model instances mt to the power set of
these triple statements and thus assigns triple statements to the model instances:

 (17)

In this context, a correctness constraint is defined by FDMM so that ぷ is the disjoint
union of が (mti) with mti 樺 mt, meaning that every triple is contained in exactly one
model instance.

1169

Additionally, FDMM defines a number of disjointness and partitioning constraints
for the instantiation of meta models. We will briefly describe these in the following in
textual form, for the formal definitions we refer to [6]: in FDMM the instances of
object types and data types must be disjoint; instantiations from multiple object types,
from multiple model types or from multiple data types are not permitted.

For the correct application of the inheritance, domain, range, and cardinality con-
structs the following constraints must be satisfied [6]: the instantiation of an object
type that is a subtype of another object type via the function づO is a subset of the in-
stantiation of that other object type; instantiations of sibling object types are disjoint;
the value part in the triple statements ぷ has to match the corresponding range defini-
tion for the used attribute and the object type – e.g. if the range for an attribute is to be
defined as a ‘string’, then only a ‘string’ value can be used in a triple statement for
that attribute; for triple statements consisting of an object instance, an attribute, and a
value it must hold that the attribute is part of a domain function for the object type
used for the instance; for data objects it must hold that their corresponding data type
must be defined for the same model type as the attribute; and finally, the cardinality
definitions constrain the minimum and maximum number of triple statements for a
pair of object types and attributes.

2.3 The ADOxx Meta Modeling Platform

The ADOxx meta modeling platform is currently being used for several projects with-
in the Open Models Initiative1 and has been successfully deployed in industry for a
wide range of business-IT scenarios [7]. In contrast to other meta modeling approach-
es, the ADOxx platform does not require programming skills for the implementation
of meta models and model editors and thus supports a fast and efficient definition of
modeling languages.

The ADOxx meta modeling approach builds upon three layers: On the top layer
stands the ADOxx meta-meta model that defines the constructs that can be used for
the definition of meta models. The basic constructs are classes and relationclasses that
can be grouped by using model types. Both classes and relationclasses may contain
attributes. On the second layer, meta models can be specified to define the abstract
syntax of a modeling language. This abstract syntax is then instantiated on the third
and bottom layer to multiple models. For the representation of the concrete syntax, a
dynamic graphical notation is assigned to classes and relationclasses. This representa-
tion can be automatically adapted during run-time based on the current state of attrib-
utes.

At its core the ADOxx meta modeling platform is a client-server based software
application that implements the ADOxx meta modeling approach. It provides a graph-
ical user interface for the definition of classes, relationclasses, and attributes and
stores both meta models and models in a relational database. From the specifications
in the meta models, the platform automatically generates graphical model editors,

1 Karagiannis, D., Grossmann, W., Hoefferer, P.: Open Model Initiative - A Feasibility Study:

http://cms.dke.univie.ac.at/uploads/media/Open_Models_Feasibility_Study_SEPT_2008.pdf

1170

provides generic XML import and export formats and handles the persistency of the
models and meta models. Based on its client-server architecture it also supports multi-
user environments with fine-grained access controls. Furthermore, it offers additional
components such as the AdoScript language for implementing algorithms on top of
meta models and models, a simulation component for applying process-based simula-
tion algorithms, an analysis component for querying models using the AQL query
language and a documentation component for the automatic generation of model doc-
umentations in various export formats.

3 Formal Specification of Meta Models for Horus

Based on the foundations presented in the previous section, we can now apply the
FDMM formalism to the Horus modeling language. This will provide us with a speci-
fication for the implementation on the ADOxx platform. The formal specification
presented in the following does, however, not comprise all aspects of the language but
only a selected set of constructs. This will illustrate some of the core aspects of apply-
ing meta modeling concepts to the Horus modeling language with FDMM. Subse-
quently we will discuss the implementation on the ADOxx platform.

3.1 FDMM Specification of the Meta Model

As outlined in section 2.1 Horus is composed of a large number of model types that
are all tightly interconnected. For illustrating the application of the FDMM formalism
we selected four core model types that are used in Horus to describe XML nets. The
model types we will discuss in the following are: the procedure model MTPM, the
employee pool model MTEM, the role pool model MTRM, and the object model MTOM:

 (18)

 (19)

 (20)

 (21)

To illustrate how a model type is detailed by its object types, data types and attributes,
we show this for the procedure model type. The object types of the procedure model
are defined as:

 (22)

We can then define inheritance relationships between the object types by:

 (23)

Thereby, the object types ‘Object-Store’ and ‘Activity’ are defined as subtypes of the
object type ‘Abstract-Procedure-Class’ that is defined as abstract. This makes it easier

1171

to assign attributes to the sub types and also simplifies the specification of relation-
ships between all subtypes of an object type.

Next, we define the data types for the procedure model type by:

 (24)

As FDMM does not further define the data types that can be used, we are free to use
either common types such as String, Integer or Float or custom ones such as File that
have to be specified during the implementation based on the used implementation
platform. By using another set as a data type as it is shown by the EnumWF and
EnumAT types for example, we can also express data types with pre-defined, fixed
values:

 (25)

 (26)

Subsequently, we can define the attributes necessary for the object types. In the set
APM we only present an excerpt of the attributes that were actually defined for this
model type for reasons of brevity. For example, the ‘Activity’ object type also re-
quires a number of additional attributes for specifying time properties and simulation
parameters. The attribute set also comprises elements that will later be used to specify
the start- and endpoint of relation-classes, e.g. the connection-from and the connec-
tion-to attributes:

 (27)

In the current formalization of the Horus modeling language, the employee pool mod-
el and the role pool model only contain a small number of object types, data types and
attributes, i.e. for the employee pool model:

 (28)

 (29)

 (30)

And similarly the definitions for the role pool model:

 (31)

 (32)

 (33)

In contrast to these simple model types, the definition of the object model type re-
quires more constructs as it constitutes a way of representing actual XML schemas.
The object types of this model type are therefore defined as follows:

 (34)

1172

For the data types of this model type we again use the possibility of referring to pre-
defined sets of attribute values:

 (35)

 (36)

 (37)

 (38)

 (39)

The set of attributes for the object model type are then defined as follows:

 (40)

Finally, we can conclude the formal specification by adding domain, range, and car-
dinality definitions for the attributes. Again we selected some of the attributes and
object types defined above to illustrate this. By assigning an attribute to a super-type,
all subtypes automatically inherit the attribute definition as e.g. shown for the Ab-
stract-procedure-class object type and the name attribute:

 (41)

For the specification of references between object instances and object instances and
model instances it can be chosen from two directions in FDMM: the first is to directly
reference another object type or model type and the second is to use an intermediary
object type that has references to the object and/or model types that shall be connect-
ed. The references are in all cases expressed by attributes whose range contains other
object types or model types. At first we illustrate a direct reference to other object
types by the example of assigning an object type to an attribute of ‘Object-store’:

 (42)

In this way a core feature of Horus to represent XML nets is specified. The attribute
‘Object-type’ that is attached to the ‘Object-store’ object type can thus be used to
reference object instances of the types ‘Object’ and ‘Object-Aggregation’ that are part
of the object model type. As this reference points directly to another object type no
further information can be assigned to the reference itself. We show in the following
how to resolve this.

To enable more complex references where the reference itself can be further speci-
fied, an intermediary object type has to be used. We illustrate this in the following for
the specification of edges in the procedure model type, which are denoted as ‘Connec-

1173

tions’ in the Horus modeling language. For this purpose the two attributes ‘connec-
tion-to’ and ‘connection-from’ are assigned to the ‘Connection’ object type with the
range definition pointing to the ‘Abstract-procedure-class’. The cardinalities of the
from and to attributes are set to <1,1> as edges can only occur with exactly two object
instances attached to them:

 (43)

 (44)

When instantiating the object type ‘Connection’ it becomes possible to connect these
instances to instances of the type ‘Abstract-procedure-class’ and to treat this relation
separately from the objects it connects to. At the same time, further attributes may be
assigned to ‘Connection’. This is for example necessary to define transition condi-
tions in XML nets that can be specified via XQuery strings:

 (45)

When a separate treatment of the relationship between object types is not required but
the relation should still be detailed by additional attributes we can express this in
FDMM in the following way. The ‘Activity’ objects in Horus have to be detailed by
their requirements in terms of human resources. Therefore they are linked to ‘Role’
objects in the role pool model. However, it should be possible to detail for each role,
if the role is just executing or checking the activity or is responsible for it or has to
inform someone. At first we specify the attribute ‘HR-req’ that can point to any num-
ber of ‘Human-resource-requirements’ objects.

 (46)

Then we specify the attribute ‘Role-ref’ for the object type ‘Human-resource-
requirements’:

 (47)

As the target reference is now also an object type, we can add further attributes to
detail it - for example by reverting to the previously defined EnumAT data type:

1174

 (48)

Another important feature in Horus procedure models is the use of refinements for
individual activities [8]. Thereby it is controlled how many details should be dis-
played on each level. In FDMM these refinements can be expressed by references to
other model instances of the same type. We show this for the refinement attribute
‘sub-diagram’ whose range encompasses model instances of the type MTPM:

 (49)

3.2 Examples for Model Instances in FDMM

As FDMM not only permits to formally specify meta models but also the instantiation
of meta models, we will illustrate in the following how the definitions of the previous
section can be applied. We show the instantiation by using a procedure model and an
object model. In Figure 1 on the next page a sample procedure model for an order
process and in Figure 2 a sample object model are depicted as they have been later
implemented. The instantiation of these model types is specified by:

 (50)

In the next step we illustrate the instantiation of object types for these two model
types. We show this for the object stores that are represented by circles and the activi-
ties that are represented by rectangles in figure 1:

 (51)

For the assignment of textual information – as shown in the form of labels for the
elements in figure 1 – we first have to instantiate attribute values of the corresponding
data types, for example by:

 (52)

These data objects can then be used in triple statements to assign them to the object
instances via their attributes, e.g.:

 (53)

For the specification of the edges in the procedure model we first have to instantiate
an object of type ‘Connection’ in (54) and can then use two triple statements for de-
fining the start and endpoint in (55):

1175

 (54)

 (55)

To illustrate how references to other object instances are specified we also take into
account the object model shown in Figure 2. For XML nets the object stores in the
procedure model are typed by referencing object elements in an object model. There-
fore an instance of an object type has to be made available by: づO (Object) = {obj1}.
Then we can reference this object in a triple statement:

 (56)

3.3 Horus on ADOxx: A Prototypical Implementation

For the implementation of the formal specification in ADOxx some differences be-
tween the FDMM formalism and ADOxx had to be taken into account [6]. An im-
portant characteristic is that in ADOxx it is distinguished between classes and
relationclasses that are used to connect classes. In contrast, FDMM does not make
such a distinction but only refers to object types. Therefore, it had to be decided for
which object types in FDMM classes should be defined and for which object types
relationclasses. In addition, also the way how references between object types and
object types and model types are used in FDMM differs from ADOxx. ADOxx pro-
vides the attribute type ‘interref’ that is used to specify references from class instances
to either other class instances or model instances. However, when such a reference
should possess additional attributes, so-called ‘record classes’ have to be used in
ADOxx that permit the combination of several attribute types in the form of a record,
i.e. a table-based structure. This directly corresponds to the use of an additional object
type in FDMM.

For the realization of the Horus modeling language also additional constraints for
the application of constructs on the model level had to be taken into account, apart
from cardinality constraints. As FDMM currently does not provide constructs to ex-
press such constraints, these had to be added in ADOxx by using the AdoScript lan-
guage. It is envisaged to add constructs for such constraint specifications to FDMM in
the future. This concerned for example the requirement in procedure models that
‘connections’ can only connect instances of different classes, i.e. that an object store
can only be followed by an activity and vice-versa.

1176

Fig. 1. Example for a Procedure Model in ADOxx

For the implementation of the Horus modeling language on ADOxx it was finally
decided to create a total number of 17 model types that contain 44 classes, 9
relationclasses, and 11 record classes. From these classes 18 were defined as abstract
classes. In addition, 161 attributes were created for the classes and 26 attributes for
the relationclasses. Furthermore, for each non-abstract class and each relationclass a
graphical representation was specified in the proprietary ADOxx-GraphRep grammar.

Fig. 2. Example for a Horus Object Model in ADOxx

All these tasks could be done using the graphical user interface of ADOxx for defin-
ing meta models and thus did not involve any programming effort. Overall, the im-
plementation required about 60 person hours, not including testing, which is still be-

1177

ing conducted at the time of writing this paper. The implementation will be made
freely available in the context of the Open Models Initiative2.

4 Lessons Learned

As modeling methods constitute an important means in the domain of business infor-
matics, their exact specification is an important step to ensure a common understand-
ing of the contained concepts between the designers of a modeling language and the
developers of the modeling tool. In particular, the implementation of a modeling lan-
guage on a meta modeling platform greatly benefits from a meta modeling oriented
formal specification as it can be determined exactly how the language needs to be
implemented. In addition, comparisons between the actual implementation and the
specification can be made to ensure the quality of the implementation.

With the formal specification of the Horus modeling language by using the FDMM
formalism, we could show how such a specification can be done in practice. Thereby,
the FDMM formalism was directly applicable to the concepts of the Horus modeling
language. However, the specification using FDMM also has some limitations. For
example, in its current form it is not possible to formally specify the modeling proce-
dure and the mechanisms and algorithms of a modeling method, i.e. the dynamic as-
pects. Also, the graphical representation of the elements and relations that constitute
an indispensable part of many modeling methods in business informatics is currently
not supported by FDMM. In regard to the implementation on the ADOxx platform,
the differences between FDMM and the constructs in ADOxx had to be observed, e.g.
the absence of explicit constructs for relations in FDMM that are available in ADOxx.
Therefore, the use of FDMM specifications for the later implementation on ADOxx
requires good knowledge of the platform functionalities. This also concerns the deci-
sions on how to graphically represent the modeling language so that it is both user
friendly and at the same time encompasses all required information for effectively
creating models.

For the development of modeling tools, a formal description of the underlying me-
ta model leads in particular to two main advantages: firstly, it has to be made explicit
in an unambiguous representation, which concepts of a modeling language, including
its elements, their relationships and the according attributes are provided to the users
of a modeling language. Secondly, these descriptions can directly support the imple-
mentation of a modeling tool by providing a reference for the requirements of the
implementation that can be exactly verified against the actual software implementa-
tion.

As a result of the application of FDMM to the Horus modeling method, we can de-
rive the following requirements for a further extension of FDMM. To close the gap
between the formalization in FDMM and the implementation on a meta modeling
platform, a formal mapping between FDMM and the programming constructs of meta
modeling platforms should be established. This mapping can then also be realized as a

2 http://www.openmodels.at/web/adoxx-horus-method/download

1178

software component for the automatic generation of meta modeling platform specific
code from the formal specifications. Furthermore, the representation of dynamic as-
pects of modeling methods, such as the modeling procedure and mechanisms and
algorithms that take into account the behavior of the modeling method, should be
added to FDMM. Also these extensions can then be incorporated in the platform spe-
cific mapping to eliminate the step of manually translating the specifications into
concrete code.

5 Related Work

In conclusion, two relevant areas can be distinguished to which the paper at hand can
be related. First, the approach is compared to approaches in software development.
Second, ADOxx and FDMM are compared to other meta modeling approaches.

The formal specification of meta models and models can be compared to formal
specifications of software systems, e.g. by using graph transformations [15-16]. Simi-
larly to our approach formal specifications in this domain are also used for making the
consistency of the dimensions of a system explicit.

The FDMM formalism and ADOxx can be compared to other meta modeling ap-
proaches and formalizations of meta models and models. According to [14] FDMM
and ADOxx can be directly compared to domain-specific modeling approaches which
view meta models as language specifications. In this context, meta-meta models ena-
ble the automatic creation of graphical model editors from modeling language specifi-
cations. Kern et al. [4] provide an overview of such meta-meta models, which include
for instance the GOPPRR/MetaEdit+ or the ARIS framework. Another group of meta
modeling approaches uses meta models as software structure specifications (e.g.
EMOF [13] or EMF [12]) and their formalisms consequently concentrate on the spec-
ification of software structures (see e.g. [11] for EMOF). In comparison, ADOxx does
not focus on the generation of source code as e.g. intended by MetaEdit+ and neither
requires programming skills. In comparison to the approach in [16], FDMM currently
does not permit to express the dynamic behavior of modeling methods but rather fo-
cuses on the formalization of the abstract and the concrete syntax.

6 Outlook

Based on the insights gained by the application of FDMM to Horus and the imple-
mentation on ADOxx we will continue to work on facilitating the implementation of
modeling methods. Possible next steps therefore concern the combination of the
FDMM formalism with existing techniques for the automatic assignment of graphical
representations [10] as well as the specification of model algorithms in a similar, non-
programming oriented way. This will also be of further benefit for the implementation
of the Horus method in order to specify additional graphical representations, e.g. to
use domain-specific visualizations of Petri-nets, as well as for the realization of simu-
lation functionalities for selected sets of model types.

1179

References

1. Koch, S., Strecker, S., Frank, U.: Conceptual Modelling as a New Entry in the Bazaar: The
Open Model Approach. Open Source Systems, Vol. 203, pp. 9-20. IFIP (2006)

2. Karagiannis, D., Fill, H.-G., Hoefferer, P., Nemetz, M.: Metamodeling: Some Application
Areas in Information Systems. In: Kaschek, R., et al. (eds.): UNISCON 2008. LNBIP, Vol.
5, pp. 175-188. Springer (2008)

3. Karagiannis, D., Kuehn, H.: Metamodeling Platforms. In: Bauknecht, K., Min Tjoa, A.,
Quirchmayr, G. (eds.): EC-Web 2002 – Dexa 2002. LNCS, Vol. 2455, p. 182. Springer
(2002)

4. Kern, H., Hummel, A., Kuehne, S.: Towards a Comparative Analysis of Meta-
Metamodels. In: 11th Workshop on Domain-Specific Modeling, Portland (2011)

5. Gulden, J., Frank, U.: MEMOCenterNG - A full-featured modeling environment for or-
ganization modeling and model-driven software development. In: Proper, E., Soffer, P.:
Proceedings of the CAiSE Forum 2010, Hammamet (2010)

6. Fill, H.-G., Redmond, T., Karagiannis, D.: FDMM: A Formalism for Describing ADOxx
Meta Models and Models. In: Maciaszek, L., et al. (eds.): ICEIS 2012, Wroclaw, Poland,
Vol. 3, pp. 133-144 (2012)

7. BPTrends: The 2005 EA, Process Modeling and Simulation Tools Report - Adonis Ver-
sion 3.81. Business Process Trends (2005)

8. Schönthaler, F., Vossen, G., Oberweis, A., Karle, T.: Business Processes for Business
Communities - Modeling Languages, Methods, Tools. Springer (2012)

9. Lenz, K., Oberweis, A.: Inter-organizational Business Process Management with XML
Nets. In: Petri Net Technology for Communication-Based Systems, Advances in Petri
Nets. LNCS, Vol. 2472, pp. 243-263. Springer (2003)

10. Fill, H.-G.: Visualisation for Semantic Information Systems. Gabler (2009)
11. Favre, L.: A Formal Foundation for Metamodeling. In: Kordon, F. and Kermarrec, Y.

(eds.): Reliable Software Technologies – Ada-Europe 2009. LNCS, Vol. 5570, pp. 177-
191. Springer (2009)

12. McNeill, K.: Metamodeling with EMF: Generating concrete, reusable Java snippets,
http://www.ibm.com/developerworks/library/os-eclipse-emfmetamodel/index.html

13. Object Management Group: Omg meta object facility (mof) core specification version
2.4.1, http://www.omg.org/spec/MOF/2.4.1/PDF/

14. Sprinkle, J., Rumpe, B., Vangheluwe, H., Karsai, G.: Metamodelling: state of the art and
research challenges. In: Proceedings of the 2007 International Dagstuhl conference on
Model-based engineering of embedded real-time systems. LNCS, Vol. 6100, pp. 57-76.
Springer (2010)

15. Engels, G., Heckel, R.: Graph Transformation as a Conceptual and Formal Framework for
System Modeling and Model Evolution. In: Montanari, U. et al. (eds.): ICALP 2000.
LNCS, Vol. 1853, pp. 127-150. Springer (2000)

16. Engels, G., Soltenborn, C., Wehrheim, H.: Analysis of UML Activities Using Dynamic
Meta Modeling. In: Proceedings of FMOODS 2007. LNCS, Vol. 4468, pp. 76-90. Springer
(2007)

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2013

	A Formal Specification of the Horus Modeling Language Using FDMM
	Hans-Georg Fill
	Susan Hickl
	Dimitris Karagiannis
	Andreas Oberweis
	Andreas Schoknecht
	Recommended Citation

	Untitled

