1,562 research outputs found

    GPU-based Streaming for Parallel Level of Detail on Massive Model Rendering

    Get PDF
    Rendering massive 3D models in real-time has long been recognized as a very challenging problem because of the limited computational power and memory space available in a workstation. Most existing rendering techniques, especially level of detail (LOD) processing, have suffered from their sequential execution natures, and does not scale well with the size of the models. We present a GPU-based progressive mesh simplification approach which enables the interactive rendering of large 3D models with hundreds of millions of triangles. Our work contributes to the massive rendering research in two ways. First, we develop a novel data structure to represent the progressive LOD mesh, and design a parallel mesh simplification algorithm towards GPU architecture. Second, we propose a GPU-based streaming approach which adopt a frame-to-frame coherence scheme in order to minimize the high communication cost between CPU and GPU. Our results show that the parallel mesh simplification algorithm and GPU-based streaming approach significantly improve the overall rendering performance

    Intrinsic Mesh Simplification

    Full text link
    This paper presents a novel simplification method for removing vertices from an intrinsic triangulation corresponding to extrinsic vertices lying on near-developable (i.e., with limited Gaussian curvature) and general surfaces. We greedily process all intrinsic vertices with an absolute Gaussian curvature below a user selected threshold. For each vertex, we repeatedly perform local intrinsic edge flips until the vertex reaches the desired valence (three for internal vertices or two for boundary vertices) such that removal of the vertex and incident edges can be locally performed in the intrinsic triangulation. Each removed vertex's intrinsic location is tracked via (intrinsic) barycentric coordinates that are updated to reflect changes in the intrinsic triangulation. We demonstrate the robustness and effectiveness of our method on the Thingi10k dataset and analyze the effect of the curvature threshold on the solutions of PDEs

    Practical quad mesh simplification

    Get PDF
    In this paper we present an innovative approach to incremental quad mesh simplification, i.e. the task of producing a low complexity quad mesh starting from a high complexity one. The process is based on a novel set of strictly local operations which preserve quad structure. We show how good tessellation quality (e.g. in terms of vertex valencies) can be achieved by pursuing uniform length and canonical proportions of edges and diagonals. The decimation process is interleaved with smoothing in tangent space. The latter strongly contributes to identify a suitable sequence of local modification operations. The method is naturally extended to manage preservation of feature lines (e.g. creases) and varying (e.g. adaptive) tessellation densities. We also present an original Triangle-to-Quad conversion algorithm that behaves well in terms of geometrical complexity and tessellation quality, which we use to obtain the initial quad mesh from a given triangle mesh

    Practical quad mesh simplification

    Get PDF
    In this paper we present an innovative approach to incremental quad mesh simplification, i.e. the task of producing a low complexity quad mesh starting from a high complexity one. The process is based on a novel set of strictly local operations which preserve quad structure. We show how good tessellation quality (e.g. in terms of vertex valencies) can be achieved by pursuing uniform length and canonical proportions of edges and diagonals. The decimation process is interleaved with smoothing in tangent space. The latter strongly contributes to identify a suitable sequence of local modification operations. The method is naturally extended to manage preservation of feature lines (e.g. creases) and varying (e.g. adaptive) tessellation densities. We also present an original Triangle-to-Quad conversion algorithm that behaves well in terms of geometrical complexity and tessellation quality, which we use to obtain the initial quad mesh from a given triangle mesh

    Algorithms for Mesh Simplification

    Get PDF
    Práce se zabývá použitím OpenSceneGraphu, nástroji pro LOD a algoritmy pro zjednodušování modelů. Výsledkem je prototyp hry a aplikace pro demonstraci algoritmů.The topic of the thesis is using of OpenSceneGraph, tools for LOD and algorithms for mesh simplification. The result is a game prototype and a program for demonstrating algorithms.

    Computational cost of GNG3D algorithm for mesh simplification

    Get PDF
    In this paper we present a study of the computational cost of the GNG3D algorithm for mesh optimization. This algorithm has been implemented taking as a basis a new method which is based on neural networks and consists on two differentiated phases: an optimization phase and a reconstruction phase. The optimization phase is developed applying an optimization algorithm based on the Growing Neural Gas model, which constitutes an unsupervised incremental clustering algorithm. The primary goal of this phase is to obtain a simplified set of vertices representing the best approximation of the original 3D object. In the reconstruction phase we use the information provided by the optimization algorithm to reconstruct the faces thus obtaining the optimized mesh. The computational cost of both phases is calculated, showing some examples

    Multilevel Solvers for Unstructured Surface Meshes

    Get PDF
    Parameterization of unstructured surface meshes is of fundamental importance in many applications of digital geometry processing. Such parameterization approaches give rise to large and exceedingly ill-conditioned systems which are difficult or impossible to solve without the use of sophisticated multilevel preconditioning strategies. Since the underlying meshes are very fine to begin with, such multilevel preconditioners require mesh coarsening to build an appropriate hierarchy. In this paper we consider several strategies for the construction of hierarchies using ideas from mesh simplification algorithms used in the computer graphics literature. We introduce two novel hierarchy construction schemes and demonstrate their superior performance when used in conjunction with a multigrid preconditioner

    Detail‐preserving mesh simplification

    Get PDF
    Mesh simplification is an important problem in computer graphics. Given a polygonal mesh, the goal is to generate another mesh which approximates the underlying shape but includes less polygons, edges and vertices. Early methods focused only on preserving the overall shape of the geometric model, whereas current methods also handle meshes with attributes (normal vectors, colors, texture coordinates) so that both the mesh shape and the mesh appearance are preserved. The goal of this master thesis is to develop, implement and test a mesh simplification algorithm able to simplify large models in‐core using a vertex clustering algorithm. Several detail‐preserving techniques will be examined and implemented and a new filter is proposed, taking into account geometry features and nodal defined attributes. We also review recent advances in spatial hash tables to achieve a more compact storage, and we analyze and evaluate their impact in the simplification process

    A Comparative Study on Polygonal Mesh Simplification Algorithms

    Get PDF
    Polygonal meshes are a common way of representing three dimensional surface models in many different areas of computer graphics and geometry processing. However, with the evolution of the technology, polygonal models are becoming more and more complex. As the complexity of the models increase, the visual approximation to the real world objects get better but there is a trade-off between the cost of processing these models and better visual approximation. In order to reduce this cost, the number of polygons in a model can be reduced by mesh simplification algorithms. These algorithms are widely used such that nearly all of the popular mesh editing libraries include at least one of them. In this work, polygonal simplification algorithms that are embedded in open source libraries: CGAL, VTK and OpenMesh are compared with the Metro geometric error measuring tool. By this way we try to supply a guidance for developers for publicly available mesh libraries in order to implement polygonal mesh simplification
    corecore