
COMPUTATIONAL COST OF GNG3D ALGORITHM FOR
MESH SIMPLIFICATION

Rafael Álvarez, José Noguera, Leandro Tortosa and Antonio Zamora*
Universidad de Alicante *

*Departamento de Ciencia de la Computación e Inteligencia Artificial, Universidad de Alicante,
 Ap. Correos 99, E--03080, Alicante, Spain

ABSTRACT

In this paper we present a study of the computational cost of the GNG3D algorithm for mesh optimization. This
algorithm has been implemented taking as a basis a new method which is based on neural networks and consists on two
differentiated phases: an optimization phase and a reconstruction phase. The optimization phase is developed applying an
optimization algorithm based on the Growing Neural Gas model, which constitutes an unsupervised incremental
clustering algorithm. The primary goal of this phase is to obtain a simplified set of vertices representing the best
approximation of the original 3D object. In the reconstruction phase we use the information provided by the optimization
algorithm to reconstruct the faces thus obtaining the optimized mesh. The computational cost of both phases is calculated,
showing some examples.

KEYWORDS

Mesh simplification, polygonal reduction, computational cost, neural networks.

1. INTRODUCTION

The typical surface models handled by contemporary computer graphics applications have millions of
triangles. Mesh simplification has emerged as a critical step for handling such huge meshes. The problem of
approximating a given input mesh with a less complex but geometrically faithful representation is well-
established in computer graphics. Level-of-detail representations figure prominently in real-time applications
such as virtual reality, terrain modeling, and scientific visualization.

Some of the more representative work for a distinct approach related to the problem of mesh
simplification can be seen in [1], [5], [7], [13], [14], [15], where different techniques are used to tackle the
problem.

In this paper, we study an algorithm, called GNG3D, which is able to simplify any mesh representing a
3D model, regardless of its topological characteristics. The core of the GNG3D algorithm is a mesh
optimization method based on artificial neural networks.

We use neural networks, in particular an adaptation of Fritzke's Growing Neural Gas (GNG) algorithm
([4]) for mesh generation, with the aim of approaching the problem of surface optimization and
reconstruction. The GNG algorithm has its origin in the neural gas algorithm [11] and the Growing Cell
Structure (GCS) algorithm [3]. These algorithms constitute perfect examples of growing or incremental
network models, which are generated by successive addition (sometimes occasional deletion) of elements.

The GCS algorithm was introduced as a special type of Self-Organizing Maps (SOM's) [10] with the very
distinctive feature of growing incrementally, vertex by vertex. SOM's and GCS's have already found many
applications in geometric modeling and visualization problems. In [6] and [16], SOM's are used for surface
reconstruction.

IADIS International Conference Applied Computing 2007

75

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/16375336?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. THE GNG3D ALGORITHM

The GNG3D algorithm has been designed taking as a basis the GNG model, with an outstanding
modification consisting on the possibility of removing some nodes or neurons that do not provide relevant
information about the original model. Besides, a reconstruction phase has been added in order to construct
the faces of the optimized mesh.

2.1 Description of the Algorithm

1. Therefore, the GNG3D algorithm consists of two different phases: a Mesh Optimization Phase
and a Mesh Reconstruction Phase.

A. Phase 1. Mesh Optimization

The primary objective of this optimization phase is the calculation of the best distribution of vertices that
shapes the new simplified mesh. To perform this task an optimization algorithm has been implemented.

Optimization algorithm
INIT: Start with two nodes a and b at random positions wa and wb in ℜn. Initialize the error variable to

zero.
1) Generate an input signal ξ according to P(ξ).
2) Find the nearest node s1 and the second nearest s2 to the input signal.
3) Increment the age of all edges emanating from s1. If the age of any edge is greater than amax, then mark it

in order to eliminate it afterwards.
4) Increment the local activation counter of the winner node. Add the square distance between the input

signal and the nearest node in input space to a local error counter:

 ∆error(s1) = ws1
−ξ

2.
 (1)

Store the nodes with the highest and lowest value of the local error counter
5) Move s1 and its direct topological neighbors towards ξ by fractions εb and εn, respectively, of the total

distance:

∆ws1

= εb (ξ − ws1
)

∆wsn
= εn (ξ − wsn

),
 (2)

where n represents all direct neighbors of s1.
6) If s1 and s2 are connected by an edge, set the age of this edge to zero. If such an edge does not exist,

create it.
7) Remove edges with an age larger than amax. If this results in nodes having no emanating edges, remove

them as well.
8) Decrease the error variables of all the nodes by multiplying with a constant d.
9) Repeat steps 1 to 8 λ times, being λ an integer.

• If the maximum number of nodes has not been reached then insert a new node as follows:
- Determine the node q with the maximum accumulated error.
- Insert a new node r halfway between q and its neighbor f with the largest error variable:

wr = 0.5 (wq + wf). (3)
- Insert edges connecting the new node r with nodes q and f, and remove the original edge

between q and f.
- Decrease the error variables of q and f by multiplying them with a constant α. Initialize the error

variable and the local counter of the node r with the new value of the error variable and local
counter of q, respectively.

ISBN: 978-972-8924-30-0 © 2007 IADIS

76

• If the maximum number of nodes has been reached then remove a node as follows:
- Set k, the stored node with the lowest error variable.
- Remove the node k and all the edges emanating from k.

10) If N is the total number of nodes, every µ·N iterations of steps 1 to 8 remove all the nodes that have not
been used (local activation counter equal to zero) and all the edges emanating from them. Reset the local
activation counter of all the nodes to zero.

Some remarkable points from the above algorithm are:
• The accumulated error of nodes in step 4 is a quantity that allows us to determine the regions where

there is a low density of nodes according to the vertices existing in the original 3D object. Regions
where the accumulated error is high are suitable candidates for being covered with new nodes or
neurons.

• The local counter variable is useful to eliminate nodes and avoid the problem of local minima.
• Parameters εb, εn, d, λ, α, and µ, are not fixed. They are obtained experimentally.
• The parameter λ is just used to determine the moment to insert a new node in the mesh.
• The parameter µ is used to determine when to eliminate a node that has not been referenced in the

previous iterations.
Although the optimization algorithm is somewhat similar to the GNG algorithm, it presents a very

important difference. In this algorithm, the neurons and the edges emanating from them, which have not been
referenced along the process of constructing the optimum neural network, are removed. This is carried out
because of the introduction of a local activation counter variable in step 4 of the algorithm. This local counter
gives us the information about the number of times that a neuron has been referenced as the winner in the
process of determining the closest neuron to the input signal. The introduction of this counter for each neuron
is related to step 10 of the algorithm, where the neurons that have never been referenced as the winners are
removed. The edges emanating from these neurons are also removed.

B. Phase 2. Reconstruction of the 3D object.
In general, phase 1 can be seen as a training process based on neural networks. At the end of this process

a set of nodes, which represent the new vertices of the optimized mesh is computed. The edges connecting
these nodes show the neighboring relations among the nodes generated by the optimization algorithm.
The reconstruction phase constitutes a post-process which uses the information on new nodes provided by the
optimization phase and the information on the nodes of the original model. With these sets of nodes, a
concordance process can be carried out between the nodes of the original object and the nodes generated by
the optimization algorithm. This concordance process allows us to reconstruct the faces of the new optimized
mesh. This reconstruction phase can be summarized in three steps:

1. Label the nodes of the original mesh according to their representative.
2. Create a vector with all the connections among the resulting groups.
3. Reconstruct the faces.

Step 1. Label the nodes of the original mesh according to their representative. In this step, for each vertex
of the original mesh, the vertex of the optimization set that is closer to it must be calculated. Suppose that
A ={n1,n2,…,nN} is the set of nodes (vertices) of the original object and κ ={ k1,k2,…,kM} is the set of nodes
obtained by the optimization algorithm. Then, for each ni ∈ A we must find the representative of ni, that is,
the node ki ∈ κ which is closer to ni. And this task must be repeated for every node in the original object.
As the number of vertices or nodes in the original object are normally very high, in order to speed up this step
we use an octree with the aim of dividing the three-dimensional space in a balanced way and to set bounds to
the searching space. An octree is a data structure to represent objects in the three-dimensional space,
automatically grouping them hierarchically and avoiding the representation of empty portions of the space.

Step 2. Create a vector with all the connections among the resulting groups.
According to the labelling operations carried out in step 1, the nodes of the original mesh have been

arranged in groups and each of these groups has associated one and only one node belonging to the group of
nodes obtained after applying the optimization algorithm. This association of nodes is performed minimizing
the distance among the two sets of nodes. In this second step, we proceed analyzing each of the faces of the
original mesh to check if their vertices have a different representative. In other words, we are looking for

IADIS International Conference Applied Computing 2007

77

triangles in the original mesh where the representative nodes of the vertices belong to different groups.
When a triangle with this property is found, then it is necessary to store the connection among these groups
for a further representation of these connections in the optimized mesh.

Step 3. Reconstruct the faces.
In this third step we proceed to create the faces of the optimized mesh. For this purpose, the key point is

to scan the list of the representatives and when we find a connection among three neighboring groups, we
conclude that this face must be represented.

2.2 Computational Cost of the Algorithm

The parameters involved in the execution of the GNG3D algorithm are εb, εn, amax, d, λ, α, and µ. To
compute the cost of the i-th iteration, we assume that the value of these parameters has been previously fixed.
For our objective which is to obtain the computational cost of the algorithm, the modifications introduced in
the parameters do not represent a variation in the cost.

The arithmetic cost of the optimization algorithm will be given by the number of operations required to
perform K iterations of the algorithm following the steps described in Section 2.1.

In general, let us assume that in the i-th iteration we have n1, n2, . . . , nl neurons or nodes. Therefore, the
maximum number of neurons l in the i-th iteration will be ⎡i/λ⎤ + 2.

Now, let us determine the arithmetic cost of the optimization algorithm in phase 1 of the GNG3D method.
Let us begin computing the cost of the i-th iteration and, later on, the cost of performing K iterations will be
obtained. We distinguish two cases: when i is not a multiple of λ and when i is a multiple of λ.

Let us assume that i is not a multiple of λ and compute the arithmetic cost of this iteration.
• In step 1 of the algorithm, an input signal is generated, so the arithmetic cost in this step is 0.
• In step 2, we must find the nearest node (s1) and the second nearest node (s2) to the input signal. To

compute the nearest node we use the usual euclidean distance between two points. In our case, with
the aim of avoiding square root computations, we compute d2. The computation of d2 requires 8
operations. As the maximum number of neurons is ⎡i/λ⎤ + 2, we conclude that the arithmetic cost of
this step is given by 8⎡i/λ⎤ + 16.

• In step 3, we increment the age of all edges emanating from s1. This represents an addition, but the
problem is that we cannot determine exactly the number of edges emanating from s1. Therefore, it is
necessary to establish an upper bound from the fact that the number of edges will be always lower
than the number of neurons in the network minus one. Consequently, the maximum number of
edges will be ⎡i/λ⎤ + 1 and the number of operations (an upper bound) in this step will be ⎡i/λ⎤ + 1.

• In step 4, we increment the local activation counter variable lc of the winner node, that is,
lc(s1)[]i = lc(s1)[]i−1 +1, what represents an addition. As well as that, the local error variable of s1 is

increased using the expression (1). The computations required to obtain this error were performed in
step 2, so we only perform the addition error(s1)[]i = error(s1)[]i−1 + ∆error(s1). Then, the cost of
this step is 2 additions.

• In step 5, to move the winner node according to the expression (2), requires 9 arithmetic operations.
This step also produces the movement of the direct topological neighbors of s1. The equations we
use to obtain the new position of each neighbor neuron are the same as the ones used to move the
winner; consequently, the number of operations involved in this computation are 9. As we do not
know exactly the number of neighbor neurons, we establish an upper bound using the fact that the
maximum number of edges is ⎡i/λ⎤ + 1. Therefore, an upper bound for the arithmetic cost of this
step is 9⎡i/λ⎤ + 18.

• The arithmetic cost of steps 6 and 7 is zero.
• In step 8, we decrease the error variables of all the nodes, which means that ⎡i/λ⎤ + 2 operations are

performed.
To compute the arithmetic cost of the i-th iteration, when i is not a multiple of λ, it is enough to add the

cost of the eight steps of the algorithm, that is, 19 i
λ

⎡
⎢ ⎢

⎤
⎥ ⎥ + 39 operations.

Once we have computed the arithmetic cost of the i-th iteration, when i is not a multiple of λ, we proceed

ISBN: 978-972-8924-30-0 © 2007 IADIS

78

to study the case of i-th iteration when i is a multiple of λ. The only difference with the case exposed above is
that we need to perform step 9, where we insert a new node, if the maximum number of nodes has not been
reached.

Let us assume that the maximum number of nodes has not been reached. The insertion of a node in the
position given by the equation (3) requires 6 operations. Apart from this, we have to decrease the error
variable of q and f by multiplying them by a constant. This means two more operations. Therefore, the
arithmetic cost of step 9 is 8 operations.

In step 10 of the algorithm, we remove all the nodes that have not been used and all the edges emanating
from them; no arithmetic operations are required to do this task.

Now, we can affirm that the arithmetic cost of the i-th iteration of the optimization algorithm, when i is a

multiple of λ, is 19 i
λ

⎡
⎢ ⎢

⎤
⎥ ⎥ + 47 operations.

If we perform K iterations of the optimization algorithm, the arithmetic cost will be

 19 i
λ

⎡
⎢ ⎢

⎤
⎥ ⎥ + 47

⎛

⎝
⎜

⎞

⎠
⎟ .

i=1

K

∑ (4)

Developing expression (4), we have that, given λ and K, the arithmetic cost of performing K iterations of
the optimization algorithm, CK, is

 CK = 47K + λ 19 ⋅ i
i=1

j

∑
⎛

⎝
⎜

⎞

⎠
⎟ + ωK 19 K

λ
⎡
⎢ ⎢

⎤
⎥ ⎥

⎛

⎝
⎜

⎞

⎠
⎟ , (5)

with

j =
K
λ

⎡
⎢ ⎢

⎤
⎥ ⎥ −1, ωK = K −

K
λ

⎡
⎢ ⎢

⎤
⎥ ⎥ λ

⎛

⎝
⎜

⎞

⎠
⎟ +1.

Once we have obtained the cost of performing K iterations of the optimization algorithm, we proceed to

compute the arithmetic cost of the reconstruction phase of the GNG3D algorithm. It is necessary to compute
the cost of the three steps of the reconstruction phase.

• Step 1: Label the nodes of the original mesh according to their representative.
Let us assume that A ={n1, n2, . . . , nN} and R ={m1,m2, . . . ,mM} represent the set of nodes of the 3D

original model and the simplified one, respectively. Then, for every ni ∈ A, with i = 1, 2, . . . ,N, we have to
find the node mj ∈ R, for j = 1, 2, . . . ,M, which is closer to ni. Consequently, we need to compute, for a fixed
i,

d2 (ni,m1), d2 (ni,m2), …, d2 (ni,mM),
what represents 8 · M arithmetic operations. As in our implementation we use an octree to divide the 3D
space into 8 regions, we reduce the cost to M operations. Consequently, the total cost for the N vertices of the
original model is given by M · N operations, with N >> M.

However, the generation of an octree to divide the 3D space into 8 regions means an additional
computational cost in this step. The octree structure uses the well-known quicksort searching algorithm. The
average computational cost of the quicksort algorithm is O(N · logN). As well as that, it is necessary to add
the cost to include the neurons of R in the octree, what represents a cost of O(M). Then, the cost associated
with the construction of the octree structure is O(M + N · logN).
Finally, the cost of this step of reconstruction is given by

 O(M + N · logN +MN). (6)

• Step 2: Create a string with all the connections among the resulting groups.
In this step, no arithmetic operations are required, so the arithmetic cost is zero.
• Step 3: Reconstruct the faces.

In this step, as well as the previous one, no arithmetic operations are required, so the arithmetic cost is
zero.

Consequently, the arithmetic cost of this reconstruction phase is given by expression (6).

IADIS International Conference Applied Computing 2007

79

2.3 Some Examples

Figure 1. Fetus 3D model incrementally reconstructed using GNG3D method. The original mesh has 12500 vertices.
From left to right, the resulting meshes have 500, 2500, 5000 and 6250 vertices after 5000, 25000, 50000 and 100000

iterations respectively.

The algorithm studied in this paper produces a high fidelity reconstruction of any 3D model as we can see
in Figure 1. In order to evaluate the cost of the optimization and reconstruction phase we have tested the
algorithm to find a simplified mesh with half of the vertices of the original model. As we described before,
the optimization phase cost depends on the number of iterations K and the parameter λ, (see expression (4) or
(5)). Therefore, the reconstruction phase cost depends on the size (number of vertices) of the original and
simplified model, (see expression (6)).

Table 1 shows the increment of the algorithm cost during a complete reconstruction process where we
have generated a simplified model with only 50% of the original model vertices. Note that the reconstruction
phase is only necessary at the end of the process, when iterations are 300,000. In this case, the reconstruction
phase has a constant cost of 200,060,000 operations because the maximum number of vertices has been
reached and will not vary. Besides this, we have included in the table the reconstruction cost as if it had been
executed using the indicated number of simplified vertices.

Table 1. Optimization and reconstruction cost of the GNG3D algoritm.

Iterations
(K)

λ Original
vertices (M)

Simplified
vertices (N)

Optimization
phase cost

Reconstruction
phase cost

100 20 20,000 7 8,595 160,005
1000 20 20,000 52 513,450 1,060,089

10,000 20 20,000 502 47,884,500 10,061,355
25,000 20 20,000 1,252 297,836,250 25,063,878
50,000 20 20,000 2,502 1,189,422,500 50,068,502

100,000 20 20,000 5,002 4,753,845,000 100,078,503
150,000 20 20,000 7,502 10,693,267,500 150,089,071
200,000 20 20,000 10,000 19,007,690,000 200,060,000
250,000 20 20,000 10,000 28,510,040,000 200,060,000
300,000 20 20,000 10,000 38,012,390,000 200,060,000

From Table 1 we can extract some important conclusions. The first one is that the optimization phase cost

is much bigger than the reconstuction phase cost. Another one is that the optimization phase cost grows with
the number of iterations, while the reconstructions phase cost grows until the desired number of simplified
vertices is reached and remains constant from that moment on. These conclusions are shown in Figures 2, 3
and 4.

In Figure 2 and 3 we can see how parameter λ affect to cost of each phase. λ is used in GNG3D to
determine when a new vertice has to be inserted. In consequence, a lower value of λ implies a quick insertion
frequency of new vertices and a quick increase of the cost. A high value of λ implies a lower frequency
insertion, so that with the same number of iterations, less vertices have been inserted and therefore, it has a
smaller cost.

ISBN: 978-972-8924-30-0 © 2007 IADIS

80

-

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

 10
0

 10
,00

0

 50
,00

0

 15
0,0

00

 25
0,0

00

 35
0,0

00

 45
0,0

00

 55
0,0

00

 65
0,0

00

Iteration

R
ec

on
st

ru
ct

io
n

C
os

t
Lambda=5

Lambda=10

Lambda=20

Lambda=30

Lambda=50

Lambda=100

Lambda=200

Figure 2. The optimization phase cost depends on the value of parameter λ.

-

10,000,000,000

20,000,000,000

30,000,000,000

40,000,000,000

50,000,000,000

60,000,000,000

70,000,000,000

80,000,000,000

 10
0

 1,
00

0

 10
,00

0

 25
,00

0

 50
,00

0

 10
0,0

00

 15
0,0

00

 20
0,0

00

 25
0,0

00

 30
0,0

00

 35
0,0

00

 40
0,0

00

Iteration

O
pt

im
iz

at
io

n
C

os
t Lambda=5

Lambda=10

Lambda=20

Lambda=30

Lambda=50

Lambda=100

Lambda=200

Figure 3. The optimization phase cost is much bigger than the reconstruction phase cost.

-

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

350,000,000

400,000,000

450,000,000

500,000,000

 10
0

 10
,00

0

 50
,00

0

 15
0,0

00

 25
0,0

00

 35
0,0

00

 45
0,0

00

 55
0,0

00

 65
0,0

00

Iteration

C
os

t

Optimization (Lambda=100)

Reconstruction (Lambda=100)

Optimization (Lambda=200)

Reconstruction (Lambda=200)

Figure 4. The reconstruction phase cost grows until maximun number of simplified vertices is reached.

IADIS International Conference Applied Computing 2007

81

3. CONCLUSION

In this paper we have performed a detailed study of the computational cost of the GNG3D algorithm. The
GNG3D algorithm presents very good characteristics for 3D mesh simplification, as well as constitutes a new
application of neural networks. This study confirms the high computational power needed for these tasks and
also can be used to compare the results with other mesh optimization methods.

REFERENCES

Algorri, M.E, and Schmitt, F., 1996. Mesh simplification, Computer Graphics Forum (Eurographics'96 Proc.), Vol. 15,
No. 3, pp. 78-86.

Bishop, C.M., 1995. Neural Networks for Pattern Recognition, Oxford: Oxford University Press, England.
Fritzke, B., 1994. Growing cell structures - a self-organizing network for unsupervised and supervised learning, Neural

Networks, Vol. 7, No. 9, pp. 1441-1460.
Fritzke, B., 1995. A growing neural gas network learns topology, in Advances in Neural Information Processing Systems

7, Edited by G. Tesauro, D.S. Touretzky and T. K. Leen, Cambridge, MA: MIT Press, pp. 625-632.
Gross, M., Staadt, O., and Gatti, R., 1996. Efficient triangular surface approximations using wavelets and quadtree

structures, IEEE Transactions on Visual and Computer Graphics, Vol. 2, No.2, pp. 130-144.
Hoffmann, M., and Varady, L., 1998. Free-form modeling surfaces for scattered data by neural networks, Journal of

Geometry and Graphics, Vol. 1, pp. 1-6.
Hoppe, H., 1996. Progressive meshes, Proceedings of SIGGRAPH'96: 23rd International Conference on Computer

Graphics and Interactive Techniques, New Orleans, Louisiana, pp. 99-108.
Ivrissimtzis, I.P., Jeong, W-K., and Seidel, H.P., 2003. Using growing cell stuctures for surface reconstruction,

Proceedings of International Conference on Shape Modeling and Applications, pp. 78-88.
Kohonen, T., Self-Organizing formation of topologically correct feature maps, Biological Cybernetics, Vol. 43,
pp. 59-69.
Kohonen, T., The Self-Organizing Map, Proceedings of the IEEE, Vol. 76, No.9, pp. 1464-1480.
Martinetz, T., and Schulten, K. J., 1991. A neural-gas netwok learns topologies, in Artificial Neural Networks, Edited by

T. Kohonen, K. M Okisara, and O. Simula, Amsterdam, Netherlands, pp. 397-402.
Martinetz, T., 1993. Competitive Hebbian learning rule forms perfectly topology preserving learning, Proceedings of the

ICANN'93: International Conference on Artificial Neural Networks, Amsterdam, Netherlands, Springer-Verlag, pp.
427-434.

Rossignac, J., and Borrel, P., 1993. Multi-resolution 3D Approximation for rendering complex scenes, in Geometric
Modeling in Computer Graphics, Edited by B. Falcidieno, and T. Kunii, Springer-Verlag, Genova, Italy,

pp. 455-465.
Schroeder, W. J., Zarge, J.A. , and Lorensen, W.E., 1992. Decimation of triangle meshes, Proceedings of the

SIGGRAPH'92: 19th International Conference on Computer Graphics and Interactive Techniques, Chicago IL,
 pp. 65-70.
Turk, G., 1992. Re-Tiling polygonal surfaces , Proceedings of the SIGGRAPH'92: 19rd International Conference on

Computer Graphics and Interactive Techniques, Chicago IL, pp. 55-64.
Yu, Y., 1999. Surface reconstruction from unorganized points using self-organizing neural networks, Proceedings of

IEEE Visualization 99, pp. 61-64.

ISBN: 978-972-8924-30-0 © 2007 IADIS

82

	AC 2007 - Cover
	AC 2007
	COPYRIGHT
	TABLE OF CONTENTS
	FOREWORD
	PROGRAM COMMITTEE
	KEYNOTE LECTURES
	FULL PAPERS
	TEXT SUMMARIZATION: USING CENTRALITY IN THE PATHFINDER NETWORK
	CONTENT-BASED RETRIEVAL USING MOVING OBJECTS’ TRAJECTORIES IN VIDEO DATA
	DESIGN OF EXPLORATORY LINKS IN HYPER VIDEOS
	EASYLAYER: MLD IN AN APPLICATION PORTAL WITH MULTIPLE USER GROUPS
	END USER DATABASE MANAGEMENT: TRADE-OFFS WHEN STORING MULTI-VALUED DATA IN SPREADSHEETS
	A P2P IMPLEMENTATION OF WEB-BASED LOCATION-DEPENDENT CONTENT SHARING SYSTEM
	CALIBRATING TRUST AND REPUTATION IN ON-LINE TRANSACTIONS: A PROPOSAL FOR DATA DIVERSITY AND INCREASED GRANULARITY USING EBAY AS A BENCHMARK
	DOMAIN ONTOLOGY: AUTOMATICALLY EXTRACTING AND STRUCTURING LANGUAGE COMMUNITY FROM TEXTS
	ONTOLOGY-BASED MODELING OF SERVICE PROCESSES AND SERVICES
	COMPUTATIONAL COST OF GNG3D ALGORITHM FOR MESH SIMPLIFICATION
	NEW HEURISTICS FOR BROADCASTING AND GOSSIPING
	A CONTENT-TYPE BASED EVALUATION OF WEB CACHE REPLACEMENT POLICIES
	A DISTRIBUTED TOPOLOGY CONFIGURATION METHOD FOR WIRELESS SENSOR NETWORKS
	DESIGN OF A SELF-CONFIGURING TRANSPARENT SERVICE ENABLING SECURE LAYER 3 MERGING OF PRIVATE NETWORKS
	AN APPROACH TO MODELLING INFORMALL COMMUNICATION IN BUSINESS NETWORKS
	THE IDENTIFICATION OF DIFFERENTIALLY EXPRESSED PROTEINS IN 2-DE GEL IMAGES
	CLASSIFICATION OF CANCER MICROARRAY DATA USING NEURAL NETWORK
	A SECURE ADAPTIVE SERVICE ACCESS IN INTENTIONAL NAMING SYSTEM
	AGENT-TO-AGENT REPUTATION-BASED TRUST MANAGEMENT
	SECURE DISTRIBUTED KEY MANAGEMENT FOR WIRELESS MOBILE AD HOC NETWORKS (WMANETS)
	A MULTI-FACTOR SECURITY PROTOCOL FOR WIRELESS PAYMENT- SECURE WEB AUTHENTICATION AND
	SPECIFICATION-DRIVEN TESTING OF SMART CARD INTERFACE USING A FORMAL MODEL
	MULTI-SENSOR CONDITION MONITORING USING SPIKING NEURON NETWORKS
	EXTRACTING RULES FROM TRAINED SELF-ORGANIZING MAPS
	A NOVEL BUFFER CACHE MANAGEMENT SCHEME CONSIDERING THE PLAYBACK PATTERN OF MULTIMEDIA STREAMING SERVICES
	A PLATFORM FOR REGION SPACE ANALYSIS IN BINARY PARTITION TREES
	POWERFUL HARDWARE BOUND CHECKING IN EMBEDDED SYSTEMS VIA A SECURE PROCESSOR ARCHITECTURE AND SECURE BOUND STORAGE
	A WEB-BASED EDUCATIONAL TOOL OF COMPUTER SYSTEM AND ITS APPLICATION TO REAL EDUCATION
	PYGPU: A HIGH-LEVEL LANGUAGE FOR HIGH-SPEED IMAGE PROCESSING
	ASYMMETRICAL PERFORMANCE OF HYBRID MANETS
	APPLYING GENERALIZED SNAPSHOT ISOLATION TO MOBILE DATABASES
	ADAPTIVE TIMEOUT FOR VIDEO DELIVERY OVER A BLUETOOTH WIRELESS NETWORK
	FOOTFINGERPRINTS
	SOLVING THE MIXTURE DESIGN PROBLEM ON A SHARED MEMORY PARALLEL MACHINE
	DISTRIBUTION OF THE SEARCH OF EVOLUTIONARY PRODUCT UNIT NEURAL NETWORKS FOR CLASSIFICATION
	SPECIFICATION OF ASYNCHRONOUS COMMUNICATING SYSTEMS (SACS)
	SOLVING CONFLICTS IN CRUCIAL KNOWLEDGE CLASSIFICATION: A MULTIAGENT APPROACH
	AGENT-ORIENTED FRAMEWORK FOR CONSTRUCTING MOBILE AGENT SYSTEMS
	EXTENDING THE BDI-ASDP METHODOLOGY FOR REAL-TIME
	NEW QUERY PROCESSING ALGORITHMS FOR MOVING OBJECTS IN LOCATION-BASED SERVICES
	ON ACCESS PATH SELECTION OF QUERIES IN MAIN MEMORY DATABASE USING A FUNCTIONAL MEMORY SYSTEM
	ENUMERATING ASSOCIATION RULES OF AN ONLINE DATA STREAM
	A SOFTWARE ARCHITECTURE FOR CONTINUOUS DOUBLE AUCTIONS
	GENERALIZED DYNAMIC PROBES FOR THE LINUX KERNEL AND APPLICATIONS WITH ARACHNE
	APPLICATION AND BENCHMARKING OF ARTIFICIAL IMMUNE SYSTEMS TO CLASSIFY FAULT-PRONE MODULES FOR SOFTWARE DEVELOPMENT PROJECTS
	USING SCHEDULING TECHNIQUES TO OPTIMIZE WORKFLOW AND AND OR ROUTING PATTERNS
	INTERACTIVE WRAPPER LEARNING FOR WEB DOCUMENTS USING TREE ALIGNMENT
	LOG DATA PREPARATION FOR MINING WEB USAGE PATTERNS
	APPLICATION SERVICE PROVIDER SYSTEM: THE NEW WAY TO PROVIDE INTEROPERABILITY BETWEEN LEARNING MANAGEMENT SYSTEMS
	SUPPORTING THE AGILE CUSTOMER WITH PERSONAS

	SHORT PAPERS
	BENEFITING FROM PIAGET TO IMPROVE OUR COLLECTIONS BROWSING TOOLS?
	A TOOL FOR SUPPORTING AN ANIMATED MOVIE MAKING BASED ON WRITING STORY IN XML
	DESIGNING INTERACTIVITY FOR VIDEOS
	ANALYZING THE STRUCTURE OF SCIENTIFIC ARTICLES TO IMPROVE INFORMATION RETRIEVAL
	AN EFFICIENT INFORMATION RETRIEVAL FROM PLURAL INDEPENDENT AND PARTIALLY INCORRECT INFORMATION SOURCES
	ON SYNTAX-DIRECTED TANGENT-LINEAR CODE
	AUTOMATIC DIFFERENTIATION OF ASSEMBLER CODE
	DEVELOPMENT OF ORTHOGONALITY OF SINGULAR VECTORS COMPUTED BY I-SVD ALGORITHM
	AN EFFICIENT ALGORITHM FOR TWIG JOINS
	DEFINING CASE BASED REASONING CASES WITH XML
	GENETIC ALGORITHM FOR SOLVING CHESS ENDGAMES
	MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS FOR SCHEDULING JOBS ON COMPUTATIONAL GRIDS
	A SOFTWARE MODEL FOR THE MULTILAYER PERCEPTRON
	NETWORKING ANALYSIS FOR SIGNATURE-BASED INTRUSION DETECTION SYSTEM METHODOLOGIES
	A DISTANT UBIQUITOUS COLLABORATIVE E-LEARNING SYSTEM
	PROMOTING COLLABORATIVE E-LEARNING WITH THE SPLINE FRAMEWORK
	BROADENING THE E-LEARNING TECHNOLOGIES ON LITERATURE: THE EFFECT OF IT OVER “MEDIEVAL ROMANCE LITERATURE”
	USING ARGUMENTATION TO TACKLE INCONSISTENCY AND INCOMPLETENESS IN ONLINE DISTRIBUTED LIFE SCIENCE RESOURCES
	SCEPGG: A METHOD FOR BICLUSTERING MICROARRAY DATA
	ERROR SPOT FILTERING METHOD IN PROTEIN 2-DE IMAGE SPOT-MATCHING OPERATION
	INTEGRATED AND FLEXIBLE INFORMATION SYSTEM FOR QUALITY CONTROL AT FOAM PRODUCTION AUTOMOTIVE INDUSTRY
	PERSONALIZED GROUPWARE SERVICE FOR COLLABORATIVE COMMUNITIES
	TWO MOBILE CLIENTS FOR COLLABORATION
	COMPOSING COLLABORATIVE BUSINESS PROCESSES – CONCEPT AND PEER-TO-PEER SOFTWARE TOOL
	SOA DERIVATION BASED ON AGILE BUSINESS PROCESS PATTERNS MODELS
	A FRAMEWORK FOR TRAVERSING MODELS USING LOOPS
	A COMPARATIVE STUDY OF FORWARD AND REVERSE ENGINEERING IN UML TOOLS
	A PARSING APPROACH FOR SYSTEM BEHAVIOUR MODELING
	THE UNIX KISS: A CASE STUDY
	A FLOW AGGREGATION SCHEME IN WIRELESS SENSOR NETWORKS
	INFRASTRUCTURAL SOFTWARE REQUIREMENTS OF PERVASIVE HEALTH CARE
	CONTEXTUAL ADAPTATION FOR UBIQUITOUS COMPUTING SYSTEMS USING COMPONENTS AND ASPECT OF ASSEMBLY
	ENHANCED SENSOR NETWORK: A SPECIALIZED INFRASTRUCTURE FOR CONTEXT-AWARE APPLICATIONS
	A NOVEL CARRIER FREQUENCY SYNCHRONIZATION FOR WIMAX OFDM SYSTEMS
	REPRESENTATION OF THE AES BY DIFFERENTIAL TRAILS
	DEPLOYMENT OF JAVA-BASED COMPONENTS IN EMBEDDED ENVIRONMENT*
	PROFILING INFORMATION FOR THE IDENTIFICATION OF THE INTERDEPENDENT HARDWARE COMPONENTS OF AN APPLICATION-SPECIFIC COMPUTING SYSTEM
	A SOCIALIZING INTERACTIVE INSTALLATION FOR THE URBAN ENVIRONMENTS
	INDICATIONS FOR EVALUATION FOR AN INTELLIGENT TUTORIAL SYSTEM: AGENTGEOM
	{SETS} — A LIGHTWEIGHT CONSTRAINT PROGRAMMING LANGUAGE BASED ON ROBDDS
	DECENTRALIZED AND DISTRIBUTED ORCHESTRATION AND PROVISIONING
	TOWARDS A PERFORMANCE MODEL FOR RESOURCE ALLOCATION IN TYCOON
	COMPUTER PERFORMANCE INVARIANT II CWG REDUCTION TECHNIQUES
	END-TO-END SECURITY SOLUTION FOR WIRELESS MOBILE AD HOC NETWORK (WMANET)
	DIRECTIVITY PATTERN SIMULATION OF THE EARS WITH TWO TWIN HEARING AID MICROPHONES BY BOUNDARY ELEMENT METHOD
	RAPID SYMBIAN APPLICATION DEVELOPMENT ENVIRONMENT
	DYNAMIC TRANSACTION SERVICE COMPOSITION
	A VERIFICATION OF DEVELOPMENT PROCESS BASED ON DSM
	MIGHT NORMALIZATION BE MORE THAN AN ABSTRACT THEORY?
	TOWARDS SEMIAUTOMATIC, MENTAL-MAP-PRESERVING VISUAL MERGING OF UML CLASS MODELS
	A REVIEW OF SOFTWARE LICENSING SCHEMES
	A HYBRID MODULAR CONTROL ARCHITECTURE FOR EMBODIED AGENTS
	ROBOCUP MIDDLE SIZE LEAGUE REFEREE BOX
	ASYNCHRONOUS MESSAGE PASSING ARCHITECTURE FOR A DISTRIBUTED PROGRAMMING LANGUAGE
	AN ANALYSIS OF THE CONSTRUCTION OF CRYPTOGRAPHIC BOOLEAN FUNCTIONS FOR STREAM CIPHERS
	A FRAMEWORK TO SUPPORT GAME DEVELOPMENT
	SEMANTIC WEB SERVICES COMPOSITION FRAMEWORK

	REFLECTION PAPERS
	MICROSOFT OFFICE AS A CENTRAL PLATFORM TO COMPARE OUTPUTS OF FUNCTIONS
	A METHOD TO SYNTHESIZE THREE-DIMENSIONAL FACIAL MODEL BASED ON THE INFORMATION OF WORDS EXPRESSING FACIAL FEATURES
	A NEW MULTI-POLLING ALLOCATION FOR IEEE 802.11E WLANS
	FES BASED ARTIFICIAL SWIMMING BEHAVIOR OF FISH
	RLOCUS: A .NET APPLICATION FOR UNDERSTANDING THE ROOT LOCUS VIA INTERNET
	THE IMPLEMENTATION OF A WEB-BASED SYSTEM FOR AUTOMATIC CLASSIFICATION OF LAND USE AND COVERING CHANGES
	A NEW EFFICIENT FUZZY DIVERSITY MEASURE IN CLASSIFIER FUSION
	ANALYSIS OF BROADBAND ECONOMIC FACTORS AND FORECASTING OF BROADBAND PENETRATION
	IMPLEMENTATION OF A PARALLEL NETCDF INTERFACE FOR SEAMLESS COLLECTIVE REMOTE I/O
	ARCHITECTING ENTERPRISE GRIDS: POSSIBLE INFLECTION POINTS
	SOFTWARE QUALITY IMPROVEMENT IN A REAL ENVIRONMENT: A CASE STUDY
	THE APPLICATION OF ASSOCIATION RULE MINING A CASE STUDY: THE EFFECT OF ATMOSPHERIC PARAMETERS ON AIR POLLUTION
	IS/IT INVESTMENT APPRAISAL: PRIOR AND POST IMPLEMENTATION EVALUATION IN JORDANIAN FIRMS

	POSTERS
	K-VIZ: KEGG BASED VISUALIZATION FOR COMPARING METABOLIC PATHWAYS
	METHODOLOGICAL PHASES FOR BUILDING THE KNOWLEDGE DOMAIN FOR AN INTELIGENT ASSISTANT TO SET ERP SYSTEMS PARAMETERS
	BASED ON CONTEXT WEB SERVICES MODEL
	LOCATION-AWARE FLOODING FOR IN-BUILDING UBIQUITOUS SENSOR NETWORK
	WEB MINING APPLIED TO DETERMINE STUDENTS PROFILES IN E-LEARNING SYSTEMS: A PROPOSAL MODEL
	LEARNING APPLICATION ON IMAGE RECOGNITION
	ADVANCED TRANSLATION SERVICE FOR MOBILE DEVICES
	EMBEDDED SYSTEM FOR A WIRELESS AUTOMATIC METER READING MANAGEMENT
	A NETWORK PROJECT CASE STUDY LEVERAGING XDSL TECHNOLOGY
	REMOTE DESKTOP WEB BASED DEMONSTRATOR FOR SHOWING PRIVATE APPLICATIONS
	A NEW HYBRID MODEL USING CASE-BASED REASONING AND DECISION TREE METHODS FOR REASONING AND DECISION TREE METHODS FOR

	DOCTORAL CONSORTIUM
	FILL-OUT EXPLOITATION ON COMPRESSED ROW STORAGE OF EXTENDED JACOBIANS
	WEB DEVELOPMENTS IN THE CONSTRUCTION INDUSTRY - A WEB PORTAL (PDA WEB SITE)

	AUTHOR INDEX

