12 research outputs found

    Memetic Artificial Bee Colony Algorithm for Large-Scale Global Optimization

    Full text link
    Memetic computation (MC) has emerged recently as a new paradigm of efficient algorithms for solving the hardest optimization problems. On the other hand, artificial bees colony (ABC) algorithms demonstrate good performances when solving continuous and combinatorial optimization problems. This study tries to use these technologies under the same roof. As a result, a memetic ABC (MABC) algorithm has been developed that is hybridized with two local search heuristics: the Nelder-Mead algorithm (NMA) and the random walk with direction exploitation (RWDE). The former is attended more towards exploration, while the latter more towards exploitation of the search space. The stochastic adaptation rule was employed in order to control the balancing between exploration and exploitation. This MABC algorithm was applied to a Special suite on Large Scale Continuous Global Optimization at the 2012 IEEE Congress on Evolutionary Computation. The obtained results the MABC are comparable with the results of DECC-G, DECC-G*, and MLCC.Comment: CONFERENCE: IEEE Congress on Evolutionary Computation, Brisbane, Australia, 201

    A study on like-attracts-like versus elitist selection criterion for human-like social behavior of memetic mulitagent systems

    Get PDF
    Memetic multi agent system emerges as an enhanced version of multiagent systems with the implementation of meme-inspired computational agents. It aims to evolve human-like behavior of multiple agents by exploiting the Dawkins' notion of a meme and Universal Darwinism. Previous research has developed a computational framework in which a series of memetic operations have been designed for implementing humanlike agents. This paper will focus on improving the human-like behavior of multiple agents when they are engaged in social interactions. The improvement is mainly on how an agent shall learn from others and adapt its behavior in a complex dynamic environment. In particular, we design a new mechanism that supervises how the agent shall select one of the other agents for the learning purpose. The selection is a trade-off between the elitist and like-attracts-like principles. We demonstrate the desirable interactions of multiple agents in two problem domains

    Global – local population memetic algorithm for solving the forward kinematics of parallel manipulators

    Get PDF
    Memetic algorithms (MA) are evolutionary computation methods that employ local search to selected individuals of the population. This work presents global–local population MA for solving the forward kinematics of parallel manipulators. A real-coded generation algorithm with features of diversity is used in the global population and an evolutionary algorithm with parent-centric crossover operator which has local search features is used in the local population. The forward kinematics of the 3RPR and 6–6 leg manipulators are examined to test the performance of the proposed method. The results show that the proposed method improves the performance of the real-coded genetic algorithm and can obtain high-quality solutions similar to the previous methods for the 6–6 leg manipulator. The accuracy of the solutions and the optimisation time achieved by the methods in this work motivates for real-time implementation of the 3RPR parallel manipulator

    Estimating meme fitness in adaptive memetic algorithms for combinatorial problems

    Get PDF
    Among the most promising and active research areas in heuristic optimisation is the field of adaptive memetic algorithms (AMAs). These gain much of their reported robustness by adapting the probability with which each of a set of local improvement operators is applied, according to an estimate of their current value to the search process. This paper addresses the issue of how the current value should be estimated. Assuming the estimate occurs over several applications of a meme, we consider whether the extreme or mean improvements should be used, and whether this aggregation should be global, or local to some part of the solution space. To investigate these issues, we use the well-established COMA framework that coevolves the specification of a population of memes (representing different local search algorithms) alongside a population of candidate solutions to the problem at hand. Two very different memetic algorithms are considered: the first using adaptive operator pursuit to adjust the probabilities of applying a fixed set of memes, and a second which applies genetic operators to dynamically adapt and create memes and their functional definitions. For the latter, especially on combinatorial problems, credit assignment mechanisms based on historical records, or on notions of landscape locality, will have limited application, and it is necessary to estimate the value of a meme via some form of sampling. The results on a set of binary encoded combinatorial problems show that both methods are very effective, and that for some problems it is necessary to use thousands of variables in order to tease apart the differences between different reward schemes. However, for both memetic algorithms, a significant pattern emerges that reward based on mean improvement is better than that based on extreme improvement. This contradicts recent findings from adapting the parameters of operators involved in global evolutionary search. The results also show that local reward schemes outperform global reward schemes in combinatorial spaces, unlike in continuous spaces. An analysis of evolving meme behaviour is used to explain these findings. © 2012 by the Massachusetts Institute of Technology

    Structured Memetic Automation for Online Human-like Social Behavior Learning

    Get PDF
    Meme automaton is an adaptive entity that autonomously acquires an increasing level of capability and intelligence through embedded memes evolving independently or via social interactions. This paper begins a study on memetic multiagent system (MeMAS) toward human-like social agents with memetic automaton. We introduce a potentially rich meme-inspired design and operational model, with Darwin's theory of natural selection and Dawkins' notion of a meme as the principal driving forces behind interactions among agents, whereby memes form the fundamental building blocks of the agents' mind universe. To improve the efficiency and scalability of MeMAS, we propose memetic agents with structured memes in this paper. Particularly, we focus on meme selection design where the commonly used elitist strategy is further improved by assimilating the notion of like-attracts-like in the human learning. We conduct experimental study on multiple problem domains and show the performance of the proposed MeMAS on human-like social behavior

    Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms

    Get PDF
    Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR) has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA) based memetic algorithm (FA-MA) to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature

    Memetic Computation—Past, Present & Future [Research Frontier

    No full text
    From the word mimeme of Greek origin, Dawkins coined the term meme in his 1976 book on The Selfish Gene [1]. He defined it as being the basic unit of cultural transmission or imitation. These days, the monosyllabic word meme that is an analog of the word gene has since taken flight to become one of the most successful metaphorical ideologies in computational intelligence. The new science of memetics today represents the mind-universe analog to genetics in cultural evolution, stretching across the fields of anthropology, biology, cognition, psychology, sociology and socio-biology.Accepted versio

    Machine learning for improving heuristic optimisation

    Get PDF
    Heuristics, metaheuristics and hyper-heuristics are search methodologies which have been preferred by many researchers and practitioners for solving computationally hard combinatorial optimisation problems, whenever the exact methods fail to produce high quality solutions in a reasonable amount of time. In this thesis, we introduce an advanced machine learning technique, namely, tensor analysis, into the field of heuristic optimisation. We show how the relevant data should be collected in tensorial form, analysed and used during the search process. Four case studies are presented to illustrate the capability of single and multi-episode tensor analysis processing data with high and low abstraction levels for improving heuristic optimisation. A single episode tensor analysis using data at a high abstraction level is employed to improve an iterated multi-stage hyper-heuristic for cross-domain heuristic search. The empirical results across six different problem domains from a hyper-heuristic benchmark show that significant overall performance improvement is possible. A similar approach embedding a multi-episode tensor analysis is applied to the nurse rostering problem and evaluated on a benchmark of a diverse collection of instances, obtained from different hospitals across the world. The empirical results indicate the success of the tensor-based hyper-heuristic, improving upon the best-known solutions for four particular instances. Genetic algorithm is a nature inspired metaheuristic which uses a population of multiple interacting solutions during the search. Mutation is the key variation operator in a genetic algorithm and adjusts the diversity in a population throughout the evolutionary process. Often, a fixed mutation probability is used to perturb the value at each locus, representing a unique component of a given solution. A single episode tensor analysis using data with a low abstraction level is applied to an online bin packing problem, generating locus dependent mutation probabilities. The tensor approach improves the performance of a standard genetic algorithm on almost all instances, significantly. A multi-episode tensor analysis using data with a low abstraction level is embedded into multi-agent cooperative search approach. The empirical results once again show the success of the proposed approach on a benchmark of flow shop problem instances as compared to the approach which does not make use of tensor analysis. The tensor analysis can handle the data with different levels of abstraction leading to a learning approach which can be used within different types of heuristic optimisation methods based on different underlying design philosophies, indeed improving their overall performance

    Experience Innovation in Tourism:The Role of Front-line Employees

    Get PDF
    corecore