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Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and
commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression
(SVR) has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a
firefly algorithm (FA) based memetic algorithm (FA-MA) to appropriately determine the parameters of SVR forecasting model. In
the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct
individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR
model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and
three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature.

1. Introduction

Electricity load forecasting has always been the essential part
of efficient power system planning and operation. Specially
that it is not only critical for automatic generation control,
reliable operation, and resource dispatch but is also a fun-
damental piece of information used for energy transactions
in competitive electricity markets [1]. Inaccurate forecast of
power load leads to a great deal of loss for power companies,
and a 1% increase in forecasting error implied a 10 million
increase in operating costs [2]. However, the electricity load
is inevitably affected by various factors such as climate factors,
social activities, and seasonal factors, thus making it difficult
to be accurately predicted.

During the past several decades, numerous approaches
have been proposed for electricity load forecasting. Tra-
ditional methods, such as autoregressive moving average
model (ARMA) [3], exponential smoothing models [4, 5],
and regression models [6, 7] are often difficult to model the
electricity loadwith high accuracies due to the nonlinearity of
the load inherently. On the other hand, with the development
of intelligence techniques in recent years, many studies have
tried to apply the artificial intelligence techniques to improve

the forecasting accuracy of load. Among them, neural net-
works (NN) have received much share of attention, and a
great number of studies have reported successful results in
the load forecasting [8]. Refrence [9] proposed a practical
method using NN combined similar days approach, which
resulted in a reliable forecasts for one-to-six hour-ahead elec-
tricity load. Refrence [10] proposed an adaptive artificial neu-
ral network with particle swarm optimization (PSO) used to
adjust the network’s weights; computational results indicated
that the proposed model can obtain higher forecasting
precision with traditional BP algorithm. Refrence [11] applied
Bayesian neural network in the short-term load forecasting
and the results of the proposed model gains better perfor-
mance than that of conventional neural networks.Neural net-
work with novel learning algorithm based on a modified har-
mony search technique also gives better results than several
benchmarks [12]. Refrence [8] gave a comprehensive review
and evaluation of the neural networks for short-term load
forecasting. However, the NN has a large number of parame-
ters to be tuned and suffers from the danger of over-fitting.

Different from NN which minimizes the empirical error
based on the empirical risk minimization principle (ERM),
support vector regression (SVR) implements the structural
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risk minimization principle (SRM) by minimizing an upper
bound to the generalization error [13]. This leads to excellent
generalization performancewith SVR, which has been shown
to outperform other nonliner forecasting techniques includ-
ing NN based forecasting models [14]. As one of the fields
in time series forecasting using SVR [14–20], electricity load
forecasting using SVR as well as its varieties has been well
studied. Refrence [16] proposed a locally weighted support
vector regression to solve the short-term load forecasting
problem, and the experimental results proved the superior
performance of the proposed model compared with some
publishedmodels. Combined with fuzzy c-means (FCM) and
particle swarm optimization (PSO), a SVR based model is
studied to forecast the short-term load of a city [21]. Refrence
[17] proposed a TF-𝜀-SVR model with trend fixed and sea-
sonal adjustment to improve the forecasting accuracy of the
electricity demand.

However, the generalization ability of SVMs highly
depends on the adequate setting of parameters [22–25], such
as penalty coefficient, kernel parameters, and thewidth of loss
function. Therefore, the selection of the optimal parameters
is of critical importance to obtain a good performance in
handling electricity load forecasting task with SVR. Recently,
various studies try to improve the forecasting accuracy of
electricity load when the SVR model is used. Refrence [18]
employs simulated annealing algorithms (SA) to choose the
parameters of SVR, and computational results show that the
SA based SVR model achieves better performance for load
forecasting compared with autoregressive integrated moving
average (ARIMA) model and the general regression neural
networks (GRNN) model. Refrence [26] proposed a differ-
ential evolution algorithm based SVR model to forecast the
annual load. Refrence [27] proposed a LSSVM based load
forecasting model with the fruit fly algorithm used to auto-
matically choose the parameters of LSSVM; experimental
results show that the proposed model outperforms some
other alternative models. Pai et al. conducted a series of
relevant researches by using genetic algorithm (GA) [28, 29],
chaotic particle swarm optimization (CPSO) [30], artificial
bee colony algorithm (ABC) [31], immune algorithm (IA) [32,
33], and hybrid algorithm [34] for parameters determination
of SVR to improve the forecasting accuracy of the electricity
load. However, GA and some other evolutionary algorithms
(EAs) are not guaranteed to find the global optimumparame-
ters of a SVRmodel, though they are generally good at finding
“acceptable good” or near-optimal solutions to problems.
More specifically, although they are good at exploring the
solution space and detecting the region of attraction of the
global optimum efficiently, they lack the abilities to perform
a refined tuning search locally [24, 35].

Memetic algorithms (MAs), a powerful algorithmic para-
digm that combines the evolutionary algorithms (EAs) with
problem-specific local searcher (LS), have been successfully
applied in a wide variety of areas [36–38]. MA has the
ability to exploit the complementary advantages of EAs
(generality, robustness, and global search efficiency), and
problem-specific local search (exploiting application-specific
problem structure, rapid convergence toward local minima)
[39]. In our previous study [24], MA is proposed to tune

the parameters of SVM in classification problems. However,
there are, if any, few works related to Mas that have been
reported in the load forecasting literature on the issue of
SVR parameters optimization. Notice that there are three
important parameters in SVR, whereas SVM for classification
has only two.With the increase of dimensions and the change
of structure complexity for the optimization problem, the
performance ofMA is a big challenge. As such, it is of interest
to involve the MAs for SVR parameters optimization in
improving the prediction accuracy of STLF. In this study, by
combining firefly algorithm (FA) and pattern search (PS), an
efficient FA based memetic algorithm (FA-MA) is proposed
to automatically determine the parameters of SVR for
improving the forecasting accuracy of electricity load fore-
casting. In the proposed FA-MA, FA is responsible for the
exploration of the search space and the detection of the
potential regions with optimum solution, while PS is used
to produce an effective exploitation on the potential regions
obtained by FA. The performance of proposed FA-MA for
parameters optimization in SVR is justified on two real-world
cases against selected counterparts.

The rest of the study is organized as follows. Section 2
presents a brief review on SVMs. Section 3 elaborates on the
FA-MA proposed in this study. The results with discussions
are reported in Section 4. Finally, we conclude this study in
Section 5.

2. Support Vector Regression

Given a set of training data, {(𝑥
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the number of the data items in the training set. Based on
the structured risk minimization (SRM) principle [13], rather
than finding minimum empirical errors, SVMs aim to gener-
ate a decision function (1) by minimizing a regularized risk
function (2)
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where in (1), ⟨,⟩ denotes the inner product, 𝑤 is the weight
vector, that controls the smoothness of the model, and 𝑏 is a
parameter of bias. 𝜙(𝑥) is the high-dimensional feature space
which is nonlinearly mapped from the input space 𝑥. In the
regularized risk function given by (2), the first term 𝑅emp or
(𝐶/𝑛)∑

𝑛

𝑖=1
𝐿(𝑦
𝑖
, 𝑓(𝑥)) is the empirical risk. In SVR, Vapnik’s

𝜀-insensitive loss function [40] given by (3) is often used to
measure the empirical risk, and 𝜀 is called the tube size. The
second term, (1/2)‖𝑤‖2, is the regularization term to be used
as a measure of flatness or complexity of the function. Hence,
𝐶 is referred to as the regularized constant and it specifies
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the trade off between the empirical risk and the regularization
term. Both 𝐶 and 𝜀 are user-determined parameters.

By introducing two positive slack variables 𝜉 and 𝜉∗, (2)
is transformed into the following constrained form:

Minimize 𝑅 = 𝐶
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According to Wolfe’s dual theorem and the saddle-point
condition, the dual optimization problem of the above primal
one is obtained as in the following form:
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where 𝛼
𝑖
, 𝛼∗
𝑖
are nonnegative Lagrange multipliers that can

be obtained by solving the convex quadratic programming
problem stated above.

Finally, based on the (6) and the trick of kernel function,
the decision function given by (1) has the following explicit
form:
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function is that one can deal with feature spaces of arbitrary
dimensionality without having to compute the map 𝜙(𝑥)

explicitly. Any function that satisfies Mercer’s condition [40]
can be used as the kernel function. There are several typical
examples of kernel function such as linear kernel, polynomial
kernel, radial basis function (RBF), and sigmoid kernel. Each
kernel has some parameters. Generally, among these kernel
functions, RBF kernel (8) is strongly recommended and
widely used for its performance and complexity [41] and thus
SVRwith RBF kernel function is the one studied in this study.
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where 𝛿 is kernel parameter. The kernel parameter should
be carefully chosen as it implicitly defines the structure of

the high-dimensional feature space𝜙(𝑥) and thus controls the
complexity of the model.

Overall, SVR is a powerful learning machine with strong
theoretical foundations and excellent generalization perfor-
mance. Note that before implementing the SVR with RBF
kernel, there are three parameters (penalty parameter𝐶, RBF
kernel parameter 𝛿, and width of 𝜀 loss function) to be set.
Previous studies show that these three parameters play an
important role in the success of SVR [42]. In this study, to
determine these parameters and to improve the forecasting
accuracy of SVR in electricity load forecasting, a firefly algo-
rithm (FA) based memetic algorithm (FA-MA) is proposed
in Section 3.

3. Memetic Algorithm for Parameters
Selection of SVR

Memetic algorithms (MAs), one of the recent growing areas
in computational intelligence, is first coined by Moscato and
Norman [43]. Inspired by Darwinian principles of natural
evolution and Dawkins’ notion of meme, MA has come to
light as an union of population based stochastic global evo-
lutionary algorithm and local improvement procedures. As a
designed a hybridization, MAs are expected to make full use
of the balance between exploration and exploitation of the
search space to complement the advantages of population
based methods and local based methods. Nowadays, MAs
have revealed their successes with high performance and
superior robustness across a wide range of problem domains;
detail reviews are reported in [44, 45]. Since often there are no
free lunches, the hybridization can be more complex and
expensive to implement. Considering the effectiveness of
firefly algorithmwhich is introduced recently and can be even
superior to the GA and PSO [46–48], this study proposed a
FA based memetic algorithm with pattern search as a local
individual learner, to improve the forecasting accuracy of
electricity load forecasting model using SVR.

In the following subsections, we will explain the imple-
mentation of the proposed FA-MA for parameters optimiza-
tion in details.

3.1. Initialization. In the proposed FA-MA, each firefly (or
individual) is a parameter set of the SVR model and can
be denoted as x

𝑖
= ⟨𝐶, 𝛿, 𝜀⟩. A set of fireflies is called a

swarm or population. Traditionally, initial swarm is often
generated randomly in firefly algorithmor other evolutionary
algorithms. To guarantee an initial swarmwith reliability and
diversity, Latin hypercube sampling (LHS) method is applied
to generate a random sample set.With the use of LHS, we first
split the search space into subspaces and then try to take
randomly the values within each subspace to achieve an
initial sample set which is representative of the whole search
space. Hence, it can guarantee the initial samples to be rel-
atively uniformly distributed over each dimension, which is
proved to be superior to random initialization [49].

3.2. Fitness Function. Since the ultimate goal of the SVR
model is to forecast the future electricity load with high
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accuracy (i.e., known as generalization ability), it is important
to choose such fitness function which can estimate the gen-
eralization ability when determining the parameters in SVR
with FA-MA. In this study, the data is split into three parts
which are training set, validation set, and testing set. The
training set is used to train the SVR model with a certain
parameter set, and the validation set is deserved to assess
the generalization ability of the established forecastingmodel.
The parameter set with lowestmean squared percentage error
(MAPE) (For convenience, the formulation ofMAPE is given
in Section 4.2.) in the validation set is selected as the optimal
solution. That is to say, MAPE in the validation set is used as
the fitness function. In the proposed firefly algorithm based
memetic algorithm, the brightness or light intensity of a firefly
is determined by the fitness function.

3.3. Exploration with Firefly Algorithms (FAs). Firefly algo-
rithm, first introduced byYang et al. [46, 47], is a swarmbased
intelligent metaheuristic. The FA mimics the social behavior
of fireflies which move and communicate with each other
based on their flashing characteristics, such as brightness,
frequency, and the time period. Specially, the superiority of
FA against genetic algorithms (GAs) and particle swarm opti-
mization (PSO) in existing studies [46, 47]motivates us to use
the FA to explore the search space.

In FA, each firefly is assumed to be attracted to other
ones regardless of their sex, and the attractiveness is propor-
tional to their brightness. Besides, as mentioned before, the
brightness of a firefly is determined by the fitness function.
To minimize the fitness defined in Section 3.2, the brightness
can simply be minus of the MAPE.

The movement of a firefly 𝑖 attracted by another more
attractive firefly 𝑗 can be formulated as (Details of the defini-
tion are shown in Yang [46].)

V
𝑖
= V
𝑖
+ 𝛽
0
𝑒
−𝛾𝑟
2

𝑖𝑗

(V
𝑗
− V
𝑖
) + 𝛼 (rand − 1

2

) , (9)

where second term is the attraction of firefly 𝑗 to firefly 𝑖, and
the third term is the randomization of the movement. 𝛾 is a
absorption coefficient, 𝑟

𝑖𝑗
is the Cartesian distance between

two fireflies 𝑖 and 𝑗. 𝛽
0
is the attractiveness at 𝑟

𝑖𝑗
= 0, 𝛼 is a

randomization parameter, rand is a random number genera-
tor uniformly distributed in [0, 1]. As recommended by [46],
𝛾 = 1, 𝛽

0
= 1, and 𝛼 ∈ [0, 1] are used in this study. Besides, 𝛼

is often replaced by a 𝛼𝑆
𝑘
where the scaling parameters 𝑆

𝑘
is

determined by the actual scales of the problem.

3.4. Refinement with Pattern Search. In the proposed FA-MA,
pattern search is employed to conduct exploitation of the
parameters solution space. Pattern search (PS), a simple effec-
tive optimization technique, has already been successfully
used in parameters optimization in previous studies [50]. By
examining the neighborhood of the current solution, pattern
search is very effective to exploit the local regions. In addition,
its convergence to local minima for constrained problems as
well as unconstrained problems has been proven in [51].Thus,
it is deserved to enhance the local exploitation of the FA in

proposedmemetic algorithm. In some sense, the main objec-
tive of PS is to conduct individual learning by exploiting small
local regions effectively in relatively short periods of time.

Pattern search investigates nearest neighborhood of the
current solution and tries to find a better move. If all neigh-
bors fail to produce an improvement, then the search step is
reduced. This search stops until the search step gets suffi-
ciently small, ensuring the convergence to a local minimum.
The pattern search is based on a pattern 𝑃

𝑘
that defines the

neighborhood of current solution. A well often used pattern
is five-point unit-size rood pattern which can be represented
by the generating matrix 𝑃

𝑘
in (10):

𝑃
𝑘
=
[

[

1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1

]

]

. (10)

Theprocedure of pattern search is outlined inAlgorithm 1.
Δ
0
denotes the default search step of PS, Δ is a search step,

𝑝
𝑘
is a column of 𝑃

𝑘
, and Ω denotes the neighborhood

of the current solution. The termination conditions are the
maximum iteration is met or the search step gets a predefined
small value. To balance the amount of computational budget
allocated for exploration versus exploitation, Δ0/8 is experi-
mentally selected as the minimum search step.

3.5. Description of the Proposed FA-MA. Based on the popu-
lation initialization, firefly algorithm based exploration, and
pattern search based individual learning, a FA-MA is illus-
trated in Algorithm 2.

It can be seen that FA-MA not only applies the FA to
effectively perform exploration for promising solution in
the whole search space but also employs pattern search to
perform exploitation for individual learning in local spaces.
To guarantee an initial swarmwith diversity, Latin hypercube
sampling method is applied to generate a random sample set.
In addition, it is important to balance the exploration and
exploitation under limited computational budget in MA.
Hence, in this study, each firefly undergoes local refinement
with a specified probability pl(𝑥

𝑘
), and the selection probabil-

ity is defined by a roulette wheel section scheme with linear
scaling [24]:

pl (𝑥
𝑘
) =

𝑓max (P) − 𝑓 (𝑥𝑘)
∑
𝑦∈P (𝑓max (P) − 𝑓 (𝑦))

, (11)

where 𝑓 is a fitness function (i.e., MAPE in this study) and
𝑓max(P) is themaximumfitness value among the current pop-
ulation P. With this selection probability, a firefly with better
fitness value gainsmore chance to be selected for exploitation.

Since both exploration and exploitation are stressed and
balanced, it is expected to have good ability for improving
the load forecasting with SVR. In the next section, we will
investigate the performance of the proposed FA-MA.

4. Experimental Results

4.1. Experimental Setup. To verify the electricity load fore-
casting performance of the proposed SVR-MA model, two
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Begin
Initialize: predefine the default search step Δ

0
, initialize current solution 𝑝

0
;

Δ = Δ
0
;

While (Termination conditions are not satisfied)
Ω = {𝑝

0
+ Δ ∗ 𝑝

𝑘
| for each column 𝑝

𝑘
in 𝑃
𝑘
};

Evaluate the nearest neighbors inΩ;
If (there are improvements in theΩ)

Update the current solution to the best neighbor inΩ; Δ = Δ
0
;

Else
Decrease the search step Δ = Δ

0
/2;

End If
EndWhile

End

Algorithm 1: Pseudocode of pattern search for individual learning.

Begin
Initialize the parameters in MA, such as, swarm size 𝑛, scaling parameters 𝑆

𝑘
, the maximum iteration

number, and default search step Δ in PS;
Generate the initial population of fireflies {𝑥

𝑖
, 𝑖 = 1, 2, ..., 𝑛}, using Latin Hypercube Sampling (LHS)

method;
Evaluate the fitness of each firefly in the population: use each firefly to train the SVR based forecasting
model and calculate the fitness (MAPE);
While (Termination conditions are not satisfied)

For 𝑖 = 1: 𝑛 in all 𝑛 fireflies
For 𝑗 = 1: 𝑖 in all 𝑛 fireflies

If (𝐼
𝑗
> 𝐼
𝑖
) firefly 𝑖move to a new position according to (11); End If

Evaluate the fitness of each firefly and update its light intensity;
End For

End For
Rank the fireflies and find the current best;
%%%% Conduct individual learning with pattern search with a probability pl
For 𝑘 = 1: 𝑛 in all 𝑛 fireflies

If (rand > pl(𝑥
𝑘
))

Conduct individual learning for firefly 𝑥
𝑘
with pattern search (as shown in Algorithm 1);

End If
End For

EndWhile
Output the best firefly as the final optimal solution

End

Algorithm 2: Pseudocode of proposed firefly algorithm based memetic algorithm.

real-life cases are considered in this study. The first one
is the hourly observations from Pennsylvania-New Jersey-
Maryland (PJM) power system, which is a well-established
electricity market in U.S. The data consists of 18 months of
hourly observations, from January 1, 2010, to 31 June, 2011
(data are available from PJM Interconnection, http://www.
pjm.com). The series consists of 13104 hourly observations.
The second one is the monthly electric load of Northeast
China which has been investigated in the existing literature
[34]. This data consists of 64 monthly observations with the
date from January 2004 to April 2009.

As a preprocessing stage, several missing load values are
filled in by the average of the neighboring values. By adopting
linear transformation (in (12)), the series are linearly scaled
to the range [0, 1]. The main advantage of scaling is to avoid

attributes in greater numeric ranges dominating those in
smaller numeric ranges. Another advantage is to prevent
numerical difficulties during the calculation [41]

𝑥
󸀠
=

𝑥 −min
𝐴

max
𝐴
−min

𝐴

, (12)

where 𝑥 is an original value of attribute 𝐴, 𝑥󸀠 is the scaled
value, min

𝐴
is the minimum of attribute 𝐴, and max

𝐴
is the

maximum of attribute 𝐴. It should be noted that the fore-
casting value will be rescaled back following the reverse of
the linear transformation and the forecasting performance is
calculated based on the original scale of the data.

4.2. Performance Measures. To assess the forecasting perfor-
mance of a model, many accuracy measures can be used [52].
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Table 1: Performance metrics and their formulas in regression
problems.
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𝑁 is the number of forecasting periods, 𝑦𝑡+𝑖 is the actual value at period 𝑡+ 𝑖,
𝑦𝑡+𝑖 is the forecasting value at period 𝑡 + 𝑖, and 𝑦 is the mean of all values. In
this study, the day-ahead (24 hours) short-term load is forecasted recursively,
so the number of forecasting periods N equals 24.

However, it is hard to say whether one accuracy measure is
better or worse than the other [53]. Besides, different metrics
may evaluate the quality of the forecasting performance from
different perspectives. In this study, three accuracies are
selected to assess the prediction performance, they are mean
absolute percentage error (MAPE), mean absolute scaled
error (MASE), and directional symmetry (DS). The defini-
tions of them can be found in Table 1. MAPE is one often
usedmetric, whichmeasure the percentage error between the
actual and predicted values.The smaller the values of MAPE,
the closer the predicted values to the actual values. MASE
is a scaled error which is scaled by a naı̈ve forecast model.
MASE is less than one if the forecast is better than the näıve
method, and the smaller the values of MASE, the better the
näıve method. It is highly recommended in recent study as
it is less sensitive to outliers and easy to be interpreted [52].
DS provides an indication of the accuracy of the predicted
direction and the large value suggests a better predictor.

Furthermore, a nonparametric Wilcoxon’s signed-rank
test [54] is performed to determine if there is significant dif-
ference between the two approaches based on the prediction
error of the testing data sets. This test performs a two sample
rank test for the difference between two population medians.
Since the population distributions of the performance mea-
sures are unknown, a nonparametric test is suggested for the
performance comparison of the two models [55].

4.3. Results and Discussions. In the first case, the 24 step-
ahead electricity load is predicted directly. The data are
divided into three parts: training set, validation set, and
testing set. The periods and number of observations of each
set are shown in Table 2. As mentioned in Section 3.2, the
training set and validation set are used to determine the opti-
mal parameters, and then the forecastingmodel is established
in the integrated training set (training set and validation set).
At last, the testing set is used to assess the out-of-sample fore-
casting performance of the proposed model with optimal

Table 2: Training, validation, and testing set for the first sample case.

Data sets Period No. of observation
Training set 1/1/2010–12/31/2010 365 ∗ 24

Validation set 1/1/2011–3/31/2011 90 ∗ 24

Testing set 4/1/2011–6/30/2011 91 ∗ 24

Table 3: MAPE (%) of SVR model with different parameter
determination methods.

Period FA-MA FA GA PSO SA
April 1.24 1.51 1.67 1.73 1.95
May 1.34 1.53 1.77 1.83 2.00
June 1.48 1.78 1.71 2.00 2.14
ALL 1.35 1.61 1.72 1.85 2.03

Table 4: MASE of SVR model with different parameter determina-
tion methods.

Period FA-MA FA GA PSO SA
April 0.33 0.38 0.44 0.47 0.51
May 0.37 0.43 0.50 0.53 0.51
June 0.41 0.48 0.48 0.50 0.56
ALL 0.37 0.42 0.47 0.50 0.53

parameters obtained bymemetic algorithms. Considering the
short-run trend, daily and weekly periodicity characteristics
of hourly load, the hourly load values of the last one day, and
the similar hours in the previous 30 days are selected as the
input variables set of the forecasting model. Then, the input
variables are selected from the variables set by a filter method
which maximizes the mutual information using forward-
backward selection strategy [56].

To verify the improvement of forecasting accuracy with
our proposed memetic algorithm in SVR based forecast-
ing model, four well-known evolutionary algorithms (EAs)
including genetic algorithm (GA), particle swarm optimiza-
tion (PSO), simulated annealing (SA), and firefly algorithm
(FA) are selected to determine the parameters (𝐶, 𝛿, and 𝜀) in
SVR based load forecasting model. The experiments are
implemented in MATLAB 2012a using computer with Intel
Core 2 Duo CPU T5750, 2.00GHZ, and 2G RAM. The
parameters’ search space in SVR is defined as an exponen-
tially growing space: log

2
𝐶 ∈ [−6, 6], log

2
𝛾 ∈ [−6, 6], and

log
2
𝜀 ∈ [−6, 6]. The parameters in each EA are controlled

based on initial experiments. More specifically, the popula-
tion size of each method is set as 30, and the stopping criteri-
ons of eachmethod are set as follows: the number of iterations
reached 150 or there is no improvement in the fitness for 50
consecutive iterations. The scaling parameters 𝑆

𝑘
in firefly

algorithm and FA-MA are both set as 1, which is 1/6 percent-
age of the maximum of search space.

The forecasting results of different EAs based SVR fore-
casting model in each separate month and the whole testing
period are illustrated in Tables 3, 4, and 5. For the purpose of
reducing statistical errors, the results in Tables 3–5 are average
results of 30 independently trial runs. From Tables 3–5, sev-
eral observations can be drawn. Firstly, compared with GA,
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Table 5: DS (%) of SVRmodel with different parameter determina-
tion methods.

Period FA-MA FA GA PSO SA
April 96.49 94.74 93.78 93.15 92.77
May 95.73 94.32 93.69 93.08 92.54
June 95.30 93.30 93.50 92.56 91.50
ALL 95.84 94.12 93.66 92.93 92.27

Table 6: Time consuming of SVR model with different parameter
determination methods.

FA-MA FA GA PSO SA
CPU time (min) 27.3 20.7 25.6 21.9 22.5

PSO, and SA, the FA based forecasting model can obtain the
best performance in most of the periods for each metric,
which imply the superior ability of determining the param-
eters in SVR and thus improving the forecasting perfor-
mance. Secondly, by using the proposed MA to determine
the parameters in SVR forecasting model, the forecasting
results outperform the FA based forecasting model. The
superior performance against FA can be contributed to the
integration of pattern search for finely exploitation and the
balance between exploration and exploitation in proposed
MA. Thirdly, the proposed MA has the lowest MAPE and
MASE, with the largest DS, which confirms the superiority of
MA in improving the forecasting accuracy by enhancing the
parameters determination process of SVR forecasting model.

Table 6 reports the time consumption of each evolution-
ary algorithm in selecting the optimal parameters in SVR
forecastingmodel. FromTable 6,we can see that the proposed
FA-MA is a little more time consuming than that of the other
four methods, which is mainly due to the finely exploitation
with pattern search. However, in the real-world applications,
this computational time is acceptable within a day-ahead
decision making framework, and considering the forecasting
performance of FA-MA in improving the forecasting, it can
be used as an alternative method to improve the forecasting
accuracy when the support vector regression (SVR) is used.

Furthermore, three well-known forecasting model,
including radial basis function neural network (RBFNN),
MLP neural network trained by LM (Levenberg-Marquardt),
and autoregression integrated moving average (ARIMA), are
selected to compare the day-ahead forecasting performance
of the proposed FA-MA based SVR model. For the sake of
fair comparison, the above two neural network based models
have the same process in data preprocess, input selection,
and parameters tuning to our proposed FA-MA based SVR
model. While for ARIMA, the forecast package [57] in 𝑅 is
used to forecast the load. Tables 7, 8, and 9 show the
comparison of average results of three separated months and
thewhole period. FromTables 7–9, it can be observed that the
ARIMA is theworse one in eachmonth and thewhole period,
which is mainly due to the linearity assumption. Besides,
the proposed FA-MA based SVR model outperforms all the
other forecasting models in terms of MAPE, MASE, and DS.
Moreover, to verify the significance of accuracy improvement
of proposed FA-MA based SVR model, a nonparametric

Table 7: MAPE of four forecasting models.

Period FA-MA RBF MLP-LM ARIMA
April 1.24 2.37 2.35 4.91
May 1.34 2.38 2.39 5.00
June 1.48 2.45 2.51 5.20
ALL 1.35 2.40 2.42 5.04

Table 8: MASE of four forecasting models.

Period FA-MA RBF MLP-LM ARIMA
April 0.33 0.60 0.59 0.72
May 0.37 0.60 0.63 0.75
June 0.41 0.64 0.66 0.78
ALL 0.37 0.61 0.63 0.75

Table 9: DS of four forecasting models.

Period FA-MA RBF MLP-LM ARIMA
April 96.49 90.12 90.34 85.51
May 95.73 89.15 89.01 85.31
June 95.30 89.78 89.19 84.40
ALL 95.84 89.68 89.51 85.07

Wilcoxon’s signed-rank test is used to test the significant
different of FA-MA based SVR with three other models. The
significant test shows that our proposed model is statistically
superior to others at the 0.05 significance levels. In addition,
to give a graphical view about the forecasting performance of
the proposedmodel, the curves of real values, forecast values,
and forecast errors are shown in Figure 1. It is obviouse that
the forecast curve accurately predicts the real values and only
minor errors are obtained. The figure further illustrates the
effectiveness of our proposed forecasting model.

In addition, to further verify the proposed performance of
FA-MA against the existing hybrid methods, the second case,
obtained from previous studies [34], is applied here. Similar
to previous studies [34], the last 7 months are predicted.
The seasonal mechanism effects stated in [34] are also taken
into consideration. Table 10 shows the actual values and the
forecasting load obtained by different forecastingmodels.The
TF-𝜀-SVR-SA reports the results from [17]; the SVR model is
optimized by SA. For CGASA and S-CGASA, the forecasts
were generated by the SVR model with or without the
seasonal mechanism, respectively. The parameters in these
two SVR models were tuned by a hybrid algorithm, namely,
chaotic genetic algorithm-simulated annealing algorithm
(CGASA). In the last two columns, the SVR models were
optimized by our proposed FA-MA algorithm. The only dif-
ference between them is that the S-FA-MA takes the seasonal
mechanism effects into account. As illustrated in Table 10,
the proposed FA-MA gains smaller MAPE, MASE than TF-
𝜀-SVR-SA and CGASA. However, the results of SVRFA-MA
is worse than those of S-CGASA, which is mainly due to an
involvement of a seasonal mechanism in S-CGASA. Similar
to S-CGASA, S-FA-MA also makes full use of the seasonal
effects; it generates superior performance to S-CGASA in
terms of MAPE, MASE and has competitive performance
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Table 10: Comparison with existing hybrid algorithms.

Period Actual TF-𝜀-SVR-SA CGASA S-CGASA FA-MA S-FA-MA
Oct.08 181.07 184.5035 177.3 175.6385 175.9047 178.2513
Nov.08 180.56 190.3608 177.4428 185.21 184.5484 184.2637
Dec.08 189.03 202.9795 177.5848 189.907 195.4447 188.9679
Jan.09 182.07 195.7532 177.7263 181.9693 185.5828 181.7957
Feb.09 167.35 167.5795 177.8673 163.2805 161.4537 161.9352
Mar.09 189.3 185.9358 178.0078 182.1747 184.854 181.9227
Apr.09 175.84 180.1648 178.6806 177.6289 177.2037 176.1128
MAPE (%) 3.799 3.731 1.901 2.433 1.583
MASE 0.576 0.554 0.237 0.326 0.217
DA (%) 83.333 33.333 83.333 83.333 83.333

0 500 1000 1500 2000 2500
−2

0

2

4

6

8

10

12

14

Hour

Lo
ad

Error
Real
Forecast

×10
4

Figure 1: Curves of real values, forecast values, and errors of
proposed FA-MA based SVR model.

with S-CGASA in terms of DA. Thus, in this case, we can
conclude that the proposed FA-MA is superior to the existing
hybrid SA, CGASA in improving the forecasting accuracy of
SVRmodels.The outstanding forecasting performance of our
proposed FA-MA against the existing hybrid algorithm (i.e.,
CGASA) is caused by the following reasons. Firstly, based on
the framework ofmemetic algorithm, both global exploration
and local exploitation are enhanced in the proposed FA-MA,
which not only can avoid the premature convergence but
also ensure searching capability. Secondly, a roulette wheel
section scheme is applied in the proposed FA-MA to select
the individuals to be refined, which generates a good balance
to the exploration and exploitation.

5. Conclusions

Electricity load forecasting is an important issue to operate
the power system reliably and economically. In this study, to
improve forecasting accuracy of electricity load forecasting
using support vector regression (SVR), a firefly algorithm

(FA) based memetic algorithm (FA-MA) was presented. In
the proposed FA-MA, FAwas employed to explore the search
space and detect the potential regions, while pattern search
(PS) was used to conduct the individual learning to improve
the exploitation ability of FA. With the proposed FA-MA
used to determine the parameters of SVR, a novel forecasting
model, FA-MA based SVR, was presented to forecast the
electricity load with two real cases. In the first case, four evo-
lutionary algorithms (FA, GA, PSO, and SA) based SVR fore-
castingmodels and threewell-knownmodels (RBFNN,MLP-
LM, and ARIMA) were selected to compare the forecasting
performance. Computational results show that the proposed
FA-MA could effectively improve the forecasting accuracy
of SVR compared with some other evolutionary algorithms
based SVR. Meanwhile, the FA-MA based SVR forecasting
model could outperform the selected counterparts signifi-
cantly. In the second case, comparison results show that the
proposed FA-MA is superior to the existing hybrid algorithm
in the literature.

However, in this study, only the historical load values
are taken into consideration to forecast the electricity load,
and some exogenous variables (i.e., temperature, humidity)
are also very important to improve the forecasting accuracy.
Other topics include more extensive comparison with other
models, developing more efficient memetic algorithms and
seasonal adjustment. Extensive experimental studies in other
forecasting problems and benchmark functions can be inves-
tigated. Futureworkwill be on the research of the above cases.
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[25] T. A. F. Gomes, R. B. C. Prudĉncio, C. Soares, A. L. D. Rossi, and
A. Carvalho, “Combining meta-learning and search techniques
to select parameters for support vector machines,” Neurocom-
puting, vol. 75, no. 1, pp. 3–13, 2012.

[26] J. Wang, L. Li, D. Niu, and Z. Tan, “An annual load forecasting
model based on support vector regression with differential
evolution algorithm,” Applied Energy, vol. 94, pp. 65–70, 2012.

[27] H. Li, S. Guo, H. Zhao, C. Su, and B. Wang, “Annual electric
load forecasting by a least squares support vector machine with
a fruit fly optimization algorithm,” Energies, vol. 5, no. 11, pp.
4430–4445, 2012.

[28] P.-F. Pai and W.-C. Hong, “Forecasting regional electricity load
based on recurrent support vector machines with genetic algo-
rithms,” Electric Power Systems Research, vol. 74, no. 3, pp. 417–
425, 2005.

[29] W. C. Hong, Y. Dong, W. Y. Zhang, L. Y. Chen, and B. K. Pan-
igrahi, “Cyclic electric load forecasting by seasonal SVR with
chaotic genetic algorithm,” International Journal of Electrical
Power & Energy Systems, vol. 44, no. 1, pp. 604–614, 2013.

[30] W.-C. Hong, “Chaotic particle swarm optimization algorithm
in a support vector regression electric load forecasting model,”
Energy Conversion and Management, vol. 50, no. 1, pp. 105–117,
2009.

[31] W.-C. Hong, “Electric load forecasting by seasonal recurrent
SVR (support vector regression) with chaotic artificial bee
colony algorithm,” Energy, vol. 36, no. 9, pp. 5568–5578, 2011.

[32] W.-C. Hong, “Electric load forecasting by support vector
model,” Applied Mathematical Modelling, vol. 33, no. 5, pp.
2444–2454, 2009.

[33] W.-C. Hong, Y. Dong, C.-Y. Lai, L.-Y. Chen, and S.-Y. Wei,
“SVR with hybrid chaotic immune algorithm for seasonal load
demand forecasting,” Energies, vol. 4, no. 6, pp. 960–977, 2011.

[34] W. Y. Zhang, W. C. Hong, Y. C. Dong, G. Tsai, J. T. Sung, and
G. F. Fan, “Application of SVR with chaotic GASA algorithm in
cyclic electric load forecasting,” Energy, vol. 45, no. 1, pp. 850–
858, 2012.

[35] S. Areibi and Z. Yang, “Effective memetic algorithms for VLSI
design = genetic algorithms + local search +multi-level cluster-
ing,” Evolutionary Computation, vol. 12, no. 3, pp. 327–353, 2004.



10 The Scientific World Journal

[36] Q. H. Nguyen, Y.-S. Ong, and M. H. Lim, “A probabilistic
memetic framework,” IEEE Transactions on Evolutionary Com-
putation, vol. 13, no. 3, pp. 604–623, 2009.

[37] A. Elhossini, S. Areibi, and R. Dony, “Strength pareto particle
swarm optimization and hybrid EA-PSO for multi-objective
optimization,” Evolutionary Computation, vol. 18, no. 1, pp. 127–
156, 2010.

[38] Y.-S. Ong, M. H. Lim, and X. Chen, “Memetic computation—
past, present & future [research frontier],” IEEE Computational
Intelligence Magazine, vol. 5, no. 2, pp. 24–31, 2010.

[39] J. Tang, M. H. Lim, and Y. S. Ong, “Diversity-adaptive parallel
memetic algorithm for solving large scale combinatorial opti-
mization problems,” Soft Computing, vol. 11, no. 9, pp. 873–888,
2007.

[40] V. N. Vapnik, Statistical Learning Theory, John Wiley & Sons,
New York, NY, USA, 1998.

[41] C. W. Hsu, C. C. Chang, and C. J. Lin, “A practical guide to sup-
port vector classification,” Department of Computer Science,
National Taiwan University, 2003.

[42] F. E. H. Tay and L. Cao, “Application of support vectormachines
in financial time series forecasting,” Omega, vol. 29, no. 4, pp.
309–317, 2001.

[43] P. Moscato and M. G. Norman, “A “memetic” approach for the
traveling salesman problem implementation of a computational
ecology for combinatorial optimization on message-passing
systems,” in Proceedings of the International Conference on Par-
allel Computing and Transputer Applications, 1992.

[44] F. Neri and C. Cotta, “Memetic algorithms and memetic com-
puting optimization: a literature review,” Swarm and Evolution-
ary Computation, vol. 2, pp. 1–14, 2012.

[45] X. Chen, Y.-S. Ong, M.-H. Lim, and K. C. Tan, “A multi-
facet survey on memetic computation,” IEEE Transactions on
Evolutionary Computation, vol. 15, no. 5, pp. 591–607, 2011.

[46] X. S. Yang, “Firefly algorithms for multimodal optimization,” in
Stochastic Algorithms: Foundations and Applications, O. Watan-
abe and T. Zeugmann, Eds., vol. 5792, pp. 169–178, Springer,
Berlin, Germany, 2009.

[47] X.-S. Yang, S. S. S. Hosseini, and A. H. Gandomi, “Firefly
algorithm for solving non-convex economic dispatch problems
with valve loading effect,” Applied Soft Computing Journal, vol.
12, no. 3, pp. 1180–1186, 2012.

[48] K. Chandrasekaran and S. P. Simon, “Optimal deviation based
firefly algorithm tuned fuzzy design for multi-objective UCP,”
IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 460–471,
2013.

[49] M. D. Mckay, R. J. Beckman, andW. J. Conover, “A comparison
of three methods for selecting values of input variables in the
analysis of output from a computer code,” Technometrics, vol.
42, no. 1, pp. 55–61, 2000.

[50] M. Momma and K. P. Bennett, “A pattern search method for
model selection of support vector regression,” in Proceedings of
the 2nd SIAM International Conference onDataMining, pp. 261–
274, 2002.

[51] E. D. Dolan, R. M. Lewis, and V. Torczon, “On the local conver-
gence of pattern search,” SIAM Journal on Optimization, vol. 14,
no. 2, pp. 567–583, 2003.

[52] R. J. Hyndman and A. B. Koehler, “Another look at measures of
forecast accuracy,” International Journal of Forecasting, vol. 22,
no. 4, pp. 679–688, 2006.

[53] J. S. Armstrong and F. Collopy, “Errormeasures for generalizing
about forecasting methods: empirical comparisons,” Interna-
tional Journal of Forecasting, vol. 8, no. 1, pp. 69–80, 1992.

[54] F. X. Diebold and R.Mariano, “Comparing predictive accuracy,”
Journal of Business and Economic Statistics, vol. 13, pp. 253–263,
1995.

[55] W. Conover, Practical Nonparametric Statistics, John Wiley &
Sons, New York, NY, USA, 2nd edition, 1980.

[56] A. Sorjamaa, J. Hao, N. Reyhani, Y. Ji, and A. Lendasse, “Meth-
odology for long-term prediction of time series,”Neurocomput-
ing, vol. 70, no. 16–18, pp. 2861–2869, 2007.

[57] R. J. Hyndman and Y. Khandakar, “Automatic time series fore-
casting: the forecast package for R,” Journal of Statistical Soft-
ware, vol. 27, no. 3, pp. 1–22, 2008.



Tribology
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Fuels
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of
Petroleum Engineering

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Power Electronics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Combustion
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Renewable Energy

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Structures
Journal of

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Energy
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

 International Journal ofPhotoenergy

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Nuclear Installations
Science and Technology of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Solar Energy
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Wind Energy
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Nuclear Energy
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

High Energy Physics
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014


