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Abstract—Memetic multiagent system emerges as an enhanced
version of multiagent systems with the implementation of meme-
inspired computational agents. It aims to evolve human-like
behavior of multiple agents by exploiting the Dawkins’ notion
of a meme and Universal Darwinism. Previous research has
developed a computational framework in which a series of
memetic operations have been designed for implementing human-
like agents. This paper will focus on improving the human-like
behavior of multiple agents when they are engaged in social
interactions. The improvement is mainly on how an agent shall
learn from others and adapt its behavior in a complex dynamic
environment. In particular, we design a new mechanism that
supervises how the agent shall select one of the other agents
for the learning purpose. The selection is a trade-off between
the elitist and like-attracts-like principles. We demonstrate the
desirable interactions of multiple agents in two problem domains.

Keywords—multiagent systems, memetic automaton, towards
human-like behavior

I. INTRODUCTION

Multiagent system (MAS) has become an important tool to
solve complex problems in various domains like robotics [1],
computer games [2], e-learning/tutoring [3] and so on. The
MAS technologies have successfully overcome the computa-
tional intractability of relevant problems. The success lies in
the merit that multiple agents are able to collaborate with and
learn from each other through effective communication chan-
nels. As intelligent agents become more and more involved
in our daily life, the agents-based solutions are expected to
exhibit human-like characteristics that facilitate the interactions
between agents and humans [4]. For example, it is good to
have home assistant robots that can take care of housework
without messing up our personal life. While playing digital
computer games, human players would like to challenge com-
puter players (called non-player characters or game agents)
whose behavior follows a human line in game-play. This drives
the agent-related research towards the study on human-like be-
havior of intelligent agents [5]. Memetic MAS (MeMAS) [6],

[7] is one of such frameworks that permits a systematic study
on generating human-like behaviors, particularly on agents’
social interactions.

MeMAS is a marriage between agent technologies and
memetic automaton [8], [9] where the individual and inter-
action models of a population of agents are meme-inspired
design. As with genes in genetics, a meme is synonymous to
memetics as being building block of cultural know-how that is
transmissible and replicable. A meme is represented internally
as the learned knowledge, and externally as the manifested
behaviors of agents. Accordingly a meme automaton is defined
as an adaptive agent that autonomously acquires increasing
level of capability and intelligence through embedded memes
evolving independently or via social interactions. In particular,
the stochastic evolution of individual memes resembles the
varying growth of human in nature, while the transmission
during memes’ interactions is akin to the human imitation in
the real life. Naturally the meme-inspired computation serves
as a plausible platform for the design of human-like MAS.

Recently Feng et al [7] materialize the MeMAS framework
in the form of neural network architecture particularly via the
Temporal Difference - Fusion Architecture for Learning and
Cognition (TD-FALCON) [10]. The contextualized MeMAS
shows fast online learning abilities and considered natural
human-like behavior such as imitation for facilitating the
problem solving. Adopting a imitate-from-elitist principle,
the MeMAS drives agents’ learning through the rewarding
mechanism - agents always learn from a successful teacher
agent in the solution history. However, we notice that in
practice, rewarding should not be the sole element to drive
the learning of memetic agents, particularly on whom shall
be selected for the learning purpose. As one part of social
interactions, the notion of like-attracts-like has a significant
influence on interpersonal attraction which is one of the core
principles behind the human learning [11]. Taking this clue,
in this paper our interest is to study the learning behavior of
memetic agents under a like-attracts-like selection versus the
commonly used elitism selection mechanism in the MeMAS
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for problem solving.

The principle of like-attracts-like drives agents to learn
from the one that has a similar memotype. A memotype encap-
sulates both an agent’s personality and its encounter. In this
paper, we investigate a probabilistic representation of mem-
otype that encodes the stochastic actions of memetic agents
given world states. We then adapt distance measurements to
gauge the similarity between a pair of agent memotypes.
The similarity, together with the agent fitness, provide a two-
dimensioned criterion to the learning agent for selecting a
teacher agent. The criterion trades off the elitist principle
with the like-attracts-like principle. By doing this, the memetic
agents may acquire more social behavior in their interaction.
We demonstrate the performance of the proposed selection
mechanism in two domains. One is a task-based problem
setting where the MeMAS shows emergent behavior while
achieving the goal. The other is a video game where non-
player characters trained by the MeMAS interact naturally with
human-players online.

The remainder of this paper is structured as follows.
Section II provides an overview of the MeMAS based on
the TD-FALCON artificial neural network models. Section III
details the proposed like-attracts-like selection criterion and
integrates it into the agent learning process. Section IV presents
the empirical results on the agents behavior in MeMAS based
on the like-attracts-like criterion as compared to the commonly
used elitism principle, on two game domains. Finally, Sec-
tion VI concludes the paper with some brief remarks.

II. BACKGROUND: MEMAS AND TD-FALCON MODEL

In this section, we briefly describe Memetic Multiagent
System (MeMAS) followed by its implementation using TD-
FALCON models, and refer the reader to [7] for more details.

A. Memetic Multiagent Systems

Inspired by memetic automaton, MeMAS is designed to-
wards human-like learning and interaction. We depict the
architecture of MeMAS in Fig. 1, where a population of
memetic agents learn and evolve in a dynamic environment.

Fig. 1. Illustration of Memetic Multiagent System

The basic data structure of the MeMAS contains meme
representation that is manipulated by four control functions
called meme expression, meme assimilation, meme internal
evolution, and meme external evolution. The MeMAS uses
meme to represent internal knowledge of individual agents that
are generalized instructions in agents’ mind. Meme expression
translates the knowledge into a set of behaviors that can
be observable or partially observable in the environment.
Meme assimilation then translates the observed or partially
observed behaviors into knowledge that blends into the in-
dividual mind-universe. In other words, meme representation
decides on the type of meme, called memotype, while Meme
expression/assimilation activates/updates the memotype in the
execution.

Meme evolution, including meme internal evolution and
meme external evolution, is central to the behavioral aspects
of memetic automaton. Meme internal evolution governs the
growing of individual agents mainly through self-learning.
Meme external evolution models the interactions among agents
which is primarily driven by imitation. With regard to imi-
tation, memetic selection concerns with whom one imitates,
while meme transmission and variation relates to how one
imitates and what is imitated. During the interactions with
other agents, memetic agents pick up a proper teacher agent
and then imitate behaviors of others to enhance their skills in
an incremental way. We outline the implementation framework
of MeMAS in Fig. 2.

PSEUDO CODE OF MEMETIC MULTIAGENT SYSTEM

1. Initialize N memetic agents
2. While Stopping conditions are not satisfied
3. For i=1 to N do
4. Compute the probability Pri
5. If Rand() < Pri

/* Perform meme external evolution*/
6. Perform meme selection to pick out the

teacher agent Agtj
7. Perform meme variation with the probability τ

between Agti and Agtj
8. Perform meme transmission from Agtj to Agti
9. Else
10. Perform meme internal evolution

Fig. 2. A general framework of MeMAS includes meme internal evolution

and meme external evolution.

In Fig. 2, we generate N memetic agents that compose
the initial MeMAS. The MeMAS evolves gradually until
solutions to a task are found (line 2). During an evolution
procedure, every memetic agent will undergo either meme
external evolution or meme internal evolution, which relies
on the probability Pri (lines 4-5). Normally, Pri is computed
according to the agent performance in the history. For example,
it could be the success rate defined as the number of times that
the agent completes the task successfully. If the agent executes
the process of meme external evolution, it firstly selects one
teacher agent (line 6) and then performs meme variation and
meme transmission (lines 7-8). This decides how the agent
interacts with the teacher agent. The general MeMAS frame-
work can be implemented using classical techniques including



genetic programming, fuzzy rules, probabilistic models, and
so on.

B. TD-FALCON

The TD-FALCON (standing for Temporal Difference -
Fusion Architecture for Learning and Cognition) models a con-
nectionist agent in the form of three-channel neural network
architecture. Following the spirit of reinforcement learning
paradigm, it associates a world state with agents’ actions that
lead to a desirable outcome. We show the implementation of
memetic agents using the TD-FACLON in Fig. 3.

Fig. 3. The TD-FALCON model implements a memetic agent in MeMAS.

A TD-FALCON model contains three components: a sen-
sory field F c1

1
, a motor field F c2

1
, and a feedback field F c3

1
.

F c1

1
represents the input of environmental states,

S=< s1, s2, · · · , sn >, while F c2

1
models a set of available

actions, A=< a1, a2, · · · , al >, that agents can select and
execute given the sensory input. F c3

1
is a reward vector,

R=< r, r̄ > where r is the reward signal value and r̄ =1-
r. In addition, the model has a cognitive layer F2 for the
acquisition and storage of agents’ memes. More concretely,
the meme encodes a relation among the patterns of F c1

1
, F c2

1

and F c3

1
.

Let xck denote the F ck

1
activity vector for k=1,2,3, which

is weighted by wck

m
in the mth neuron in layer F2. The output

neuron, denoted by y in F2, is the learned patterns (memes)
from F ck

1
once the weight training of activity vectors is

completed. We compute the activation value Tm for meme
m in Eq. 1.

Tm =

3
∑

k=1

γck
|xck ∧wck

m
|

αck + |wck

m |
(1)

where the fuzzy AND operation ∧ is defined by p ∧ q =
min(pi, qi), and the norm | · | is defined by |p| =

∑

i pi for
vector p and q. Parameters γck and αck are specified by users.

The meme internal evolution adopts a temporal differ-
ence (TD) formulation to estimate reward values for a state-
action combination in the repetitive trials. An ǫ-greedy action
selection scheme is used in MeMAS to balance exploration and
exploitation in the agent’s self-learning. In the meme external

evolution, a memetic agent selects the teacher agent, Agtj
that has similar experience from a pool of elite agents. The
selection criterion follows Eq. 2.

Agtj = argmaxj TBest ×
F (Agtj)

FBest

(2)

where TBest=max{Tm|all memes m in F2},
F (Agtj) the fitness of Agtj larger than F (Agti) , and
FBest=max{Agtj|j ∈ N}.

Once the teacher agent is decided, the memetic agent
enters the meme variation and meme transmission stages. In
MeMAS, meme variations is realized by adding a perturbation
component to the statistical merit of each TD-FALCON based
teacher agent. This induce a diversity of teacher actions for
transmission in the evolution.

III. PROPOSED LIKE-ATTRACTS-LIKE VERSUS ELITISM

PRINCIPLE AS SELECTION CRITERION

One central issue in the meme external evolution is on
whom shall be selected for the imitation purpose. Imitate-the-
elite is one of the most popular strategies for selecting a teacher
agent. With such a scheme, the coupled formulation (Eq. 2)
thus focuses on the elite pool and measures the experience in
terms of fitness values, which has the tendency of a biased
selection towards only the elite agents.

As humans are prone to imitate others of a similar type,
a memetic agent shall also manifest such human-like social
behavior when it is selecting a teacher agent. The selection
shall consider not only solution performance in terms of
agents’ fitness, but also the evolution origin in terms of agents’
personal attributes. Thus, in contrast to using an imitate-
the-elite scheme, here we consider TD-FALCON agents that
adopts the like-attracts-like principle of agents’ experiences in
MeMAS. To begin, we first define the similarity measurement
of agents’ memotype, and then specify the parameters involved
and their settings.

A. Selection Criterion

As defined in the TD-FALCON model, a memotype, de-
noted by Q=(S,A,R), essentially encodes a mapping between
input states, S, and actions, A, through the reward measure-
ment, R. It models how a memetic agent responses to a sensory
input. This basic definition loses an important connection
between a meme and its genetic origin in the concept of meme
automaton. Analogous to that a meme is in part regulated by its
gene, behavior of memetic agents may be often determined by
their original properties. Accordingly, we expand a memotype
with agents’ attributes denoted by Θ. Formally, the augmented
memotype is defined as: MT=< Θ, Q >. The next issue is on
how to measure the similarity among agents’ memotypes.

As agents’ attributes, Θ, normally have a numerical scale,
we use normalized Euclidean distance to measure the similarity
between two attribute sets Θ and Θ′.

SED[Θ,Θ′] = 1−

∑

θ∈Θ,θ′∈Θ′

√

∑

θdim∈θ,θ′

dim
∈θ′ (θdim − θ′dim)

2

|Θ|
(3)



where θdim(or θ′dim) is standardized value whose range is
[0,1], for a single attribute, θ(or θ′), in the sets, and |Θ| the
cardinality of Θ. Note that Eq. 3 computes the common set of
Θ and Θ′.

Considering the bounded rationality of an agent, we use
probabilistic models to define its behavior. Formally, let
Pr(A|S) be a set of probability distributions over actions given
the input of world states. To measure the distance between Q
and Q′, we resort to Kullback-Leibler (KL) divergence [12] in
Eq. 4.

DKL[Q||Q′] = PrQ(A|S)ln
PrQ(A|S)

PrQ′(A|S)
(4)

We further adapt Eq. 4 and define a symmetric measure-
ment of similarity between Q and Q′ in Eq. 5. Note that the
similarity value is scaled within [0,1].

SDKL[Q,Q′] = e−
1

2
{DKL[Q||Q′]+DKL[Q′||Q]} (5)

As a memetic agent may be featured by both attributes
and behavior, the similarity between agents, Agti and Agtj ,
is subsequently computed in Eq. 6.

SIM(Agti, Agtj) =
SED[Θ,Θ′] + SDKL[Q,Q′]

2
(6)

Driven by the like-attracts-like principle, Agti may select
Agtj that has the largest SIM (Agti,Agtj) value. On the
other hand, Agti may also expect to learn from an elite
agent that has more sophisticated skills. We use the fitness

ratio,
F (Agtj)
FBest

, to measure how well Agtj approaches the best
one. Consequently, Agti will select an agent as the teacher
that has the largest value for the combined measurements

of SIM (Agti,Agtj) and
F (Agtj)
FBest

. Formally, the selection
criterion is defined in Eq. 7.

Agtj = argmaxj K1×SIM(Agti, Agtj)+K2×
F (Agtj)

FBest
(7)

where K1 and K2 are parameters balancing the similarity and
elitist factors.

Note that if the selection is solely driven by the like-
attracts-like principle, Agti loses chance to explore the entire
solution space. More importantly, by learning from a distinct
type of agents, Agti may update the memotype particularly on
speeding up the co-evolution by recognizing its genetic origin
and relating it to other types.

B. Parameter Settings

As an agent does not act individually in the environment,
its selection on a teacher agent may be influenced by evo-
lutions of other agents in MeMAS. Particularly, the dynamic
properties of MeMAS may impact the trade-off between the
aforementioned two principles: like-attracts-like and elitist. We
make a further step to illustrate the settings of K1 and K2.

Intuitively, the similarity factor may place an important
role in the agent’s selection if there are dominating groups
of similar agents in the MeMAS. Otherwise, the factor may
become weak if all agents are equally similar. Under the
thoughts of this vein, we may specify K1 as the diversity
value of the MeMAS that measures the uncertainty of different
groups of agents for a population of agents.

Resorting to regular clustering techniques like k-
means [13], we group N agents into l clusters (<
C1, · · · , Cl >) in terms of similarity measurements. Each
group contains a number of agents that have similar memo-
types. To compute the diversity of agent groups in the MeMAS,
we use the information entropy [12] as defined below. K1 is
proportional to the entropy value in Eq. 8.

K1 ≃ −
∑

l

|Cl|

N
ln(

|Cl|

N
) (8)

where
|Cl|
N

is the ratio of the size of cluster Cl to the MeMAS
space.

We perceive that the setting of K2 depends on distributions
of agents’ skills in MeMAS. Naturally an agent may pick out a
teacher agent depending on the similarity of candidate agents
if all of them are elite. In other words, the elitist principle
may have a small impact on the selection when there is little
divergence of the skill levels for all agents. We compute
the variance of all agents’ fitness values, and let K2 be the
proportion of the variance in Eq. 9.

K2 ≃ V ar[F (Agtj |j = 1, · · · , N)] (9)

Example 1 (Parameter Setting): In Fig. 4, the MeMAS
contains a set of agents that have different distributions of
fitness values and types in terms of similarity. Fig. 4(b) shows
that the agents are grouped into three clusters in terms of the
similarity. In addition, the fitness values are distributed over
an entire scale. Hence, both the similarity and elitist factors
have a competitive impact on the selection. As there is only
one group of agents in Fig. 4(a), the diversity of MeMAS
approaches zero. Consequently, the single factor of the elite
is counted in the selection. Similarly, in Fig.4(c), most agents
have similar fitness values, selecting a teacher agent mainly
depends on the similarity factor.

Given no prior knowledge on the MeMAS, we normally
let K1 and K2 be equal in the initial phase. After each
evolution, we compute K1 and K2 online, and the new values
manifest the updated MeMAS state. When K1 approaches 0,
the new selection criterion completely follows the imitate-the-
elite strategy as the memotype similarity does not play any
role in the selection.

IV. EXPERIMENTAL RESULTS

We implemented the new selection mechanism (based on
Eq. 7) together with the TD-FALCON model in the MeMAS
framework. The new mechanism is embedded in Line 6
of Fig. 2, and provides a criterion to the learning agent
for selecting a suitable teacher agent. To demonstrate the
social behavior of memetic agents, we investigated on two
domains: one is the adapted version of minefield navigation
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Fig. 4. Distributions of fitness values and types of agents impact the settings of K1 and K2: (a)K1 ≈ 0, K2 > 0; (b)K1 > 0, K2 > 0; (c)K1 > 0, K2 ≈ 0.

problem [10] and the other a 3D interactive game on the
homeland defense 1. We study the like-attracts-like selection
criterion (denoted here as MeMAS-E) versus the conventional
elitism selection criterion (denoted as MeMAS-C) [7] in the
MeMAS framework. It is observed that the memetic agents
in MeMAS-E exhibit better human-like social behavior while
maintaining the performance on achieving the mission goals.
In addition, we also conducted further subject study on both
MeMAS frameworks. We invited human players to evaluate
several human-like properties of the memetic agents and to
play with the agents in the games. The evaluation asserts the
social behavior of memetic agents as expected by the human
players.

A. Minefield Navigation Domain

The first domain is the minefield navigation problem that
has been used to assess social behavior of the MeMAS-C [7]
previously. In the minefield navigation task, a team of tank
agents move across a minefield in order to capture a red flag.
A set of flags (with the positions) are randomly generated one
by one in the map. The field is filled with land mines that
are unknown to the tanks. In the adapted minefield navigation
problem that we consider here, we include two types of tanks
and also two forms of mines in the field. All tanks have the
same navigation actions (turning left/right, moving forward,
proceeding diagonally left/right), but differ in their armored
level. One type of tank wears a thin armor, as denoted by
Tank1, hence they can be easily eliminated by any form of
mines; while the other possesses a thick armor, as denoted by
Tank2, and can only be destroyed by the highly explosive
mines (represented in red in Figs. 5 and 8). All tanks are
equipped with sonar sensors so that they have access to a set
of observations on the minefield, including mine detection,
agent detection and target bearing. A tank is rewarded with a
positive value, and is eliminated when it collides with other
agents or is hit by a mine. A screenshot of this domain is
shown in Fig. 5.

In the experiment, we have a total of 8 tanks (divided
equally for two types) and 40 mines with different explosion
levels in a 30×30 field. We let the tank agents execute the task
every 300 trials of training and continuously perform this for a
total of 3000 trials. Each execution is terminated when either
all of the tanks are destroyed or they successfully complete
the mission. We repeat the simulations for 30 times.

1The entire game package is available upon request.

Fig. 5. A scenario of the minefield navigation domain. A team of
tanks (Tank1 is represented by gray rectangle while Tank2 is is repre-
sented by red rectangle) aim to capture the flag (red colored) around which
mines (gray or red circle) are randomly scattered in the field.
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Fig. 6 depicts the average success rates of both types of
tanks on completing the missions in the minefield navigation
domain. The Tank2 agents performed competitively in both
MeMAS-E and MeMAS-C. Tank1 agents in the MeMAS-E
(based on a like-attracts-like selection criterion), on the other
hand, significantly outperforms its counterparts in MeMAS-
C (based on a elitism selection criterion) on completing the
missions successfully. In particular, in the MeMAS-E, tanks



with thin armor (Tank1) have a much higher success rate than
those in MeMAS-C. The results thus demonstrates the benefits
of the like-attracts-like selection criterion over an elitism based
scheme. In the MeMAS-C, we observed that Tank1 prefers to
select Tank2 as the teacher agent since Tank2 often succeeds
in achieving the goals and becomes the elitist agent. However,
this is unhelpful to Tank1 in completing the goal. The knowl-
edge imitated from Tank2 actually led to the downfall of many
Tank1, since their weaker armor property relative to Tank2
could not survive the mines’ devastation forces. Consequently,
Tank1 failed to repeat Tank2’s successful experience. On the
other hand, by learning from a similar type of tanks within the
environment, as in MeMAS-E, Tank1 is able to truly imitate
the appropriate skill of similar counterparts in achieving the
robust performances observed by both Tank1 and Tank2.
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Fig. 7. The MeMAS-E maintains a larger diversity of tanks than the MeMAS-
C in the minefield navigation domain.

We also computed the MeMAS diversity using information
entropy, based on the type of tanks that evolves over time, and
the results are summarized in Fig. 7. We noted the different
types of tanks co-existing in the MeMAS-E. As the tank
agents learn from both a similar type of tanks and the elitist
tanks, they differ not only in the armor property, but also the
emerged social behaviors. This is in contrast to the situation
in the MeMAS-C where all agents learn from the elitist
agents, thereby converging to successful but rather predictable
behaviors. Note that high diversity is a desirable property of
the MeMAS as it is an indicator of effective co-evolution of
memetic agents on solving the task. It also contributes the
emergence of human-like social behavior in the MeMAS.

We make a further step to depict a portion of typical
navigation routes that the tank agents take in Fig 8. Three tanks
of the first type (Tank1) follow the broken routes (pink, light
blue and green broken lines) while the other Tank2 use the
solid trails (dark blue, black and grey solid lines). We observe
that, in the MeMAS-C, most of the tank agents follow the
routes in the same portion of the field(up triangle) (Fig. 8 (a)).
The selection is mainly due to the fact that Tank1 opts to
follow Tank2 when choosing Tank2 as their teacher agent
to imitate the routing behavior. Unfortunately, the imitated
knowledge turns out to be a devastating path for Tank1 since
most of them are killed by the gray mines. The situation turns
to better when the tanks follow the routes experienced by their
similar types in MeMAS-E (Fig. 8 (b)). Tank1 is observed to
intelligently bypassing the black mines in the middle. Overall,
the MeMAS-E showcases a high diversity of routes in the

(a) Navigation routes of tanks in the MeMAS-C

(b) Navigation routes of tanks in the MeMAS-E

Fig. 8. Tank agents learn to navigate towards the destination. Red dot at
the top-left corner is the starting position. Mines with a red cover can hit any
type of tank while gray mines can only destroy Tank1. Tank1 follow the
broken lines while Tank2 use the solid lines.

minefield that resembles the desirable social behaviours found
in human, thus leading to innovative and appealing ways of
successful problem solving.

We further enrolled 18 participants to observe the behavior
of the tanks on completing 18 tasks (including both failure and
success cases) in the minefield. The observations include how
the tanks move through dangerous areas filled with land mines,
how they avoid the collision with other tanks, how they predict
the unseen targets, and how they individually/collaboratively
capture the flag. Firstly, we ask the participants to rate on both
the diversity and intelligence of the tanks’ actions, and then to
rate the human-like performance of the MeMASs. We report
the average scores (with the variance) of both MeMAS-C and
MeMAS-E in Table I.

TABLE I. AVERAGE SCORES OF THE MEMASS’ PERFORMANCE. 5 IS

THE HIGHEST AND 1 IS THE LOWEST.

Criteria Diversity Intelligence Human-like

MeMAS-E 3.78(0.73) 3.89(0.43) 3.89(0.32)

MeMAS-C 2.56(0.50) 2.42(0.31) 2.58(0.34)

Table I shows that MeMAS-E outperforms the MeMAS-C
on all evaluation criteria. It is a bit surprising that the elitist
principle based MeMAS-C does not exhibit much intelligence
on solving the tasks. The failure probably results from the



incompatible actions that the tank agents learn from others
without being aware of their personal types. The subject study
also confirms that the trade-off between the elitist and like-
attracts-like principles improves the human-like behavior of
the MeMAS.

B. 3D Interactive Homeland Defense Game

Here we designed a 3D interactive game that actively
engages human-players in assessing the performance of the
like-attracts-like principle via MeMAS-E. The game is an
abstraction of the popular online Plants v.s. Zombies. We
implemented the game based on the Unity 2 engine and
integrated the MeMAS framework with the game engine. A
game screenshot is shown in Fig. 9.

Fig. 9. Human-players intend to enter/defend the house (homeland) in the
middle of the scene. They are building the forts while combating the offenders.

The homeland defense game is a defensive task for a
human-player who aims to bring its avatars into a safe
house (homeland) while eliminating the offenders. The de-
fender can construct two types of forts, namely an arrow tower
and a stone tower, that shoot its enemies within a certain range.
Meanwhile, the offenders have two types of arms, light cavalry
and heavy infantry. Light cavalry has a high agility and a thin
armor, while heavy infantry has a low agility and a thick armor.
The light cavalry can be eliminated immediately once it is shot
by an arrow. Its health points are reduced by half when the light
cavalry is attacked by a stone. In contrast, the heavy infantry
can be killed by a stone when it gets shot. The health points are
deducted by 5% of its original points when it is hit by an arrow.
The game is terminated when either all offenders (non-player
characters(NPCs)) are eliminated or all avatars controlled by
a human-player have moved into the house.

We collected the data of 200 trials in the game-play and
used them to train all of the NPCs. Both MeMAS-E and
MeMAS-C were employed to train the NPCs on how they
shall react in a game state. We then invited 21 persons (from
novice to experienced game players) to play with the trained
NPCs in the game. After that, the players were asked to rate
the NPCs that have been trained by the MeMAS-E and the
MeMAS-C respectively. They evaluated the NPCs based on

2http://unity3d.com/

the answers to two questions: 1) How tricky and interesting
are the routes selected by the NPCs? 2) how intelligent are
the actions taken by the NPCs to attack the avatars? Finally,
they also scored the NPCs’ human-like behavior. We report
the average scores (with the variance) in Table II. The last
column in the table shows the success rate of the NPCs when
they compete with the human-players.

TABLE II. AVERAGE SCORES OF THE MEMASS’ PERFORMANCE IN

THE HOMELAND DEFENSE GAME. 5 IS THE HIGHEST AND 1 IS THE

LOWEST.

Criteria Route Attack Human- Success
Selection Mode -like Rate

MeMAS-E 4.24(0.47) 3.60(0.90) 3.88(0.50) 52%
MeMAS-C 3.07(0.72) 2.93(0.72) 3.12(0.50) 29%

The results demonstrate that the MeMAS-E improves the
MeMAS-C not only on the human-like behavior of the NPCs,
but also on the success rate. One interesting comment from
the human-player is on the remarkable behavior of NPCs
trained by the MeMAS-E: the heavy infantry moves slowly
as most of its types do in the beginning, but it becomes a
risk-seeker in the last minute of games when the safe house is
protected by a circle of stone forts. This observation reveals
the dynamic selection mechanism in the MeMAS-E. In the
early stage of the game, the heavy infantry learns the behavior
from its similar type as both the light cavalry and the heavy
infantry perform smoothly without much interference from the
under-developed forts. When the games progress, the light
cavalry exploits its strength on the agility to break through the
crowding forts thereby achieving more successful experience
on hunting the avatars. Consequently, the heavy infantry selects
the light cavalry as the teacher agent and acquires necessary
skills while updating the type simultaneously.

V. RELATED WORK

There has been seen a growing line of research on human-
like behavior of intelligent agents. The Soar architecture with
its update provides a cognitive model to develop believable
agents and has demonstrated successful experience in com-
puter games [14], [15]. In parallel, the ICARUS framework fa-
cilitates the implementation of goal-directed agents [16], [17].
Recently, a human-like agent shows believable interactions
between users and virtual characters [18], [19]. Human-like
agents also contribute the active research on humanoid robot
where robots are expected to communicate with humans [20].

Computational intelligence methods have been well ex-
ploited to design human-like agents [21], [22], [23]. Hussain
and Vidaver [24] used a genetic algorithm based framework to
show real-time human-like performance of NPCs in games.
Particularly, recent research on memetic automaton [7] has
developed a more sophisticated evolutionary model for con-
structing human-like behavior of intelligent agents. Memetic
algorithm has enhanced a personalized agent in an e-learning
application [25]. More trials of memetic agents have appeared
in the UAV pathfinding, character design in computer games
and so on [8]. However, most of the work on memetic
agents still employ the elitist principle to design the learning
mechanism in the MeMAS.



VI. CONCLUSION

Human-like behavior is a desirable property of multiagent
systems that not only improves solutions to complex problems,
but also allows the multiagent techniques to be seamlessly
engaged in personal business. Recent research on MeMAS has
shown promising results on human-like agents as the system
naturally simulates the evolution of individuals and a human
society. Following the imitate-the-elite principle, the MeMAS
still drives the learning agent to select a teacher agent from an
elite pool. Recognizing the importance of the like-attracts-like
principle in human interactions, we further improve the human-
like social behavior of MeMAS by establishing a new selection
mechanism for the learning agent. The selection is a trade-off
between the aforementioned two principles. Meanwhile, we
weight the influence of each principle in a dynamic way, and
advise the agent to choose a suitable teacher when all agents
evolve over time. The performance is demonstrated in two
problem domains.

While research has been conducted on human-like behavior
for a long period, few formal methods have been found on
quantifying the human-like behavior of intelligent agents. Most
of behavioral evaluation still relies on the subject study, which
is also the line we follow in this paper. Immediate research can
be carried out to develop a quantitative formulation on human-
like social behavior. We perceive that the elitist and like-
attracts-like principles may imply some important factors, like
diversity and intelligence of actions, in the formulation. We
will take a further investigation and examine the formulation
in various types of problem domains.
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