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Memetic algorithms (MA) are evolutionary computation methods that employ local search to selected
individuals of the population. This work presents global–local population MA for solving the forward
kinematics of parallel manipulators. A real-coded generation algorithm with features of diversity is used
in the global population and an evolutionary algorithm with parent-centric crossover operator which has
local search features is used in the local population. The forward kinematics of the 3RPR and 6–6 leg
manipulators are examined to test the performance of the proposed method. The results show that the
proposed method improves the performance of the real-coded genetic algorithm and can obtain high-
quality solutions similar to the previous methods for the 6–6 leg manipulator. The accuracy of the solutions
and the optimisation time achieved by the methods in this work motivates for real-time implementation
of the 3RPR parallel manipulator.

Keywords: forward kinematics of parallel manipulators; real-coded genetic algorithm; memetic
algorithms; intensification and diversification

1. Introduction

Evolutionary algorithms (EAs) are inspired from biological evolution and uses a population of
solutions that are evolved over time for a specific goal. The goal is usually minimisation or max-
imisation of one or several objective functions. EAs are often called metaheuristic algorithms
(Blum & Roli, 2003).

In robotics, EAs have been applied for solving the forward kinematics problem (FKP). Initial
work was done by Boudreau and Turkkan (1995), who used genetic algorithms for solving the
FKP of 3RPR manipulators where it was reported that genetic algorithms are more time consum-
ing than Newton–Raphson’s method (Ypma, 1995). Newton’s method suffers from premature
convergence and Jacobian inversion problems. The FKP of spherical and spatial manipulators has
been approached with EAs, which are known as global search techniques, that are not restricted
by Jacobian inversion problems. EAs can also be used for problems that are non-differentiable.

The robot kinematics problems are mostly associated with solving a system of nonlinear equa-
tions that can be expressed as direct optimisation problem where the objective function describes
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2 R. Chandra and L. Rolland

the entire dynamics of the system (Boudreau, Darenfed, & Turkkan, 1998; Wang, Hao, & Cheng,
2008).

In our previous work, we have used real-coded genetic algorithms (RCGAs) (Rolland &
Chandra, 2009b) for solving the forward kinematics of the 3RPR parallel manipulator and 6
leg parallel manipulator (Rolland & Chandra, 2009a). Initially, the solution quality was not as
good as algebraic methods (Rolland, 2006). Further attempt was using simulated annealing and
hybrid metaheuristic methods where simulated annealing and genetic algorithms were combined
(Chandra, Zhang, & Rolland, 2009). These methods achieved better performance than older ver-
sions of RCGAs (Rolland & Chandra, 2009b), however, the solution quality was not as good
when compared to algebraic methods (Rolland, 2006).

In our recent works, we used the G3-PCX (generalised generation gap with parent-centric
crossover (PCX)) EA (Deb, Anand, & Joshi, 2002) for solving the forward kinematics of the 6–6
leg parallel manipulator (Rolland & Chandra, 2010). The G3-PCX EA showed the best results in
comparison to other EAs in terms of solution quality and reduced optimisation time for the 6–6
leg problem. It reported all the 16 distinct solutions with very good solution quality (Rolland &
Chandra, 2010) when compared to algebraic methods (Rolland, 2007). In this paper, we apply
the G3-PCX for the 3RPR problem.

Memetic algorithms (MA) (Moscato, 1989) typically combine population-based EAs with
local search that provides intensification. The search for more efficient local refinement tech-
niques has been a major focus of study in MAs. It has been shown that EAs can also be used
as effective local search techniques (Kazarlis, Papadakis, Theocharis, & Petridis, 2001; Lozano,
Herrera, Krasnogor, & Molina, 2004; Molina, Lozano, García-Martínez, & Herrera, 2010). The
use of EAs for local search is known as crossover-based local search that is implemented as a
local population. The local population makes use of efficient crossover operators that have local
search properties. The local population-based MA have shown promising results by achieving
quality solutions in comparison with other evolutionary approaches for function optimisation
problems with high dimensionality (Molina et al., 2010).

This paper presents Global–Local Population Memetic Algorithm (GLPMA) for solving the
forward kinematics of the 3RPR and the 6–6 leg parallel manipulator. The proposed method
employs RCGA with Wrights heuristic crossover (Wright, 1991) and roulette wheel selection in
the global population and G3-PCX in the local population in order to balance diversification with
intensification. The optimisation performance is compared with the previous methods used for
the same problem (Rolland & Chandra, 2009a, 2010). The G3-PCX is used for solving the 3RPR
problem for the first time in this paper.

The rest of the paper is organised as follows: Section 2 presents the details of the proposed
global–local population MA. In Section 3, the FKP of parallel manipulators and its conversion
into an optimisation problem is given in detail. Section 4 presents the results and discussion on
the analysis of the results. Section 5 concludes the paper with directions for future research.

2. Background

2.1. Related work on MAs

Global search or the process of diversification traverses over several neighbourhoods of solu-
tions while local search limits itself within a single solution neighbourhood. The neighbourhood
N(v) of a vertex v is the sub-graph that consists of the vertices adjacent to v (not including v
itself) (Watts, 1999). Local search or the process of intensification is also viewed as hill-climbing
that refines the solution. Evolutionary search methods begin with global search that contains
large difference between candidate solutions in the population. As the search progresses, with
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Connection Science 3

evolutionary operators such as selection and recombination, the search points to a single solution
neighbourhood and the candidate solutions are closer to each other.

MAs (Moscato, 1989) typically combine EAs with local search in order to provide a global
solution of improved quality. The local search is also known as individual learning, local refine-
ment or intensification. The individual that undergoes local search is known as the meme. MAs
also include the combination of EAs with problem-dependant heuristics and approximate meth-
ods and special recombination operators (Moscato, 2003). Applications of MA include difficult
combinatorial optimisation problems, machine learning and robotics, molecular optimisation
problems, electronics and engineering and other optimisation problems as discussed in Moscato
(2003). A review on MAs appears in Ong, Lim, Zhu, and Wong (2006) and a progress report
indicates that they are an emerging field in evolutionary computation (Ong, Lim, & Chen,
2010).

A growing field of interest is in using EAs for local search methods in MAs. The EA for local
search has a small population size which is evolved for a short duration (Kazarlis et al., 2001;
Lozano et al., 2004; Molina et al., 2010; Soak, Lee, Mahalik, & Ahn, 2006). The EA with the
large population is known as the master or population intended for global search (diversifica-
tion) and the population for local search (intensification) is known as the subordinate or local
population. In the rest of the paper, we refer to the EA used for local search as local population.

Kazarlis et al. (2001) introduced the concept of micro genetic algorithm for local search
whereby a population of few individuals was employed as a generalised hill-climber intended
for intensification and a genetic algorithm with a larger population were used for diversification.
Lozano et al. (2004) presented a real-coded MA with crossover hill-climbing that maintains a
pair of parents which consists of the solution being refined and along with the best solution. The
crossover operation is performed on the pair until some number of offspring has been reached.
The best offspring is selected and it replaces the worst parent only if the best solution is better.
The method performed better than the MAs is presented in the literature.

Noman and Iba (2008) incorporated an adaptive crossover hill-climbing method for differ-
ential evolution where the intensity of local search is adjusted adaptively. They proposed fixed
length and adaptive method for the intensity of local search. In the adaptive method, the crossover
hill-climbing method is evolved while the offspring performs better than the first parent. If the
performance of the offspring is worse, then the search returns to the differential evolution. Soak
et al. (2006) presented an MA which used ideas from particle swarm optimisation for diversifi-
cation and recombination operators from a genetic algorithm were used for intensification. The
method obtained promising results to several instances of the constrained minimum spanning
tree problem. Mutoh, Kato, and Itoh (2005) presented the flexible-step crossover operator which
performed local search and the results showed improved performance for continuous optimisa-
tion problems. Gang, Iimura, Tsurusawa, and Nakayama (2005) used a global genetic algorithm
as the master and a local genetic algorithm as the subordinate for the travelling salesman
problem.

Molina et al. (2010) used the covariant matrix adaptation evolution strategies (Hansen &
Ostermeier, 2001) with a local population. They used a steady-state genetic algorithm (Her-
rera, Lozano, & Verdegay, 1998) as global population which has the property of high population
diversity. The method showed good results for continuous problems with high dimensionality
when compared to its counterparts from the literature.

2.2. Generalised generation gap with parent-centric crossover

G3-PCX has been applied to 6-leg FKPs in the past (Rolland & Chandra, 2010). It is important
to highlight its strengths and limitations as studied in benchmark problems.
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4 R. Chandra and L. Rolland

In past research, the PCX operator was compared with simplex crossover and simulated-binary
crossover using the generalised generation gap model. The results showed that the PCX operator
achieved improved performance in terms of lower optimisation time and also scaled up better as
the problem size was increased. These simulations were limited to three unimodal functions and
further comparisons of G3-PCX with differential evolution (Storn & Price, 1997) and evolution
strategies (Hansen & Ostermeier, 2001) showed improved performance in terms of optimisation
time and scalability (Deb et al., 2002).

The advantage of the PCX operator is that it behaves like a mutation operator and at the
same time retains diversity and is self-adaptive. It has been used as a hill-climbing local search
procedure in an MA (Lozano et al., 2004). There is no mutation operator in the original G3-
PCX algorithm. Amendments to the original algorithm have been done by proposing a mutation
operator (Teo, Hijazi, Omar, Mohamad, & Hamid, 2007) which has shown good performance in
multi-modal problems. Further amendments have been done in the PCX operator by introducing
a female and male differentiation process which determines the male and female individuals
chosen from the population and by further using parent selection mechanisms shown in García-
Martínez, Lozano, Herrera, Molina, & Sánchez (2008). A roulette wheel-based parent selection
scheme has also shown to perform better than the original G3-PCX on highly nonlinear multi-
dimensional problems (Ray, Kok, & Kian, 2004).

The G3-PCX needs fairly large population for small problems (Pošík, 2009). In a study, several
short experiments revealed that even for two-dimensional problems, a population size of 90 was
needed to find the solution reliably. The population size of 300 was needed in order to solve a
40-dimensional sphere function (Pošík, 2009).

A major limitation of G3-PCX is in multi-modal optimisation problems as shown in Pošík
(2009) where a restart scheme also showed to be inappropriate. This problem can be handled if
more diversity is given to G3-PCX as PCX has more emphasis for local search.

3. Global–local population MA

As discussed earlier, MAs have employed local search using local populations that use crossover-
based local search to balance diversification with intensification. The choice of the particular EA
in the global and local population is dependent on the application problem.

The proposed GLPMA employs the same EA in the global and local population. The G3-PCX
is the designated evolution algorithm in the local population due to the features of the parent-
centric crossover in terms of local search (Deb et al., 2002). The GLPMA is given in Algorithm 1.
The RCGA with Wrights heuristic crossover (Wright, 1991) and roulette wheel selection is used
in the global population. The algorithm begins by initialising all the individuals of the respective
populations with real-random numbers in a given distribution. The populations are evaluated by
presenting each individual to the fitness function which defines the FKP of the respective parallel
manipulator. Once the populations are evaluated, the algorithm proceeds as a standard EA which
employs genetic operators such as selection, crossover and mutation to create new offspring for
the master population. The algorithm assumes that it has been given the best parameters for
the evolutionary operators such as the crossover and mutation rate. The population size of the
respective populations needs to be evaluated to suit the problem.

After certain number of generations of evolution in the global population, the best individual
from the global population is transferred to the local population that employs G3-PCX. The local
search intensity determines how often to apply local search and local search intensity determines
how long to apply them. Both parameters need to be optimised. They are given by the number of
generations in the respective populations and are dependent on the problem type, size in terms
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Connection Science 5

Algorithm 1 GLPMA

Randomly initialise the master population (RCGA)
Evaluate master population
Randomly initialise the local population (G3-PCX)
Evaluate local population

while Not Termination do
(i) Create new individuals using genetic operators (Wrights heuristic crossover)
(ii) Update master population
if (LOCAL SEARCH) then

Carry best individual from master population as a meme M
Local refinement on M for n iterations using local population (PCX)

end if

Replace the worst individual of the master population with the refined meme

end while

of dimension and the nature of the search space. When the local search is executed, then the
chosen individual from the global population is transferred as a meme and placed into the local
population depending local search intensity given by number of generations. The best individual
in the global population is often chosen as the meme, however, in some cases, the second- or the
third-best individuals can also be chosen.

The meme is then refined using crossover-based local search in the local population. The
refined meme is then copied to the global population where it replaces the worst individual. Note
that even if the refined meme is not improved, it replaces the worst individual, as it may have
features which will be used later in the evolutionary process. Although crossover-based local
search is used as the designated algorithm for local refinement, any other local search method
can be employed that includes hill-climbing and gradient-based methods. The local population
is evolved as specified by the local search intensity in terms of the number of generations. The
best individual is then transferred to the main population. The remaining individuals in the local
search population are kept and used in future local search evolution. The details of the G3-PCX
is discussed in the following section.

3.1. G3-PCX for local population

The G3-PCX EA is used for the local population as the parent-centric crossover operator has
local search features. The G3-PCX EA is also used for the global population, however, any other
evolutionary method can also be used.

In G3-PCX, the whole population is randomly initialised and evaluated as done in the canoni-
cal genetic algorithm. The difference lies in the selection method where a small sub-population is
made of few chosen parents and children. At each generation, only the sub-population is evalu-
ated rather than evaluating the whole population as in a standard genetic algorithm. The children
with their new fitness become part of the bigger population. The best individual of the population
is retained at each generation.

The parent-centric crossover operator is used in creating an offspring based on orthogonal dis-
tance between the parents. The parents are made of female and male components. The female
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6 R. Chandra and L. Rolland

Algorithm 2 G3-PCX EA (Deb et al., 2002)

Set the number of parents (α) and children (β)
initialise and evaluate all individuals in the population
Setup the sub-population which would contain parents and children
while not optimal solution do

(1) Select the best parent and α − 1 parents randomly from population
(2) Create β children from α parents using PCX
(3) Choose two parents at random from the population
(4) From the combined sub-population of two chosen parents and β created children, choose
the two best individuals and replace the chosen two parents (in Step 3) with these solutions.

end while

parent points to search areas and the male parent is used to determine the extent of search of
the areas pointed by the female. The genes of the offspring extract values from intervals asso-
ciated with the neighbourhood of the female and male using probability distribution. The range
of this probability distribution depends on the distance among the genes of the male and the
female parents. The PCX operator assigns more probability to create and offspring near the
female than anywhere else in the space. The general procedure used in the G3-PCX is given in
Algorithm 2.

Algorithm 2 begins by initialising and evaluating all the individuals in the population. The
sub-population is then created which has the size of number of parents and the children. The
number of parents and children must be defined beforehand. The best parent is selected from
the population and the rest of the parents are selected randomly. The selection of the best par-
ent ensures elitism in the procedure. The children are created from the parents using the PCX
crossover operator given in Deb et al. (2002). The parents and the children are combined in the
sub-population. Afterwards, n strong individuals are chosen from the combined sub-population
which are further replaced in the population.

4. Forward kinematics of parallel manipulators

The idea to design planar parallel mechanisms can be traced back as early as in the beginning of
the 1940s with Pollard and his five-bar mechanism.1 Based on the Multi-Axis Simulation Tables,
Gough and Cappel constructed the first parallel hexapods, respectively, for a tire testing device
(Gough & Whitehall, 1962) and a motion simulator (USA Patent no. 3,295,224). Since their
successful application as flight simulators (Stewart, 1965), parallel manipulators have attracted
academic and industrial interest.

The design hypothesis states that the bodies are infinitely rigid and the joints neither yield
friction nor play. The redundant manipulators shall not be studied in this article. Moreover, the
number of actuated and measured joint variables equals the number of end-effector degrees-of-
freedom.

This article shall only concentrate on the FKP. Usually, the inverse kinematics problem (IKP)
is required to model the FKP and is defined as follows: given the generalised coordinates of the
manipulator end-effector, find the joint positions. Accordingly, the FKP is defined as follows:
given the joint positions, find the generalised coordinates of the manipulator end-effector. In the
majority of parallel manipulator cases, the FKP is a difficult problem (Raghavan & Roth, 1995).
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Connection Science 7

B1

A1

L1

O

C

Figure 1. Kinematics chain closed vector cycle.

4.1. Vectorial formulation of the basic kinematics model

The vectorial formulation constructs an equation system for each kinematics chain as a closed
vector cycle between: (1) the Ai and Bi kinematics chain attachment points, (2) the fixed base
reference frame O, and (3) the mobile platform reference frame C (Dieudonne, Parrish, & Bar-

dusch, 1972). An implicit function
−→
AiBi = U1(X ) can be written between joint positions Ai and

Bi for each kinematics chain. Each vector
−→
AiBi is expressed knowing the joint coordinates L̄

and X that give function, U2(X , L̄), X = (xc, yc, θ). The following equality has to be solved:
U1(X ) = U2(X , L̄). The distance between Ai and Bi is set to li. Thus, the end-effector position

X or C can be derived by one platform displacement
−→
OC and then one platform general rotation

expressed by the rotation matrix R. The vectorial formulation shown in Figure 1 evolves as a
displacement-based equation system using the following relation:

−→
AiBi =

−→
OC + R

−→
CBi −

−→
OAi. (1)

For each distinct platform point
−→
OBiO with i = 1, . . . , 6, each kinematics chain can be

expressed using the distance norm constraint (Merlet, 1997):

l2
i = ‖AiBi‖2. (2)

4.2. The general planar parallel manipulator

Typically, planar parallel manipulators are characterised by one base, one mobile platform and
three kinematics chain which lie in one plane, namely the 3-RPR (Gosselin & Merlet, 1994).
Moreover, the manipulator end-effector displacements are restricted to that same plane as shown
in Figure 2. A review of planar parallel manipulators shows us that the majority of the proposals
fall into the following four classes: 3RPR, 3RRP, 3PRR and 3RRR (Rolland, 2006). We shall only
study the 3RPR. For each kinematics chain, the RPR manipulator is constituted by a prismatic
actuator located between two ball joints fixed on the base and the platform. Let us have Li = li.

D
ow

nl
oa

de
d 

by
 [

27
.1

23
.1

52
.1

41
] 

at
 1

3:
25

 0
2 

Se
pt

em
be

r 
20

14
 



8 R. Chandra and L. Rolland

Figure 2. The general planar manipulator and the typical 3-RPR tripod (Rolland, 2006).

The kinematics model is an implicit relation between the configuration parameters and the
posture variables, F(X , L̄OA|Rf

, CB|Rm
) = 0, where L̄ = {l1, l2, l3}.

Vectorial formulation in Equation (2) evolves as a displacement-based equation system using
the relation given in Equation (1).

AiBi = OC + RCBi − OAi. (3)

As given in Equation (3), for this planar manipulator, the rotation matrix R is expressed in
Equation (4).

R =
(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)
, (4)

L2
i = ‖AiBi‖2. (5)

For each distinct platform point OBi|Rf with i = 1, . . . , 3, each kinematics chain can be
expressed using the distance norm constraint (Merlet, 1997).

4.2.1. The forward kinematics and conversion to optimisation problem

EAs are optimisation methods whereas the FKP involves solving a system of nonlinear equations.
The FKPs need to be converted into an optimisation problem in order to make use of EAs. The
inverse kinematic model is required from which we can easily derive an objective function that is
also called the fitness function. The fitness function represents the total error on each leg lengths.
Let lgi be the leg length of kinematics chain i which is given as input of the problem. Therefore,
the fitness function f , is given in Equation (6).

f =
3∑

i=1

(li − lgi)
2. (6)
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Connection Science 9

Figure 3. The 6 leg parallel manipulator (Rolland, 2007).

If we set Hi = l2
i , from Equation (6), then the fitness function is updated as given in

Equation (7):

f =
3∑

i=1

(
√

(Hi) − lgi)
2. (7)

4.3. The 6–6 hexapod parallel manipulator

In the FKP of 6–6 leg parallel manipulator, shown in Figure 3, the kinematics model is an implicit
relation between the configuration parameters and the posture variables, F(X , ρ̄, OA|Rf

, CB|Rm
) =

0, where L̄ = {l1, . . . , l6}.
For each distinct platform point OBi|Rf with i = 1, . . . , 6, each kinematics chain can be

expressed using the distance norm constraint (Merlet, 1997):

L2
i = ‖AiBi‖2. (8)

4.3.1. The inverse kinematics problem

We shall examine one formulation derived from the position-based equations. Selig demonstrates
how three points can be applied to describe the position and displacement of any rigid body
(Selig, 1992). It was then applied to the forward kinematics model of parallel manipulators as
shown in Figure 4. The coordinates of the three distinct points become the nine variables from
which constraints equation can be written. We apply this principle in the positioning of the par-
allel manipulator mobile platform where the end-effector is fixed rigidly. This position-based
model can then give the pose of the parallel manipulator end-effector. There are two reasons that
justify this choice. The model does not separate the mobile platform position and orientation.
Every variable then have the same units and their range is equivalent leading to same weight.
Hence, the rotation impact is included into the point parameters and made equivalent to the
translation impact. The main disadvantage is the unknown number exceeding the end-effector
degree-of-freedom number (Rolland, 2005).

The three platform distinct points are usually selected as the three joint centres, B1, B2, B3. The

nine variables are set as follows:
−→
OBi|O = [xi, yi, zi] for i = 1, 2, 3. To simplify the computation,
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10 R. Chandra and L. Rolland

B1

B2

u1 u2

u3

C Bi

B3

Figure 4. Mobile platform position specification by the three points.

we choose one non-Cartesian reference frame Rb1 to be located on B1. The u1, u2 and u3 frame
axes are defined by the following equations:

u1 =
−→

B1B2

‖ −→
B1B2‖

, u2 =
−→

B1B3

‖ −→
B1B3‖

, u3 = u1 ∧ u2. (9)

This new reference frame Rb1 , substitutes Rm, the mobile platform Cartesian reference frame.
This is achieved to produce a simpler equation system. Knowing that the platform is supposed
infinitely rigid, any platform point M can be expressed as follows:

−→
B1M = aM u1 + bM u2 + cM u3, (10)

where aM , bM , cM are constants in terms of these three points. Hence, in the case of the IKP, the
constants are noted aBi , bBi , cBi , i = i · · · 6, and can explicitly be deduced from CB|C by solving
the following linear system of equations:

−→
B1Bi|Rb1

= aBiu1 + bBiu2 + cBiu3, i = 1 · · · 6. (11)

Using the relations in Equation (11), the distance constraint equations l2
i = ‖

−→
AiBi|O‖2, i =

1, . . . , 6 can be expressed. Thus, for i = 1, . . . , 6, the IKP is obtained by isolating the li actuator
variables in the six following equations:

l2
i = (xi − OAix)

2 + (yi − OAiy)
2 + (zi − OAiz)

2, i = 1, . . . , 3 (12)

l2
i = ‖−→

Bi |Rb1
−

−→
OAiO‖2, i = 4, . . . , 6. (13)

4.3.2. The forward kinematics problem

The IKP expression gives an algebraic system comprising the first six equations in terms of three
point variables: x1, y1, z1, x2, y2, z2, x3, y3, z3, Equation (13).

The system of nonlinear equations in the FKP is converted to an optimisation problem as done
for the 3RPR in the previous section. Hence, from the IKP, we can easily derive a fitness function.
This function will be calculated on each FKP estimation that represents the total error on each
kinematics chain lengths. Let lgi be the length of kinematics chain i which is given as problem
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Connection Science 11

input. Let Hi = l2
i , from Equation (13), the fitness function becomes:

f =
6∑

i=1

(
√

(Hi) − lgi)
2. (14)

Equation (14) contains six individual objectives being the kinematics chain length difference
constraints which will be minimised.

4.3.3. Extended fitness function

Preliminary tests led to several solutions which were absolutely not in correspondence with the
exact proven ones (Chandra, Frean, & Rolland, 2009). In other words, the selected fitness func-
tion was incorrect since it did find other solutions or solutions which were not the results of
solving the FKP.

To alleviate this problem, the selected fitness function is then augmented by the three constant
distances between the three distinct platform points, B1, B2 and B3, given as follows.

G1 = ‖ −→
B2B1C‖2 − (x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2,

G2 = ‖ −→
B3B1C‖2 − (x3 − x1)

2 + (y3 − y1)
2 + (z3 − z1)

2,

G3 = ‖ −→
B3B2C‖2 − (x3 − x2)

2 + (y3 − y2)
2 + (z3 − z2)

2.

(15)

Hence, the fitness function is given in the following equation.

f =
3∑

k=1

(
√

Hk − kgk)
2 +

3∑
n=1

(Gn)
2. (16)

The fitness function includes the nine variables obtained from the six kinematics chain lengths
and three platform distance constraints.

5. Experiments and results

In this section, the performance of the proposed GLPMA and G3-PCX EA is compared for
the given FKPs as discussed in Section 4. The comparison is made with the G3-PCX EA
(Rolland & Chandra, 2010) which has given the best performance when compared to hybrid
genetic algorithms – simulated annealing and RCGAs (Rolland & Chandra, 2009a).

The G3-PCX will be applied for the 3RPR problem for the first time in this paper. We choose
the G3-PCX because it is fast, robust and requires fewer parameters to be optimised. The G3-
PCX algorithm does not use a mutation operator and its crossover operator is based on the parent-
centric mechanism which also has mutation like features and has local search properties. Hence,
it is used as the designated algorithm for the local population in the GLPMA.

The following steps are taken in this section to test the proposed method on the FKP problem
for 3RPR and 6–6 leg manipulator, respectively.

• Step 1: Evaluate the frequency and local search intensity in the GLPMA.
• Step 2: Compare GLPMA, RCGA and G3-PCX EA.
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12 R. Chandra and L. Rolland

The G3-PCX algorithm uses a pool size of two kids and a family size of two parents for all the
respective population sizes. We use the original G3-PCX given in Deb et al. (2002) for the FKP
problem.

In all experimental set-up, a total of 100 experiments were executed with different random
initial populations. The search terminated when the algorithm reached maximum training time
or when the fitness value gets lower than 1E−20.

The success rate shows how well the given paradigm can guarantee a solution when given any
initial random solution within the search space. The optimisation time is given in seconds(s) in
all the experiments.

5.1. FKP configuration

5.1.1. 3RPR configuration

The fitness function is derived from the inverse kinematics of tripod 3-RPR parallel manipulator
shown in Equation (7). An example of the resolution on a typical 3RPR manipulator configu-
ration is examined for simulation. The manipulator base coordinates of the joint centre position
OA|Rf

in the base reference frame Rf and the mobile platform coordinates of the joint centre
position CB|Rm

in the platform reference frame Rm, and the minimum bar lengths are given in
Table 1.

The joint variables are the kinematics chain lengths. The following leg lengths were used:
L := [100, 120, 150]. All experiments initialise the population with real numbers in the range
of [−50, 50]. The variables that need to be optimised are the position’s x, y and θ and there-
fore, this is a three-dimensional problem. An experimental run was considered successful when
the algorithm terminated by obtaining an error of 1E−20 before the maximum training time is
reached.

5.1.2. The 6–6 hexapod configuration

We examine one FKP example on a typical 6–6 parallel manipulator configuration, Table 2 shows
the fixed base and mobile platform joint coordinates, PA|O , CB|C .

Table 1. Planar parallel manipulator configuration for 3RPR.

Config. A1(x) A1(y) A2(x) A2(y) A3(x) A3(y)

3RPR 0 0 200 0 0 200
Id B1(x) B1(y) B2(x) B2(y) B3(x) B3(y)
3RPR 0 0 50 0 40 40

Table 2. Parallel manipulator configuration table.

Joint coordinates Respective values

OA1(x) OA1(y) OA1(z) 464.141 389.512 −178.804
OA2(x) OA2(y) OA2(z) 569.471 207.131 −178.791
OA3(x) OA3(y) OA3(z) 529.050 −597.151 −178.741
CB1(x) CB1(y) CB1(z) 68.410 393.588 236.459
CB2(x) CB2(y) CB2(z) 375.094 −137.623 236.456
CB3(x) CB3(y) CB3(z) 306.664 −256.012 236.461
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Connection Science 13

The prismatic actuator variables are set, respectively, to L̄ = [1250, 1250, 1250, 1250, 1250,
1250]. We have deliberately chosen 1 difficult case with 16 exact real solutions. The fitness
function derived from the inverse kinematics of tripod 6–6 leg parallel manipulator, given in
Equation (16), is used.

All experiments initialise solutions with real numbers in the range of [−1000, 1000]. This
range is chosen to provide the genetic algorithm with a greater search space since several dis-
tinct solutions are present. The solutions contain nine real variables which represent the positions
xi, yi and zi, where i = 1, 2 and 3. An experimental run was considered successful when the
algorithm terminated by obtaining an error of 1E−20 before the maximum training time is
reached.

5.2. Experiments and results for the FKP of the 3RPR

In this section, the FKP problem of the 3RPR parallel manipulator is examined.The maximum
evolution time is specified by 10,000 function evaluations. The algorithm converges if the fitness
reaches the minimum error of 1E−20. A run is considered successful if it converges to the
minimum error before reaching the maximum number of function evaluations. The success rate
shows how well the given paradigm can guarantee a solution when given any initial random
solution within the search space. In the GLPMA, population size of 100 is used in the global and
local search population, respectively. These values have been obtained from trial experiments.

Table 3 evaluates the LS-interval for the FKP of the 6 leg parallel manipulator given a fixed
LS-intensity of five generations. The results show that the LS-interval of 5, 7 and 9 gives the
lowest values for the optimisation time in terms of function evaluations. The optimisation time
increases as the LS-interval increases to larger values. LS-interval of 1 also does not give good
performance.

Table 4 evaluates the LS-intensity given a fixed LS-interval of 5 obtained from results in
Table 3. The results show that the LS-intensity of 1–11 gives the lowest values for the optimisa-
tion time, however, the best results are given with the LS-intensity of 1 when we consider both
the number of function evaluations and elapsed time in seconds. The optimisation time did not
have major effect as the LS-intensity increases for this problem.

The comparison of the results of the GLPMA with the G3-PCX in Table 5 shows that the
proposed method has not given much improvements of the results for the FKP of the 3RPR
parallel manipulator when compared to RCGA. The RCGA in this case shows one of the best
performance. If the same population size is used in G3-PCX, then there is local convergence.
G3-PCX requires a large population size even for small problems such as the 3RPR where only
three variables are optimised.

Table 3. An evaluation of LS-interval for the 3RPR
(LSI = 5).

LS-interval Func. Eval Time (s)

1 8356 253 0.071 0.003
3 7701 294 0.065 0.003
5 7605 206 0.065 0.002
7 7602 236 0.067 0.002
9 7561 274 0.065 0.002
11 7817 284 0.068 0.003
13 7698 236 0.068 0.002
15 7679 264 0.067 0.003
17 7768 252 0.068 0.002
19 8034 233 0.071 0.002
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14 R. Chandra and L. Rolland

Table 4. An evaluation of LS-intensity for the 3RPR
(LSF = 5).

LS-intensity Func. Eval Time (s)

1 7448 243 0.059 0.002
6 7568 223 0.065 0.002
11 7848 281 0.069 0.003
16 8232 294 0.072 0.003
21 8120 265 0.067 0.002
26 8403 198 0.068 0.002
31 8737 292 0.074 0.003
36 8676 215 0.065 0.002
41 8647 255 0.062 0.002
46 9025 243 0.066 0.003
51 8927 240 0.064 0.003
56 8844 224 0.067 0.003

Table 5. Comparison of different methods for the 3RPR.

Method Func. Eval Time (s) Pop. size Success rate

RCGA 7301 218 0.056 0.002 50 100
RCGA 5111 189 0.029 0.001 100 100
G3-PCX 2984 73 0.012 0.002 100 90
GLPMA 7448 243 0.059 0.002 (100,100) 100

Table 6. An evaluation of LS-interval for the 6-6 leg.

LS-interval Func. Eval Time (s)

1 237,769 547 2.130 0.116
3 221,697 697 2.447 0.103
5 228,401 797 2.693 0.172
7 239,761 597 2.901 0.138
9 245,161 1209 3.025 0.159
11 251,777 490 3.152 0.152
13 266,569 697 3.347 0.141
15 270,545 797 3.424 0.127
17 271,409 793 3.441 0.130
19 285,441 914 3.638 0.153

5.3. Experiments and results for the FKP of the 6–6 leg

In this section, the FKP problem of the 6–6 leg parallel manipulator is examined. The maximum
evolution time is specified by 500,000 fitness evaluations. The algorithm converges if the fitness
reaches the minimum error of 1E−20. In the GLPMA, the global and local population size of
200 is used. These values have been obtained from trial experiments.

Table 6 evaluates the LS-interval given a fixed LS-intensity of five generations. The results
show that the LS-interval of 1–7 gives the lowest values for the optimisation time with the best
elapsed time in seconds. Afterwards, the results deteriorate as the LS-interval increases.

Table 7 evaluates the LS-intensity for the FKP of the 6 leg parallel manipulator given a fixed
LS-interval of five generations. The results show that the LS-intensity of 85 gives the lowest
values for the optimisation time with the best elapsed time in seconds. The optimisation time
increases as the LS-interval increases.

The comparison of the results of the GLPMA with the G3-PCX in Table 8 shows that it has
improved the results for the FKP of the 6–6 leg parallel manipulator when compared to RCGA
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Connection Science 15

Table 7. An evaluation of LS-intensity for the 6–6 leg.

LS-intensity Func. Eval Time (s)

5 303,321 1497 5.0144 0.231
15 258,562 1097 3.9586 0.195
25 252,011 1197 3.5728 0.186
35 235,009 60 3.1322 0.165
45 232,169 1097 3.039 0.231
55 225,064 1075 2.8014 0.149
65 213,216 1105 2.673 0.159
75 220,635 1097 2.5888 0.177
85 192,998 597 1.9916 0.123
95 194,135 1724 2.0708 0.132

Table 8. Comparison of different methods for the 6-6 leg.

Method Func. Eval Time (s) Pop. size Success rate

RCGA 302,348 1432 3.928 0.136 200 100
G3-PCX 80,306 454 0.267 0.015 200 90
G3-PCX 77,393 1713 0.326 0.013 600 100
G3-PCX 100,682 2343 0.535 0.017 1000 100
GLPMA 192,998 597 1.9916 0.123 (200, 200) 100

alone. GLPMA has not outperformed the G3-PCX which gives the best performance given that
the population size is larger. In the case where the G3-PCX employs the same size population
size, the success rate is lower due to premature convergence. Therefore, we note that the GLPMA
improved the performance of RCGA and G3-PCX when the population size is the same.

We also note that all the methods were successful in finding the several distinct solutions
in multiple runs. In the 3RPR problem, we found the two distinct solutions and in the 6–6 leg
problem, we found all the 16 solutions as done earlier (Rolland & Chandra, 2010). This was done
by running multiple experiments with different initial positions in the search space. In this way,
the EA converges towards the solution nearest to the initial search position.

5.4. Discussion

The use of RCGA and GLPMA showed very good performance for solving the 3RPR FKP
problem in terms of accuracy of the solutions and the optimisation time. The optimisation time
given by RCGA is 29 ms with 100% success rate in a population of 50 individuals. G3-PCX
gives better results provided that the population size is larger than 100, otherwise, the success
rate is not good enough for real work implementation.

The accuracy and optimisation time gives the motivation for real-time implementation of the
3RPR problem which has not been possible with EAs in past work.

In the 3RPR, the GLPMA has not shown a significant improvement when compared to RCGA
and G3-PCX. Local search is problem dependent, and this suggests that for the 3RPR problem,
G3-PCX and RCGA alone can well balance diversification with intensification. However, the
GLPMA and G3-PCX achieves the same solutions in similar optimisation time. Moreover, the
transfer of the meme to the local population also takes some time.

In the 6–6 leg problem, the results also show that the GLPMA has given better performance
when compared to the G3-PCX and RCGA alone with the same population size. G3-PCX shows
the best results when the population is larger. However, the premature convergence (success
rate) of G3-PCX can be improved by the proposed GLMPA which motivates further research
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16 R. Chandra and L. Rolland

in other real-parameter optimisation problems. The G3-PCX has limitations for multi-modal
problems and requires a fairly large population size due to the properties of PCX (Pošík, 2009).
The GLMPA can address some of its shortcomings.

The 6–6 hexapod is a more difficult and larger problem when compared to the 3RPR. The
proposed MA did not show much improvement for the 3RPR problem due to the size and nature
of the problem. In the 6–6 hexapod, the proposed MA showed improvements in the RCGA
through the local population (G3-PCX). This shows that the proposed algorithm is more appli-
cable to larger and more difficult robot kinematics problems where the search landscape requires
a greater balance between diversification and intensification.

The GLPMA takes more time when compared to the G3-PCX alone as there is some time
taken in the transfer of the memes depending on the local search interval.

The solutions given by the exact algebraic method in the literature are similar to that of the
G3-PCX and GLPMA as it achieves a solution quality of 1E−20 with high success rate. The
results also show that the local search intensity is an important parameter of GLPMA and its
depth on search is dependent on the nature of the problem. The major limitation of the GLPMA
framework is the computational cost required in parameter setting; i.e. optimal values for the
frequency and the local search intensity. The GLPMA framework is general and other EAs can
be used in future for the global and local population to improve the current results.

6. Conclusion

The main problem in building a memetic framework is to balance the diversification with inten-
sification. This work has efficiently utilised a local population with crossover-based local search
in the GLPMA. The frequency and local search intensity have shown to be the main attributes
that affect the performance of the proposed MA.

The results show that the proposed MA improved the performance of the RCGA for the 6–
6 hexapod which is the larger and more difficult problem. Therefore, the proposed method is
more applicable to large and difficult robot kinematics problems and can be applied to improve
the performance of where EAs similar to the given RCGA have been used. The accuracy of the
solutions and the optimisation time achieved by the methods in this work motivates for real-
time implementation of the 3RPR parallel manipulator with evolutionary and MAs for control.
The results for the 6–6 leg parallel manipulator can be improved further in future research for
real-time implementation.

EAs are easier to implement, independent of the problem domain and are not prone to prema-
ture convergence. The MA has improved the canonical G3-PCX for the bigger problem (6–6 leg)
in terms of success rate which motivates further research in other real-parameter optimisation
problems. In future work, MA based methods could be applied to other kinematics problems.

Note

1. W-L-G. Pollard, Spray painting machine, 26 August 1940, USA Patent no. 2,213,108, Evanston, ILL, USA
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