412 research outputs found

    Axisymmetric Optical Membrane Modeling Based on Experimental Results

    Get PDF
    The United States Air Force, Department of Defense and commercial industry have recognized the great value of near-earth space development, specifically in satellites for use in communications, ground and space surveillance and more active roles. However, resolution, or the primary optic’s diameter, has been a limitation, especially for ground surveillance. Deployable optics has been investigated to allow larger optics in space and membrane optics has received increasing attention recently. The membrane’s flexible nature requires some passive and possibly active control to reduce optical distortion caused by manufacturing, deployment, or other effects during use. Piezoelectric surface controllers are one option to actively control the membrane on the order of optical measurements (micron displacement or less). Multiple configurations of transverse displacements are feasible depending on the piezo zone locations and activation. The current thrust of industry is reducing the effort, time and cost of manufacturing and testing through use of computerized modeling and simulation; therefore, this was investigated for a membrane mirror and piezoelectric combination. Prior experiments using 6-inch diameter membranes have been conducted with an axisymmetric piezoelectric material layer on the non-optical surface. Various voltage differentials were applied to the piezo and the transverse displacement was measured. A finite element code, using perturbation techniques, was written in MATLAB and tested to check the feasibility of using computer models for the micro-displacements occurring with the membrane-piezo lay-up. The computer program considered was developed for axisymmetric conditions; however, in many cases, these conditions tended to dominate. Under these conditions, the finite element code produces results that represent the axisymmetrically reduced experimental data

    TPLATE recruitment reveals endocytic dynamics at sites of symbiotic interface assembly in arbuscular mycorrhizal interactions

    Get PDF
    Introduction: Arbuscular mycorrhizal (AM) symbiosis between soil fungi and the majority of plants is based on a mutualistic exchange of organic and inorganic nutrients. This takes place inside root cortical cells that harbor an arbuscule: a highly branched intracellular fungal hypha enveloped by an extension of the host cell membrane—the perifungal membrane—which outlines a specialized symbiotic interface compartment. The perifungal membrane develops around each intracellular hypha as the symbiotic fungus proceeds across the root tissues; its biogenesis is the result of an extensive exocytic process and shows a few similarities with cell plate insertion which occurs at the end of somatic cytokinesis. Materials and Methods: We here analyzed the subcellular localization of a GFP fusion with TPLATE, a subunit of the endocytic TPLATE complex (TPC), a central actor in plant clathrin-mediated endocytosis with a role in cell plate anchoring with the parental plasma membrane. Results: Our observations demonstrate that Daucus carota and Medicago truncatula root organ cultures expressing a 35S::AtTPLATE-GFP construct accumulate strong fluorescent green signal at sites of symbiotic interface construction, along recently formed perifungal membranes and at sites of cell-to-cell hyphal passage between adjacent cortical cells, where the perifungal membrane fuses with the plasmalemma. Discussion: Our results strongly suggest that TPC-mediated endocytic processes are active during perifungal membrane interface biogenesis—alongside exocytic transport. This novel conclusion, which might be correlated to the accumulation of late endosomes in the vicinity of the developing interface, hints at the involvement of TPC-dependent membrane remodeling during the intracellular accommodation of AM fungi

    A Continuum Poisson-Boltzmann Model for Membrane Channel Proteins

    Full text link
    Membrane proteins constitute a large portion of the human proteome and perform a variety of important functions as membrane receptors, transport proteins, enzymes, signaling proteins, and more. The computational studies of membrane proteins are usually much more complicated than those of globular proteins. Here we propose a new continuum model for Poisson-Boltzmann calculations of membrane channel proteins. Major improvements over the existing continuum slab model are as follows: 1) The location and thickness of the slab model are fine-tuned based on explicit-solvent MD simulations. 2) The highly different accessibility in the membrane and water regions are addressed with a two-step, two-probe grid labeling procedure, and 3) The water pores/channels are automatically identified. The new continuum membrane model is optimized (by adjusting the membrane probe, as well as the slab thickness and center) to best reproduce the distributions of buried water molecules in the membrane region as sampled in explicit water simulations. Our optimization also shows that the widely adopted water probe of 1.4 {\AA} for globular proteins is a very reasonable default value for membrane protein simulations. It gives an overall minimum number of inconsistencies between the continuum and explicit representations of water distributions in membrane channel proteins, at least in the water accessible pore/channel regions that we focus on. Finally, we validate the new membrane model by carrying out binding affinity calculations for a potassium channel, and we observe a good agreement with experiment results.Comment: 40 pages, 6 figures, 5 table

    Online Correction of Dispersion Error in 2D Waveguide Meshes

    Full text link
    An elastic ideal 2D propagation medium, i.e., a membrane, can be simulated by models discretizing the wave equation on the time-space grid (finite difference methods), or locally discretizing the solution of the wave equation (waveguide meshes). The two approaches provide equivalent computational structures, and introduce numerical dispersion that induces a misalignment of the modes from their theoretical positions. Prior literature shows that dispersion can be arbitrarily reduced by oversizing and oversampling the mesh, or by adpting offline warping techniques. In this paper we propose to reduce numerical dispersion by embedding warping elements, i.e., properly tuned allpass filters, in the structure. The resulting model exhibits a significant reduction in dispersion, and requires less computational resources than a regular mesh structure having comparable accuracy.Comment: 4 pages, 5 figures, to appear in the Proceedings of the International Computer Music Conference, 2000. Corrected first referenc

    Trends of mechanical consequences and modeling of a fibrous membrane around femoral hip prostheses

    Get PDF
    In the present study, the effects of a fibrous membrane between cement and bone in a femoral total hip replacement were investigated. The study involved the problem of modeling this fibrous membrane in finite-element analyses, and its global consequences for the load-transfer mechanism and its resulting stress patterns. A finite-element model was developed, suitable to describe nonlinear contact conditions in combination with nonlinear material properties of the fibrous membrane. The fibrous tissue layer was described as a highly compliant material with little resistance against tension and shear. The analysis showed that the load transfer mechanism from stem to bone changes drastically when such a membrane is present. These effects are predominantly caused by tensile loosening and slip at the interface, and are enhanced by the nonlinear membrane characteristics.\ud \ud Using parametric analysis, it was shown that these effects on the load-transfer mechanism cannot be described satisfactorily with linear elastic models.\ud \ud Most importantly, the fibrous tissue interposition causes excessive stress concentrations in bone and cement, and relatively high relative displacements between these materials
    • …
    corecore