11,183 research outputs found

    Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models.

    Get PDF
    Knowing the catalytic turnover numbers of enzymes is essential for understanding the growth rate, proteome composition, and physiology of organisms, but experimental data on enzyme turnover numbers is sparse and noisy. Here, we demonstrate that machine learning can successfully predict catalytic turnover numbers in Escherichia coli based on integrated data on enzyme biochemistry, protein structure, and network context. We identify a diverse set of features that are consistently predictive for both in vivo and in vitro enzyme turnover rates, revealing novel protein structural correlates of catalytic turnover. We use our predictions to parameterize two mechanistic genome-scale modelling frameworks for proteome-limited metabolism, leading to significantly higher accuracy in the prediction of quantitative proteome data than previous approaches. The presented machine learning models thus provide a valuable tool for understanding metabolism and the proteome at the genome scale, and elucidate structural, biochemical, and network properties that underlie enzyme kinetics

    The protein cost of metabolic fluxes: prediction from enzymatic rate laws and cost minimization

    Full text link
    Bacterial growth depends crucially on metabolic fluxes, which are limited by the cell's capacity to maintain metabolic enzymes. The necessary enzyme amount per unit flux is a major determinant of metabolic strategies both in evolution and bioengineering. It depends on enzyme parameters (such as kcat and KM constants), but also on metabolite concentrations. Moreover, similar amounts of different enzymes might incur different costs for the cell, depending on enzyme-specific properties such as protein size and half-life. Here, we developed enzyme cost minimization (ECM), a scalable method for computing enzyme amounts that support a given metabolic flux at a minimal protein cost. The complex interplay of enzyme and metabolite concentrations, e.g. through thermodynamic driving forces and enzyme saturation, would make it hard to solve this optimization problem directly. By treating enzyme cost as a function of metabolite levels, we formulated ECM as a numerically tractable, convex optimization problem. Its tiered approach allows for building models at different levels of detail, depending on the amount of available data. Validating our method with measured metabolite and protein levels in E. coli central metabolism, we found typical prediction fold errors of 3.8 and 2.7, respectively, for the two kinds of data. ECM can be used to predict enzyme levels and protein cost in natural and engineered pathways, establishes a direct connection between protein cost and thermodynamics, and provides a physically plausible and computationally tractable way to include enzyme kinetics into constraint-based metabolic models, where kinetics have usually been ignored or oversimplified

    Interplay of water and a supramolecular capsule for catalysis of reductive elimination reaction from gold.

    Get PDF
    Supramolecular assemblies have gained tremendous attention due to their ability to catalyze reactions with the efficiencies of natural enzymes. Using ab initio molecular dynamics, we identify the origin of the catalysis by the supramolecular capsule Ga4L612- on the reductive elimination reaction from gold complexes and assess their similarity to natural enzymes. By comparing the free energies of the reactants and transition states for the catalyzed and uncatalyzed reactions, we determine that an encapsulated water molecule generates electric fields that contributes the most to the reduction in the activation free energy. Although this is unlike the biomimetic scenario of catalysis through direct host-guest interactions, the electric fields from the nanocage also supports the transition state to complete the reductive elimination reaction with greater catalytic efficiency. However it is also shown that the nanocage poorly organizes the interfacial water, which in turn creates electric fields that misalign with the breaking bonds of the substrate, thus identifying new opportunities for catalytic design improvements in nanocage assemblies

    Dynamic optimization of metabolic networks coupled with gene expression

    Get PDF
    The regulation of metabolic activity by tuning enzyme expression levels is crucial to sustain cellular growth in changing environments. Metabolic networks are often studied at steady state using constraint-based models and optimization techniques. However, metabolic adaptations driven by changes in gene expression cannot be analyzed by steady state models, as these do not account for temporal changes in biomass composition. Here we present a dynamic optimization framework that integrates the metabolic network with the dynamics of biomass production and composition, explicitly taking into account enzyme production costs and enzymatic capacity. In contrast to the established dynamic flux balance analysis, our approach allows predicting dynamic changes in both the metabolic fluxes and the biomass composition during metabolic adaptations. We applied our algorithm in two case studies: a minimal nutrient uptake network, and an abstraction of core metabolic processes in bacteria. In the minimal model, we show that the optimized uptake rates reproduce the empirical Monod growth for bacterial cultures. For the network of core metabolic processes, the dynamic optimization algorithm predicted commonly observed metabolic adaptations, such as a diauxic switch with a preference ranking for different nutrients, re-utilization of waste products after depletion of the original substrate, and metabolic adaptation to an impending nutrient depletion. These examples illustrate how dynamic adaptations of enzyme expression can be predicted solely from an optimization principle

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    Operability-Based Design of Energy Systems: Application to Natural Gas Utilization Processes

    Get PDF
    Process operability emerged in the last decades as a powerful tool for the design and control of complex chemical processes. The design of such processes is a challenging task as they are represented by nonlinear models with large numbers of differential and algebraic equations that demand high computational effort for their solution. In particular, process operability was proposed as a method for verifying the ability of a process design, defined by the available input set, to reach an achievable output set that considers production targets. However, existing operability methods for nonlinear systems are limited by the problem size that they can address.;In this thesis, a novel operability framework for process design and intensification of high-dimensional nonlinear chemical and energy processes is developed. This proposed framework bridges the gap in the literature by addressing the challenges of process nonlinearity and model size. This framework also broadens the scope of the traditional path of operability approaches for design and control, mainly oriented to obtain the achievable output set from the available input set, and compare the computed achievable output set to a desired output set. In particular, an optimization algorithm based on nonlinear programming tools is formulated for the high-dimensional calculations of the desired input set that is feasible considering process constraints, performance levels, and intensification targets. The high computational effort required for the high-dimensional calculations is addressed by the incorporation of bilevel and parallel programming approaches into the classical process operability concepts.;To illustrate the effectiveness of the developed methods, two natural gas utilization processes of different dimensionalities are addressed: i) a catalytic membrane reactor for the direct methane aromatization conversion to benzene and hydrogen, for which an intensified reactor design footprint reduction up to 90% when compared to the base case is obtained; and ii) a natural gas combined cycle system for power generation, for which a dramatic reduction in size, from 400 to 0.11 [MW], is produced by specifying conditions of the gas and steam turbine cycles, while still keeping the high net plant efficiency between 55 and 56.5 [%]. These results indicate that this novel operability framework can be a powerful tool for enabling process intensification and modularity. Moreover, results on the implementation of the bilevel and parallel computing methods show a reduction in computational time up to 2 orders of magnitude, when compared to the original results. The results in this thesis have culminated in four peer reviewed publications and four delivered presentations by the time of the defense

    Argonne's Laboratory Computing Resource Center : 2005 annual report.

    Full text link
    corecore