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Abstract

The regulation of metabolic activity by tuning enzyme expression levels is
crucial to sustain cellular growth in changing environments. Metabolic net-
works are often studied at steady state using constraint-based models and
optimization techniques. However, metabolic adaptations driven by changes
in gene expression cannot be analyzed by steady state models, as these do
not account for temporal changes in biomass composition.

Here we present a dynamic optimization framework that integrates the
metabolic network with the dynamics of biomass production and composi-
tion. An approximation by a timescale separation leads to a coupled model
of quasi steady state constraints on the metabolic reactions, and differen-
tial equations for the substrate concentrations and biomass composition. We
propose a dynamic optimization approach to determine reaction fluxes for
this model, explicitly taking into account enzyme production costs and enzy-
matic capacity. In contrast to the established dynamic flux balance analysis,
our approach allows predicting dynamic changes in both the metabolic fluxes
and the biomass composition during metabolic adaptations. Discretization
of the optimization problems leads to a linear program that can be efficiently
solved.

We applied our algorithm in two case studies: a minimal nutrient up-
take network, and an abstraction of core metabolic processes in bacteria.
In the minimal model, we show that the optimized uptake rates repro-
duce the empirical Monod growth for bacterial cultures. For the network
of core metabolic processes, the dynamic optimization algorithm predicted
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commonly observed metabolic adaptations, such as a diauxic switch with
a preference ranking for different nutrients, re-utilization of waste products
after depletion of the original substrate, and metabolic adaptation to an
impending nutrient depletion. These examples illustrate how dynamic adap-
tations of enzyme expression can be predicted solely from an optimization
principle.

Keywords: flux optimization, constraint-based methods, dynamic
optimization, metabolic-genetic networks

1. Introduction

A key aspect of cellular dynamics is the ability to adapt metabolic ac-
tivity to changing environments. This involves a dynamic re-organization
of enzyme expression levels, in order to accommodate for variability in nu-
trient abundance and environmental shocks that have a deleterious impact
on growth. These adaptations emerge from a complex array of regulatory
interactions between metabolism and the genetic machinery. Since many of
these interactions are unknown or incompletely understood, a fully mechanis-
tic grasp of how they control metabolic adaptations is currently beyond our
reach. Moreover, the analysis of large-scale mechanistic models is typically
hampered by the high number of molecular species and parameters involved.

An alternative approach to predict metabolic adaptations is to assume an
underlying optimality principle [1, 2, 3]. Numerous studies have considered
metabolic adaptations in microbes by computing optimal metabolic fluxes
in a stoichiometric model under a suitable objective function [4, 5, 6, 7].
Stoichiometric models are a structural description of a metabolic network
and cannot provide information on the enzyme concentrations. Several ap-
proaches have attempted to overcome this by integrating gene regulation
with stoichiometric models, either by modelling enzyme expression qualita-
tively with Boolean variables describing regulatory effects [8, 5], or by ex-
plicitly including enzyme capacity constraints in the optimization problems
[9]. An alternative approach are the cybernetic models [10], where regu-
lation is explicitly modelled and assumed to optimize a cellular objective.
While the classical cybernetic approach explicitly includes reaction kinetics
in the model, a hybrid approach has been suggested [11], where the rates are
determined from flux balance analysis.

Models that integrate metabolism and gene expression can potentially
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yield better predictions than those focused on metabolism in isolation. This
can be particularly helpful in metabolic adaptations caused by environmental
fluctuations. To capture the dynamics of biomass and gene expression linked
to metabolic activity, previous studies have mostly used ad-hoc combinations
of various modeling frameworks. Examples are combinations of constraint-
based steady state models with ordinary differential equations or Boolean
regulatory logic [3, 5, 12]. This combination approach has been successful in
proposing integrated models up to whole-cell dynamics [13].

In this paper, we propose a dynamic modeling framework for metabolic
networks coupled with gene expression of enzymes and production of other
macromolecules. We develop an optimization algorithm to predict optimal
time courses for nutrient uptake, metabolic fluxes, and gene expression rates
in such networks.

The classical approach to constraint-based optimization of metabolic fluxes,
commonly called Flux Balance Analysis (FBA), relies on an optimization
problem with algebraic constraints stemming from a steady state restriction
[14, 15, 16]. Mathematically, the FBA approach in the simplest form leads
to a linear program of the form

maxv{cTv | Sv = 0, vmin ≤ v ≤ vmax}, (1)

where v is the reaction flux vector, c a biomass weighting vector, S the
stoichiometric matrix, and vmin, vmax are lower and upper component-wise
bounds on the fluxes, respectively. While the most common optimization
objective is the maximization of biomass production, an experimental eval-
uation also highlighted additional biologically relevant objectives [17].

One point of critique to FBA is its coarse description of the biomass com-
position. While growth-dependent changes in the biomass composition have
been taken into account in the past [18], constraints related to the actual
biomass composition by enzymes or other cellular macromolecules are usu-
ally not considered. At least on the level of individual metabolic pathways,
there is good evidence that the enzyme production cost is an important fac-
tor in the regulation of these pathways [19]. Thus, it seems plausible that the
inclusion of biomass composition and enzyme costs in metabolic optimiza-
tion can potentially improve the quality of its predictions. As an extension
to FBA in this direction, the resource balance analysis (RBA) approach has
been proposed [9]. This includes the conversion of metabolites into specific
enzymes and other proteins in the network, and adds the enzymatic capacity
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as constraint on metabolic fluxes for the optimization. RBA yields a lin-
ear optimization problem and can intrinsically describe changes in both the
growth rate and biomass composition due to environmental changes from
an optimization principle alone. A conceptually equivalent approach has
been proposed independently in [20] under the term ME (metabolism and
macromolecular expression) model. Both approaches are however limited to
situations of steady exponential growth.

For batch processes or in changing environments, the model needs to
go beyond the stationary approach and account for dynamic changes in
metabolic activity. FBA has been used to predict dynamic changes in biomass
and nutrients using iterative approaches [3]. However, the iterative opti-
mization uses a steady state constraint and does not account for the model
dynamics, and thus the predictions may not be optimal in changing envi-
ronments. Dynamic effects are physiologically important, as is evidenced by
the experimental observation that even in steady state, cells would show flux
distributions which are slightly suboptimal, but which allow for easier transi-
tions to other environmental conditions [21]. Also, the numerical accuracy of
the iterative approach can at best be evaluated heuristically or by numerical
experimentation, unless specialized numerical algorithms are applied [22].

By formulating an appropriate dynamic optimization problem, it is pos-
sible to compute optimal fluxes over the whole time range of interest. This
approach has been proposed in dynamic flux balance analysis (dFBA) [23]. In
dFBA, one can distinguish between a “static optimization approach (SOA)”,
similar to the previously used iterative FBA [3], and a “dynamic optimiza-
tion approach (DOA)”. The static approach is useful to get feasible nutrient
and biomass dynamics under metabolic constraints, but it cannot resolve the
optimization problem over the complete timescale of interest. The dynamic
approach DOA directly considers an objective function which depends on the
dynamics over the complete timescale, potentially under dynamic metabolic
constraints, and thus provides a consistent solution to the dynamic optimiza-
tion problem. However, in the same way as classical FBA, dynamic FBA uses
only a coarse description of biomass composition. Biomass is captured only
as one component, and different allocations of biomass to different metabolic
tasks, such as considered in RBA, cannot be represented.

In the study described here, we developed a mathematical framework for
dynamic models of coupled metabolism and gene expression. We denote such
models with the term metabolic-genetic networks. From a rigorous timescale
separation, we approximate this model by a quasi steady state, constraint-
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Table 1: Different flux optimization approaches
Optimization approach No enzyme cost Enzyme cost included
static FBA [14] RBA [9], ME networks [20]
iterative iFBA [3], dFBA (SOA) [23]
dynamic dFBA (DOA) [23] deFBA (this paper)

based part for the intracellular metabolism, and a dynamic part for the evo-
lution of biomass and substrate concentrations. For this model class, we de-
veloped a dynamic optimization approach, called dynamic enzyme-cost FBA
(deFBA), that includes a detailed description of biomass and accounts for
the enzyme cost. The deFBA method respects biophysical constraints moti-
vated from resource balance analysis [9], and additionally includes dynamic
changes in biomass composition and substrate concentrations.

In Table 1 we compare our deFBA approach to the established methods
available in the literature. The distinction among the methods is based on
two criteria: one for the type of optimization approach (static, iterative,
or dynamic) and one for whether the enzyme production cost is taken into
account for the optimization or not. The comparison highlights the improved
generality of deFBA compared to established methods with respect to these
two criteria.

We applied the deFBA method to two exemplary metabolic-genetic net-
works, a minimal nutrient uptake network, and a larger network modeled
that describes core cellular processes in bacteria. For the example of a min-
imal metabolic-genetic network, we evaluated the dynamics resulting from
an optimization with a set of biologically meaningful objective functionals.
Using a Michaelis-Menten reaction rate for the substrate uptake, we showed
that the minimal metabolic-genetic network is equivalent to the empirical
Monod growth kinetics. We also observed a close similarity between optimal
solutions and Monod kinetics when minimizing the time for substrate metab-
olization or maximizing the biomass integral with deFBA. We argue that this
observation supports the biological validity of these objective functionals.

For the larger network of core cellular processes, we focussed on the dis-
counted biomass integral as objective function. We analyzed different sce-
narios of nutrient availability which are relevant in a biotechnological setting,
including the switch from one carbon source to another and growth under
oxygen limitation. With the dynamic optimization approach, we observed
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clearly distinguished growth phases, obtained biologically reasonable adap-
tation dynamics upon changes in nutrient availability, and could predict dif-
ferent dynamic biomass compositions of the cells depending on the growth
conditions.

In summary, the proposed deFBA method for metabolic networks coupled
with gene expression allows us to infer dynamic adaptations of the cellular
metabolic state from biophysical capacity constraints under an optimality
principle. The approach can predict metabolic changes ocurring in cellular
adaptations to a dynamic environment, without knowledge of the involved
regulatory mechanisms.

2. Modeling and optimization of metabolic-genetic networks

2.1. Model construction

Our dynamic optimization algorithm is based on a dynamic mass bal-
ance model of a metabolic-genetic network. We modeled metabolic-genetic
networks with three types of molecular species:

• Extracellular nutrients and waste, with the molar amount vector Y ;

• Intracellular metabolites, with the molar amount vector X;

• Macromolecules like gene products or large metabolites forming cellular
building blocks, with the molar amount vector P .

We split the network reactions accordingly into three classes:

• Exchange reactions, with fluxes Vy, between the cell and the environ-
ment;

• Metabolic reactions, with fluxes Vx, converting one set of metabolites
into another one;

• Biomass reactions, with fluxes Vp, converting metabolites into macro-
molecules or vice versa, for example gene expression or anabolic reac-
tions.

We denote the vector of all reaction fluxes as

V = (Vy, Vx, Vp)
T. (2)

We assumed two general properties of such networks, lead to the time
scale separation employed in this paper (described in the Section 2.2):
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• Each macromolecule is composed of a large number of small metabo-
lites. For example, a simple production reaction for a macromolecule
P from a single metabolite X may be represented as αX → P , where
α is a large stoichiometric coefficient.

• The biomass reactions, i.e., the production of macromolecules, get pro-
portionally slower as the relative stoichiometry α of macromolecules to
metabolites increases. This property is accounted for by scaling the
biomass reaction fluxes Vp with a small dimensionless factor ε in the
dynamic model.

For the purpose of timescale separation, we assumed that each reaction
flux can be expressed as a time-varying function Vi(t, y, x, P ) of the species
concentrations, where y and x are the concentrations of extracellular species
and intracellular metabolites, respectively. The explicit time-dependence
of Vi represents modulation of enzyme activity and gene expression due to
cellular signalling. Assuming that the extracellular volume ϑe is constant
in time and the cellular volume ϑc(t, P ) is a time-varying function of the
amount of macromolecules P , the concentrations x and y are defined as

y =
Y

ϑe
x =

X

ϑc(t, P )
. (3)

The reaction fluxes are considered to be given in units of molar amount per
time, as is generally recommended for models with multiple compartments,
for example in the SBML specification [24]. This is reflected by the assump-
tion that the reaction flux Vi(t, y, x, P ) depends on the molar amount of the
enzymes, and not on their concentration.

For a general network of this type, we derived the differential equations
for the network dynamics from mass balancing as

Ẏ = −Syy Vy
Ẋ = Sxy Vy + Sxx Vx − α εSxp Vp
Ṗ = ε Spp Vp,

(4)

where the matrices Sij, i, j ∈ {x, y, p} describe the stoichiometry of species i
in reactions Vj.
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2.2. Timescale approximations of metabolic-genetic networks

2.2.1. Transformation to the singular perturbation normal form

Based on the previous transformation (3) to units of concentration for the
extracellular species y, we rewrote the metabolic-genetic network model (4)
as

ẏ(t) = − 1

ϑe
Syy Vy(t, y, x, P )

Ẋ(t) = Sxy Vy(t, y, x, P ) + Sxx Vx(t, x, P )− α εSxp Vp(t, x, P )

Ṗ (t) = ε Spp Vp(t, x, P ),

(5)

where x = X/ϑc(t, P ). Importantly, we did not transform the intracellular
metabolic state X(t) to concentrations in the left hand side of (5), in order
to avoid the non-linearity in the differential equations that would result from
a time-varying volume during growth.

Based on the assumptions in Section 2.1, the time scale separation is
expressed mathematically as the limit α → ∞, ε → 0, with the product
αε staying constant. Since α describes the ratio of biomass molarity to the
consumed nutrient molarity, when α tends to infinity with a finite initial nu-
trient supply Y (0), the model would have a trivial solution where no biomass
can be produced. This problem can be avoided by assuming that the extra-
cellular volume ϑe → ∞, with both the product εϑe and the extracellular
nutrient concentrations y remaining finite, i.e., the total nutrient amount is
in proportion with the achievable biomass. In summary, we assume 1) a
large ratio for the specific molecular mass of macromolecules to metabolites,
2) slow reactions that produce macromolecules, and 3) a large extracellular
volume compared to the cellular volume.

A long time scale is then defined by

T = ε t. (6)

Assuming that the reaction rates Vi(t, y, x, P ) and the cellular volume ϑc(t, P )
are slowly varying with respect to their explicit dependence on t, we trans-
formed the model (5) to the long time scale (see equation (A.2) in Ap-
pendix A). This assumption will generally be valid for regulation of en-
zymatic activity by slowly changing environmental conditions, gene expres-
sion, and changes in cellular morphology, as these are expected to act on
a similar time scale as the accumulation of macromolecules P . Note that
the framework can nevertheless accomodate for fast allosteric regulation,

8



since that would typically be modelled by time-invariant kinetics depend-
ing on x only. As an example, a typical rate model for an enzymatic re-
action with enzyme P , substrate x1, and allosteric inhibitor x2 is given by
V = Vmax(P )x1/((K1 + x1)(K2 + x2)) [25], which does not depend explicitly
on time and thus is trivially “slowly varying” in the sense required here.

With a slight abuse of notation, we will represent Vi and ϑc being slowly
varying in the following by writing Vi(T, y, x, P ) and ϑc(T, P ).

2.2.2. Derivation of a quasi steady state model

The model on the long time scale is in the standard form to perform
singular perturbation by Tikhonov’s theorem [26]. To apply this theorem,
the following conditions need to be verified:

Condition 1 The quasi steady state equation in the limit ε → 0, given by
setting the right hand side of Ẋ to zero in (5), needs to have a locally
unique solution

X = q(T, y, P ) (7)

for all admissible values of T , y, and P .

Condition 2 The quasi steady state (7) needs to be an exponentially stable
steady state of the boundary layer model (i.e., the fast dynamics of (5)),
which is given by

Ẋ = Sxy Vy(T, y, x, P ) + Sxx Vx(T, x, P )− α εSxp Vp(T, x, P ), (8)

uniformly in T , y, and P . Note that for stability analysis, T , y and P
are considered as constants in (8).

For the technical details behind these conditions, we refer to [26, chapter
11].

If these conditions hold, one can approximate solutions of the original
model by a reduced model, where the fast dynamics Ẋ are considered to be
in quasi steady state, and the variable X is replaced by its quasi steady
state solution (7) in the dynamics of the slow variables y and P . For
a rigorous presentation of the reduced model, see equation (A.5) in Ap-
pendix A. Solutions of the original model on the long time scale are de-
noted by (y(T, ε), X(T, ε), P (T, ε)), and solutions of the reduced model by
(y(T, 0), P (T, 0)). Application of Tikhonov’s theorem [26, Theorem 11.1]
then yields the following result.
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Theorem 1. If the metabolic-genetic network model satisfies Conditions 1
and 2 above and the reduced model (A.5) has a unique solution (y(T, 0), P (T, 0)),
then there exists ε∗ > 0 such that for all ε < ε∗, the original model (A.2)
has a unique solution (y(T, ε), X(T, ε), P (T, ε)) on a finite time interval
0 ≤ T ≤ T ∗(ε), and this solution satisfies the bound

‖y(T, ε)− y(T, 0)‖+ ‖P (T, ε)− P (T, 0)‖ = O(ε). (9)

In addition, for any T ∗∗ > 0, there exists ε∗∗ with 0 < ε∗∗ < ε∗ such that the
solution in the fast variable satisfies

‖X(T, ε)− q(T, y(T, 0), P (T, 0))‖ = O(ε) (10)

for all T ∈ [T ∗∗, T ∗(ε)] and ε < ε∗∗.

Theorem 1 says that solutions of the reduced model (A.5) can be used to
approximate the slow variables of the original model (A.2) for small values of
ε, and the quasi steady state solution q(T, y, P ) can be used to approximate
the fast variable after a short transient. The approximation requires that
the boundary layer model, i.e., the dynamics of the metabolic network, has
a unique, exponentially stable steady state. Note that the approximation is
generally valid on a finite time scale only, but this does not pose a problem
here, since we are considering optimization over a finite time span.

Regarding Condition 1, explicit conditions for the existence of a unique
steady state have been presented in [27, 28] for the special case of unbranched
metabolic pathways with specific feedback regulatory mechanisms. Regard-
ing Condition 2, the stability analysis of metabolic networks is a field of
active research, with most stability conditions being only applicable to net-
works with simple stoichiometries [29, 27].

In order to show rigorously that a given metabolic-genetic network can
be well approximated by the quasi steady state model derived here, one
would have to check Conditions 1 and 2 based on a kinetic model. These
conditions, however, are hard to check in realistic networks because enzyme
kinetics are not always known and because it may not be possible to solve for
the steady state of X. As is commonly done in constraint-based models, we
typically need to assume existence and stability of a quasi steady state based
on biophysical insight. However, there are cases where unstable dynamics
have been shown for metabolic processes, for example oscillations in glycolysis
[30].
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2.2.3. A minimal metabolic-genetic network for nutrient uptake

As a minimal example for a metabolic-genetic network, we considered
a nutrient uptake network composed of one nutrient Y , one intracellular
metabolite X, and one gene product P . The minimal network consists of an
uptake reaction Vy and a biomass reaction Vp as follows:

Vy : Y → X : Vy(t, y, P ) = Pfy(y)

Vp : αX → P : Vp(t, x, P ) = Pfp(x),
(11)

where each reaction rate Vy, Vp is split into the amount of gene product P
acting as enzyme and a kinetic term fy, fp, respectively. With the classical
Michaelis-Menten model, one would for example have fy(y) = kcaty/(Ky+y).

The quasi steady state constraint on the long timescale obtained from
setting dynamics of X to zero is given by

Pfy(y) = αεPfp

(
X

ϑc(T, P )

)
(12)

for this network. If fp is invertible in the relevant domain and P 6= 0, a quasi
steady state solution (7) for X is computed as

q(T, y, P ) = f−1p

(
fy(y)

αε

)
ϑc(T, P ). (13)

The boundary layer model (8) is

Ẋ = P fy(y)− α εP fp
(

X

ϑc(T, P )

)
. (14)

Since the boundary layer model describes the short time scale, P , y, and T
can be considered as constants. A stability analysis of the linear approxima-
tion shows that the steady state is locally exponentially stable uniformly in
T , y, and P if there exists a constant δ > 0 independent of T , y, and P , such
that

α εP

ϑc(T, P )
f ′p

(
q(T, y, P )

ϑc(T, P )

)
> δ. (15)

This condition will be satisfied if P/ϑc(T, P ), i.e., the gene product concen-
tration, is bound away from zero and the function fp(x) is strictly increasing
in x. Assuming a non-vanishing gene product concentration, the stability
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condition is satisfied for any kinetics fp(x) that is strictly increasing in the
substracte concentration x.

Finally, the approximate model for the minimal network (11) on a long
time scale is given by

Ẏ = −Vy
Ṗ = εVp,

(16)

together with the quasi steady state constraint

Vy − α ε Vp = 0. (17)

Note that we have gone back to units of molar amounts for the extracellular
metabolites Y and the original time scale t for easier biological interpretation.

2.3. Dynamic optimization in metabolic-genetic networks

We developed a new dynamic optimization approach to predict the time-
courses of fluxes, substrate concentrations, and biomass in metabolic-genetic
networks, which we call dynamic enzyme-cost FBA (deFBA). We included
constraints on enzyme capacity and biomass composition as in resource bal-
ance analysis (RBA) [9] or ME networks [20], but considered a dynamic flux
optimization problem as in the dynamic approach of dFBA [23].

While in principle it is possible to apply a constraint-based dynamic flux
optimization directly on the full metabolic-genetic network model (4), the
time scale separation presented in Section 2.2 can greatly help in reducing
the complexity of the optimization problem and thus increase the efficiency
of the solvers. First, the time scale separation reduces the dimensionality of
the problem by removing the metabolic variables X; second, optimizing only
on the slow dynamics allows for a coarser time discretization grid.

In the reduced model (A.6), we still face the problem that we typically
do not know the exact kinetics for the reaction fluxes V (T, y, x, P ). We can
circumvent this problem by considering the fluxes Vi as free variables in the
optimization, as is commonly done in constraint based models.

As shown in Section 2.2.2 and Appendix A, the reduced model to be
used in the optimization is constructed as

Ẏ = −Syy Vy
Ṗ = ε Spp Vp,

(18)
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together with the quasi steady state constraint

Sxy Vy + Sxx Vx − α εSxp Vp = 0. (19)

In (18) and (19), the reaction flux vectors Vy, Vx, and Vp are considered as free
time-dependent variables to be used in the dynamic optimization, subject to
constraints described later in this section.

In order to develop the optimization problem, we need to further elaborate
on the structure of the metabolic-genetic networks. Most reactions in the
network will be catalyzed by an enzyme, which needs to be included in the
vector of macromolecular species P . For ease of notation, we will assume
that the first m components of P correspond to the network’s enzymes, and
the remaining components to non-enzymatic macromolecules. Each enzyme
catalyzes a set of one or more reactions. The set of reactions catalyzed by
enzyme Pi is denoted by the set of indices

cat(i) = {j ∈ N : Pi catalyzes Vj}. (20)

We also define a vector b which contains the molecular weights of the macro-
molecules, such that the scalar product bTP is equal to the cells’ dry weight.

We included the following biophysical constraints in the optimization
problem:

• Enzyme capacity constraints: Generally, the reaction fluxes catalyzed
by an enzyme Pi are limited by upper and lower bounds of the form∑

j∈cat(i)

∣∣∣∣ Vj
kcat,±j

∣∣∣∣ ≤ Pi, (21)

where each kcat,+j (kcat,−j) is the forward (backward) kcat value for the
reaction Vj. For irreversible fluxes, i.e., non-negatively constrained Vj,
the constraint (21) can be written as

hTc,iV ≤ eTi P, (22)

where the j-th component of the vector hc,i is

(hc,i)j =

{
k−1cat,+j if j ∈ cat(i)

0 otherwise,
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and ei is a vector with a 1 in its i-th entry and zero elsewhere. If some
of the fluxes catalyzed by the enzyme Pi are reversible, we need to
account for positive and negative signs as well as forward and backward
kcat values independently, and the constraint (21) needs to be written
as

Hc,iV ≤ EiP, (23)

where the matrix Hc,i is composed of rows such as the vector hc,i in the
irreversible case (22), but covering all combinations of positive and neg-
ative signs for the components corresponding to the reversible fluxes,
and all rows of the matrix Ei are equal to eTi . As an example, consider
a case where enzyme P1 catalyzes V1 reversibly and V2 irreversibly, such
that (21) can be specified as∣∣∣∣ V1

kcat,±1

∣∣∣∣+
V2

kcat,+2

≤ P1. (24)

Then Hc,1 matrix is then

Hc,1 =

(
−k−1cat,−1 k−1cat,+2 0 . . . 0
k−1cat,+1 k−1cat,+2 0 . . . 0

)
, (25)

so that both possible signs of V1 in the constraint (24) are accounted

for, and E1 =

(
1 0 . . . 0
1 0 . . . 0

)
.

At the network level, this translates to the constraints

Hc V ≤ HE P, (26)

where the matrices Hc and HE are defined as vertical concatenations
of the matrices Hc,1 to Hc,m and E1 to Em, respectively, where m is the
number of enzymes in P .

• Biomass-independent flux bounds, for example positivity of irreversible
fluxes:

Vmin ≤ V ≤ Vmax . (27)

• Positivity of molecular species:

P ≥ 0, Y ≥ 0. (28)
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• Biomass composition constraints, related to the cell’s solvent capacity:
In addition to enzymes, the macromolecular species P will in general
also include molecules which form the structural support of the cells,
for example membrane molecules. We assumed that this structural
components need to be present in a minimal fraction of the total dry
weight bTP of the cells. If Ps is a structural biomass component, such
a constraint can be written as

ψsb
TP ≤ Ps, (29)

where ψs is the minimal fraction of the total dry weight for Ps. If
there are several such constraints, resulting for example from different
structural components, they can be written in matrix form as

HB P ≤ 0, (30)

where each row of HB is of the form ϕsb
T − eTs , for different indices

s. With this constraint, the amount of structural cell components will
impose an upper bound on the feasible enzyme amount. In conjunc-
tion with the enzyme capacity constraint (21), this also sets an upper
constraint on the sum of fluxes as in the molecular crowding extension
to FBA [31, 32].

For the dynamic optimization problem, these constraints are path constraints,
i.e., they must be satisfied at every time point within the optimization hori-
zon.

We combined the reduced model (18)–(19) for a metabolic-genetic net-
work with the biophysical constraints into a dynamic optimization problem
as follows. For notational convenience, we introduce the variable Z = (Y, P ).
In addition to the biophysical constraints listed above, some objective func-
tionals required to define a terminal constraint in the form of a target set
Z, which was imposed on the network’s state only at the terminal time. We
then define the set of all dynamic fluxes V that take the network to the target
set within an arbitrary non-negative time tf as

V(Z, Z0) =
⋃
tf≥0

{V ∈M[0, tf ] | Z(tf , V, Z0) ∈ Z}, (31)

where M[0, tf ] is the set of measurable functions of appropriate dimension
over the interval [0, tf ], and Z(tf , V, Z0) is the solution of the differential
equation (18) with flux variables V (t) and initial condition Z(0) = Z0 [33].
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The objective functional J in the optimization is given in general form as
an integral over the dynamic variables plus a term for the terminal state:

J =

tf∫
0

Φ(Y (t), P (t), V (t)) dt+ Ψ(Z(tf )). (32)

The dynamic optimization problem is then constructed as

maxV(Z,Z0)

tf∫
0

Φ(Y (t), P (t), V (t)) dt+ Ψ(Z(tf ))

s.t. Ẏ = −Syy Vy
Ṗ = ε Spp Vp

Z(0) = Z0

(19) Sxy Vy(t) + Sxx Vx(t)− α εSxp Vp(t) = 0

(26) Hc V (t) ≤ HE P (t)

(27) vmin ≤ V (t) ≤ vmax

(28) Z(t) ≥ 0

(30) HBP (t) ≤ 0,

(33)

where equation numbers refer to the derivation of the constraints above.
A variety of approaches are available to numerically solve such an op-

timization problem [34]. For this study, we applied collocation methods
based on a time discretization of the dynamic variables Y (t), P (t), and
V (t) [35, 36, 37]. The discretized problem was then solved with the Python
optimization package cvxopt (http://abel.ee.ucla.edu/cvxopt/). Details are
given in Appendix B.

3. Analysis of a minimal metabolic-genetic network and the Monod
growth kinetics

As a first case study to demonstrate the deFBA approach, we considered
the minimal nutrient uptake network introduced in (11), with the approxi-
mated dynamics given by (16)–(17). We used the deFBA method to com-
pare the optimal solutions for three different objective functionals. Biomass
maximization is a common objective used in classical flux balance analysis
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[16]. We incorporated it into our algorithm in two alternative ways: first, as
biomass maximization at the end of the optimization horizon, and second,
as discounted maximization of the biomass integrated over time. The maxi-
mization of terminal biomass has also been used in dFBA [23], whereas the
discounted biomass objective has been used as an evolutionary fitness mea-
sure in a recent analysis of microbial metabolism [38]. As third objective, we
considered the minimization of the time required to metabolize the available
nutrient completely. The minimization of the substrate consumption time
has also been used previously to predict enzyme concentrations in pathway
activation [39, 40].

Formally, the three objective functionals were defined as follows.

• Maximization of biomass at the end of the considered time interval:

J1 = P (tf ) (34)

• Discounted maximization of the biomass integral:

J2 =

tf∫
0

P (τ) e−ϕτ dτ (35)

with a discount parameter ϕ ≥ 0. A positive discount parameter can in
general be used to reduce the effect of the terminal time tf on the objec-
tive function, since the objective function value is uniformely bounded
for varying terminal times, provided that the discount parameter is
larger than the maximal growth rate.

• Minimization of the time required to metabolize the nutrient com-
pletely:

J3 = −
tf∫
0

dτ = −tf (36)

with the terminal constraint

Y (tf ) = 0. (37)

The biophysical inequality constraints for this example were given by
positivity of the molecular species and irreversibility of the two fluxes:

0 ≤ Y 0 ≤ P

0 ≤ Vy 0 ≤ Vp
(38)
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We also constrained the enzymatic capacity according to (21), where P is
considered as an enzyme catalyzing both the uptake reaction Vy and the
biomass reaction Vp:

Vy
kcat,y

+
εVp
kcat,p

≤ P , (39)

where kcat,y and kcat,p are the catalytic constants for Vy and Vp, respectively.
We performed an analytical study of the optimization problem for the

objective functionals J2 and J3, which is described in Appendix C. The
analysis showed that there is a unique optimal solution which is composed of
an initial exponential growth phase until the substrate is completely metabo-
lized, followed by a stationary phase of nil growth. This is in agreement with
the typical growth kinetics of bacterial cultures [41]. We also found that the
time ts at which the culture switches from exponential to stationary growth
is:

ts =

(
α

kcat,y
+

1

kcat,p

)
log

(
1 +

Y0
αP0

)
, (40)

where Y0 and P0 are the initial concentrations of metabolites and biomass,
respectively. The analytical study showed that the minimal network will
reach the maximal biomass when the nutrient is depleted. Regarding the
objective J1, this means that any solution where the nutrient is depleted at
the terminal time tf is an optimal solution for the objective J1. The solution
for objective J2, for example, is also optimal for objective J1, suggesting that
the optimum for J1 may not be unique. We confirmed the non uniqueness
numerically as described next.

We computed numerical solutions for all three objective functionals, us-
ing a discretization approach as described in Appendix B. The optimization
results are shown in Figure 1. In case of objectives J2 and J3, the numeri-
cal solution is in agreement with the analytically predicted biphasic growth
kinetics.

We also computed the variability of the optimal solutions, using a similar
concept as in flux variability analysis [42]: We solved an optimization problem
as given in (33), but with the original objective functional as an additional
constraint, and the minimization or maximization of a flux or state variable at
one time point as new objective. By computing the variability of the optimal
solutions point-wise in time, a significant variability of the optimal solutions
is observed for the objective J1, whereas the uniqueness of the solutions for
objectives J2 and J3 manifests itselfs in the fact that there is no point-wise
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J1 J2 J3

Figure 1: Dynamic optimization results for the minimal metabolic-genetic network. Top
row: Optimal time courses of substrate (dashed green line) and biomass (red line) for
objective functionals J1, J2, and J3. Bottom row: Optimal time courses of fluxes (Vy
green, εVp dashed red). Filled regions show the point-wise variability of the optimal
solution. The following parameter values were used: α = 10, ε = 0.1, kcat,y = 1 min−1,
kcat,p = 1 min−1, ϕ = 0.01 min−1, tf = 80 min (for objectives J1 and J2). The initial
condition was taken as Y (0) = 100 and P (0) = 1.
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variability in the numerical solutions (bottom row of Figure 1).
Since the proposed optimization method does not assume any specific

reaction kinetics, it yields optimal solutions that, in principle, may not be
realizable with a plausible biochemical mechanism. To check whether the
optimal biphasic growth profile is consistent with a realistic kinetic law, we
compared it to the simulated growth curves obtained with a typical kinetic
model. We extended the minimal network to a kinetic model with reaction
rates given by the Michaelis-Menten law:

Vy =
ky P Y

Ky ϑe + Y

εVp =
kp P X

Kp +X
.

(41)

For a faithful comparison with the dynamic optimization results, the pa-
rameters ky and kp need to satisfy the enzymatic capacity constraint (39).
We aimed for parameter values ensuring that the enzyme P operates at full
capacity, corresponding to the constraint (39) being satisfied with equality.
Together with the quasi steady state constraint (17), we obtained parameter
values given by

ky =

(
1

kcat,y
+

1

αkcat,p

)−1
kp =

(
α

kcat,y
+

1

kcat,p

)−1
.

(42)

Simulations of the kinetic model (shown in Figure 2) were practically iden-
tical to the optimal solutions for objectives J2 and J3, both of which were
computed without presupposing any specific reaction kinetics. These simu-
lation results are similar to the classical Monod model of bacterial growth
[41]. In Appendix D, we rigorously prove the equivalence of the minimal
nutrient uptake network (11) and the Monod model.

4. Dynamic optimization of a core carbon network

4.1. Network description

We constructed a metabolic-genetic network model (see Figure 3) as an
abstraction of core processes relating carbon uptake and growth. It accounts
for the uptake of different extracellular species as nutrients, including two
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Figure 2: Simulation of the minimal metabolic-genetic network with Michaelis-Menten
reaction rates. Parameter values were set as ky = 0.5 min−1, kp = 0.05 min−1, Kyϑe =
Kp = 1 and initial condition Y (0) = 100, X(0) = 0, P (0) = 1.

carbon sources Carb1 and Carb2, oxygen, fermentation products, and other
organic molecules. The model includes the major anabolic and catabolic pro-
cesses together with the translational mechanisms for ribosome and enzyme
assembly.

The stoichiometry of the exchange and metabolic reactions were taken
from the original model proposed in [8]. However, in contrast to the work
in [8], we do not include regulatory interactions but instead added catalytic
enzymes, structural macromolecules, and ribosomes as biomass components
with appropriate biomass production reactions. We used deFBA to predict
the adaptation dynamics by optimizing the reaction rates without the need
to include regulatory interactions.

The model is detailed in Table 2–3, together with the utilized enzyme
catalytic constants. To get reasonable flux bounds on reactions describing
diffusive exchange across the plasma membrane, we defined the structural
component S as the enzymatic macromolecule for these reactions, together
with an appropriate rate constant for diffusion over the plasma membrane
or through pore proteins. In Table 2, enzymes are denoted as Ti for trans-
port enzymes and Ej for catalytic enzymes. The macromolecules for biomass
reactions and diffusive transport are the ribosome R and the structural com-
ponent S, respectively. The catalytic constants of the enzymes are based on
typical kcat values in metabolism [43, 44, 45]. While the original model [8] did
not specify which reactions were modelled as reversible, our model includes
reversible amino acid biosynthesis, and reversible synthesis and secretion of
waste products D and E.

The catalytic constants of the biomass reactions, corresponding to protein
translation, are based on the measured translation rate of 17 amino acids/s in
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Figure 3: Schematic diagram of the abstract core metabolic-genetic network. Upper part
of the diagram shows metabolic processes, the lower part biomass / gene expression pro-
cesses. Abstract representations of core metabolic processes are labelled as follows: (1)
Electron transport chain, (2) Lipid metabolism, (3) Glycolysis, (4) Acetate fermentation,
(5) Ethanol fermentation, (6) Citric acid cycle, (7) Amino acid metabolism. Extracellular
species correspond to different nutrients and waste products as detailed in the main text.
Intracellular species A–H correspond to metabolite pools, and O2 is intracellular oxygen.
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E. coli [46]. The catalytic constant in the model for each protein translation
reaction is the ratio of this translation rate and the number of amino acid
residues in the specific protein. The ATP requirements for the gene expression
reactions are deduced from a flux-based analysis of gene expression [47].
The stoichiometry of amino acids in the biomass reactions is close to the
observed average protein length of 300 amino acids [48], but with a higher
stoichiometry for reactions which are meant to be a condensed description of
a complex pathway.

Despite its relative simplicity, the model includes a range of metabolic
processes typically found in microbes, such as uptake of alternative carbon
sources, aerobic and anaerobic glycolysis, and the uptake and synthesis of
lipids and amino acids. The network includes fermentation products D and
E, which can also be reutilized as nutrients when oxygen is available. The
amino acid H can be used directly for the synthesis of proteins, or be diverted
to the carbon metabolism. The network is parametrized such that Carb1
should be expected to be the preferred carbon source as compared to Carb2,
since the corresponding uptake reaction Carb1→ A is modeled with a higher
enzymatic efficiency and a lower enzyme production cost than Carb2 → A.
The biosynthetic pathways B → F and G → H are modeled to require a
substantially larger investment in terms of enzyme production cost compared
to the uptake pathways Fext → F and Hext → H. By the C-G cycle illustrated
in Figure 3, the carbon sources can be completely catabolized under aerobic
conditions. Otherwise, they can be catabolized to the fermentation products
D and E.

4.2. Dynamic optimization of the core carbon network

We used our deFBA algorithm to predict the substrate concentrations,
biomass composition, and growth kinetics under three metabolic adapta-
tion scenarios: carbon switch, oxygen limitation and rich medium growth.
Since the analysis of the minimal network suggested that maximizing the dis-
counted biomass integral is a biologically reasonable objective in a dynamic
setting, we used this objective functional for the analysis of the core carbon
network. We modeled each scenario by manipulating the initial conditions
of the model as detailed in Table 4.

We computed the initial biomass composition by resource balance analy-
sis (RBA) [9] so as to yield maximal aerobic growth rate on Carb1 alone. The
initial biomass composition thus corresponded to a cellular state pre-adapted
to such an environment. RBA determines the biomass distribution for the
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Table 2: Exchange and metabolic reactions, together with rate constants for the core
metabolic-genetic network. Reversible reactions use equal forward and backward kcat
values.

Reaction Enzyme kcat (min−1)

Exchange reactions

Carb1→ A TC1 3000

Carb2→ A TC2 2000

Fext → F TF 3000

O2ext → O2 S 1000

D↔ Dext S 1000

E↔ Eext S 1000

Hext → A TH 3000

Metabolic reactions

A + ATP→ B EB 1800

B→ C + 2ATP + 2NADH EC 1800

B→ F EF 1800

C→ G EG 1800

G→ 0.8C + 2NADH EN 1800

C↔ 2ATP + 3D ED 1800

C + 4NADH↔ 3E EE 1800

G + ATP + 2NADH↔ H EH 1800

NADH + O→ ATP ET 1800

24



Table 3: Biomass reactions, weight vector b and initial conditions for biomass product,
together with the rate constants for the core metabolic-genetic network. All biomass
reactions are catalyzed by the ribosome R.

Reaction b P (0) / (µgl−1) kcat (min−1)

400H + 1600ATP→ TC1 4 17.0 2.5

1500H + 6000ATP→ TC2 15 0.0 0.67

400H + 1600ATP→ TF 4 0.0 2.5

400H + 1600ATP→ TH 4 0.0 2.5

500H + 2000ATP→ EB 5 28.3 2

500H + 2000ATP→ EC 5 25.8 2

1000H + 4000ATP→ ED 10 3.6 1

1000H + 4000ATP→ EE 10 0.0 1

1500H + 6000ATP→ EF 15 2.5 0.67

500H + 2000ATP→ EG 5 29.7 2

2500H + 10000ATP→ EH 25 14.7 0.4

500H + 2000ATP→ EN 5 15.0 2

500H + 2000ATP→ ET 5 52.1 2

2000H + 4000C + 16000ATP→ R 60 29.2 0.2

250H + 250C + 250F + 1500ATP→ S 7.5 233 3

Table 4: Initial nutrient conditions (mM), oxygen inflow VO (mM s−1), oxygen turnover
γO (s−1), initial biomass bTP (0) (g l−1), and discount factor ϕ (min−1) for scenarios 1–3

Scenario Carb1 Carb2 O2ext Dext Eext Fext Hext VO γO bTP (0) ϕ

1 2 30 50 0 0 0 0 20 0.4 0.005 0.1

2 50 0 5 0 0 0 0 2 0.4 0.005 0.1

3 50 0 50 0 0 5 5 20 0.4 0.005 0.3
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maximal growth rate in steady state exponential growth, thus avoiding spu-
rious transients caused by a non-optimal initial composition of biomass.

We assumed the culture to be run as an aerated batch process. The
extracellular oxygen dynamics were modeled by the differential equation

d

dt
O2ext = VO − γO O2ext, (43)

where VO is the oxygen inflow and γO the ventilation rate, with different
values per Scenario as given in Table 4. Oxygen turnover described by (43)
is added to the full biological model for the dynamic optimization.

The objective functional is the discounted biomass integral

J =

tf∫
0

bT P (t) e−ϕt dt, (44)

where b is the weight vector for the individual biomass components as given
in Table 3, P contains the reaction products of the biomass reactions listed
in Table 3, and ϕ is the discount factor as given in Table 4 for the three
scenarios.

In addition to the enzyme capacity constraint, we used a biomass com-
position constraint to ensure that the structural component S makes up for
at least 35 % of total biomass:

0.35bTP ≤ S. (45)

4.3. Scenario 1: carbon switch

In this scenario, we studied cellular growth under both carbon sources,
with a low concentration for a preferred carbon source Carb1, and a high
concentration of the other carbon source Carb2. The optimization predicted
four distinct growth phases, labelled a–d in Figure 4. In phase a, cells grew
exclusively on Carb1. After its depletion, they switched to Carb2 uptake
(phase b). The optimization predicted a nutrient uptake pattern comparable
to catabolite repression [49], where a preferred carbon source is completely
consumed before cells switch to the non-preferred carbon source. In the
growth phases a and b, cells produced the waste metabolite D. When both
carbon sources were consumed, the optimization predicted re-consumption
of the previously excreted waste metabolite D (phase c), thus being able to

26



sustain growth, though at a significantly lower rate. The stationary phase d
was reached after complete consumption of the substrate.

The predictions seem to indicate a significant intracellular reorganiza-
tion well before the complete depletion of the second carbon source (see
Figure 4 B–C). This means that the optimal response suggests a cellular
adaptation to the impending nutrient depletion, reminiscent of changes in
gene regulation observed in S. cerevisiae just before a glucose–gluconeogenic
switch [50]. It is known that some microorganisms, for example Bacillus sub-
tilis, monitor the ratio of population size to nutrient availability by quorum
sensing [51], which could allow them to predict an upcoming nutrient deple-
tion and appropriately adjust their gene expression levels before starvation.

Figure 4D illustrates the predicted reorganization of the metabolic net-
work in terms of the enzyme activities. Glycolysis, represented by the enzyme
EB, was only active in phases a and b. The C-G cycle, involving enzymes EG

and EN, was most active in phase c, where ATP production from glycolysis
ceased and had to be substituted by respiration. There was a significant drop
in activity of the amino acid synthesis pathway represented by EH in phase
c, presumabely related to the lower enzyme and ribosome biomass fraction
in that phase.

4.4. Scenario 2: oxygen limitation

In this scenario, we studied cell growth under limited oxygen availability.
The deFBA predictions display five growth phases, labelled a–e in Figure 5.
In phase a, cells grew aerobically on Carb1. In phase b, oxygen was depleted
and cells continued to grow anaerobically, producing both waste metabolites
E and D. There was also a significant drop in the growth rate during phase
b. The growth phases c and d show that there is also a preferential order in
the re-metabolization of waste products.

With the small continuous supply of oxygen that is considered in the
model, cells first grew exclusively on E (phase c), consuming D only after E
has been depleted (phase d). Phase e was then the stationary phase.

From the enzyme activities shown in Figure 5 D, we got similar results as
in scenario 1 concerning glycolysis and amino acid synthesis. According to
the oxygen limitation, there was a significant drop in the respiratory activity,
represented by the enzyme ET, after phase a.

27



0 20 40 60 80

20

2−1

2−2

2−3

2−4

2−5

2−6

2−7

2−8

aaaaaaa bbbbbbb ccccccc ddddddd

Time [min]

B
io
m
as
s
[g
/l
]

biomass

0

0.02

0.04

0.06

G
ro
w
th

ra
te

[m
in

−
1
]

growth rate

0 20 40 60 80
0

10

20

30

40

50
aaaaaaa bbbbbbb ccccccc ddddddd

Time [min]

S
u
b
st
ra
te

[m
M
]

Carb1

Carb2

O2ext

Dext

0 20 40 60 80
0

20

40

60

80
aaaaaaa bbbbbbb ccccccc ddddddd

Time [min]

C
om

p
os
it
io
n
[%

]

ribosomes
enzymes

structure

Growth phases

Enzyme activities

a b c d

EB

EC

EF

EG

EN

ED

EE

EH

ET

A B

C D

Figure 4: Dynamic optimization results for the core metabolic-genetic network in Scenario
1 (two carbon sources). Time intervals a-d show different growth regimes according to
substrate availability. A: Biomass and growth rate. B: Concentrations of extracellular
metabolites. C: Dry weight percentages for aggregate cellular components. D: Enzyme
activity during growth phases a–d, averaged over each phase. Stronger blue denotes higher
relative enzyme activity within a phase. See Table 2 for enzyme labels.
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Figure 5: Dynamic optimization results for the core metabolic-genetic network in Scenario
2 (oxygen limitation). Phases a-e show different growth regimes according to substrate
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4.5. Scenario 3: transition to and growth in rich medium

In this scenario, we studied the effect of adding amino acids (Hext) and
lipids (Fext) to the medium for cells grown previously on Carb1 alone. Initially,
cells were assumed to be pre-adapted to a medium without amino acids and
lipids, and the optimization predicted an initial transient where cells adapted
to the new medium. The model predicts expression of amino acid and lipid
transporters so as to shift from synthesis to uptake of amino acids and lipids
from the medium. We then observed five growth phases, labelled a–e in
Figure 6.

In phase a, where also the generic amino acid H is available in the medium,
cells grew with a significantly higher rate than in the other scenarios. This
higher growth rate presumably results from decreased enzyme cost for biosyn-
thesis pathways during this phase. Also, during phases a and b the ribosomal
biomass fraction was significantly increased (Figure 6 C), while the enzymatic
biomass fraction was reduced. This agrees with previous studies about the
dependence of the growth rate on global cellular parameters, where increased
mRNA and decreased protein fractions have been associated with increased
growth rate [52]. After depletion of external F and H, the ratio between
ribosomes and enzymes returned to the original state, while the cells con-
tinued to grow on Carb1 alone (phase c). When Carb1 was depleted, cells
re-metabolized the waste product D (phase d), before entering stationary
phase (e).

An additional observation from the enzyme activities shown in Figure 6 D
is that glycolysis was most active only in phase b, presumably due to the need
of precursor molecules for amino acid synthesis after the extracellular supply
of H had been used up.

5. Discussion

In this paper we have presented a dynamic optimization approach for
metabolic networks coupled with gene expression. The proposed deFBA
method can be used to predict the dynamic adaptation of intracellular metabo-
lites and biomass composition under environmental perturbations. Based
on a biophysically motivated approximation by separation of timescales, we
obtained a reduced model for metabolic networks coupled with biomass dy-
namics. In the reduced model, the metabolic fluxes are computed from a
quasi steady state approximation, while the nutrient concentrations, enzyme
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Figure 6: Dynamic optimization results for the core metabolic-genetic network in Sce-
nario 3 (rich medium). Phases a-e show different growth regimes according to substrate
availability. A: Biomass and growth rate. B: Concentrations of extracellular metabolites.
C: Dry weight percentages for aggregate cellular components. D: Enzyme activity dur-
ing growth phases a–e, averaged over each phase. Stronger blue denotes higher relative
enzyme activity within a phase.
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expression levels and other biomass components are described by a system
of differential equations.

The inclusion of a detailed biomass composition with constraints on fluxes
from enzyme capacity was previously proposed in RBA [9] and ME networks
[20] for steady state models. We developed a dynamic optimization method,
called dynamic enzyme-cost flux balance analysis (deFBA), which includes
the biomass composition and related enzyme capacity constraints in a dy-
namic model. The algorithm allows predicting the time courses of metabolic
fluxes and biomass concentrations from an optimality principle. Our ap-
proach provides a generalization to the currently established dynamic flux
balance analysis (dFBA) reported in [23], and offers two advantages. Firstly,
it can readily account for constraints on enzyme levels and their biosynthetic
cost. Secondly, it is based on computationally efficient linear optimization
techniques and thus seems well suited for large scale networks. Computa-
tional costs can become particularly limiting in dFBA, as it is based on
non-linear optimization techniques that are hard to scale with network size.
In addition, deFBA solves one optimization problem for the dynamics over
the complete time interval, thus also avoiding numerical problems in differen-
tial equations constrained by linear programs [22], as encountered in iterative
FBA or the static optimization approach of dFBA [3, 23].

The deFBA approach allows predicting changes in the enzyme expression
levels from an optimization principle alone, without the need of explicit mod-
els for gene regulatory interactions as proposed in other FBA-related methods
[8, 5]. We exploited this feature by using deFBA to predict metabolic adap-
tations in two biologically relevant metabolic-genetic systems: a minimal
nutrient uptake network and a larger core carbon uptake system.

For the minimal network we showed numerically and analytically that
the optimal growth kinetics are composed of an exponential and a stationary
phase. These biphasic growth kinetics appear in the solutions that maxi-
mize the discounted biomass integral or minimize the nutrient metaboliza-
tion time. We subsequently found that these optimal growth kinetics are
essentially equivalent to the classical Monod model of bacterial growth [41]
and can be accurately modeled with uptake kinetics following a Michaelis-
Menten law. This result can be interpreted as a rigorous derivation of the
Monod growth model, which was so far an empirical model based on ob-
served growth dynamics. The close correspondence of the Monod growth
model with the dynamic optimization results suggests that maximization of
the discounted biomass integral or the minimization of the metabolization
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time are biologically plausible objectives in a dynamic context, and in fact
both have been previously used in evolutionary [38] or metabolic pathway
studies [39, 40], respectively.

The plausibility of other objective functionals should also be examined in
deFBA, similarly as has been done for static flux balance analysis [17]. How-
ever, some objectives which have been proposed there, such as the maximiza-
tion of ATP production, seem to be more appropriate for networks focussing
on the metabolic level alone, and may not be appropriate for metabolic-
genetic networks. A dynamic optimization approach opens up the possibility
of using other objective functions that do not apply in a static setting, such
as the minimization of the metabolization time introduced in Section 3.

We also considered the maximization of the final biomass in the mini-
mal network, as this was one of the original objectives proposed with dFBA
[23]. The predictions, however, showed a significant variability due to non-
uniqueness of the optimal solution. Non-unique optimal solutions are a com-
mon problem with all constraint-based models [53]. In networks with two
equivalent parallel pathways, classical FBA would not be able to predict
which of the two is active. This situation can be remedied by considering
different enzyme costs for the two pathways, as first suggested in [9] for static
optimization, and in our study for the dynamic case (Section 4.3). The use of
static objective functionals in a dynamic setting can aggravate the problem
of non-uniqueness. For example, as we observed in Figure 1, when maximiz-
ing the terminal biomass, a dynamic approach may not be able to decide
whether a single pathway is active early or late within the considered time
horizon. The alternative objective functionals that we proposed in this study
remedied the problem of non-unique optimal solutions in the time domain,
as growth at an earlier time would give a better objective functional value
than growth at a later time.

Our study on the core carbon network used a larger model that includes
the uptake of different extracellular species (including nutrients, oxygen, and
organic precursor molecules) together with some of the main energy turnover
processes, and the assembly of ribosomes and enzymes. We applied the
deFBA method to predict the growth kinetics and time courses for substrates
and biomass composition that maximized the discounted biomass integral
in three scenarios. These scenarios were chosen from classical examples of
metabolic adaptation processes: the switch from one carbon source to an-
other, growth under reduced oxygen availability, and the transition of cells to
a rich medium, which subsequently gets depleted of nutrients. The resulting
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growth kinetics reproduce a number of known biological observations, such
as the overall cellular composition under different growth conditions [52] or
a hierarchy of preferences for different carbon sources [54]. The results show
that a significant change in gene regulation before an impending nutrient de-
pletion would be optimal for cellular growth. In view of recent experimental
results on gene regulation during the glycolytic-gluconeogenic switch [50], we
suggest growth optimality over the full time period as theoretical explanation
for regulatory activity before the switching time point.

The metabolic part of the model in Section 4 was first analyzed with
regulatory FBA (rFBA) in [8]. We compared these results to our results
obtained by the deFBA method. Both approaches result in a sequence of
growth phases with a distinct metabolic flux pattern. For the specific sce-
narios, both the carbon switch and the anaerobic growth have also been
studied in [8] and gave similar results, for example the preference for one
carbon source over the other. Importantly, in rFBA, this preference resulted
from explicitly building it into the regulatory logic, while with deFBA, it fol-
lowed implicitly from the different enzymatic efficiencies and metabolic costs
of the alternative pathways. While our results predict the re-metabolization
of fermentation products, similar to an observed acetate re-utilization in E.
coli [3], which has also been reproduced in iterative FBA [3] and dynamic
FBA [23], the corresponding reactions seemed to be modelled as irreversible
in the rFBA study [8], which would have prevented the re-metabolization
there.

An important general distinction between rFBA and deFBA concerns
the biological knowledge required to build the network models. In rFBA,
fluxes are constrained by Boolean rules modeling regulatory mechanisms,
which have to be known in the modeling step. With deFBA, regulatory
interactions are not included in the model, but the specific enzymes for each
reaction together with their metabolic production costs are added to the
network and thus need to be known. Importantly, these two approaches
do not exclude each other: it should be well possible to construct network
models with both regulatory constraints and constraints from the capacity
and metabolic costs of individual enzymes.

Although we have focussed on the metabolic constraints relating to en-
zymatic capacity, the deFBA framework readily allows for inclusion of ther-
modynamic constraints on metabolic fluxes [55]. Moreover, a recent study
has suggested that constraints on gene regulatory mechanisms may also be
relevant and contribute to some mismatch between observed gene expression
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and fitness levels predicted from the theoretical optimum based on metabolic
constraints [56]. The inclusion of suitable constraints on the regulatory mech-
anisms in a metabolic optimization framework is an open problem, but we
suggest that it may become tractable in a dynamic optimization setup such
as deFBA, for example by including metabolic costs of gene regulation. In
addition, the objective functions considered here do not take the robustness
against unpredictable changes in the environment into account, which may
also contribute to slower growth than predicted from a pure growth rate
optimization [57].

In essence, the approach presented here can predict the temporal regula-
tion of gene expression from an optimization principle, without requiring any
knowledge of regulatory interactions. It yields predictions for biomass dy-
namics in metabolic adaptations, while respecting constraints of enzymatic
capacity and mass conservation.

Appendix A. Derivation of the long time scale models

Since the reaction fluxes Vi(t, y, x, P ) and the cellular volume ϑc(t, P ) are
assumed to be slowly varying, we could rewrite them on the long time scale
as

Vi
(
ε−1T, y, x, P

)
= Ṽi (T, y, x, P )

ϑc
(
ε−1T, P

)
= ϑ̃c(T, P )

(A.1)

even in the limit ε→ 0.
On the long time scale, the metabolic-genetic network is then rewritten

as

y′ = − 1

ε ϑe
Syy Ṽy

(
T, y,

X

ϑ̃c(T, P )
, P

)
εX ′ = Sxy Ṽy

(
T, y,

X

ϑ̃c(T, P )
, P

)
+ Sxx Ṽx

(
T,

X

ϑ̃c(T, P )
, P

)
− α εSxp Ṽp

(
T,

X

ϑ̃c(T, P )
, P

)
P ′ = Spp Ṽp

(
T,

X

ϑ̃c(T, P )
, P

)
,

(A.2)

where we used X ′ = dX/dT to denote the time derivative on the long time
scale.
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Based on the model (A.2), the quasi steady state equation for Condition 1
in Section 2.2.2 is given by

Sxy Ṽy

(
T, y,

X

ϑ̃c(T, P )
, P

)
+ Sxx Ṽx

(
T,

X

ϑ̃c(T, P )
, P

)
−α εSxp Ṽp

(
T,

X

ϑ̃c(T, P )
, P

)
= 0,

(A.3)

and the boundary layer model (8) is more explicitly written as

Ẋ =Sxy Ṽy

(
T, y,

X

ϑ̃c(T, P )
, P

)
+ Sxx Ṽx

(
T,

X

ϑ̃c(T, P )
, P

)
− α εSxp Ṽp

(
T,

X

ϑ̃c(T, P )
, P

)
,

(A.4)

where the slow variables T , y, and P are considered as constant in (A.3)
and (A.4).

The reduced model is constructed as

y′ = − 1

ε ϑe
Syy Ṽy

(
T, y,

q(T, y, P )

ϑ̃c(T, P )
, P

)
P ′ = Spp Ṽp

(
T,
q(T, y, P )

ϑ̃c(T, P )
, P

)
,

(A.5)

whereX = q(T, y, P ) is the solution to the quasi steady state constraint (A.3).
Going back to the original t time scale and to units of molar amount for Y ,
the reduced dynamics are

Ẏ = −Syy Vy
(
t,
Y

ϑe
,
q(εt, Y/ϑe, P )

ϑc(t, P )
, P

)
Ṗ = εSpp Vp

(
t,
q(εt, Y/ϑe, P )

ϑc(t, P )
, P

)
.

(A.6)

Appendix B. Numerical solution of the dynamic optimization prob-
lem by collocation

In this section, we discuss the numerical solution of the optimization
problem (33) in more detail. As a first step, let us consider the case where
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the terminal time tf is fixed a priori. In the collocation scheme, the time
interval [0, tf ] is divided into N equally sized intervals, each of length

h =
tf
N
. (B.1)

Within each interval, K collocation points are determined. All collocation
points are given by the sequence

t1,1, t1,2, . . . , t1,K , t2,1, . . . , tN,K . (B.2)

Within each interval, the q-th collocation point is at position rq (relative
to the interval [−1, 1]), where rq is determined by the collocation scheme
and order. In the computational experiments for this study, we used Radau
collocation points of order 2 and 3, determined by zeros of the Legendre
polynomials [37]. The collocation points are thus computed as

ti,q = (i− 1)h+ (rq + 1)
h

2
. (B.3)

The flux variable and the derivative of the species variable are discretized
by the following interpolation scheme:

V (t) =
K∑
q=1

vi,q Lq

(
2t− 2ti−1 − h

h

)
, ti−1 ≤ t ≤ ti

Ż(t) =
K∑
q=1

żi,q Lq

(
2t− 2ti−1 − h

h

)
, ti−1 ≤ t ≤ ti,

(B.4)

where Lq, q = 1, . . . , K are suitable interpolation functions defined on the
interval (−1, 1). In this study, we used the Lagrange polynomials

Lq(r) =
K∏

1≤i≤K, i 6=q

r − ri
rq − ri

(B.5)

as interpolation functions [58]. The boundaries of the time intervals are given
by ti = ih, i = 1, . . . , N and t0 = 0.

The species variable Z is discretized at the boundaries of the N intervals
in time, and its value within an interval is approximated by integrating over
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the time derivative:

Z(ti−1 + τ) = zi−1 +

τ∫
0

Ż(ti−1 + s) ds

= zi−1 +
K∑
q=1

żi,q

τ∫
0

Lq(2s/h− 1) ds

= zi−1 + h/2
K∑
q=1

żi,q

r(τ)∫
−1

Lq(s) ds,

(B.6)

with r(τ) = 2τ/h− 1.
The continuous optimization problem (33) is now approximated by a

finite-dimensional problem, in which the optimization is done over the vector
w ∈ RNK(n+m)+Nn, defined by

w = (v1,1, v1,2, . . . , vN,K , ż1,1, ż1,2 . . . , żN,K , z1, . . . , zN), (B.7)

with vi,q, żi,q, and zi, i = 1, . . . , N , q = 1, . . . , K corresponding to the inter-
polation coefficients in (B.4) and (B.6).

The discretized optimization problem is written as

maxw c
Tw + e

s.t. Mew = ce

Miw ≤ ci,

(B.8)

where the vector c and number e stem from the discretization of the the
objective functional, the equality constraint matrix Me and vector ce from
collocation of the differential equation and the initial condition, and the
inequality constraint matrix Mi and vector ci from the path and terminal
constraints in (33). The optimization problem (B.8) is a linear program and
can directly be solved by common optimization software.
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Appendix C. Analytical results for the minimal metabolic-genetic
network

Appendix C.1. Problem statement

In this section we show how to obtain the analytic solution of the op-
timization problems in Section 3. We seek to solve the following dynamic
optimization problem:

maxVyJi, i = 2, 3. (C.1)

in the time interval [0, tf ] subject to the model dynamics

Ẏ = −Vy, (C.2)

Ṗ = εVp (C.3)

and the quasi steady state constraint

Vy = αεVp, (C.4)

together with the positivity constraints

Y ≥ 0, P ≥ 0, Vy ≥ 0, Vp ≥ 0 (C.5)

and the enzyme capacity constraint

Vy
kcat,y

+
εVp
kcat,p

≤ P. (C.6)

The objective functions are the discounted biomass integral

J2 =

∫ tf

0

P (τ)e−ϕτd τ, (C.7)

and the time needed to metabolize all the nutrient

J3 = −tf . (C.8)

In the case of objective J2, the final time tf is pre-specified. In the case of
J3, the final time tf is free and subject to an additional terminal constraint
Y (tf ) = 0.
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Using the quasi steady state approximation Vy = αεVp, the model dy-
namics can be written as

Ẏ = −Vy, (C.9)

Ṗ = Vy/α, (C.10)

and we rewrite the enzyme capacity constraint as

Vy ≤ P/K, (C.11)

with
K = 1/kcat,y + 1/(αkcat,p). (C.12)

In the next sections we show how to obtain analytic solutions to both of these
problems.

Appendix C.2. Solution for objective J2

To avoid ambiguities, from now on the star ∗ denotes optimal trajectories.
We first note that Vy ≥ 0 implies that P ≥ 0, because P0 ≥ 0 and Ṗ = Vy/
α ≥ 0 for all Vy ≥ 0 and α > 0. In addition, by the quasi steady state
constraint Vy = αεVp, we have that Vy ≥ 0 implies that Vp ≥ 0, and therefore
the optimization problem can be simplified to

maxJ2 (C.13)

subject to the dynamics (C.9)–(C.10), and the constraints

Vy ≤ P/K, Vy ≥ 0, and Y ≥ 0. (C.14)

The optimal nutrient dynamics are Ẏ ∗ = −V ∗y , which can be solved by
integration

Y ∗(t) = Y0 −
∫ t

0

V ∗y (τ)dτ. (C.15)

This means that for any initial condition Y0 > 0, the optimal nutrient con-
centration will reach Y ∗ = 0 only if there exists 0 < ts ≤ tf such that∫ ts

0

V ∗y (τ)dτ = Y0. (C.16)
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We will now obtain the optimal uptake rate assuming that equation (C.16)
does not have a solution for ts. We will then use this solution a posteriori to
analyze the case when (C.16) does have a solution. If equation (C.16) does
not have a solution, the nutrient does not deplete and therefore constraint
Y ≥ 0 never becomes active in the optimization interval [0, tf ]. We can thus
ignore this constraint and reduce the optimization problem to

maxJ2 (C.17)

subject to (C.9)–(C.10) and 0 ≤ Vy ≤ P/K. Since J2 grows as P (t) grows
(pointwise in time) and Ṗ = Vy/α ≥ 0, the optimal uptake rate V ∗y must
be maximal pointwise in time while respecting 0 ≤ Vy ≤ P/K. Intuitively,
this means that the optimal rate satisfies V ∗y = P ∗/K, but we can also
alternatively use a proof by contradiction as follows. Assume that in the
optimal solution the constraint Vy ≤ P/K is not active, so that V ∗y = P ∗/
K − δ(t) with δ(t) > 0 on a subinterval of [0, tf ]. Substituting this optimal
rate in Ṗ ∗ = V ∗y /α we get

Ṗ ∗ =
P ∗

Kα
− δ

α
. (C.18)

Equation (C.18) is a linear inhomogeneous differential equation with solution

P ∗(t) = P0e
t
Kα − e

t
Kα

∫ t

0

e
−τ
Kα δ(τ)dτ. (C.19)

Using the definition of J2 =
∫ tf
0
P (t)e−ϕtdt, we can compute the value of the

corresponding optimal objective as

J∗2 = P0

∫ tf

0

e
t
Kα e−ϕtdt−

∫ tf

0

e
t
Kα e−ϕt

(∫ t

0

e
−τ
Kα δ(τ)dτ

)
dt︸ ︷︷ ︸

>0

, (C.20)

< P0

∫ tf

0

e
t
Kα e−ϕtdt, (C.21)

which contradicts the optimality of J∗2 , and therefore we conclude that δ(t) =
0 on the interval [0, tf ], apart from a set of zero measure. The optimal uptake
rate and biomass concentration are then

V ∗y (t) =
P0

K
e

t
Kα , for t ∈ [0, tf ] , (C.22)

P ∗(t) = P0e
t
Kα , for t ∈ [0, tf ] . (C.23)
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From these expressions we can a posteriori obtain a condition for equation
(C.16) to have a solution for ts. Substituting the optimal rate V ∗y in (C.16),
we get an equation for ts:

α
(
e
ts
Kα − 1

)
=
Y0
P0

, (C.24)

and solving for ts we get

ts = Kα log

(
1 +

Y0
αP0

)
. (C.25)

Therefore, if tf < ts the nutrient never depletes and the optimal solution
are the exponentials in (C.22)–(C.23). Conversely, if tf ≥ ts the equation in
(C.16) has a solution for ts and we can establish that

Y ∗(t) = 0, for t ∈ [ts, tf ] , (C.26)

V ∗y (t) = 0, for t ∈ [ts, tf ] . (C.27)

Note that (C.26) is true because when Y ∗ reaches zero at t = ts, it can only be
made positive by a negative V ∗y , which would violate the positivity constraint
Vy ≥ 0. Similarly, if (C.27) is not true, then V ∗y must become positive for
some non empty time interval after t = ts, but this would imply that Y ∗ < 0
in that interval, thereby violating the positivity constraint Y ≥ 0. We thus
conclude that for t ≥ ts, the network enters stationary phase and the biomass
remains constant:

P ∗(t) = P ∗(ts), for t ∈ [ts, tf ] . (C.28)

Appendix C.3. Solution for objective J3
In this case the optimal solution for objective J3 can be obtained with

similar arguments as the one for J2. Maximization of J3 is equivalent to
minimization of the time it takes the nutrient to deplete (tf ). Since Ẏ =
−Vy < 0 it follows that tf decreases as Vy grows pointwise in time. This
essentially means that the constraint Vy ≤ P/K must be active for t ∈
[0, tf ] and therefore the optimal solution is V ∗y = P ∗/K. Following a similar
procedure as in the case of J2, we have that the optimal uptake rate and
biomass concentrations are exponentials

V ∗y (t) =
P0

K
e

t
Kα , for t ∈ [0, tf ] , (C.29)

P ∗(t) = P0e
t
Kα , for t ∈ [0, tf ] . (C.30)
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Note that, analogously to equation (C.16), in this case the time needed for
nutrient depletion, tf , satisfies∫ tf

0

V ∗y (τ)dτ = Y0. (C.31)

Substituting (C.29) in (C.31) and solving for the optimal tf we get

tf = Kα log

(
1 +

Y0
αP0

)
. (C.32)

Appendix D. Equivalence between the minimal metabolic-genetic
network and the Monod growth kinetics

Since the nutrient uptake and metabolization is done by enzymes, it
appears reasonable to assume a common enzymatic rate law such as the
Michaelis-Menten rate here. With this assumption, we obtained the follow-
ing result.

Proposition 2. If the uptake reaction Vy in the minimal metabolic-genetic
network (11) is given by the Michaelis-Menten rate law with P as an enzyme
and Y as a substrate,

Vy =
kcatPy

Km + y
, (D.1)

then the long timescale approximation (16) of the minimal metabolic-genetic
network is equivalent to the Monod growth kinetics given by

Ẏ = −1

%
µ(y)P

Ṗ = µ(y)P.

(D.2)

In the model (D.2), Y denotes the substrate, P is the biomass, y = Y/ϑe
the substrate concentration,

µ(y) =
µmax y

Ky + y
(D.3)

is the empirical growth rate, and % ≥ 0 is the yield coefficient [59].
Thus the Monod growth model is theoretically explained by a Michaelis-

Menten type nutrient uptake reaction together with optimality of cell growth
with respect to an objective of time-minimal growth or a discounted biomass
integral.
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Proof of Proposition 2. From the quasi-steady state condition

Vy = αεVp, (D.4)

we have

Vp =
1

εα

kcaty

Km + y
. (D.5)

Then the long timescale approximation of the minimal metabolic-genetic
network is given by

Ẏ = − kcatPy

Km + y

Ṗ =
1

α

kcatPy

Km + y
.

(D.6)

By comparing this equation to (D.2), we see that the dynamics are identical
when identifying the parameters with

µmax =
kcat
α

Ky = Km

% =
1

α
.

(D.7)
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