3,709 research outputs found

    Segmentation of articular cartilage and early osteoarthritis based on the fuzzy soft thresholding approach driven by modified evolutionary ABC optimization and local statistical aggregation

    Get PDF
    Articular cartilage assessment, with the aim of the cartilage loss identification, is a crucial task for the clinical practice of orthopedics. Conventional software (SW) instruments allow for just a visualization of the knee structure, without post processing, offering objective cartilage modeling. In this paper, we propose the multiregional segmentation method, having ambitions to bring a mathematical model reflecting the physiological cartilage morphological structure and spots, corresponding with the early cartilage loss, which is poorly recognizable by the naked eye from magnetic resonance imaging (MRI). The proposed segmentation model is composed from two pixel's classification parts. Firstly, the image histogram is decomposed by using a sequence of the triangular fuzzy membership functions, when their localization is driven by the modified artificial bee colony (ABC) optimization algorithm, utilizing a random sequence of considered solutions based on the real cartilage features. In the second part of the segmentation model, the original pixel's membership in a respective segmentation class may be modified by using the local statistical aggregation, taking into account the spatial relationships regarding adjacent pixels. By this way, the image noise and artefacts, which are commonly presented in the MR images, may be identified and eliminated. This fact makes the model robust and sensitive with regards to distorting signals. We analyzed the proposed model on the 2D spatial MR image records. We show different MR clinical cases for the articular cartilage segmentation, with identification of the cartilage loss. In the final part of the analysis, we compared our model performance against the selected conventional methods in application on the MR image records being corrupted by additive image noise.Web of Science117art. no. 86

    The Impact of Different Image Thresholding based Mammogram Image Segmentation- A Review

    Get PDF
    Images are examined and discretized numerical capacities. The goal of computerized image processing is to enhance the nature of pictorial data and to encourage programmed machine elucidation. A computerized imaging framework ought to have fundamental segments for picture procurement, exceptional equipment for encouraging picture applications, and a tremendous measure of memory for capacity and info/yield gadgets. Picture segmentation is the field broadly scrutinized particularly in numerous restorative applications and still offers different difficulties for the specialists. Segmentation is a critical errand to recognize districts suspicious of tumor in computerized mammograms. Every last picture have distinctive sorts of edges and diverse levels of limits. In picture transforming, the most regularly utilized strategy as a part of extricating articles from a picture is "thresholding". Thresholding is a prevalent device for picture segmentation for its straightforwardness, particularly in the fields where ongoing handling is required

    Laplacian Mixture Modeling for Network Analysis and Unsupervised Learning on Graphs

    Full text link
    Laplacian mixture models identify overlapping regions of influence in unlabeled graph and network data in a scalable and computationally efficient way, yielding useful low-dimensional representations. By combining Laplacian eigenspace and finite mixture modeling methods, they provide probabilistic or fuzzy dimensionality reductions or domain decompositions for a variety of input data types, including mixture distributions, feature vectors, and graphs or networks. Provable optimal recovery using the algorithm is analytically shown for a nontrivial class of cluster graphs. Heuristic approximations for scalable high-performance implementations are described and empirically tested. Connections to PageRank and community detection in network analysis demonstrate the wide applicability of this approach. The origins of fuzzy spectral methods, beginning with generalized heat or diffusion equations in physics, are reviewed and summarized. Comparisons to other dimensionality reduction and clustering methods for challenging unsupervised machine learning problems are also discussed.Comment: 13 figures, 35 reference

    The Impact of Different Image Thresholding based Mammogram Image Segmentation- A Review

    Get PDF
    Images are examined and discretized numerical capacities. The goal of computerized image processing is to enhance the nature of pictorial data and to encourage programmed machine elucidation. A computerized imaging framework ought to have fundamental segments for picture procurement, exceptional equipment for encouraging picture applications, and a tremendous measure of memory for capacity and info/yield gadgets. Picture segmentation is the field broadly scrutinized particularly in numerous restorative applications and still offers different difficulties for the specialists. Segmentation is a critical errand to recognize districts suspicious of tumor in computerized mammograms. Every last picture have distinctive sorts of edges and diverse levels of limits. In picture transforming, the most regularly utilized strategy as a part of extricating articles from a picture is "thresholding". Thresholding is a prevalent device for picture segmentation for its straightforwardness, particularly in the fields where ongoing handling is required

    Liver segmentation using 3D CT scans.

    Get PDF
    Master of Science in Computer Science. University of KwaZulu-Natal, Durban, 2018.Abstract available in PDF file

    Character Recognition

    Get PDF
    Character recognition is one of the pattern recognition technologies that are most widely used in practical applications. This book presents recent advances that are relevant to character recognition, from technical topics such as image processing, feature extraction or classification, to new applications including human-computer interfaces. The goal of this book is to provide a reference source for academic research and for professionals working in the character recognition field

    The transfer and persistence of environmental trace indicators, and methods for digital data acquisition from photographs and micrographs: applications for forensic science research

    Get PDF
    Environmental forms of trace evidence (such as mineral grains, pollen grains, algae, and sediment) can offer valuable insights within forensic casework. An issue facing forensic science as a whole, and these environmental indicators specifically, is a relative dearth of empirical research which would underpin the interpretation of such indicators when attempting forensic reconstruction. This thesis aims to address this lacuna, undertaking experiments to: (1) Explore variables which affect the rates of transfer and persistence, with specific focus upon quartz grains (a terrestrial indicator) and diatom valves (an aquatic indicator) upon footwear materials (a substrate that has been under-represented in past studies); (2) Conduct research into the effects of particle size and morphology upon transfer and persistence; (3) Develop and adapt methodologies to undertake this research. Accordingly, the outputs of this thesis are: (1) The creation of new datasets which could inform the interpretation of these trace indicators within forensic investigations and crime reconstruction scenarios and (2) The development of novel methodologies which could be employed in future research to attempt to accelerate data collection and analysis, without compromising on accuracy. This research is interdisciplinary, combining theory from forensic science, analytical techniques from the environmental sciences, and some elements of image processing and analysis. This research was funded by the Engineering and Physical Sciences Research Council of the United Kingdom through the Security Science Doctoral Training Research Centre (UCL SECReT) based at University College London (EP/G037264/1)
    corecore