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Abstract

Deep learning algorithms have shown ground breaking performance in the field
of radiology. One of its primary uses is finding a region of interest and object
or lesion detection which is a key part of diagnosis. Segmentation of organs or
substructures allows for quantitative analysis of the organ or substructure. This will
be used for segmentation of lesions which plays an important role in diagnosis and
prognosis of liver diseases or abnormalities. The organ of interest in this research
is the liver. Segmentation of the liver from CT scans plays an important role in the
study of the liver functions and can assist in the diagnosis of liver diseases. Liver
segmentation aims to accurately detect and delineate the liver, separating it from
surrounding organs and isolating it for intricate analysis.

A method for liver segmentation using 3D CT scans is proposed in this disserta-
tion. The approach used for liver segmentation employs deep learning techniques.
Convolutional neural networks (CNNs) are implemented to separate the liver from
its background in the CT image. Firstly, a CNN is used to classify each slice of a
3D scan in order to remove slices that do not belong to the abdomen. This is done
to obtain a region of interest that contains the liver that will be further processed
during liver segmentation. Furthermore, the abdominal slices are processed by a
CNN to segment the liver. The resulting segmented liver slices are then reassembled
into a volume for post-processing which involves morphological operations. All 3D
scan volumes used for experimental evaluation are taken from the Medical Image
Computing and Computer Assisted Intervention (MICCAI) 2007 grand challenge
datasets. The results obtained from evaluation indicate the effectiveness of the
proposed liver segmentation method in accurately segmenting the liver from a 3D
CT image.
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Chapter 1

General Introduction

1.1 Introduction

Computed Tomography (CT) was developed by a British engineer named Sir God-
frey Hounsfield and Dr. Alan Cormack [4], and has since had a profound effect
on medicine. CT uses sophisticated X-ray technology to aid in the detection of a
variety of diseases and conditions and is fast, painless, non-invasive and accurate
[2]. CT scanning employs numerous X-ray beams and a set of electronic X-ray de-
tectors which rotate around the patient, measuring the amount of radiation being
absorbed throughout the body. A large volume of data is processed and creates
2D cross-sectional images of the body referred to as slices which is reassembled
by computer software to produce a detailed multidimensional view of the body’s
anatomy.

Computed tomography was the first radiologic modality that required the use of
computers to scan the internal organs of the body [12]. The use of computer-aided
detection (CAD) technology has revolutionized radiology such that many medical
procedures have become dependent on it. It is impossible for radiologists to analyse
and evaluate voluminous amounts of image data generated from CT and other
imaging technologies in a short space of time. Although the expertise of radiologists
and trained physicians cannot be entirely replaced by CAD systems, their primary
purpose is to expedite and provide validation for diagnosis and interpretation of
medical images.

There exist at least four types of CAD approaches to ensure reliable and accurate
diagnosis [19]. The first type is meant for the purpose of visualization, quantitative
or interactive analysis of regions of interest and image enhancement. The second
type assists in feature extraction of an object or region of interest for further anal-
ysis, and the third type is to detect or classify regions of interest. The fourth type
is to approximate the anatomical or functional properties of regions of interest that
can not explicitly be revealed by the medical images. Each of these types of CAD
functionalities have been achieved by numerous methods and techniques such as
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pattern recognition, mathematical modelling, data mining, biomechanics and deep
learning.

Recently, deep learning has achieved state-of-the-art performance in medical
image analysis [62]. Deep learning techniques have been applied to medical image
analysis with the intention of letting computers learn the features that optimally
represent the problem data at hand [68]. The most successful type of model for
image analysis to date is convolutional neural networks (CNNs). The main appli-
cations that deep learning techniques are used for are classification, detection and
segmentation [75]. Within classification, deep learning techniques have been used
for image classification where an image is taken as input and a single output is
produced stating which class the image belongs to. Another application is object
or lesion classification. The use of deep learning for object, region and landmark lo-
calization in CAD, entails finding a region, object or lesion of interest, which forms
a key part of diagnosis. Segmentation of an organ or its substructures allows for
quantitative analysis which may lead to empirical medical findings with respect to
the organ of interest. An example of this is the segmentation of lesions which play
an important role in diagnosis and prognosis of diseases and abnormalities. Other
applications are image registration, content-based image retrieval, image generation
and enhancement as well as combining image data with reports.

The organ of interest in this research work is the liver. The focus is on seg-
menting the liver from abdominal CT scans. Segmentation of the liver from these
CT scans plays an important role in the study of the liver functions and can assist
in the diagnosis of liver diseases. Accurately detecting and delineating the liver
separates the liver from its surrounding organs and isolates it for intricate analysis
[43]. Segmenting the liver may reduce the computation time required in analysis
as the liver only occupies a portion of the abdominal CT scan. Accurate liver seg-
mentation ensures that the whole liver is analysed and the surrounding organs and
tissues are eliminated from the region of interest.

Inspired by the use of deep learning and its success in organ segmentation, an
automatic segmentation method using convolutional neural networks for classifica-
tion and as well as feature extraction for liver segmentation is proposed. CNNs
are used to classify each 2D slice into one of three categories; chest, abdomen and
pelvis. The abdominal slices make up the liver egion of interest as these slices con-
tain liver tissue. The slices that are classified as chest or pelvis slices are discarded.
Furthermore, the slices of the region of interest are processed by a CNN to locate
and segment the liver.

1.2 Motivation

The goal of this research work is to obtain a method of liver segmentation using
CT scans by implementation of deep learning techniques. Solving the problem of
segmentation is dependent on grouping pixels based on certain characteristics such
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as colour, intensity or texture. Liver segmentation has its own challenges due to
the characteristics of the liver. Despite many years of research and applications of
new methods and techniques, liver segmentation remains a challenging task which
implies that there is still room for improvement of existing models.

When the liver is affected by tumours or liver diseases, it is important for the
infected areas of the liver to be identified timeously. Liver segmentation plays a
vital role in detection and classification of tumours and liver lesions. Accurate
segmentation can be used for the diagnosis of liver diseases which can have a huge
impact on preoperative clinical treatments such as liver transplantation, resection
and radiation therapy. Liver segmentation is also used for volume measurements
which are used to determine abnormalities of the organ.

1.3 Problem Statement

Currently, it is standard clinical practice to manually segment the liver. However;
manual liver segmentation relies heavily on user-interaction to perform segmen-
tation. Manual segmentation is performed via the contouring of pixels along the
boundary of the liver on sequential CT or MR slices. After the identification of the
liver on each slice, post-processing software is used to generate a liver volume [43].
Manual segmentation is subjective with high intra- and inter-observer variability,
poorly reproducible and time consuming. Variability may also be introduced by
sharp liver boundaries, window level settings, and computer monitor settings [99].
This makes manual segmentation undesirable in busy clinical practices. The use
of semi-automated and automated liver segmentation methods have become more
appealing due to the undesirable limitations of manual segmentation. However, as
long as there hasn’t been a method proposed which can eliminate the limitations of
current methods and perform liver segmentation with a 100% accuracy rate there
is a need for research in liver segmentation.

Current methods and techniques that have been used for liver segmentation
have performed well but still have some limitations. The most common limitations
are over-segmentation or under-segmentation due to the occurrence of tumours or
lesions close to the liver surface or blood vessels just below the surface which are
sometimes not considered to be part of the liver which leads to the detection of
incorrect liver boundaries [37, 53, 65, 73, 86]. Another limitation is that there
are many methods that rely heavily on user-interaction [25, 32, 40, 83, 41, 87,
94]. The segmentation of the liver from its surrounding organs and tissue has
proven to be a challenging task [52]. This is due to low contrast between the liver
and surrounding tissues which make liver boundaries fuzzy and difficult to detect,
heterogeneity of background structures and great differences in liver shape and
appearance. Another factor that makes segmentation difficult is the occurrence of
large tumours and other liver pathologies, such as intrahepatic veins, that usually
lead to complicated intensity distributions and inhomogeneous appearances [52].
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Regions with pathologies are different from healthy liver tissue which may cause
under-segmentation or over-segmentation of these tissues.

1.4 Research Objectives

The primary objective of this research is to model a framework for accurate and
efficient liver segmentation. This proposed framework uses deep learning techniques
as well as some image enhancement to detect and segment the liver while attempting
to preserve the boundaries of the liver. The overall goal of this dissertation is to
ensure that the proposed method is of comparative or better segmentation ability
to those already implemented. The specific objectives are as follows:

• To investigate different methods of liver segmentation currently used in liter-
ature and improve the accuracy rate

• To accurately segment the liver using 3D CT scan images

• To model an efficient liver segmentation framework using deep learning

1.5 Contributions of the Dissertation

The main contributions of this dissertation are the use of a novel CT slice align-
ment algorithm, the use of slice classification to obtain a region of interest for liver
segmentation and a new method that includes concatenate layers among convolu-
tional layers in a CNN for liver segmentation. These contributions are described as
follows:

• Automatic segmentation of the liver using CT scans. This was achieved by a
method that uses CNNs with concatenate layers among convolutional layers
for liver segmentation using 3D CT scans. Two concatenate layers are added
among the convolution layers in a CNN that performs liver segmentation.
The effect of adding these concatenate layers on the segmentation results is
analysed and compared to a CNN without concatenate layers. The CNN
containing concatenate layers proved to produce better results.

• Model an efficient liver segmentation framework using deep learning. This
was achieved by employing a new region of interest detection method for liver
segmentation as well as the use of deep learning techniques to perform the
liver location and segmentation.

• This methodology managed to improve the liver segmentation results of many
methods in the related literature. This was done by the implementation of
a novel method to obtain a region of interest for liver segmentation. This
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is done by classification of slices to detect slices containing the pelvis and
chest so that they can be removed while maintaining the abdomen within
which the liver occurs. The effect of deeper networks, networks with many
layers, are investigated to determine if they perform better than networks
with fewer layers. It was evident that the networks with more convolutional
layers performed more accurately.

• A new automatic method for the alignment of serially acquired 2D CT slices
is presented. The contribution made by this approach is the use of skele-
tonization and a randomized alignment algorithm. The images are aligned
with their neighbouring slices in a random fashion rather than sequentially.

1.6 Organisation of the Dissertation

The remainder of the dissertation is organized as follows:

• Chapter 2 - Background and Related Work: This chapter investigates the
current methods of liver segmentation.

• Chapter 3 - Slice Alignment: This chapter details a 2D CT slice alignment
method.

• Chapter 4 - Liver Region of Interest Detection: This chapter looks at locating
the liver within the CT scan image volume.

• Chapter 5 - Liver Segmentation: This chapter details the liver segmentation
process.

• Chapter 6 - Results and Discussion: This chapter covers the results of the
methods implemented in the previous chapters as well as an overview of the
dataset used for testing the methods.

• Chapter 7 - Conclusion and Future Work: This chapter concludes the disser-
tation and discusses future work.

1.7 Conclusion

In this chapter, a general introduction of the topic in this dissertation is described.
The motivation, problem statement and main objectives of this research are pro-
vided as well as a brief description of the contributions made in this dissertation.
The organisation of the dissertation is also detailed.

In the next chapter, the background of the liver anatomy and its appearance in
CT scans is described and related literature is discussed.
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Chapter 2

Background and Related Work

2.1 Introduction

This research work focuses on the localization and segmentation of the liver in ab-
dominal CT scans using deep learning through the implementation of convolutional
neural networks. Various methods have been proposed to achieve liver segmenta-
tion however; many of the existing techniques have some kind of limitation [70].
There are interactive methods, semi-automatic methods as well as automatic meth-
ods. Interactive methods are dependent on user input to perform liver segmentation
whereas automatic methods can perform liver segmentation independently of user
input.

Liver segmentation methods can be categorised as anti-learning based methods,
classical learning-beased methods and deep learning methods. In the most recent
work done in liver segmentation, the use of deep learning is very popular for the
purpose of feature extraction [68].In order to gain a better understanding of how
to choose an efficient technique for liver segmentation, it is important to have some
knowledge about the liver anatomy and its appearance in CT scans. It is also
important to conduct a study of related literature.

In this chapter, the anatomy of the liver and the abdominal CT scan are briefly
introduced, related literature regarding image classification and the various meth-
ods of liver segmentation is discussed as well as a general summary of the drawbacks
and limitations of current works.

2.2 Liver and CT

2.2.1 Liver Anatomy

The liver is one of the largest and a vital organ in the human body. It is shaped
like a cone and is located in the upper right-hand portion of the abdominal cavity,
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below the diaphragm, and above the stomach, right kidney and intestines. More
than 500 bodily functions have been associated with the liver and some of them
include regulation of most chemical levels in the blood, excretion of bile and filtering
blood that comes from the digestive tract [9].

The liver consists of four distinct lobes; the left, right, caudate, and quadrate
lobes. The left and right lobes are the largest lobes and the right lobe is about
five to six times larger than the tapered left lobe. The small caudate lobe extends
from the posterior side of the right lobe and wraps around the inferior vena cava
while the small quadrate lobe is inferior to the caudate lobe and extends from the
posterior side of the right lobe and wraps around the gallbladder [8]. The liver
anatomy is depicted in Figure 2.1.

(a)

(b)

Figure 2.1: Human Liver Anatomy

2.2.2 Liver in Abdominal CT image

3D imaging techniques have made a generous contribution in medicine in areas such
as visualization, analysis and diagnostics. Computed Tomography (CT) scans are
commonly used for scanning large areas of the body. In this dissertation the type of
CT used are abdominal CT scans which are used to view the anatomical structures
within the abdominal cavity [1].

A beam of X-rays is aimed and rotated around the body to generate individual
slices called tomographic images. These tomographic images contain more detailed
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information than conventional X-rays because they gather detail from multiple
angles [7]. During the scan different body parts absorb the X-rays in varying
degrees and it is this crucial difference in absorption that allows the body parts to
be distinguished from one another on an X-ray film or CT electronic image [3].

A series of slices are produced and these can be viewed in two ways, either as
individual slices or they can be stacked to produce an image volume. The abdominal
CT scan can be viewed from the axial view, sagittal view or coronal view. The slices
in this study are from the axial view. The different CT views are depicted in Figure
2.2.
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(a) CT views

(b) Sagittal view

(c) Axial view (d) Coronal view

Figure 2.2: Liver in abdominal CT scan

2.3 Related Work

Over the past few decades, a variety of approaches have been proposed for liver seg-
mentation. These approaches can be categorized as semi-automatic, automatic and
interactive approaches. Automatic approaches are more desirable as they require
no user-interaction but semi-automatic and interactive approaches remain signif-
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icant due to the ambiguity of liver segmentation [68]. This section discusses the
method used to conduct the literature review and the related works done in slice
alignment, liver region of interest detection and liver segmentation.

2.3.1 Overview of Literature Review Method

A systematic literature review (SLR) was the chosen method to conduct this re-
search. The first stage of the SLR is defining the research objectives in Section
1.4 of Chapter 1. The second stage is specifying the methodology and defining
eligible criteria. The inclusion and exclusion criteria are shown in Table 2.1. The
inclusion criteria include studies done in English, liver segmentation methods, liver
segmentation using deep learning techniques and only liver segmentation from the
3D medical imaging modalities. Exclusion criteria are features and factors that do
not qualify for inclusion within the study. The third stage of the SLR is retrieving
eligible literature. This was done using search terms such as ‘Liver segmentation
from CT scans’, ‘Liver segmentation using image processing techniques’ and ‘Liver
segmentation using deep learning techniques’. Articles were rejected if it was de-
termined from the title and abstract that it failed to meet the inclusion criteria.
The fourth stage involved assessing the quality of the chosen literature. This is
important because it shows that there are no biases within the reports of the pub-
lished studies and that the data extracted is of good quality. The last two stages of
the SLR includes identifying the important information, analyzing the literature,
performing a critical analysis and portraying the findings. This is exhibited within
this section.

Table 2.1: Inclusion and Exclusion Criteria

Inclusion Criteria Exclusion Criteria
Liver segmentation methods Segmentation methods of other organs

Liver segmentation using Segmentation of other organs using
deep learning techniques deep learning techniques

Liver segmentation from 3D Liver segmentation from 2D
medical imaging modalities medical imaging modalities

Studies done in English

2.3.2 Slice Alignment

A fully automated algorithm for the alignment of 2D serially acquired sections
forming a 3D volume was presented by Krinidis et al [60]. This approach depends
on the optimization of a global energy function that is based on the shape of the
object. The global energy function measures the similarity between a slice and
its neighbourhood within the 3D volume. The energy function used is associated
with a pixel similarity metric based on the Euclidean distance transform. The
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energy function formulated indicates that for a slice that is to be aligned, the
similarity between the transformed slice and all other slices that have already been
transformed is accumulated in the energy function. The slices are considered per
triplets and are aligned with respect to other slices in its neighbourhood. Slices are
chosen at random to be aligned. The Iterated Conditional Modes (ICM) algorithm,
a deterministic optimization algorithm, is used to conduct the minimization of
the local energy function. The algorithm converges toward a local minimum of
the local energy function which corresponds to the local minimum of the global
energy function. The solution obtained is improved further by a gradient descent
technique and multigrid data processing is also implemented to improve the speed
of the algorithm. The method was evaluated by applying the algorithm to the
reconstruction of five CT volumes. The alignment errors obtained for one of the
volumes were a mean of 0.37 for the horizontal translation, 0.37 for the vertical
translation and 0.19 for the rotation. It was concluded that this method is efficient
and achieved alignment with high accuracy. This method aligns the slicing by
minimizing the distance between the contours of the images. However, if the inter-
slice distance is large such that the contours cannot be matched from one slice to
another or if contours are not clear and distinct, the method might not be able to
align the images accurately.

Fei et al [33] created and evaluated a slice-to-volume registration algorithm
and its potential application to interventional MRI-guided radio-frequency thermal
ablation of prostate cancer. The presented algorithm included a multiresolutional
approach, two similarity measures and automatic restarting to avoid local minima.
The two similarity measures used are mutual information for higher resolutions
and correlation coefficient for lower resolutions. The restarting feature restarts
with randomly perturbed parameters. A rigid-body transformation and trilinear
interpolation is used for registration and the downhill simplex method of Nelder and
Mead or the Powell method was used for optimization. More than 800 experiments
were carried out and a 100% success rate was achieved for transverse image slices.
However, errors occurred when the image slices were obtained at other orientations
and positions mostly because of inconsistent image content.

Collins et al [23] presented a non-linear cerebral registration technique with
sulcal constraint. Here, it was demonstrated that cortical registration could be
improved by combining linear registration and resampling into a stereotaxic space,
cortical surface extraction, tissue classifcation, automatic sulcal extraction and non-
linear registration. The registration of two volumes consists of two parts. First,
the linear part of the transformation determines the correlation between Gaussian-
blurred features extracted from the two volumes, the source and target volumes.
Thereafter, a 3D deformation field is estimated by sequentially stepping through
the target volume in a 3D grid pattern. At each node in the grid, the deforma-
tion vector required to achieve local registration is found by optimization of three
translational parameters that maximize the objective function evalutaed only in the
neighbourhood of the node. The algorithm is applied iteratively reducing the grid
size and blurring the image after each iteration, thus refining the fit. This method
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reduced the sulcal mis-registration by 20%.

Murgasova et al [78] proposed a novel method for correction of geometric dis-
tortion induced by main static magnetic (B0) field in the fetal Echo planar imaging
(EPI). The method consists of two registration processes. The first is a rigid reg-
istration of EPI slices with magnetic resonance imaging (MRI) volume to correct
for motion and the second is a deformable registration with Laplacian constraint to
correct for geometric distortion of the EPI slices. The optimization of the objective
function consists of two steps. The first step is a rigid registration of the acquired
slices to a model locating the fetal head to estimate the motion parameters. The
second is a deformable registration of acquired slices to the simulated slices reg-
ularized by the Laplacian constraint to estimate a smooth distortion field. The
motion parameters are estimated by rigid registration and distortion by B-spline
registration. It was concluded from the results obtained that this method is a vi-
able alternative to correction using acquired B0 field maps, especially if the B0 field
map is corrupted by fetal or maternal motion. This registration method is specific
to fetal EPI and cannot be applied to other medical images.

Fischer et al [35] proposed a new curvature-based registration method. The
implementation of this technique is based on a time marching algorithm where a
time step is introduced. A stencil is generated using convolution with respect to
Neumann boundary conditions. The function is solved using linear reduction which
is then realised by a discrete cosine transform resulting in fast implementation.
The method was evaluated on clinical 2D MR images of a female breast. The
convergenec behaviour is smooth and the MSD was improved by 40%.

Brown and Bradshaw [16] implemented an improved fingercode alignment for
accurate and compact fingerprint recognition which performed better than tradi-
tional texture-based fingerprint recognition. The novelty of the proposed system
is the combination of the ECC algorithm with initial minutiae triplet alignment.
Here, the use of the ECC alignment algorithm produced promising results as it
offers a reliable solution to the texture alignment problem. Evangelidis et al [30]
also presented a method using the ECC function as a performance criterion in the
projective image registration problem. They investigated the use of the ECC for
the eight-parameters nonlinear projective registration problem where the results
achieved were superior to that of the Lucas-Kanade algorithm. In both these cases
the ECC alignment algorithm is not used for the alignment of a series of medical
images.

2.3.3 Liver Region of Interest Detection

A common technique used to extract a region of interest is using a bounding box.
Peng et al [81] used a 3D bounding box for the external body which was extracted
with thresholding and then cropped out of the image to isolate the body for liver
segmentation. Campadelli et al [18] also used a body box extraction for liver seg-
mentation using thresholding where the threshold value is the grey levels obtained

12



from histogram analysis. This was done to extract the patients body from the CT
scan to ensure that any external artifacts do not affect further processing. Lu et
al [70] also implements a method to localize the liver by deleting slices within the
volume that do not contain liver tissue. However, this method is undesirable as it
was manually done.

Recently, one of the most common techniques of choice is deep learning. Con-
volutional neural networks have been used to automatically divide CT scans to
localize a search space for radiologists to work with. Sugimori [95] conducted a
study aimed at classifying CT images in different slice positions using deep learn-
ing. CT images were divided into ten classes for brain, neck, chest, abdomen and
pelvis with contrast-enhanced and plain imaging. The AlexNet and GoogLeNet ar-
chitectures were trained and evaluated for the image classification. However, these
architectures were developed for classification of natural images and not medical
images.

Convolutional neural networks are also used for classification of medical images
for other purposes such as detection or localization of abnormalities. Heeneman
[46] proposed a method that uses a 2D convolutional neural network with a sliding
window approach to localize lung nodules. After the lungs are segmented, a sliding
window of 64 by 64 pixels is used with an overlay of 24 pixels. The 2D convolutional
neural network classifier receives the 64 by 64 window as input and performs binary
classification predicting a positive or negative classification of the window. This
produces a final prediction and localization of the lung nodules.

De Vos et al [26] proposed a method for automatic localization of one or more
anatomical structures in 3D medical images through detecting their presence in
2D image slices using a convolutional neural network. The convolutional neural
network is used to detect the presence of the anatomical structures of interest in
axial, coronal and sagittal slices extracted from the 3D medical image. Thereafter,
the outputs of the neural network are combined and 3D bounding boxes are created.
In the work presented in this paper, the convolutional neural network is trained to
detect anatomical structures in order to classify 2D slices and remove the irrelevant
slices to obtain a region of interest suitable for liver segmentation.

2.3.4 Liver Segmentation Methods

Pre-processing Techniques

The purpose of pre-processing techniques is to process the images in preparation
for the next stage of image processing. CT images are not always of the same
quality or may have artifacts or noise that may degrade the performance of the
liver segmentation techniques due to the various CT scanners used in radiology
[52].

Several methods begin with contrast enhancement using histogram equalization
and normalization [108, 54, 37, 65, 21], to increase the contrast in the image making
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edges more visible as well as a median filter to smooth the image [53, 105, 25, 108,
65]. Huang et al [54] implemented a noise suppression procedure which is based on
Block Matching 3D Sparse Transform Domain Collaborative Filtering. A recursive
Gaussian filter was used by [106] for smoothing. Another common pre-processing
technique used was the non-linear mean shift filter [73, 87] and the anisotropic
diffusion filter [83, 106, 21].

Since the liver is the organ of interest, many methods begin with attempting
to isolate the liver tissue and a common way this was done is by a combination
of histogram analysis to determine the liver intensity and thresholding [66, 108].
Christ et al [21] and Thong et al [98] windowed the CT scan between -150 to 250
Hounsfield units to isolate the body from regions composed of air and to exclude
bone regions. This allows the next stage to focus on soft tissues and organs only.
Another technique used by Christ et al [21] is the removal of non-liver slices and
resampling the volume. A 3D bounding box was also used to isolate the body
with thresholding [81, 18]to ensure that any external artifacts do not affect further
processing.

Resampling and image registration are also used as a pre-processing technique
for the purpose of re-aligning image data and reducing or eliminating deforma-
tions. Affine registration and resampling towards reference images of training sets
were used in [88, 103]. Resampling by linear interpolation [101, 37] and bicubic
interpolation were also used [25].

Learning based and deep learning methods require training of the segmentation
model that will be used for the liver segmentation. Data augmentation is con-
ducted for the training process. Christ et al. [21] uses data augmentation such as
elastic deformation, translation and rotation. Using this technique allows learning
models to be able to detect and segment the liver in images that are slightly ro-
tated, translated or deformed which increases the potential of correct detection and
segmentation.

The preprocessing techniques used in the proposed method is windowing the
CT scan between -150 to 250 Hounsfield units to isolate the body from regions
composed of air and to exclude bone regions and data augmentation to produce
more training data for the training of the neural networks.

Anti-learning Based Segmentation

Massoptier and Casciaro[73] proposed an approach for automatic segmentation of
liver complex geometries that focused on the automation of the graph cut technique
and its application to liver segmentation. The results were compared to those
obtained using the gradient-vector flow (GVF) snakes technique. First, a fully
automatic method was proposed based on a hybrid approach consisting of the
adaptive thresholding technique and GVF active contours were used to obtain an
accurate liver surface which enabled the extraction of boundaries close to real ones
in a relatively short time. The results obtained were good in terms of quality
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and processing time of segmentation however, there was some limitation in some
cases where a tumour is located close to the liver surface or vessels are located just
under the liver surface. In these cases, the algorithm considers the tumour or blood
vessels to be outside the liver and the wrong boundary is detected. Then, a new
method was proposed using the graph-cut technique which was developed with the
intention of eliminating those limitations encountered in their first method. An
adaptive thresholding technique is applied to obtain samples of the targeted object
and of the background which is used to initialize the graph-cut. The graph-cut
technique is applied to segment the liver from the surrounding background using an
energy function. The work based on graph-cut was compared to that of the results
obtained by the first method based on the GVF snakes. The results achieved by the
graph-cut technique was better as the dice similarity coefficient (DSC) increased to
0.95 from 0.93 and both the false negative ratio and the false positive ratio averages
decreased under 5%. It was evident that the graph-cut technique is a more robust
segmentation technique. The technique does not fail when tumours are near the
liver surface.

Sangewar et al [87] proposed a novel variational model based on intensity prob-
ability distribution propagation and region appearances propagation which is used
to focus on the target liver regardless of background complexity. The segmentation
is based on combining a modified k-means method with a localized contouring algo-
rithm. The first part of the segmentation is the k-means clustering which requires
the user to manually pick five points of varied intensity in the scan. The points
are used as centroids and the distance objects to centroids are calculated. The
pixels in the image are then grouped based on minimum distances into five groups.
This process is iterated through a number of times allocating all pixels to a group.
A logical intersection of three independent segmentation runs were carried out in
order to obtain results free of misclassifications. Thereafter, a region growing tech-
nique is applied in order to grow regions from the selected seed points to adjacent
points depending on a specified criterion. Lastly, an active contours model is used
to detect the edges of the liver and points are plotted for the volume calculation of
the liver. It was concluded that the proposed method had the potential to provide
fast and accurate liver segmentation and rendering and delineating tumour regions.
However, this model requires user interaction to accurately perform segmentation.

Zayane et al [108] proposed an automatic segmentation method based on a priori
knowledge of the image such as location and shape of the liver. The image was first
thresholded and thereafter, the grayscale consistency constraint (GCC) algorithm
is developed to detect the largest connected component which in this case is the
liver. The GCC algorithm is composed of two modules; the first for labelling and
the second for finding that largest component. A morphological closing filter is
applied followed by the application of the nonlinear Sobel filter to detect contours
of the liver. This results in the segmented image. The results obtained from this
experiment were compared to that of manual segmentation of an expert. It was
evident that the proposed methodology was acceptable but not one hundred percent
reliable. The liver was not segmented properly in some cases because the natures
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of the histogram of the images are completely different.

Gupta et al [93] presented a new classification method using fusion of the best
features from different domains to classify liver in Ultra Sound images determining
whether the liver contains fatty liver tissue. To achieve this goal, information re-
lated to the liver surface was extracted using various texture models and the best
features were selected and combined to produce a single quantitative metric which
is used to classify the liver. The first stage is pre-processing during which seven dif-
ferent texture models are used to extract features from the region of interest. The
region of interest is selected by an expert radiologist. Using the texture models, 35
features are extracted from a training set. Thereafter, outlier values are removed
from the feature dataset. The next stage is feature reduction. Linear discriminative
analysis, in this case Fishers Discrimination Ratio (FDR) and Pearsons Correla-
tion Coefficient (PCC), are used to select the best features. This process reduces
the features to seven best features which forms the proposed classifier. Then the
modified z-scores are calculated and the FDRs and their weightage are normalized.
The information is fused into a linear model and then a single quantitative met-
ric is calculated called the Discriminative Index. Thresholding is used to detect
fatty liver tissue and normal liver tissue. The results obtained from the experiment
achieved an accuracy rate of 95% at 100% sensitivity which makes this method
comparable to existing classifiers. It is evident that this method is simple and has
a high accuracy rate.

Evans et al [32] presented a method using a topology adaptive active contour
model or snake to accurately segment the liver outline from 2D CT scans. The
active contour model that was developed was a modified version of the T-snake
where internal energy forces act as a smoothness constraint and an inflation force
is employed to push contours towards edges within the image. As the contour
moves it is reparameterized at regular intervals to a superimposed grid on the
image. At each reparameterized step the set of nodes are replaced with a new
node at each point where the contour intersects with the grid. Reparameterization
overcame problems associated with inflationary contours allowing contours to flow
into the complex shape of the liver. The advantages of this approach is that firstly,
the interior of the healthy liver is more uniform than the exterior therefore there
are less noisy edges that can trap nodes as they move outwards toward the edge
of the liver and secondly, the snake can be initialised at any point within the
liver. This avoids the issue of correctly initializing the contour which resulted in
a faster and more robust segmentation. The basic snake equation is used with
standard Gaussian gradient function being implemented as the external energy
function and an inflationary constant to push the contour towards the edges. The
T-snake function is also modified in that it has two threshold levels, an upper and
lower threshold. This prevents the snake from moving into regions of other organs.
The reparameterization of the snake is dependent on the changing resolution of the
grid. The grid changes depending on the curvature of the snake at each node. This
allows segmentation of complex and highly irregular areas of the shape of the liver.
This methodology requires the user to select a seed point within the liver to initiate
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the segmentation. In some cases, where a lobe of liver appears separate from the
main liver body the user has to select a second seed point for segmentation of the
separate lobe. Thereafter, the results are added to the main segmentation. This
technique produced very encouraging results however; the parameters have to be
set by the user.

Bhatt et al [40] proposed a new 3D liver segmentation method based on cou-
pling a modified k-means segmentation method with a special localized contouring
algorithm. The algorithm semi-automatically segments the liver region from the
3D CT scans and then extracts the liver region and renders the segmented liver for
3D viewing. The initialization process of the algorithm requires a user to manually
select five points of varied intensity in the scan as well as a rough outline of the liver
in widely spaced slices throughout the given dataset. The method consists of three
parts. During the first part, the k-means clustering algorithm is applied to parti-
tion the dataset into various clusters whose means are similar. This produces five
regions being identified which are the liver, surrounding organs, peripheral muscles,
ribs/spinal cord and outside of the body. The points selected by the user act as
seeds for the five masks. The liver mask and the mask with surrounding organs
are logically ORed together to obtain a final mask. The second part of the method
involves the initialization of the Contouring-Based Segmentation. This algorithm
takes a user defined mask as input. The user selects the approximate boundary of
the liver in the slices. The image is divided into blocks and then marked as part of
the liver if at least half the pixels were found in the abdominal CT window. The first
slice is always selected for manual contour initialization. Thereafter, the slices have
to show a 5% change in the marked blocks to be selected for manual contour initial-
ization. Slices not selected used the same initial contour as the slice closest to it.
The third part of the method is the Localized-Region-Based Active Contouring Al-
gorithm. The smoothened Heaviside function and the Chan-Vese energy paradigm
is used to model the interior and exterior of the contour for segmentation. The
localized versions of the mean intensities used to model the contour are obtained
by restricting the field of view to the masked region produced in the first part of the
method. The results were an average error was 1.73% and a high mean accuracy
rate of 98.27%. However, this methodology relies heavily on user-interaction.

Li et al [65] also developed a fully automatic segmentation method using Fuzzy
C-Means (FCM) clustering and level set method. Segmentation consists of FCM
clustering and liver region selection, cluster merging, statistical rejection and ap-
plying the level set method to refine the segmentation result. During segmentation
the image is clustered into groups based on predetermined equations. The result-
ing clusters are grouped into the liver, background, other tissue brighter than liver
tissue such as bones and tissues darker than liver such as muscles. The CT slice is
divided into four equal areas and the area that contains the liver is located. The
selection of the liver group is done based on prior knowledge such as the liver’s
location and size. The liver may be clustered into several groups therefore simi-
lar groups are merged by comparing the difference between the average gray-level
intensity of each group. The average intensity and standard deviation of the liver
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group is used to reject tissues that don’t belong to the liver. The largest connected
region is then used to initialize the level set. The region is extended outwards by
five pixels and then the level set is used on the image for forty iterations. There were
three main problems produced in the output of the level set method; there may be
tissue other than liver tissue, the contour is not smooth where the boundary isn’t
clear and holes appear in the liver as a result of contrast enhancement and statis-
tical rejection. The application of morphological operators reject tissue around the
liver. Thereafter, the largest connected region is selected to extract the liver and
finally, the median filter is used to smooth the boundary. The experiment results
obtained had a high accuracy rate of an average of 99.86% and specificity of 99.89%.
When compared with the standard level set method this method is fully automatic
and achieved better segmentation results. However, when there are blood vessels or
other homogenous tissue on the edge of the liver under-segmentation occurs. This
showed as indentations on the edge of the liver which results in a boundary that is
not clear.

Rusko et al [86] presented a method based on intensity analysis and region
growing where the issue of under-segmentation or over-segmentation is handled.
The method consists of four steps. The first step includes determining the seed
region. During this step the histogram is calculated for the right side of the body
as this is where the liver is located in order to determine the mean intensity of the
liver voxels. The histogram is smoothed and two significant maxima are produced.
One belongs to muscles and the other to the liver. Since the intensity of the liver
is higher than that of the muscles, the maximum represents the modus of the
liver intensities. The minimal and maximal intensity of the liver voxels is then
calculated from the histogram which enables the automatic location of the region
inside the liver. From this a binary image is calculated. The image of possible liver
regions is eroded so that small regions are deleted. The largest connected region
is considered as the seed region for segmentation. The second step is the liver and
heart separation. First the lungs are segmented based on the characteristic intensity
of air. In order to do this, the largest connected air region for the left and right are
determined separately. Using these regions as seeds the region growing method is
used to segment the left and right lung lobes. Thereafter, two curves are determined
from the bottom contour of the right and left lobes. The surface separating the
liver and heart is calculated by averaging the curves located in neighbouring slices
providing a smoother resolution. Then the voxels located above the surface are set
to an artificial intensity value to prevent region-growing from going into this region.
The next step is region-growing. This step includes calculating a histogram of the
image from which the intensity range of the liver is determined. During the region-
growing method a voxel is added to the region if all voxels in its neighbourhood
have acceptable intensity. This modification to the region-growing method assists
in the prevention of over-segmentation. The final step is post-processing during
which problems associated with under-segmentation are dealt with. The MICCAI-
SLiver07 dataset was used to evaluate this method. In some cases, the region of
the liver near the right lung lobe is under-segmented due to the region having
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lower intensities. A closed connected region between the liver and right lung lobe
is defined and a new intensity interval is calculated based on this region which is
used by another region-growing method. In some cases, the region-growing method
leaks through the inferior vena cava due to it having a similar intensity to the liver
tissue. In order to remove the inferior vena cava from the segmentation result, first
the Hough transform is used to detect the cylindrical shape of the vessel. Then the
liver region is thresholded to find all the voxels that are not part of the liver tissue
and these voxels are erased. Sometimes the segmentation doesnt include the portal
vein which is considered to be part of the liver is it is completely surrounded by
liver tissue. The portal vein doesn’t get included as a result of its high intensity.
In order to fill this vessel, the contour of the liver is determined and the surface
normal for each vessel is calculated. The surface voxel is marked if another liver
voxel is in the direction of the surface normal. Finally, the liver is dilated at each
marked surface voxel. It was evident in the experiment results that the presented
method performs well only if the liver does not have very large lesions. In some
cases, the liver was over-segmented.

A fully automatic segmentation method was proposed by Arzhaeva et al [101].
The method consists of a voxel labelling technique where the probability of each
voxel is part of the liver is determined using a statistical classifier and a set of
features. The core of this method consists of a voxel labelling procedure. For
each voxel in the test set a feature vector is computed and a statistical classifier is
trained with examples of feature vectors and their corresponding truth maps the
vector to a probability that the voxel is part of the liver. The methodology consists
of four stages which are pre-processing, registration, voxel classification and post-
processing. First, the data was resampled in the vertical direction to eliminate the
variation in the slice thickness. In some cases, this resulted in more blurring. Liver
scan range determination was done using connected component analysis. A range
was selected by inspection of the vertical range of the liver in relation to the lung
based on the training data. Next, maximum intensity projection along the vertical
direction and thresholding was used to determine the orientation of the scan and
the image is rotated as needed. The registration stage of the methodology involves
the registration of training scans with a volumetric registration package. It treats
the registration as an optimization problem in which the similarity between the
target and atlas image is maximized. Voxel classification includes computation
and selection of features and classification of voxels using a k-NN classifier. Voxel
classification is only applied to voxels that lie in a box that is determined from the
bounding box of the atlas segmentation. The dataset used here was the MICCAI-
Sliver07 dataset. The method produced results showing that performs quite robust
however; two types of errors were made. The first is that occasionally a completely
incorrect border is found and the second is the imprecise localization of the border
in some cases.

Qi et al [83] developed an automatic segmentation method for the segmentation
of liver tumours from CT scans. The method uses Bayesian Rule-Based 3D Region
growing to achieve segmentation. This algorithm was proposed to cope with the
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variance of tumours. The region growing algorithm is used to classify voxels into
two classes: liver and lesion. The liver class is modelled by a single Gaussian and
the tumour class is modelled by multiple Gaussians. The algorithm begins with
the user selecting several seeds where one seed should be located inside the liver
and at least one seed should be located inside a lesion. The seeds are used to
set up initial configurations. It is assumed that the neighbourhood of each seed
is inside the liver or the lesion. First, the parameters of the Gaussian model are
estimated using the neighbouring voxels of the liver seed point as samples. Second,
for each seed point in the lesion, Gaussian models are also estimated and compared
with the single Gaussian. All the similar Gaussians of the lesion are combined
by calculating new parameter values. The region growing algorithm begins from
the seed points. It adds neighbouring voxels into regions if they are similar based
on two criteria. The first criterion is that the intensity of the voxel should be
accepted by one of the Gaussians of the lesion. The second criterion is that one of
the intensity distribution models of lesions should be similar to that of the current
voxel. The intensity distribution is determined by the intensity histogram within
the 3D neighbourhood of the point. If the voxel meets both criteria then it is
considered as part of a lesion and added into the region. Their intensity voxels
are also used to update the parameters of the corresponding Gaussian model. The
algorithm examines the connected voxels until the region fixes. By inspection of
the results obtained in the implementation of this method, it was evident that the
algorithm provided reasonable results for most of the lesions. However, the region
growing process was not easy to control in 3D when there were unclear boundaries
resulting in leakage which propagated to adjacent slices.

Peng et al [81] proposed a novel multi-region appearance based approach with
graph cuts to delineate the liver surface. This approach was proposed to handle
livers with multiple sub-regions. A geodesic distance based appearance selection
scheme is introduced to utilize proper appearance constraint for each sub-region.
The segmentation is modelled with energy functions which incorporate region and
boundary information and an adaptive balancing weight is introduced and learned
from training sets. Two models are proposed: Single region-appearance based
model (GC-SRAP) and Multiregion-appearance based model (GC-MRAP). The
GC-SRAP segmentation method requires at least initial region inside the liver.
Three features are used for appearance description which is intensity, LBP and lo-
cal variance. The single region-appearance based model is extended into a discrete
energy optimized by graph cuts algorithm. The GC-MRAP segmentation method
requires initializations on both the healthy liver tissue and tumour. A geodesic
distance based selection scheme is introduced which employs location and appear-
ance information from initializations. Initialization requires the user to select initial
regions in cylindrical shape. In the cases where tumours are present, the user is
required to select initial regions in these tumours as well. When the initialization
contains two class regions the GC-MRAP model is used, otherwise the GC-SRAP
model is employed. The segmentation module consists of the minimization of the
proposed model being casted as a graph-cut problem and optimization using the
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min-cut max-flow graph algorithm. The dataset used in this work was the MICCAI-
Sliver07 dataset. The results achieved by the proposed algorithm agreed with that
of the reference segmentation. This method achieved an average of 4.53% for VOE,
0.15 for RVD, 0.79mm for ASD, 1.49mm for RMSD, 16.75mm for MSD and 97.7%
for DSC. These results can be compared with those of state-of-the-art methods.
Quantitative validation has shown that the proposed method can delineate the
liver surface accurately and efficiently.

A novel method was proposed by Wu et al [106] for automatic delineation of
liver on CT volume images using supervoxel-based graph cuts. The segmentation
consists of three steps: liver volume of interest (VOI) extraction and largest liver
slice selection, Simple Linear Iterative Clustering (SLIC) supervoxel partition on
liver VOI and graph cuts segmentation. The abdominal region is first extracted to
remove several non-abdominal slices and voxels. A 3D abdominal bounding box was
measured using maximum integral projection (MIP) and thresholding. Three sets
of coordinates needed to be calculated which are the lower bounding, upper bound-
ing and in-plane bounding coordinates. Coronal and axial MIP images are obtained
by applying the MIP algorithm. The segmentation of bones was performed on the
coronal MIP image by use of the Otsu algorithm to obtain the binary bone mask.
The mask was further processed with morphological operators and median filtering.
Analysis was done to determine the maximum number of connected bone pixels and
locate the lower bounding coordinate. The axial MIP image was used to segment
the abdomen by applying the Otsu algorithm and a series of thresholding. After
applying morphological operators and selecting the largest connected component a
mask of the abdomen was obtained. From this mask the in-plane bounding coordi-
nates were obtained and a 2D bounding box was determined. Thereafter, a binary
lung mask was obtained as a result of thresholding based on the fact that the air
in lungs has very low intensity values. The maximum number of lung pixels in the
axial slice was used to determine the upper bounding coordinate. A 3D bounding
box is created and based on this the image is cropped to obtain the region of ab-
domen. The liver VOI is then extracted from the region of abdomen by applying a
histogram based adaptive thresholding method and morphological operations. The
liver intensity range is calculated from the histogram for adaptive thresholding. By
applying binary thresholding the initial binary liver mask was obtained. The largest
connected component on the right side of the abdomen was selected on each axial
slice and morphological opening and largest connected component was applied to
each coronal slice to obtain binary masks of the liver. The largest liver slice cor-
responding to the largest cross section of liver contains the liver as a whole object
which is where seed points are extracted from. The SLIC is a k-means clustering
algorithm that was used to generate supervoxels that have approximately uniform
size while their boundaries match closely to the true image boundaries. The in-
tensity of each supervoxel was computed as the average intensity of the voxels in
the supervoxel. Graph cuts segmentation is then applied. It achieves an optimal
solution by minimizing the energy function using the max-flow min-cut algorithm.
Hard constraints or seed points in this case and intensity distributions are needed
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for the segmentation. Foreground and background seed points were automatically
sampled from regions in the largest liver slice corresponding to the liver and back-
ground binary masks respectively. Background seeds were also selected from the
heart and kidney regions to prevent over-segmentation. Thereafter, all the seed
points were converted to corresponding supervoxels in the liver VOI because the
graph cuts algorithm is applied to supervoxels. Then the intensity distributions of
foreground and background were represented as Gaussian Mixture models (GMM).
The expectation maximization algorithm was applied to estimate the parameters of
GMMs. The MICCAI-SLiver 2007 dataset was used in this work.The quantitative
evaluation of segmentation results showed that the proposed method performed
accurately and efficiently. The average results achieved are 7.87% for VOE, 1.31%
for RVD, 1.29mm for ASD, 2.50mm for RMSD and 23.56mm for MSD. The pro-
posed segmentation algorithm succeeded in separating the liver from the heart and
kidney to avoid over-segmentation and handled the presence of tumours very well.
However, some small over-segmentation and under-segmentation occurred near the
liver boundaries due to it having a lower contrast, at the tip of the liver and high
intensity regions as well as at the place of the vena cava.

The segmentation approach introduced by Goryawala et al [41] requires minimal
user interaction and the algorithm integrates a localized contouring algorithm with
a modified k-means method and localized region growing. The modified k-means
algorithm is the first step. A central slice of the liver is presented to the user who
selects five points belonging to the liver, surrounding organs, peripheral muscles,
ribs/spinal cord and outside of the body. The user-selected seed points are used as
initial centroids for clustering. The modified k-means algorithm is applied minimiz-
ing within-cluster sum of square in the online update mode. Clusters from mask 1
(liver) and mask 2 (surrounding organs) are combined to obtain a rough liver region.
The next step is single slice contour initialization. The user selects a point from
the liver mass in the first and last slice. Linear interpolation is used to generate
the intersection point of the seed line which is used for each slice. Region growing
is performed based on a threshold devised in terms of the standard deviation of the
image. This algorithm absorbs portions of neighbouring regions like the spleen and
stomach. Next a volume of interest (VOI) based correction method is used. This
algorithm is based on the idea that a voxel belongs to the liver in 3D space only if
it’s marked by region growing in at least two of the three views (axial, transverse
and coronal). A 3D corrected mask is generated. An algorithm was developed to
automatically select the largest slice which is the slice in which the liver seen in its
largest extent. The selected slice is presented to the user to set the liver boundaries
in that slice. A mask is produced showing the largest slice of the dataset which is
applied to all slices in the dataset in order to exclude portions not belonging to the
liver region. Lastly, a localized contouring algorithm is employed. The corrected
mask is used for initialisation of the localized contouring algorithm. The contour
is modelled as a smoothed approximation of the Heaviside function and then fit-
ted to reduce the Chan-Vase energy approximations of the interior and exterior of
the contour. A region of a specified radius is selected about the point of interest
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to restrict energy calculations to a localized region. The interior of the contour
is defined as the final segmented liver and the volume is calculated. The results
achieved by the proposed algorithm were an average of 72.38ml for volumetric error
and 2.78% for absolute percentage error. An average Dice coefficient of 0.92 was
obtained for the proposed algorithm. The segmentation was done correctly by this
method but there were some cases where the surrounding organs were of similar
intensity which resulted in incorrect segmentation.

A fully automatic algorithm for fast segmentation of liver tissue and tumours
from CT scans was presented by Massoptier and Casciaro [74]. A statistical model-
based approach was combined with an active contour technique and an automatic
classification technique. First, each slice of the volume is divided into 64 squared
regions and the mean intensity and standard deviation of each region is calcu-
lated. The internal abdominal regions which have minimum standard deviation
are separated from all volume slices and sorted in ascending order of mean values.
Since the liver is the largest organ and has homogenous intensity most of these
regions belong to the liver. Then, the liver ROI is selected. The statistical infor-
mation allowed for the implementation of an automatic adaptive histogram-based
thresholding technique to partition images. The threshold was evaluated using the
mean and standard deviation of the ROI. A gate function is then applied to the
volume to select the voxels that belong to liver tissue in function of their image
intensity value. Thereafter, morphological techniques were applied to isolate the
liver. This was done by connected components labelling and largest component
selection. Hole-filling concluded the liver surface initialization. The third stage is
the refinement of the liver surface segmentation by use of the GVF snake model.
First, the edge map and GV field were computed for each volume. Then, initial
snakes are produced from the previous stage. Lastly, the GVF snake deformation is
performed producing an accurate and smoother live surface. The last stage of this
methodology is automatic tumour segmentation. The results of the segmentation
showed that the statistical model discrimination was fast, robust and reliable in
obtaining the initial segmentation of the liver surface. However, after this step,
the outer rim regions of liver were not segmented completely. This is due to the
image intensities of these regions decreasing and enlarging its variance. Since the
intensities decreased smoothly, the GVF snake was able to exploit this and find
the true boundaries resulting in more accurate results. The proposed algorithm
achieved an average DSC of 94.2%, false-negative ratio of 6.3% and false-positive
ratio of 3.9% for liver segmentation.

Huang et al [53] proposed an automatic liver segmentation approach using a
single-block linear detection algorithm (SBLDA). The SBLD segmentation consists
of seed initialization in traditional SBLDA. During the liver edge extraction part
of the methodology, histogram analysis is used to roughly define the maximum and
minimum liver intensity ranges. The seed image is thresholded using the deter-
mined range and is used as the initialized liver area. Then the SLBD process is
implemented using a ratio parameter, confidence matrix and a predefined threshold
value to determine whether each block of pixels belong to the liver or not. If the

23



threshold value is too low then the liver area with noise is misclassified as liver edge
and if its too large then some liver edge may be missed and non-liver areas would
be misclassified as liver. This method was evaluated on the 3Dircadb1 dataset
produced a high accuracy rate of 99.03% and specificity of 98.65% which proves
that this is a promising approach. However, some small segmentation error existed
in CT images with small liver regions and when tumours occur at the edge of the
liver.

Campadelli et al [18] proposed a grey-level based liver segmentation technique
which avoid problems due to inter- and intra-patient grey-level variability. The
methodology consists coarse liver volume extraction and liver volume refinement.
First, the biggest 3D connected component is extracted. The liver position is
exploited to automatically localize the liver. Since the liver occurs below the heart
and at its left side, a coarse heart region is determined in each successive slice
to form an initial 3D heart volume which is further refined using a 3D region
growing algorithm. Next is the coarse liver volume extraction. A 3D bounding
box is defined below the heart volume. Histogram analysis shows a unique peak
in the grey levels which correspond to the liver. A liver range is determined from
the histogram. The segmentation is then interpreted as a 3D labelling problem
where the body box volume is partitioned into five disjoint classes: liver, bones
and kidneys, spleen, stomach and organs with similar grey levels and background.
The labels are assigned according to grey levels and spatial relationships between
neighbouring voxels and is achieved by the minimization of an energy function
using the -expansion algorithm which employs a graph cut algorithm. The biggest
volume corresponding to the lowest label is the liver. The final stage is liver volume
refinement. In this stage, voxels not belonging to the liver are removed from the
liver volume. Three 2D images are created by projecting the liver volume onto the
Y-Z, X-Y and X-Z planes. The voxels not belonging to the liver are identified as
their projections have the lowest values in either one of the three images. Next,
an iterative process is applied to consider the relationship among neighbouring
slices. Consecutive slices are compared and voxel are deleted where they do not
intersect with liver regions of neighbouring slices. This procedure is applied along
the X, Y and Z axes. To recover some liver regions that may have been removed
by the previous process, a 3D region growing algorithm is applied which produces
the final segmentation result. The segmentation method was evaluated and results
were compared to ground truth data which were manually traced by experts. The
results achieved a symmetric volume overlap of 95.29% and a standard deviation of
1.22%. In some cases, over-segmentation occurred due to voxels belonging either to
the stomach or muscles while under-segmentation occurred due to fatty liver near
the liver edges.

Stawiaski et al [94] presented an application of minimal surfaces and Markov
random fields to segment liver tumours. An interactive method is implemented
to delineate tumours in 3D CT images by applying these models to the region
adjacency graph of a watershed transform using a region graph instead of a pixel
graph. The first step of the methodology is the definition of a sub-volume contain-
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ing one or more tumours that need to be segmented. This was done manually to
reduce computation time of the segmented algorithm. Thereafter, the methodology
is based on a region adjacency graph of an unsupervised watershed segmentation.
From this initial segmentation result, a region adjacency graph is extracted and op-
timized. The classification of the liver pixels in either the tumour class or healthy
tissue class provides the tumour boundaries. In order to achieve this the liver pixels
are modelled as a Markov random field and classification is performed through the
maximum posteriori estimation. Classification is supervised by user defined mark-
ers that specify tumour and healthy tissues. The liver boundaries are extracted
by computing the minimal surface based on user defined markers. The user has
to specify normal liver tissues, tumour tissues and external tissues surrounding the
liver. An unsupervised watershed transform of the morphological gradient of the
original CT volume is used to produce a region adjacency graph. The watershed
transform produces a partition of the image composed of small and numerous ho-
mogenous regions. The quality of the first unsupervised segmentation is important
to guarantee a minimal loss of information. An approximate surface using the
region adjacency graph is used to extract the liver boundaries. A combinatorial
problem was proposed to achieve this: finding a surface composed of a finite union
of watershed contours such that the surface minimizes a given geometric functional.
This combinatorial problem was then solved using graph-cuts optimization on a re-
gion adjacency graph to produce the extracted liver boundaries. Then another
segmentation method is used to detect the tumours in the liver. The image to
be segmented is modelled as a Markov random field where each random variable
corresponds to the mean value inside a region of the watershed transform. The
prior function implemented is contrast sensitive and therefore takes into account
the contrast between two regions and is equivalent to a constant in the areas where
the contrast is low. This allows for efficient boundary detection of high contrast
tumours, while low contrast boundaries are smoothed so that the surface of the
object is minimized. Finally, the energy function is minimized by computing a
minimal graph cut. The method achieved an average volumetric overlap error of
29.49%. Some evaluation results showed that some structures were misunderstood
and were required to be extracted but were not. The method proved to exhibit
promising results, however many problems exist. The segmentation of multiple tu-
mours occurring in one liver required the user to mark the tumours separately. This
is because the method merged tumours in a single object if they occur too close to
each other. The user interaction required in this method increases processing time
of the segmentation. Another problem is that the method doesn’t include any pre-
processing of the images which could simplify the segmentation and classification
steps in the methodology.

A novel system for automatic detection and segmentation of focal liver lesions
in contrast enhanced CT images was presented by Militzer et al [76]. The system
uses a probabilistic boosting tree (PBT) to classify points in the liver as either
lesion or parenchyma. It also integrates an iterative classification scheme that
incorporates knowledge gained from earlier iterations into later decisions. The
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presented algorithm consists of four steps: liver segmentation, intensity standard-
ization, voxel classification and post processing. The method adopted for liver
segmentation is based on modelling the liver by a hierarchical mesh-based shape
representation. The liver is detected estimating its pose and location on the coars-
est level using a marginal space learning scheme. Then the model is refined by
applying a learning-based boundary localization. This aids the system to become
reliable to heterogeneous intensity patterns. The liver surface is then decomposed
into patches depending on surrounding anatomical structures and patch dependent
classifiers are employed to cope with different texture patterns. The second step
consists of normalizing the intensities to make the images more comparable. A
non-rigid matching of the histogram of each target image to the histogram of one
reference data is conducted. The estimated mapping is applied to the intensities of
the target image. The third step is voxel classification where each voxel of the liver
is classified as either lesion or parenchyma by previously trained classifier. Here, a
PBT is used in combination with AdaBoost and decision stumps. The final step
includes smoothing of the probability map generated in the previous step using a
median filter. Then, morphological opening is used to eliminate small and isolated
false positive detections. Lastly, thresholding is used to convert the image into a
lesion candidate mask.

Fernandez-de-Manuel et al [25] proposed an active surface method to segment
liver volumes from pre-operative CT images using a level-sets active surface method.
The method finds the surface that minimizes an energy function combining intensity
inside and outside the surface, gradient information and curvature restrictions.
The implementation is based on a level set technique and requires a single seed
point inside the liver to initialise the active surface. The method is implemented
following a multi-resolution strategy in three steps. The algorithm starts from a
small surface region from a seed point within the liver. The first step includes
reducing the resolution of the images by a quarter using bicubic interpolation. The
initial segmentation approximates the liver region. In the second step, the resolution
is reduced by half. The growing surface is initialized by the previous step and the
result iterates further to the actual liver surface. Lastly, the resolution is set to
the original resolution to perform a final growing of the surface resulting in the
segmented liver. An active contour method based on the minimization of an energy
function that depends on the intensity values inside and outside the curve at each
iterative step is used to segment the liver. Additional image gradient information
is integrated into the function to improve the robustness of the algorithm. The
method performed well however, areas of the heart and vena cava were misclassified
and the method requires user input for an initial seed point.

Lim et al [24] proposed a new approach to automatic segmentation of the liver
for volume measurement in CT images. The proposed segmentation scheme consists
of three stages. The first stage is image simplification, the second stage is search
range detection with initial liver contour by using morphological filtering and the
last stage is contour-based segmentation using a labelling-based search algorithm
that refines the initial liver boundary obtained in the second stage. During image
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simplification the abdominal CT image is divided into non-overlapping blocks and
the right bottom region, where the liver doesn’t occur, is discarded. Then, the
intensity distribution is analysed to obtain the liver grey-level range which is used
for multi-level thresholding. This removes most non-liver tissue. The second stage
is search range detection which includes four steps. Here, multi-scale morphological
operations are used to find the first and second search regions. The multi-scale mor-
phological filter uses a combination of erosion and dilation with a flat structuring
element that combines shape, size and scale. Multi-scale morphology is performed
recursively based on region-labelling and clustering. However, if the previous liver
boundary is currently being used for segmentation, region-labelling is omitted. The
second step is region-labelling where a 4-connected region-labelling algorithm is im-
plemented that uses a breadth-first approach. This reduces noise created by the
previous step and detects the coarse liver region. The largest labelled region is
marked as the candidate region of the liver. The third step includes the imple-
mentation of a modified K-means algorithm. The algorithm uses three centroids
where the middle centroid corresponding to the mean intensity of the liver is calcu-
lated with each iteration but the other two centroids remain fixed to the minimum
and maximum value in the labelled liver region. This produces a finer initial liver
region. The final step in the second stage is the second morphological filtering
to reverse the possible reduction of any liver tissue from the previous step. The
second search region is constructed based on the result of the morphological oper-
ation, region-labelling and modified K-means clustering. The final search region is
determined by excluding the second search region from the first search region. The
last stage is contour-based search algorithm that deforms the initial liver boundary
within the search range to find a final liver contour. First a gradient-label map is
created. The isolabel-contour map is enhanced by using gradient magnitude. The
spatial gradient of the search range image is approximated by use of a morpholog-
ical gradient operator and the gradient image within the search range is reversed
and normalized producing the gradient-labelled map to be used in the next step.
The deformable contouring starts at the lowest located pixel of the initial contour
toward the clockwise direction on the gradient-label map. A local cost function
is used to determine the optimal path from each pixel. This stage produces the
final liver boundary. The error rate of volume measurement is 3%. However, this
method required the CT images to be oriented in a supine position.

Furukawa et al [37] developed a liver segmentation method that extracts liver
regions based on two stages. The first stage is a rough extraction based on a
maximum a posterior probability (MAP) estimation and the second is a precise
segmentation using a level set method. The first stage is a rough extraction of the
liver based on MAP estimation and includes four steps. The first step is MAP based
segmentation. Liver regions are extracted by calculating posterior probabilities
of tissues at each voxel and assigning labels corresponding to the class with the
maximum a posterior probability. It is assumed that there are four kinds of tissues
which are liver, heart, right kidney and other tissue. The region being processed is
limited to the region surrounding the liver where prior probability is greater than
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zero. Step two is MAP based segmentation with different normalization. Here, the
input image is normalized based on the top position of the right kidney, centres of
mass and the width of the right lung along the y-axis. The liver regions are extracted
again by the same way described in the first step. The third step is the removal
of the heart region using a depth map of the lungs. A two-dimensional depth map
of the lungs is generated and the depth values are interpolated to approximate the
bottom surface of the heart. Two reference pixels are determined in each row of the
depth map and linear interpolation is performed at pixels between the two reference
pixels. The voxels with a z-coordinate equal to or less than the corresponding depth
value are removed from the extracted regions in step two. Lastly, step four is the
extraction of metastatic carcinoma and cyst using likelihood images and fusion of
the extracted regions. The step is performed only when the average probability
value of the liver region is higher than the liver threshold value. The likelihood
image of abnormal regions is generated. The likelihood of lesions is multiplied by
a prior probability to eliminate false positives extracted in the outside of the liver.
Candidate regions are determined by simple thresholding followed by morphological
opening and closing operations. The second stage of segmentation includes the
level set method where the level set function is calculated using the gradient of
probabilities convolved by the gaussian filter. A new term is introduced to the level
set function to supress possible over extraction and prevent muscles adjacent to
the liver from being incorrectly extracted as liver. It was evident that the method
performed well producing an average volumetric overlap of 87.2%. However, the
portal vein and inferior vena cava was over extracted as part of the liver and in some
cases, parts of the kidney and heart were incorrectly segmented. The detection of
lesions was inaccurate as only part of the lesions was detected.

Classical Learning Based Segmentation

Zhang et al.[109] and Erdt et al. [29] presented approaches for liver segmentation
based on a statistical shape model (SSM). Zhang [109] uses an SSM with an optimal
surface detection strategy. The liver shape model was built from various ground
truth segmentation results. Liver localization by 3D Generalized Hough Transform
(GHT) during which the triangulated mesh of the average shape model is used as
a template shape. Points correspondence for the SSM and alignment of all train-
ing triangulated meshes based on the similarity transform which determines which
regions are part of the liver and which regions are not. Thereafter, the principal
component analysis (PCA) is applied to represent variation modes of the training
sets. Lastly, the shape model is deformed to adapt to the liver contour through an
optimal-surface detection technique based on graph theory. This work was eval-
uated on the MICCAI-SLiver dataset. However, segmentation errors occurred at
some long and narrow regions of the liver. The approach presented by Erdt et al
[29] is based on a multi-tiered framework that is robust against model initialization
errors. The segmentation uses a locally constrained shape model. The SSM is built
on non-public reference shapes of the liver. Local shape variation is incorporated
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into the deformation term and since the model is explicit, correspondence is given
through landmarks. The Gaussian curvature is computed at each point of all train-
ing shapes. The mean curvature is stored as a weight to define regions of differing
elasticity. To prevent the model from leaking into structures surrounding the liver
a local gradient threshold and an adaptation weight is applied which represents the
influence of a found boundary point in the deformation. In the case of deviation
from trained samples, image specific constraints are derived from the current posi-
tion of the shape model in the image. The adaptation is restricted to those regions
which show a high curvature in the training and the similar high curvature in the
model shape after adapting to the SSM space. Image specific intensity constraints
are calculated by using thresholding and histogram analysis techniques. The im-
age specific shape and intensity constraints are updated in every deformation of
the model i.e. with every iteration. Rule based boundary detection is implemented
based on sampling intensity patterns and assigning a fitness value to decide whether
a point lies on the boundary or not. The rule-based system deactivates boundary
points in the adaptation to remove outliers and the remaining points are inter-
polated by the optimization. This approach was tested on four different datasets
including the MICCAI-Sliver dataset and proved to have high accuracy rates for
segmentation. This also shows broad capability of the approach and it is more
robust than standard SSM segmentation.

A 3D medical image segmentation algorithm was presented by Seghers et al
[88]. The algorithm models an object as a set of landmarks augmented with local
appearance in which multiple shape models are used. A global cost function incor-
porating local intensity and local shape is optimised iteratively. The method has
two parts which are model building and segmentation. Model building consists of
training shapes, intensity model and shape model. First, one image with an average
liver was randomly chosen as a reference image from the training set. The algo-
rithm requires that all training shapes have corresponding landmarks which was
obtained by first taking the reference intensity image and non-rigidly registering
it to all other intensity images using a B-spline transformation model and mutual
information. This produces a set of transformation fields that warp the reference
image to the other training images. These transformation fields are applied to the
surface mesh of the reference image to align the reference shape to the shapes of
all the training images. Lastly, a second point-registration algorithm is applied to
find accurate correspondences. Then the intensity and shape models are created. A
set of feature images are computed from the intensity image. A spherical intensity
profile is collected at the landmark point. For each landmark a statistical intensity
model is obtained by estimating the mean and covariance of each feature profile
from all images in the training images. A statistical model is built for every edge
vector of the triangulation. A shape cost of an edge vector is used to define training
shapes. The second part is segmentation which implements a search algorithm that
consists of two steps. During the first step, for every landmark a set of candidate
locations is extracted by scanning the image. During the second step, one candidate
has to be selected for each landmark taking both intensity and shape knowledge
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into account. Finally, post-processing is done to compensate for the initial affine
registration which includes projecting the surface mesh in the original image space.
It was evident in the results obtained from the segmentation method that this
method does not perform very well in most of the test images. Two problems were
observed. One was that the incorrect training meshes were used to build the model
and the second was that the search regions in the algorithm missed the lower part
of the liver in some cases.

A semi-automatic method was developed for liver tumour segmentation from
3D CT images by Zhou et al [110]. The method first trains a Support Vector
Machine (SVM) classifier to extract tumour region from a single 2D slice by voxel
classification. Then the extracted tumour contour is projected to its neighbouring
slices. This propagation procedure continues until all slices containing tumour are
processed. This method of segmentation was tested and evaluated on ten tumours.
In many cases, the segmented volume was almost double the size of the reference
volume and it only matched one third of the reference segmentation such that two
thirds of the segmented volume belonged to false positives. This method proposes
a limitation in that although 3D information was used in this investigation, the
voxel classification was done on the basis of 2D slices. Hence, the segmentation
result may not keep good smoothness and continuity in 3D.

Li et al [71] proposed an approach for liver segmentation that combines high
order statistical texture features and anatomical structural features. The method-
ology consists of three major processes including texture analysis, liver distribution
image calculation and liver organ localization. This methodology begins with tex-
ture analysis where the statistical approach and transform approach were utilised.
The Gray-Level Co-occurrence Matrix and the nine Haralick texture descriptors
were calculated. The Haralick texture descriptors include entropy, energy, con-
trast, sum average, variance, correlation, maximum probability, inverse difference
moment and cluster tendency. The wavelet transform is used to calculate the
wavelet coefficients. The wavelet transform was chosen over the Gabor transform
and the Fourier transforms because it can represent textures at a suitable scale by
varying the spatial resolution. The Haralick texture descriptors and wavelet coef-
ficients are used as inputs to the next stage of the methodology. The second stage
of the methodology is the liver distribution image calculation. The pixels in the
image are classified by Support Vector Machines (SVM) to be either a pixel that
has the most possibility of being liver or not. This results in the liver distribution
image is a binary image which can indicate most of the liver correctly. The last
stage is liver region localization where two problems are dealt with. The first being
misclassified pixels and the second being that shape and spatial information is not
considered. During this stage, binary morphological operators are implemented to
obtain the delineation of the liver out of the distribution image. First dilation and
erosion are applied to get connected regions and then the largest object is retained,
pixels that are misclassified as non-liver pixels are connected and smoothing opera-
tors are applied. The experiments carried out produced accurate results achieving
as high as 97.3% on true positive volume fraction. However, the results obtained
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on the false positive volume and the false negative fractions were 11.1% and 5.1%
respectively.

A hierarchical, learning-based approach was proposed by Ling et al [67]for auto-
matic liver segmentation. Three techniques are combined to solve the segmentation
problem. First, a hierarchical framework is used to monitor the accuracy propa-
gation in a coarse-to-fine fashion. Second, marginal space learning (MSL) and
steerable features are used for robust boundary inference. Third, a shape space
initialisation is used to improve traditional methods that are limited to similarity
transformation. The shape of the liver is represented by a closed triangle mesh and
a conical mapping from the liver surface to a unit sphere is built. The mesh serves
as a reference mesh that provides point correspondence and spherical coordinates.
A mesh pyramid is built by recursively applying a down sampling process. A vol-
ume pyramid is built such that meshes at different layers correspond to volumes at
different resolutions. Using the hierarchical shape representation, statistical shape
models are built for each layer. Liver detection requires finding the best pose of a
liver given the volume which is determined by the nine-parameter space to three
marginal spaces which learned using the probabilistic boosting tree (PBT). 3D Haar
features are used for location detection and steerable features are used for orienta-
tion and scale inferences. The mean shape is placed in the detected box. Learning
techniques are used for inference and shape initialization. The training samples are
extracted from the 3D parameter spaces in the range for a coefficient determined
by the corresponding eigenvalues. The feature set is intensity based features which
are sampled along the surface of the mesh. The next step is boundary refinement
which consists of three key components: hierarchical scheme, probabilistic bound-
ary response and patch-based boundary classifiers. Starting from the coarsest layer,
the mesh at the current layer is first refined and then up sampled to a finer layer.
A thin plate spline (TPS) warping is used for the up sampling between layers. This
procedure is iterated until the finest layer is reached. The learning based bound-
ary detection technique uses PBT and steerable features to learn the maximum
boundary probability response. Spherical coordinates of mesh points are included
as features and are computed through the mapping from the mesh to a unit sphere.
Patch based boundary refinement is implemented as a result of the heterogeneity
of texture pattern along liver boundaries. The liver surface is decomposed to five
patches: liver-lung, liver-kidney, liver-heart, liver-tissue and liver-misc. Each point
in the base mesh is allocated to a patch which is dependent on the estimated patch
frequency of the point. A hard-patch scheme is used as it takes only the response
from the patch with maximum prior probability. This approach produced promis-
ing results as it achieved a mean error measured in the average symmetric surface
difference of 1.76mm 0.99mm and a median of 1.45mm. This approach produced
excellent performance in accuracy.

Huang et al [54] proposed a method that uses a kernel-based Extreme Learning
Machine (ELM) to detect and segment liver tumour voxels in CT scans. The ELM
is designed as a single hidden layer of feed forward networks which has a learning
speed that is faster than that of other learning algorithms such as an SVM. The
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kernel ELM includes a positive regularization coefficient in the learning system
making it more stable. The feature vector is calculated for each voxel. Texture
features are generated in terms of the voxels neighbourhood mean and variance,
intensity, intensity power, entropy, intensity co-occurrence, Laws texture and Sum
and Difference Histogram. Tumour detection consists of two techniques. The first
is two-class ELM training and testing in which the ELM is trained with samples
from two classes i.e. tumour and non-tumour which are ground truth data. The
second is a one-class ELM for tumour detection where only healthy liver voxels
are selected and characterized as healthy liver voxels and lesion voxels are detected
simultaneously. The last stage is tumour segmentation during which the boundary
of the tumour is extracted. The one-class ELM outperformed the conventional
ELM as was evident in the results.

Deep Learning Based Segmentation

Hu et al [52] proposed an automatic segmentation framework based on 3D con-
volutional neural network (CNN) and globally optimized surface evolution. The
deep 3D CNN is trained to learn a subject-specific probability map of the liver
which gives the initial surface and acts as a shape prior. Then global and local
appearance information from the prior segmentation are adaptively incorporated
into a segmentation model which is globally optimized in a surface evolution way.
The methodology includes deep 3D CNN training, initial liver segmentation by
the 3D CNN, development of the energy model using the shape prior and global
optimization-based surface evolution. The 3D CNN predicts a probability map as
a subject-specific prior which assigns each voxel a probability of being a part of
the liver for the target image. Thereafter, the image is thresholded to produce an
initial liver segmentation which accurately locates the liver and predicts a rough
shape of the liver. Due to severe over- or under-segmentation especially around the
liver surface, a novel segmentation algorithm was proposed to accurately delineate
the liver surface. An energy function based on global and local statistics from prior
information is used to refine the initial segmentation. The energy function is for-
mulated in a hybrid model that integrates region statistics, shape prior constraints
and gradient-edge map. The model selectively acts as a region-based or edge-based
model in different regions. In order to constrain the model with the shape prior the
prior probability map is represented by a negative log-likelihood which determines
whether a voxel belongs to the background or the liver. The data term incorporates
two kinds of image statistics which are intensity distribution and region appear-
ance. To obtain this the probability density functions of a voxel is determined and
a region appearance distance potential is introduced in order to capture edges weak
in gradient. In abnormal liver regions the intensity distribution and region appear-
ance are often different from global statistics of healthy liver tissues. Therefore,
spatial location is considered. The data term adaptively utilizes global and local
prior without separating the liver region. In order to determine the global-prior-
based data term, firstly, the PDF of foreground and background from the shape
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prior is globally estimated. Intensity, local binary pattern (LBP) and local variance
are combined for region appearance description. The global estimation of region
appearance distance potential of a voxel is calculated with the application of the
Wasserstein distance. A local-prior-based data term is developed by locally by esti-
mating the intensity distribution which is done by employing nonparametric model
via a kernel density estimator. The local prior is only employed in abnormal liver
regions to estimate the PDF of the foreground and region appearance difference.
By integration and rearrangement of the equations obtained, a model is produced
which propagates a contour or surface to its global optimum in each iteration by
solving a sequence of convex optimization problems by use of a continuous max-flow
algorithm. The segmentation was evaluated using five metrics: volumetric overlap
error (VOE), relative volume difference (RVD), average symmetric surface distance
(ASD), root mean square surface distance (RMSD) and maximum symmetric sur-
face distance (MSD). The average results obtained in this experiment were a VOE
of 5.36%, RVD of 0.03%, ASD of 0.96mm, RMSD of 1.84mm, MSD of 19.20mm and
an average Dice similarity coefficient of 97.24%. It was evident that the proposed
method is accurate and may be efficient for clinical practice.

An automatic 3D liver location and segmentation method was presented by Lu
et al [70]. The method consists of two main techniques: simultaneous liver detection
and probabilistic segmentation using 3D convolutional neural networks (CNNs) and
accuracy refinement of initial segmentation with graph cut and the learned proba-
bility map. The architecture of the proposed 3D CNNs contains one input feature
map corresponding to a CT image block. It then stacks eleven convolutional layers
by some filters. Each layer is followed by a Rectified Linear Unit (ReLu). The
network uses pooling and softmax layers as well. The first convolutional layer con-
tains 96 feature maps which is then followed by the application of a local response
normalization scheme and a mean pooling layer. The second convolutional layer is
then applied followed by another mean pooling layer which generates 256 feature
maps. The next five convolutional layers have 512 feature maps. The next three
convolutional layers are followed by rearranging layers which can contain unambigu-
ous boundaries. The convolutional layers occurring after each rearranging layer can
eliminate blocking artefacts. The last rearranging layer produces 16 feature maps.
The last layer is a log-regression layer that produces an output that range from 0
to 1 which represents the probability of each voxel in the output image block being
classified as a liver voxel. The initial liver region location consists of training the
CNNs for 53 iterations to generate the liver likelihood map. The parameters of the
3D CNNs are trained by gradient-based optimization. Then, the initial liver shape
is located by thresholding that probability map produced by the trained 3D CNNs.
The final stage, segmentation refinement, consists of the liver probability map be-
ing used to initialize the graph cut and incorporate it into the energy function to
achieve an accurate segmentation result. The main advantage of this method is
that it does not require any user interaction. The results achieved by this method
are a VOE of 5.90%, RVD of 2.70%, ASD of 0.91mm, RSD of 1.88mm and MSD
of 18.94mm. This segmentation method produced more accurate segmentation re-
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sults when compared with those of state-of-the-art automatic liver segmentation
methods.

Vivanti et al [103] presented a new automatic algorithm for liver tumour seg-
mentation in follow-up CT studies. This method combines a follow-up based de-
tection with CNN-based segmentation where the inputs are a baseline CT scan and
a delineation of the tumours in it and a follow-up scan and the outputs are delin-
eated tumours in the follow-up scan. The presented method consists of registration,
deep learning and segmentation. The registration stage begins with automatically
computing a liver mask using a liver segmentation method that relies on Bayesian
classification, adaptive morphological operations and active contours. This segmen-
tation is performed for baseline and follow-up scans. Next, a ROI is defined that
contains the follow-up tumour with high probability. The baseline delineation is
transferred to the follow-up scan and the follow-up tumour ROI is doubled in each
direction to account for possible tumour growth. A CNN is used to classify each
voxel as being healthy liver or tumour. The classification is based on voxel intensi-
ties in an axis-aligned square centred at the voxel. The CNN used has seven hidden
layers. The input layer has one node for each pixel. The first layer is convolutional
with 48 kernels. Each kernel computes a convolution of the input followed by a
ReLu function and a pooling layer. The third and fifth layers are convolutional
with 48 kernels followed by a ReLu function and a pooling layer. Layer seven is
fully connected with 200 nodes followed by a ReLu function. The output layer is
the classification layer which is based on a softmax function where the probability
of a voxel belonging to a class is computed. The segmentation of the ROI is done by
classifying all its voxels in four steps. First, the trained CNN is run in feed-forward
to classify each patch. Then, the non-liver voxels are classified as healthy tissue
using the liver mask of the follow-up scan. The experiments carried out by two
metrics: VOE and ASD. The results obtained were 16.75% for VOE and 2.05mm
for ASD. The overall success rate for this method was 90.47%.

An automatic segmentation method was presented by Christ et al [21] to seg-
ment liver and lesions in CT and MRI abdominal images using cascaded fully
convolutional neural networks (CFCNs). This method uses two FCNs which are
cascaded. The first FCN is used for segmentation of the liver to obtain the ROI for
the second FCN which is used to segment lesions within the ROI. The CT and MRI
volumes are trained in a CFCN. The first FCN segments the liver from the abdomen
producing the ROI. This is then used as the input for the second FCN which seg-
ments lesions from the liver ROI. Post-processing includes the application of a 3D
conditional random field (CRF) in order to capitalize on the location information
across slices within the dataset. Thereafter, a final segmentation is produced. The
presented method achieved a mean Dice of 93.1% to 94.3% for liver segmentation
and 56% for lesion segmentation using the 3DIRCAD dataset. Using a clinical CT
dataset, The Dice score achieved was 88% to 91% for liver segmentation and 61%
for lesion segmentation. Using a clinical MRI dataset, the method achieved a Dice
score of 87% for liver segmentation and 69.7% for lesion segmentation. It was evi-
dent that the method produced a higher accuracy rate than that of a method that
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uses a single FCN for segmentation.

A novel 3D deeply supervised network (DSN) for automatic liver segmentation
was presented by Dou et al [28]. This method employs a fully convolutional ar-
chitecture to produce a high-quality score map which is processed further by the
employment of a conditional random field (CRF) to obtain a refined segmentation.
The network consists of eleven layers i.e. six convolutional layers, two max-pooling
layers, two deconvolutional layers and one softmax layer. The deep supervision
mechanism is involved in the third and sixth layers. The 3D convolutional layers
and 3D max-pooling layers are alternatively stacked to abstract the intermediate
features. Large kernel sizes are used to form a proper receptive field for liver recog-
nition. After many stages of down sampling, the dimensions of feature volumes
are gradually reduced and are smaller than the ground-truth mask. Therefore,
3D deconvolutional layers are developed to bridge those feature volumes to dense
probability predictions. A per-pixel-wise binary classification error minimization
problem with respect to the ground-truth mask is formulated for the learning of
the 3D network. An additional supervision is injected into some hidden layers to
counteract the effects of gradient vanishing which makes the loss back-propagation
ineffective in the first few layers. Some lower-level and middle-level feature volumes
are up- scaled using additional deconvolutional layers and then the softmax layer is
employed to obtain dense predictions for calculating classification errors. Gradients
are derived from these branch predictions and the last output layer which allevi-
ate the effects of gradient vanishing. Although the 3D DSN generates high-quality
probability maps, a graphical model is employed to refine segmentation results due
to imprecise segmentation in ambiguous regions. A fully connected CRF model on
the transverse plane is exploited which solves an energy function to refine the seg-
mentation. The MICCAI-SLiver07 dataset was used. This method was trained on
twenty CT scans and test on ten CT scans. The learning process of the proposed 3D
DSN showed that it converges much faster and achieves lower training/validation
errors than that of a pure 3D CNN. The segmentation results achieved were a VOE
of 5.42% and an average symmetric surface distance of 0.79mm. It can be concluded
that the presented framework is effective and efficient and achieves competitive seg-
mentation results to state-of-the-art approaches.

Hoogi et al [51] proposed a fully automated pipeline for detection and segmenta-
tion of liver lesions and pathological lymph nodes. The pipeline includes three steps
which are organ detection, lesion detection and lesion segmentation. And applies
machine learning techniques such as marginal space learning and CNNs as well as
active contour models. The organ detection step is based on marginal space learn-
ing where detection is performed by using a sequence of learned classifiers, starting
with a few classifiers and ending with a classifier that models all the desired organ
parameters. Each learned classifier is a Probabilistic Boosting Tree (PBT) with
3D Haar and steerable features and is trained. The architecture has two layers:
A Discriminative Anatomical Network (DAN) and a database-guided segmentation
module. The DAN supplies an estimate regarding the scale of the patient and
portion of the visible volume and it detects a set of landmarks for navigating the
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volume. The database-guided segmentation module uses the DANs output for de-
tection of position, orientation and scale of the organs visible in the volume. Next
is lesion detection based on cascaded classifications which includes three steps. 3D
Haar-like features are exploited using an integral image of the organ sub-volume of
interest. Then a classifier is used to perform feature selection and classifier training
simultaneously. Lastly, self-aligned image features are used to train another classi-
fier to prune candidates. The final step is lesion segmentation which incorporates a
CNN and active contours. An adaptive approach was used to calculate the size of
the local window. The adaptive window is calculated using the lesion scale and its
texture. Texture analysis includes the extraction of Haralick features. The CNN
estimates the location of the Zero Level Set contour relative to the lesion. Three
possibilities are considered which are outside the lesion, near the lesion boundaries
or inside the lesion boundary. The CNN is made up of two convolutional layers
followed by two fully connected layers. Each convolutional block is composed of a
filter bank layer, a nonlinearity layer and a max-pooling layer. The CNN outputs
a probability for each of the three classes. These probabilities are used to set two
weighting parameters: one that contracts the contour and one that expands it.
The proposed methodology was evaluated using two datasets: the first comprising
of 42 3D CT volumes containing liver lesions and 86 3D CT volumes containing
pathological lymph nodes. The results achieved by this methodology was detection
(sensitivity) of 0.51 for lymph nodes and 0.85 for the liver and segmentation (Dice)
of 0.71 for lymph nodes and 0.67 for liver lesions. It was evident from the results
obtained that this methodology proved to be robust in its handling of high lesion
diversity.

Ben-Cohen et al [14] explored the use of a fully convolutional network (FCN)
for liver segmentation and liver metastases detection in CT examinations. They
proposed a network architecture that has 16 layers where all fully connected layers
are converted to convolutions. A 1x1 convolution with channel dimension 2 is
appended to predict scores for lesion or liver at each of the coarse output locations
which are followed by a deconvolution layer to upsample the coarse outputs to
pixel-dense outputs. Upsampling is performed in-network for end-to-end learning
by backpropagation from the pixelwise loss. The initial network used is a FCN-8s
DAG network which learned to combine coarse, high information with fine, low layer
information. The addition of a lower level linking layer was also explored creating
a FCN-4s DAG network. The input image was modified to have three slices, the
relevant slice and two neighbouring slices, before and after, which were interpolated
using linear interpolation. Input images and their corresponding segmentation maps
are used for training with a stochastic gradient descent and GPU acceleration.
Two networks are trained here, one for liver segmentation and the other for lesion
detection. The softmax log-loss function was calculated pixelwise with different
weights for each pixel class. Two framework variations were used for evaluation as
well as the initial framework. The segmentation performance was evaluated using
the Dice index, sensitivity and positive predicate values (PPV). The FCN-8s with
3 slices produced a Dice of 0.89, the FCN-8s produced a Dice of 0.88 and the FCN-
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4s with 3 slices produced a Dice of 0.87. The FCN-8s with 3 slices produced the
best results with an average sensitivity 0f 0.86 and an average PPV of 0.95. The
lesion detection performance was evaluated using two metrics: true positive rate
(TPR) and false positive per case (FPC). The dataset used is the MICCAI-SLiver07
challenge dataset. Here, the FCN-4s with 3 slices performed the best producing
a TPR of 0.88 and a FPC of 0.74. The method presented here is promising for
both lesion detection and liver segmentation. However, it should be noted that no
significant pre-processing or post processing was implemented which could possibly
have improved the results achieved by the presented method.

Post-processing Techniques

The aim of post-processing techniques is to improve the segmentation result pro-
duced by the primary segmentation techniques. Segmentation refinement tech-
niques are initialized by the product of the previous technique in the segmentation
pipeline.

Resampling was implemented in [101, 106, 53] in order to return the segmenta-
tion results back to the original spatial resolution. This is basically implementing
the pre-processing techniques that were used in the reverse order. Zayane et al
[108] used a Sobel filter for contour detection to delineate the liver boundaries. The
most common post-processing technique used is morphological operators which are
used in [52, 81, 94, 25, 37, 108, 103] for cavity filling, to smooth extracted sur-
faces and eliminate unconnected regions. A combination of blurring, thresholding,
largest connected component selection and morphological techniques are also used
in [101, 106, 65].

Lu et al [70] implemented a graph cut based segmentation refinement which is
initialized by the rough liver region generated by CNNs. The aim of the graph
cut based model is to label each voxel such that the general energy function is
minimized where a coefficient controls the balance between the data fitting term
and the boundary penalty. A regional cost term describes the similarity between a
voxel and the background or foreground while the boundary cost term describes the
discontinuity between two neighbouring voxels. A thresholding map is determined
with the use of a roughly estimated intensity range of the liver which is obtained
from the probability map. A local appearance term is introduced which is formu-
lated from the image intensity, a modified LBP and the local variance of intensity.
The data term is then computed by combining the probability map, thresholding
map and local appearance map. A graph is defined to minimize the total energy
function by the graph cut algorithm.

Christ et al [21] used a dense conditional random field (CRF) as a segmentation
refinement. The dense CRF is specified using the probability map produced by a
FCN and a complete graph formulated using an energy function that includes a
Gibbs distribution and incorporates the Potts function. This allows consideration
of both spatial coherence and appearance. The best labelling is estimated using a
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mean field approximation algorithm and the weights and kernels of the CRF are
chosen using a random search algorithm.

A novel segmentation scheme was presented by Beichel et al [13] based on a true
3D segmentation refinement concept that utilizes a hybrid desktop/ virtual reality
user interface. The scheme consists of an interactive segmentation refinement that
is initialized by the product of a graph cut based segmentation technique. The
refinement technique allows the user to fix arbitrary segmentation errors and con-
sists of two steps. The first step is chunk-based refinement where the segmentation
result is subdivided into disjunct subregions or chunks. By thresholding, a binary
boundary volume representing boundary/surfaces parts is generated and merged
with the boundary from the segmentation using a logical “or” operation. The
distance transform is calculated and the distance map results are inverted which
is interpreted as a height map. Then all small local minima are eliminated to
avoid over-segmentation. Watershed segmentation is applied to the distance map
resulting in volume chunks. Refinement is done by the user selecting/deselecting
predefined chunks using tools for interactive data inspection and selection methods.
The second step includes the selected chunks being converted to a simplex mesh
representation. Different tools allow for deformation of the mesh representation.
The method was tested on ten datasets. After the initial graph-cut segmentation,
five cases have an overlap error larger than 10% and the overall average overlap
error is 14.3%. After using the chunk-based refinement method the average overlap
error is reduced to 6.5% and after the use of the simplex mesh refinement it reduced
further to 5.2%. This proves that the method delivers good segmentation results;
however, the method relies heavily on user intervention.

2.3.5 Conclusion

Despite the vast amount of research available on the techniques explored to achieve
accurate liver segmentation, it seems challenging to develop methods that will
achieve higher accuracy rates. Many successful methods have been proposed how-
ever; they have their advantages as well as disadvantages.

Different types of techniques exist such as anti-learning-based methods, which
include region growing, graph-cut and level set methods, and learning-based meth-
ods which include CNNs. The drawbacks of anti-learning-based methods stems
from the fact that they are mainly based on gray-level information. They pose the
challenge in preventing over-segmentation from surrounding tissues or organs with
similar intensities and avoiding under-segmentation of inhomogeneous liver regions.

Examining the learning-based methods, either a series of 2D slices of the CT
scan or a while 3D CT scan volume are fed as input into the neural network models
in current methods. The methods discussed in this chapter do not narrow down
or limit the search space for the liver segmentation. Reducing the search space
reduces computational cost. However, the impressive success rate of learning-based
techniques inspired the proposed method presented in this dissertation.
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The next chapter, details a slice alignment method that can be used for the
alignment of 2D slices of a CT volume.
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Chapter 3

Slice Alignment

3.1 Introduction

Image alignment is a fundamental task in 3D medical image processing that serves
to align two or more 3D scan slices. Medical imaging tasks such as those related to
image fusion for image guided interventions and those related to motion correction
and volume reconstruction have pushed the community towards developing more
accurate and efficient strategies for image alignment [34].

Most methods do not simultaneously consider two significant difficulties re-
garding medical and CT scanned data registration or alignment[60]. Sometimes,
consecutive slices may differ due to discontinuities in anatomical structures, distor-
tions that are possibly caused by movement or cuts and tears. Inter-slice distance
contributes to the degree of these effects. The larger the distance between the slices,
the more pronounced the discontinuity in anatomical structures. Therefore, align-
ment and registration methods are required to be robust with regards to missing
data or slices that are outliers. Another aspect that should be taken into consid-
eration is that when slices are aligned sequentially, it may lead to different types
of mis-alignment. In this case, each slice is aligned with respect to the previously
aligned slice and if an error occurs the error is propagated through the rest of the
volume. Thus, if the volume contains a large number of slices it will result in an
observable global offset of the volume.

The accuracy of image alignment influences further processing that the image
volume may undergo. Ensuring that the alignment of a series of images are ap-
propriately aligned promises more accurate results if an object in a volume is to
be segmented and/or reconstructed. This also allows the reconstruction of slices to
produce smoother surfaces making the object appear more real.
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3.2 Methodology

The proposed methodology consists of four stages. In the pre-processing stage,
the 3D CT volume undergoes smoothing using median filtering. The second stage
includes the serially acquired slices of the volume being processed in order to de-
termine the optimal liver threshold by applying a Laplacian weighted histogram to
the largest liver slice of the volume. The threshold value obtained is used in the
third stage where the entire volume is skeletonized to remove unwanted tissue. The
last stage is image alignment where each slice of the skeletonized volume is aligned
with respect to neighbouring slices using the ECC image alignment algorithm.

Figure 3.1 depicts an overview of the methodology for slice alignment.
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Figure 3.1: Overview of Liver Segmentation Framework
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3.2.1 Pre-processing

The pre-processing technique used is median filtering. All smoothing techniques
are effective at removing noise in smooth patches or smooth regions, but adversely
affect edges. In the case of this particular application it is important to preserve
the edges. For small to moderate levels of noise, the median filter is demonstrably
better than a Gaussian blur at removing noise whilst preserving edges for a given,
fixed window size. The whole 3D volume is smoothed using a 3D median filter.
The median filter used is defined in Equation 3.1.

y[i, j, k] = median{x[i, j, k], (i, j, k)εw} (3.1)

where y[i, j, k] is the new voxel value, x[i, j, k] is the original voxel value and w is
the 3D neighbourhood centered around location [i, j, k].

3.2.2 Optimal Liver Threshold Selection

Two dimensional slices are serially acquired from the median filtered 3D CT volume.
Since the liver occurs on the right side of the body and this stage determines the
liver intensity range, the right half of the slices are extracted. The mean intensity
is calculated for each half slice and the slice with the highest mean is declared the
largest liver slice. This is the slice where the liver can be seen in its largest extent.
The Laplacian weighted histogram analysis is applied to the largest liver slice.

Li et al. [65] implemented histogram analysis to determine the liver range for
their work done in liver segmentation using fuzzy C-means clustering and level-set
techniques. Huang et al. [54] also implemented histogram analysis to determine
the liver range. In this pre-processing method a Laplacian weighted histogram is
calculated for the largest liver slice. This method leads to better results and is
much more efficient than convoluting the neighbouring voxels with a generalized
filter.

The method presented by Gasser [38] computes a Laplacian weighted histogram
to determine the optimal threshold of a volume for extracting isosurfaces and for
volume representation. The methodology presented in this paper uses this method
to determine the optimal threshold value for the liver tissue in a slice of the volume.
The method was adapted to work with Hounsfield Units as the input is a slice of
CT volume. Furthermore, it was adapted to work with the maximum and the
minimum of the current CT volume due to the fact that the range of the intensity
values differ from volume to volume.

After the histogram is calculated, it is normalized and the global minimum of
the histogram is taken as the liver threshold value for the CT volume that the slice
belongs to. The algorithm used to determine the threshold value is presented in
Algorithm 1. The threshold value obtained from this stage is used in the skele-
tonization stage.
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Algorithm 1 Laplacian Histogram Algorithm

Input: largest liver slice
Output: optimal threshold value

lowerbound = lowestIntensityV alue
upperbound = highestIntensityV alue
numBins = (upperbound− lowerbound) + 1
for k = 0 to D, k = k + 1 do

for j = 0 to H, j = j + 1 do
for i = 0 to W, i = i+ 1 do
value← x(i, j, k) + lowerbound
L(i, j, k) ← (x(i, j, k) − x(i, j, k) − x(i, j + 1, k) − x(i, j, k) + x(i, j, k) −
x(i, j + 1, k)− x(i+ 1, j − 6, k+ 1)− x(i, j + 1, k) + x(i, j, k)− x(i, j, k)−
x(i, j + 1, k)− x(i, j, k))
bins[value]← bins[value] + L(i, j, k)

end for
end for

end for
highest = 0
for i = numBins− 2, i ≥ 0, i = i− 1 do

if bins[i] > highest then
highest← bins[i]

end if
end for
normalizedBins = array[numBins]
for i = 0 to numBins, i = i+ 1 do
normalizedBins[i] = bins[i]/highest

end for
Gmin = normalizedBins[0]
binIndex = −1
for i = 0 to numBins, i = i+ 1 do

if lowest ≤ normalizedBins[i] then
Gmin ← normalizedBins[i]
binIndex← i

end if
end for
Gmin ← binIndex+ lowerbound
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The laplace value L(x) is computed at each voxel location. A histogram is built
from the filtered dataset incrementing a histogram bin G(I(x)) where I(x) is the
image intensity at voxel location x by the Laplace value L(x) at voxel location x.

G(I(x))⇐ G(I(x)) + L(x) (3.2)

The laplacian weighted histogram is normalized. The global minimum Gmin of
the normalized histogram corresponds to the most dominant material transition
which in this case is the liver tissue. The intensity value corresponding to Gmin is
the optimal threshold value for the liver tissue in that particular slice.

3.2.3 Skeletonization

3D skeletal forms refer to visually perceivable line segments achieved after removing
closed surfaces in a 3D image until there is no closed surface left out for removal [59].
This iterated closed surface removal is called 3D skeletonization. The skeletal forms
are also called superficial features. An empty widow is used to detect superficial
features. The purpose of the skeletonization stage is to remove unwanted tissue
that are insignificant for the alignment of the slices. Since the images are of the
abdominal area, it is appropriate that the images are aligned with respect to the
larger organs and the bones in the images. This ensures that when the images
undergo further processing such as segmentation and then reconstruction of a 3D
volume it produces a smoother surface which is more accurate.

The skeletonization of each 2D slice proved to be computationally expensive
and time consuming. Therefore, the whole CT volume is processed at once. A
skeletonization method is presented by Khan et al [59] where a 7-neighbourhood
window is traversed throughout an entire volume but this method also proved to
be very time consuming. So, the method is adapted to traverse the volume in less
time, producing a result slightly different but achieving a skeletonization that is
usable in this particular application. The algorithm for skeletonization is presented
in Algorithm 2.

The algorithm consists of the iteration of the 3D blank window throughout the
entire image volume of extent WxHxD where W is the width, H is the height and D
is the depth of the image with the 3D blank window. At each iteration the values of
the specified seven neighbourhood voxels are extracted and stored in an array. The
seven neighbourhood voxels can be seen in Figure 3.2(b). The maximum intensity
and the minimum intensity values of the array are determined. The difference is
calculated and compared to the threshold value determined in the previous stage.
If the difference is less than or equal to the threshold value, six out of the seven
voxel values are changed to zero. The only voxel value that remains its original
value is the center voxel. Do not force a value 0 to a voxel if it happens to be the
corner voxel of the subimage under the window. If the difference is greater than
the threshold value, then the blank window is moved to the next window position.
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The iteration of the blank window is such that it moves three voxels horizontally
with each iteration. The original algorithm moves the blank window horizontally
one voxel with each iteration. The change made to the algorithm improved the
performance speed of the skeletonization stage by approximately half the original
speed. These steps are repeated iteratively until there is no 3D surface left out in
the image to be removed. During the iteration process it is ensured that already
skeletonized objects are not erased. The resulting images after skeletonization can
be seen in Figure 3.3, where 3.3(a), 3.3(b), 3.3(c) and 3.3(d) are the slices of
different volumes before skeletonization and 3.3(e), 3.3(f), 3.3(g) and 3.3(h) are
the slices after skeletonization.

(a) Blank 3x3x3 window

(b) 7-neighbourhood window

Figure 3.2: Blank window and 7-neighbourhood windows
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Algorithm 2 Skeletonization Algorithm

Input: CT volume
Output: resulting volume after skeletonization

for k = 0 to D, k = k + 1 do
for j = 0 to H, j = j + 1 do

for i = 0 to W, i = i+ 3 do
array ← E(i, j, k − 1), E(i − 1, j, k), E(i, j − 1, k), E(i, j, k), E(i, j +
1, k), E(i+ 1, j, k), E(i, j, k + 1)
Max(E(i, j, k−1), E(i−1, j, k), E(i, j−1, k), E(i, j, k), E(i, j+1, k), E(i+
1, j, k), E(i, j, k + 1))
Min(E(i, j, k−1), E(i−1, j, k), E(i, j−1, k), E(i, j, k), E(i, j+1, k), E(i+
1, j, k), E(i, j, k + 1))
difference ← Max(E(i, j, k − 1), E(i − 1, j, k), E(i, j −
1, k), E(i, j, k), E(i, j + 1, k), E(i + 1, j, k), E(i, j, k + 1))Min(E(i, j, k −
1), E(i−1, j, k), E(i, j−1, k), E(i, j, k), E(i, j+1, k), E(i+1, j, k), E(i, j, k+
1))
T ← threshold
if difference ≤ T then
E(i, j, k − 1)← 0
E(i− 1, j, k)← 0
E(i, j − 1, k)← 0
E(i, j + 1, k)← 0
E(i+ 1, j, k)← 0
E(i, j, k + 1)← 0

end if
end for

end for
end for
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(e) (f) (g) (h)

Figure 3.3: Skeletonized Slices

3.2.4 Alignment Algorithm

The Enhanced Correlation Coefficient (ECC) alignment algorithm is implemented
to align the serially acquired slices of the 3D CT volume. This alignment algorithm
was presented by Evangelidis et al [30]. They proposed the ECC similarity measure
for estimating the parameters of a motion model. The motion model used in this
implementation is the Euclidean motion model where the first image a rotated and
shifted version of the second image. Using this approach has two advantages. The
first is that the ECC similarity measure is invariant to photometric distortions in
contrast and brightness which is unlike the traditional similarity measure of differ-
ence in pixel intensities. The second advantage is that even though the objective
function is a nonlinear function, the iterative scheme used to solve the optimiza-
tion problem is linear. Therefore, a problem that appears to be a computationally
expensive isn’t that complex due to the simplicity of the iterative solution.

The alignment algorithm presented here is a variation of the algorithm to cater
for a large number of slices whereas, the algorithm above is for a simple align-
ment of two images. Since the number of slices that make up the CT volume is so
large, the probability of an error being propagated through the volume is larger.
Therefore, the consideration of such an aspect is significant. The algorithm doesn’t
iterate through the slices of the volume from one end to the other. Slices are
randomly selected for alignment to reduce the chance of an error propagation. An-
other aspect considered is the variance of anatomical structures between the slices.
The inter-slice distance is also a contributing factor to the variance. Furthermore,
neighbouring slices do not overlap. Therefore, the slices are aligned with the neigh-
bouring slices and not slices that are too far away within the volume because the
anatomical structures in those slices compared to the chosen slice are different i.e.
slice five presents different anatomical structures compared slice ninety.
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Three different implementations of the ECC alignment algorithm is presented
and their performance are compared. All implementations take in a list of 2D
slices that have been skeletonized. The first implementation iterates through the
list aligning all images to the first image in the list. The algorithm is shown in
Algorithm 3. The first slice is set as the reference image and then the list is iterated
selecting each image and setting it as the floating image. The iteration starts from
the second slice and a warped matrix is estimated using the ECC algorithm to align
it to the reference image. Lastly, the warped matrix is applied to the floating image
aligning it to the reference image. The second implementation is similar to that
of the first one. The algorithm iterates through the list of slices and estimates a
warped matrix to be applied to each slice. However, the reference image is the slice
preceding the floating image. This algorithm is presented in Algorithm 4.

Lastly, the third implementation can be seen in Algorithm 5. In the last algo-
rithm, all slices are declared unvisited. A slice is randomly selected and if it’s visited
then another random slice is selected. The selected slice becomes the floating image
to be aligned and its neighbouring slices, one slice before and one slice after, are
put into a list. If the selected slice is the last slice, the the neighbours used are the
two slices preceding it and if the first slice is selected then the neighbours used are
the two slices after it. The list of neighbours are used as a series of reference images
to estimate a warped matrix for the floating image. the warped matrix is updated
each time after each neighbour is processed and thereafter, the floating image is
aligned to its neighbours by applying the warped matrix to it. Lastly, the slice is
declared visited. This process continues until all slices are declared visited.

Algorithm 3 Alignment Algorithm 1

Input: list of 2D slices
Output: list of aligned 2D slices

reference← slice[0]
for each slice in list do
floatingImage← slice[i]
motionModel ← euclideanMotion
warpMatrix← newMatrix
terminationCriteria← maxIterations
estimate warpMatrix using ECC algorithm
apply warpMatrix to floatingImage

end for

3.3 Conclusion

In this chapter, a slice alignment method for alignment of serially acquired 2D
slices is presented and discussed. The method uses techniques such as a Laplacian
weighted histogram to determine the optimal liver threshold, skeletonization to re-
move unwanted anatomical structures and an alignment algorithm that implements
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Algorithm 4 Alignment Algorithm 2

Input: list of 2D slices
Output: list of aligned 2D slices

for each slice in list do
reference← slice[i]
floatingImage← slice[i+ 1]
motionModel ← euclideanMotion
warpMatrix← newMatrix
terminationCriteria← maxIterations
estimate warpMatrix using ECC algorithm
apply warpMatrix to floatingImage

end for

Algorithm 5 Alignment Algorithm 3

Input: list of 2D slices
Output: list of aligned 2D slices

slices = unvisited
floatingImage← slices[random]
neighbours = newlist
while slices← visited = false do
random← unvisitedSlice
if random = lastSlice then
neighbours← slice[random− 1]
neighbours← slice[random− 2]

else if random = firstSlice then
neighbours← slice[random+ 1]
neighbours← slice[random+ 2]

else
neighbours← slice[random− 1]
neighbours← slice[random+ 1]

end if
for each slice in neighbours do
reference← slices[0]
motionModel ← euclideanMotion
warpMatrix← newMatrix
terminationCriteria← maxIterations
estimate warpMatrix using ECC algorithm
update warpMatrix

end for
apply warpMatrix to floatingImage
floatingImage = visited

end while
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the ECC algorithm. The method takes into consideration the limitations of sequen-
tial slice alignment by implementing an algorithm that conducts the alignment of
slices randomly. This method also ensures that no particular direction is privileged
in the method avoiding any global offsets and error propagation.

The following chapter describes the liver region of interest detection method
which implements CNNs to classify 2D slices in order to determine a region of
interest for liver segmentation.
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Chapter 4

Liver Region of Interest Detection

4.1 Introduction

The liver is located in the abdominal area of the human body and in order to aid in
the segmentation of the liver from 3D CT scans, it is important to obtain a region
of interest. Abdominal CT scans usually contain the chest and pelvis along with
the abdominal area as the abdomen occurs between these regions. Obtaining a
region of interest of the liver, in this case the abdomen, focuses further processing
within the region of interest. This prevents further processing, which includes liver
segmentation, from being affected by the regions outside the region of interest.
Localizing further processing increases the chance of higher accuracy as well as
reduces the computation time due to the reduced search space for the liver.

Taking these factors into consideration, a method that utilizes convolutional
neural networks is used to obtain a region of interest for liver segmentation. This
method uses minimal pre-processing as CNNs have the ability to learn features from
scratch. The CNN is first trained to classify slices into pelvic slices and abdominal
slices. Then it is trained to classify the abdominal slices from the previous classifi-
cation results into abdomen and chest slices. Minimal post-processing is used where
the pelvic and chest slices are discarded. The remaining slices are the abdominal
slices which is the resulting region of interest.

Furthermore, two different CNNs are implemented and trained to perform the
slice classifications as described above. One CNN is a small network with a few
layers and the other is a deeper network with many layers where a filter size is
repeated for more than one layer. These networks are trained and tested on the
same dataset in order to determine which network performs better and can be used
prior to the liver segmentation step. In this chapter the region of interest detection
method is presented.

The CNNs used as well as their training and data augmentation are discussed in
Section 4.2. The methodology of the region of interest detection process is described
in Section 4.3 which includes the pre-processing, pelvic girdle slices detection, chest
slices detection and post-processing.
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4.2 Convolutional Neural Networks

For this binary classification task, two convolutional neural networks are imple-
mented. The capacity of convolutional neural networks varies depending on the
number of layers. The higher the number of layers the network consists of the
higher the level of features it will be able to capture. Heeneman [46] proposed
that deeper networks perform better and the repeating filters of the same size also
improves the accuracy of detection. Two networks are tested to determine whether
the deeper network performs better in this case of classification. The model that
performed the best and produced the most accurate results was used to obtain the
region of interest for liver segmentation.

4.2.1 Small Network

The first network has one input feature map of size 128 x 128, two convolution
layers, two max-pooling layers and two dense layers as well as one softmax layer.
Each convolution layer is followed by a rectified linear unit to expedite the training
of the network.

The first convolutional layer contains 16 feature maps and each feature map is
linked to the input feature maps through filters of size 5 x 5. Then a max-pooling
layer with a stride size of two pixels are used to generate 32 feature maps. This
is then followed by three convolutional layers that contain 32 feature maps each
and each feature map is linked to all of the feature maps in the previous layer by
filters of size 3 x 3. Then a max-pooling layer with a stride of two pixels are used
to generate 64 feature maps. This is then followed by a dense layer with 500 units
of neurons and a dropout of 0.5 is used. The output layer is a dense layer with 2
units of neurons and a softmax activation function. The architecture is described
in Table 4.1.

Table 4.1: Small Network

Layer Input Filter Stride Output
Conv 128x128x1 5x5, 16 1x1 128x128, 16

Pooling 128x128,16 2x2 2x2 64x64, 16
Conv 64x64, 16 3x3, 32 1x1 64x64, 32

Pooling 64x64, 32 2x2 2x2 32x32, 32
Dense 32x32, 32 500
Dense 500 2

4.2.2 Deep Network

The second network has one input feature map of size 128 x 128, seven convolution
layers, four max-pooling layers and two dense layers as well as one softmax layer.
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Each convolution layer is followed by a rectified linear unit to expedite the training
of the network.

The first convolutional layer contains 16 feature maps and each feature map is
linked to the input feature maps through filters of size 5 x 5. Then a max-pooling
layer with a stride size of two pixels are used to generate 32 feature maps. This
is then followed by three convolutional layers that contain 32 feature maps each
and each feature map is linked to all of the feature maps in the previous layer by
filters of size 3 x 3. Thereafter, a max-pooling layer with a stride of two pixels are
used to generate 64 feature maps. This is followed by two convolutional layers with
64 feature maps each where each feature map is linked to the feature maps in the
previous layer by 3 x 3 filters. This is followed by a max-pooling layer with a stride
size of two pixels are used to generate 128 feature maps. The last convolutional
layer has 128 feature maps where each feature map is linked to the features in the
previous layer by 1 x 1 filters. This is then followed by a dense layer with 500 units
of neurons and a dropout of 0.5 is used. The output layer is a dense layer with 2
units of neurons and a softmax activation function. The architecture is described
in Table 4.2.

Table 4.2: Deep Network

Layer Input Filter Stride Output
Conv 128x128, 1 5x5, 16 1x1 128x128, 16

Pooling 128x128,16 2x2 2x2 64x64, 16
Conv 64x64, 16 3x3, 32 1x1 64x64, 32
Conv 64x64, 16 3x3, 32 1x1 64x64, 32
Conv 64x64, 16 3x3, 32 1x1 64x64, 32

Pooling 64x64, 32 2x2 2x2 32x32, 32
Conv 64x64, 16 3x3, 64 1x1 64x64, 64
Conv 64x64, 16 3x3, 64 1x1 64x64, 64
Conv 64x64, 16 3x3, 128 1x1 64x64, 128

Pooling 64x64, 128 2x2 2x2 32x32, 128
Dense 32x32, 32 500
Dense 500 2

4.3 Data Augmentation

Data augmentation is a useful way to increase the volume of training images using
only information within the training data, thereby reducing over-fitting on a model
[104]. In this research, affine transformations of the original images are represented
by Equation 4.1.

y = Wx+ b (4.1)
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Where y is the transformed image, x is the original image, b represents shift in
height, rotation angle or shear factor and W represents the zoom range.

The transformations used are described as follows:

• Width shift = 0.1

• Height shift = 0.1

• Shear range = 0.2

• Zoom range = 0.2

• Rotation = 45 degrees

4.4 Training

Before using the network to classify the 2D slices, the network is trained using the
cases in the training set. The training of the convolutional neural network was done
in Python by using the Keras package with Tensorflow as back-end. Updating the
weights was done after each epoch using batch-wise training with a batch size of
32 examples. For the loss function binary cross-entropy is used since it is a binary
classification problem. The network parameters are trained using the adaptive
gradient descent algorithm Adam optimization was used to update the weights.
The initial learning rate is set to x = 1e− 3, a learning rate scheduler was used to
adjust the learning rate. Metrics to evaluate the model during the training process
are accuracy and error rate. After training the probability of the image being
classified as either of the two classes is learned by the network and can be used to
classify 2D slices.

4.5 Methodology

4.5.1 Pre-processing

Convolutional neural networks have the ability to learn features from scratch there-
fore only minimal amount of pre-processing is applied [52]. The image intensity of
all CT scans was truncated to the range [-200, 250] HU to remove irrelevant details.
The image slices are then resampled to size 128 x 128. Examples of slices before
and after pre-processing are depicted in Figure 4.1 where Figures 4.1(a), 4.1(b),
4.1(c) and 4.1(d) show the images before pre-processing and 4.1(e), 4.1(f), 4.1(g)
and 4.1(h) are their respective images after pre-processing.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.1: Slices before and after pre-processing

4.5.2 Classification of Abdominal and Pelvic Slices

The convolutional neural network was first trained to produce a different model
that classifies 2D slices as either an abdominal slice or a slice containing the pelvic
gridle. For this classification the network is trained for 20 epochs which took
approximately 4.7 hours. The number of iterations for each epoch was 500. Once
the training is complete, the network takes a 2D CT slice in the form of a 128 x
128 image and produces the probability of the image being an abdominal slice and
the probability of the image being a slice of the pelvis. This classification model
takes in an image that has undergone thresholding so that the classification is based
on the bone structure that appears in the image. Thresholding is represented by
Equation 4.2.

g(x, y) =

{
0 iff(x, y) ≤ T

1 iff(x, y) > T
(4.2)

Where T is the threshold value, which in this case is 200 as this was found to be the
optimal value to remove most soft tissue allowing the bone structure to be visible
for detection.

Examples of the thresholding results can be seen in Figure 4.2.
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Results after thresholding of pelvis slices

The images containing the evidence of the pelvic girdle will be classified as a
pelvic slice and those that don’t are classified as an abdominal slice. The slice is
categorized as the class with the higher probability. Examples of pelvis slices can
be seen in Figure 4.3.
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(a) (b)

(c) (d)

Figure 4.3: Pelvis Slices from CT Scan

4.5.3 Classification of Abdominal and Chest Slices

The network was trained again to produce a model that classifies 2D slices as either
an abdominal slice or a chest slice. The network was trained for 25 epochs which
took a duration of approximately 5 hours. After the training, the network takes
a 2D CT slice in the form of a 128 x 128 image and produces the probability of
the image being an abdominal slice as well as the probability of the image being
a slice containing the chest cavity. This classification is based on the anatomical
structures that are soft tissues and organs. The images containing the chest cavity
and shoulders are classified as chest slices and the slices containing the organs and
soft tissue below are classified as abdominal slices. The slice is categorized as the
class with the higher probability. Examples of chest slices can be seen in Figure
4.4.
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(a) (b)

(c) (d)

Figure 4.4: Chest Slices from CT Scan

4.5.4 Post-processing

The class of each slice predicted by the convolutional neural networks is stored in
an array. The 2D slices that have been classified as pelvic slices and chest slices
are removed and the abdominal slices make up the region of interest for further
processing which is liver segmentation as the liver occurs within the abdomen.
Algorithm 6 briefly describes the entire region of interest process. Examples of
abdominal slices can be seen in Figure 4.5.

59



Algorithm 6 Region of Interest Detection

Input: list of 2D slices
Output: list of slices containing region of interest

regionOfInterest← volume
for each slice in volume do

if slice = pelvisslice then
remove slice from regionOfInterest

else if slice = chestslice then
remove slice from regionOfInterest

else
slice← abdominalslice

end if
end for

(a) (b)

(c) (d)

Figure 4.5: Abdominal Slices from CT Scan
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4.6 Conclusion

In this chapter the implementation of a method to obtain a region of interest has
been discussed. Due to the performance of the deeper network with a filter size
of 3 x 3 being repeated through a few consecutive layers, this network was chosen
to be used as the CNN used to obtain a region of interest. Furthermore, this is a
new method used for obtaining a region of interest for liver segmentation. Previous
methods use bounding box extraction, thresholding or manually deleting slices that
do not contain liver tissue. This method is independent of grayscale image analysis
and features are automatically learned from scratch so that unnecessary slices are
removed from further processing.

In the next chapter, a liver segmentation method is presented using the results
of this section as input. The various steps of locating and segmenting the liver are
discussed in detail.
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Chapter 5

Liver Segmentation

5.1 Introduction

The liver location and segmentation is the most important step of the method.
If the liver is correctly located then subsequent steps are far more likely to yield
good results. The main difficulty is deciding on the correct technique from those
discussed previously. It is important to take into consideration that there is low
contrast between the liver and its surrounding organs, the great differences in liver
shape and appearance, the heterogeneity of background anatomical structures as
well as inhomogeneous appearances due to tumours and other pathologies [72].
Another vital aspect to be considered is that since this methodology caters for 2D
slices of the CT, the liver shape will be different on each slice, for example, the
slices that occur at the center of the liver will show a large area of liver whereas
the slices occurring at the ends of the liver will show a smaller area of the liver.

After taking these factors into account, a convolutional neural network is imple-
mented to locate and segment the liver from each 2D slice. This is due to the ability
of convolutional neural networks to learn where the liver is located and segment
liver tissue [52]. The slice classification technique that precedes this step removes
the slices that have a low probability of containing liver tissue which makes the
task of the technique implemented in this chapter easier. In this chapter the liver
location and segmentation method is presented as well as the pre-processing and
post processing steps implemented to maximize its efficiency.

The use of concatenate layers in the network and its effect on liver segmentation
is also investigated in this chapter. Two concatenate layers are added among the
convolution layers in order to test its effectiveness on the segmentation of the liver to
determine whether this addition improves the results produced by the convolutional
neural network.

Figure 5.1 depicts an overview of the methodology for liver segmentation. The
pre-processing techniques used are described in Section 5.2. The convolutional neu-
ral network is detailed in Section 5.3 as well as the training and data augmentation
involved. The post-processing technique used is described in Section 5.4.
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Figure 5.1: Overview of Liver Segmentation Method
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5.2 Pre-processing

Convolutional neural networks have the ability to learn features from scratch there-
fore only minimal amount of pre-processing is applied [52]. The image intensity of
all CT scans was truncated to the range [-200, 250] HU to remove irrelevant details.
The image slices are then resampled to size 128 x 128. Examples of slices before
and after pre-processing are depicted in Figure 5.2 where Figures 5.2(a), 5.2(b),
5.2(c) and 5.2(d) show the images before pre-processing and 5.2(e), 5.2(f), 5.2(g)
and 5.2(h) are their respective images after pre-processing.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.2: Slices before and after pre-processing

5.3 Liver Location and Segmentation

5.3.1 2D Convolutional Neural Networks

In this research, the 2D convolutional neural network is designed and trained to
automatically detect the liver. The network takes a 2D slice as input and produces
a probability map as a subject specific prior, which assigns each pixel the likeli-
hood of being the liver for the target image. A CNN is a variation of multi-layer
perceptron where several convolutional layers are stacked on top of each other.
Each convolutional layer extracts feature maps from its preceding layer which is
connected by some filters [69].
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5.3.2 Network Architecture of Model 1 (CNN without con-
catenate layers)

Inspired by the work done using the U-Net architecture [84], a similar CNN struc-
ture is adopted. It consists of a contracting path and an expansive path where the
contracting path follows the architecture of a typical convolutional network which
consists of convolutional layers followed by max-pooling layers for down sampling
[61]. The expansive path consists of upsampling followed by convolutions. To en-
sure seamless production of the output segmentation map it is vital that the input
size is such that all max-pooling operations are applied to a layer with an even x-
and y-size. The architecture of the CNN takes an input image of size 128 x 128
which corresponds to feature maps of a 2D slice of the CT volume. The compo-
nents of this network include twelve convolution layers, two max-pooling layers,
two up-sampling layers and a softmax layer. Each convolutional layer is followed
by a rectified linear unit to expedite the training on the CNNs. The architecture
is described in Table 5.1.

Table 5.1: Network architecture of Model 1

Layer Input Filter Stride Output
Conv 128x128x1 7x7, 32 1x1 128x128, 32

Pooling 128x128, 32 2x2 2x2 64x64, 32
Conv 64x64, 32 5x5, 64 1x1 64x64, 64

Pooling 64x64, 32 2x2 2x2 32x32, 32
Conv 32x32, 32 3x3, 128 1x1 32x32, 128
Conv 32x32, 32 3x3, 128 1x1 32x32, 128
Conv 32x32, 32 3x3, 128 1x1 32x32, 128
Conv 32x32, 32 3x3, 128 1x1 32x32, 128
Conv 32x32, 32 3x3, 128 1x1 32x32, 128
Conv 32x32, 32 3x3, 128 1x1 32x32, 128

Upsampling 32x32, 128 64x64, 128
Conv 64x64, 128 3x3, 64 1x1 64x64, 64

Upsampling 64x64, 64 128x128, 64
Conv 128x128, 64 3x3, 32 1x1 128x128, 32
Conv 128x128, 32 1x1, 16 1x1 128x128, 16
Conv 128x128, 16 1x1, 1 1x1 128x128, 1

Logistic

The first convolutional layer contains 32 feature maps and each feature map is
linked to the input feature maps through filters of size 7 x 7. Then a max-pooling
layer with a stride size of two pixels are used to generate 64 feature maps. The
second convolutional layer contains 64 feature maps and each feature map is linked
to all of the feature maps in the previous layer by filters of size 5 x 5. Following
this a max-pooling layer with a stride of two pixels are used to generate 128 feature
maps. This is followed by six convolutional layers with 128 feature maps where
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each feature map is linked to the feature maps in the previous layer by 3 x 3 filters.
Thereafter, an up-sampling layer with a stride size of two pixels generates 64 feature
maps. This is followed by an upsampling layer which expands the size of the feature
map to 128 feature maps. The ninth convolutional layer contains 64 feature maps
and each feature map is linked to the previous layers feature maps by 3 x 3 filters.
Then an up-sampling layer with a stride size of two pixels generates 64 feature
maps. This is then followed by two more convolutional layers where the first one
contains 32 feature maps and each feature is linked by 3 x 3 filters to the previous
layers feature maps. The last convolutional layer has 16 feature maps where each
feature map is linked to the features in the previous layer by 1 x 1 filters and a
dropout of 0.5 is used. The output layer contains 1 feature map and is linked to
the previous layers feature maps by 1 x 1 filters and a soft-max activation function
is used here.

5.3.3 Network Architecture of Model 2 (With concatenate
layers)

To investigate the effect of concatenation layers within the convolutional network,
two concatenate layers were added among a series of convolution layers. Since there
may be a loss of important features during the application of convolution filters,
the concatenation layers allow for lost features to be reintroduced by concatena-
tion. Concatenating layers that have different precision helps retrieving fine-grained
spatial information, as well as coarse contextual information [6].

The architecture of the proposed CNN takes an input image of size 128 x 128
which corresponds to feature maps of a 2D slice of the CT volume. The compo-
nents of this network include twelve convolution layers, two max-pooling layers,
two up-sampling layers, two concatenate layers as well as a softmax layer. Each
convolutional layer is followed by a rectified linear unit to expedite the training on
the CNNs. The first concatenate layer is placed after the fourth convolution layer
which concatenates the feature maps of the third and fourth convolution layers. The
second concatenate layer is placed after the sixth convolution layer which concate-
nates the feature maps of the fifth and sixth convolution layers. The architecture
is described in Table 5.2. The segmentation results obtained from the CNNs are
presented in Figure 5.3 where Figure 5.3(a) shows the original image, Figure 5.3(b)
shows the liver probability map produced by Model 1 and Figure 5.3(c) shows the
liver probability map produced by Model 2.
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Table 5.2: Network architecture of Model 2

Layer Input Filter Stride Output
Conv 128x128x1 7x7, 32 1x1 128x128, 32

Pooling 128x128, 32 2x2 2x2 64x64, 32
Conv 64x64, 32 5x5, 64 1x1 64x64, 64

Pooling 64x64, 32 2x2 2x2 32x32, 32
Conv 32x32, 32 3x3, 128 1x1 32x32, 128
Conv 32x32, 32 3x3, 128 1x1 32x32, 128

Concat
Conv 32x32, 32 3x3, 128 1x1 32x32, 128
Conv 32x32, 32 3x3, 128 1x1 32x32, 128

Concat
Conv 32x32, 32 3x3, 128 1x1 32x32, 128
Conv 32x32, 32 3x3, 128 1x1 32x32, 128

Upsampling 32x32, 128 64x64, 128
Conv 64x64, 128 3x3, 64 1x1 64x64, 64

Upsampling 64x64, 64 128x128, 64
Conv 128x128, 64 3x3, 32 1x1 128x128, 32
Conv 128x128, 32 1x1, 16 1x1 128x128, 16
Conv 128x128, 16 1x1, 1 1x1 128x128, 1

Logistic

5.3.4 Data Augmentation

Data augmentation is a useful way to increase the volume of training images using
only information within the training data, thereby reducing over-fitting on a model
[104]. In this research, affine transformations of the original images are represented
by Equation 5.1.

y = Wx+ b (5.1)

Where y is the transformed image, x is the original image, b represents shift in
height or rotation angle and W represents the zoom range.

The transformations used are described as follows:

• Width shift = 0.1

• Height shift = 0.1

• Zoom range = 0.1

• Rotation = 10 degrees
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(a) Original (b) Result of Model1 (c) Result of Model2

(d) Original (e) Result of Model1 (f) Result of Model2

(g) Original (h) Result of Model1 (i) Result of Model2

Figure 5.3: Liver location and segmentation results

5.3.5 Training

Prior to using the convolutional neural network to locate and segment the liver
from the 2D CT slices, it needs to be trained using the cases in the training set.
The networks were trained for 25 epochs with 1000 iterations per epoch to generate
the liver likelihood map. During each iteration a 128 x 128 slice is randomly chosen
from the training data and a 128 x 128 ground truth slice as the output. For the loss
function binary cross-entropy is used since it is a binary classification problem [46].
The network parameters are trained using the adaptive gradient descent algorithm
Adam optimization was used to update the weights. The learning rate is set to
x = 1e− 3× 0.8x and reduced using a learning rate scheduler. The initial weights
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are set using a random seed and the momentum and decay are adopted from the
U-Net used in [84]. Updating the weights was done after each epoch using batch-
wise training with a batch size of 16 examples. Assuming that the training dataset
is made up n labeled samples:

{(x1, y1), (x2, y2), ..., (xn, yn)}, where yi = 0 or 1, i = 1, 2, ..., n.

Denote θ be the set of all the parameters including the filters and softmax
parameters of the CNNs. For logistic regression, the following cost function is
minimized with respect to θ:

E(θ) =
1

n

{ i=n∑
i=1

yilogFθ(x
i) + (1− yi)log(1− Fθ(xi))

}
. (5.2)

Training each network takes approximately 45 hours per network using a CPU.
After the training is complete, the trained convolutional neural network is used to
predict a liver likelihood map of a 2D slice thereby, locating and segmenting the
liver.

5.4 Post-processing

Once the network produces a probability map of the liver likelihood, the result
undergoes some simple post-processing. Post-processing is used to refine the seg-
mentation results produced by the primary segmentation techniques. As discussed
in Chapter 2, there are many techniques that have been used for post-processing.
The refinement techniques used in this work include thresholding, largest connected
component selection and cavity filling using morphological operations.

5.4.1 Thresholding

The technique used is binary thresholding to eliminate the pixels with a probability
below 50 percent in the probability map. This produces an initial liver segmen-
tation. The result of the thresholding can be seen in Figure 5.4 where 5.4(a) and
5.4(c) are images before thresholding and 5.4(b) and 5.4(d) are their respective
results after thresholding. Equation 5.3 defines the thresholding function used.

g(x, y) =

{
0 iff(x, y) ≤ T

1 iff(x, y) > T
(5.3)

Where T is the threshold value, which in this case is a pixel value 127 as this is
50% of the maximum pixel value of 255.
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(a) (b)

(c) (d)

Figure 5.4: Results after thresholding the outputs of the CNN

5.4.2 Largest Component Selection

Since the liver is the largest organ present in the abdomen, largest connected compo-
nent selection is a technique that has been used as a primary segmentation technique
in anti-learning-based methodologies. Zayane et al [108] used a GCC algorithm to
detect the largest connected component after performing thresholding. Li et al [65]
used largest component detection after using a clustering method to initialize the
level set method as well as after the level set produced a segmentation result. Rusko
et al [86] and Campadelli et al [18] used this technique to limit a search space for
seed selection to initialize a region growing method. Similar to the methodologies
presented in [101] and [106], this technique is used for segmentation refinement
or post-processing. In some cases, islands of misclassified pixels may occur in the
segmentation result produced by the primary segmentation technique which in this
case is the convolutional neural network described in the previous chapter.

The algorithm used accepts the resulting segmentation volume from the liver
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location and segmentation method as input. The background pixel intensity is set
to zero and each component that is not zero within the volume is labelled. The
volume of each component is calculated and the component with the largest volume
is selected. This volume is then set as the threshold volume and all components with
a volume less than the threshold volume are removed using morphological operators.
The algorithm used in this process is described in Algorithm 7. Morphological
opening is used to remove the smaller components [102]. The result of the largest
component selection can be seen in Figure 5.5 where 5.5(a) and 5.5(c) are images
before largest component selection and 5.5(b) and 5.5(d) are their respective results
after being processed.

Algorithm 7 Largest Component Selection

Input: segmentation volume produced by segmentation
Output: segmentation volume containing largest component

for each component in components do
area[i]← calculateArea(component[i])

end for
largestComponent← 0
for each area in areas do

if area[i] > area[largestComponent] then
largestComponent← i

end if
end for
threshold← area[largestComponent]− 1
if length of area > 1 then

for each component in components do
if area[component] < threshold then

remove component
end if

end for
end if
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(a) (b)

(c) (d)

Figure 5.5: Results after largest component selection

5.4.3 Cavity Filling

In some cases, small cavities are present in the segmented liver. This may be as
a result of inhomogeneous liver tissue where tumours or lesions are present. The
most common post-processing technique used is morphological operators which are
used in [52, 81, 94, 25, 37, 108, 103] for cavity filling, to smooth extracted surfaces
and eliminate unconnected regions.

After the largest connected component is detected and the smaller components
are removed, the resulting volume is processed using morphological operators to
remove the cavities from the segmented volume. Morphological closing is used to
fill the cavities [102]. The resulting volume is the final segmentation volume. The
result of cavity filling can be seen in Figure 5.6 where 5.6(a) and 5.6(c) are images
before cavity filling selection and 5.6(b) and 5.6(d) are their respective results after
being processed.
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(a) (b)

(c) (d)

Figure 5.6: Results after cavity filling

5.5 Conclusion

In this chapter, the implementation of the liver location and segmentation is dis-
cussed. Minimal pre-processing allows for the neural network to learn features from
scratch making it more efficient in detecting and segmenting the liver. The addition
of concatenation layers to the convolutional network is also investigated.

Two networks are described; one without concatenate layers and one with con-
catenate layers. Both networks are trained with the same hyper-parameters and
with the same training data and are tested with the same test data. The exper-
iments and results of both networks are detailed in the next chapter. The use of
concatenate layers may be useful in the detection and segmentation of the liver
boundaries because they help in retrieving fine-grained spatial information, as well
as coarse contextual information.

The use of the post-processing thresholding allows for the elimination of the
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pixels that are less likely to be liver tissue which prevents the probability of over-
segmentation around the liver boundaries. In order to deal with cases where small
islands of misclassified pixels exist in the segmentation results produced by the liver
location and segmentation method, the resulting volume undergoes segmentation
refinement which includes largest component detection and morphological opening.
Furthermore, the volume undergoes morphological closing to remove cavities within
the liver volume which may have been misclassified by the convolutional neural
network due to the inhomogeneous liver tissue. The final segmentation result is
produced after this segmentation post-processing stage.

In the following chapter, the methods presented in this dissertation are evaluated
and the results are presented and discussed.
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Chapter 6

Results and Discussion

6.1 Introduction

In order to determine whether the proposed methods presented in this disserta-
tion has performed successfully, the methods must be evaluated and analyzed. It
is also important to understand the nature of the dataset and the programming
environment used.

The results obtained by other proposed liver segmentation methods and tech-
niques that were discussed in Chapter 2 are readily available, therefore compar-
isons between those results and the results obtained by the proposed method were
conducted. In order to determine the performance of the proposed method, com-
parisons needed to be made against the ground truth segmentation obtained by
manual segmentation conducted by a radiologist.

In this chapter, information pertaining to the dataset is presented in Section
6.2 and a brief description of the programming environment is given in Section
6.3. Section 6.4 gives an overview of the framework and Section 6.5 details the
experiments done, evaluation metrics, results and discussion of the slice alignment
method. Section 6.6 describes the experiments done, evaluation metrics, results
and discussion of the liver region of interest detection method and Section 6.6
describes the experiments done, evaluation metrics, results and discussion of the
liver location and segmentation method. Finally, Section 6.8 discusses the results
and a comparative analysis of the method presented in this dissertation.

6.2 Dataset

The datasets used are the Medical Image Computing and Computer Assisted Inter-
vention (MICCAI) 2007 grand challenge datasets [100]. All CT images are enhanced
with contrast agent and scanned in the central venous phase on a variety of scanners
(different manufacturers, 4, 16 and 64 detector rows). As it is CT, all datasets were
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acquired in transversal direction. The pixel spacing varied between 0.55 and 0.80
mm and the inter-slice distance varied from 1 to 3 mm. This means that the dis-
tance between consecutive slices differ between scans. There is no overlap between
neighboring slices. Examples can seen in the Figure 6.1, which shows consecutive
slices with a larger inter-slice distance where the difference in anatomical structures
are very conspicious, and Figure 6.2 which shows consecutive slices with a smaller
inter-slice distance where the differences in anatomical structures are more subtle.

(a) (b)

Figure 6.1: Consecutive slices with a larger distance

(a) (b)

Figure 6.2: Consecutive slices with a smaller distance

Most of the images are pathologic and include tumors, metastasis and cysts of
different sizes. Examples of these pathological abnormalities can be seen Figure
6.3. The dataset used for training is the MICCAI 2007 grand challenge training set
(MICCAI-Training) which consists of 10 volume images with corresponding ground
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truth segmentations. The dataset used for testing is the MICCAI 2007 grand
challenge testing data (MICCAI-Testing) which consists of 10 volume images.

(a) (b) (c)

Figure 6.3: Images with different pathological abnormalities

6.3 Programming Environment

The proposed framework was implemented and run with Intel Core i7-2640M CPU
@ 2.80GHz with 16.0GB RAM. The methods were implemented in Python using
different forms of plugins such as Tensorflow, Keras for the implementation of deep
learning techniques presented in this dissertation as well as OpenCV.

6.4 Overview of Liver Segmentation Framework

In order to process the dataset, a three stage liver segmentation framework is pro-
posed. The individual stages have been thoroughly discussed in the previous chap-
ters but the overview is as follows:

• Region of Interest Detection

• Liver Location and Segmentation

Figure 6.4 depicts an overview of the framework and how these stages relate to
each other and the processes that each stage involves.
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Figure 6.4: Overview of Liver Segmentation Framework
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6.5 Results of Slice Alignment

6.5.1 Experimental Setup

Three different experiments were carried out and the results were compared. The
first experiment implemented the ECC alignment algorithm such that each image
was aligned with the first image in the series of 2D images. The second experiment
implemented the ECC alignment algorithm such that each image in the series was
aligned with the image preceding it and the images were aligned in order from the
first image to the last. The final experiment included using the ECC algorithm to
align each image with its neigbouring slices in both directions. The images were
selected randomly to be aligned until all images were aligned. The results obtained
from these experiments were compared with each other to determine which is the
most appropriate for this dataset.

6.5.2 Evaluation

After the experiments were carried out the results were evaluated by calculating
the mean square difference(MSD) of the entire volume after each slice was aligned
[63]. The MSD obtained for the three experiments were compared for each 3D CT
volume. MSD is defined in equation 6.1.

MSD =
1

m× n

m∑
i=1

n∑
j=1

(Iorg(i, j)− Iint(i, j))2 (6.1)

where m is the width of the image, n is the height of the image, Iorg(i, j) is the
intensity value of the voxel at location (i, j) of the original image and Ialg(i, j) is
the intensity value of the voxel at location (i, j) of the aligned image.

6.5.3 Results and Discussion

The results obtained in the three experiments are shown in Table 6.1. The con-
vergence of the ECC algorithm for experiment 1 is slower due to the difference in
anatomical structures as the inter-slice distance grows with each iteration. The
closer the floating slice to the reference slice the faster the convergence. Since each
slice is being aligned to the first slice in the volume, the interslice distance increases
with each iteration resulting in the convergence speed increasing with each itera-
tion. In many cases, convergence is not reached. This is due to the algorithm not
being able to estimate a warped matrix to align the floating image to the reference
image which in this case is the first slice in the series. This occurs because of the
difference between the reference image and the floating image. In some cases the
slices were incorrectly aligned. An example of an original slice and an incorrectly
aligned slice can be seen in Figure 6.5(c) and Figure 6.5(d) respectively. With the
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Table 6.1: Results of Alignment Experiments

Image Before Alignment Experiment 1 Experiment 2 Experiment 3
001 280542.04 157067.35 164103.03 152353.00
002 703386.83 434681.84 569200.62 520375.20
003 791906.94 477509.61 658236.09 617086.95
004 470235.34 no convergence 371647.04 340319.72
005 543330.58 no convergence 366675.97 334012.21
006 480735.20 no convergence 348286.23 322766.54
007 505588.42 no convergence 356710.61 324468.96
008 202188.97 203107.31 134744.77 123075.58
009 426046.29 no convergence 280013.54 285622.30
010 1466966.96 no convergence 1121529.40 1058978.80

Total 5870927.57 1272366.10 4371174.30 4079059.20
Average 587092.76 127236.61 437117.43 407905.92

second experiment, the convergence occurs faster than in experiment 1 and 3 be-
cause each slice is being aligned with its preceding slice. However, the probability
of errors being propagated through the entire volume is high as this is a sequen-
tial formulation. This method is not suitable for this particular dataset because
the number of slices per volume is large. As can be seen in the results obtained,
the MSD of the volume obtained by experiment 2 is significantly less than that of
the volume before alignment. This proves that the alignment used in this exper-
iment performs adequately and better than the alignment in experiment 1. The
convergence is faster than in experiment 1 because the slices are being aligned with
neighbouring slices in both directions i.e. each slice is aligned with the slice before
it and after it. The algorithm also aligns slices in a random fashion. Due to this, no
particular direction is privileged in the method avoiding any global offsets, biases
in the estimation and error propagation. It is evident in the results obtained that
this alignment algorithm preforms better than those in experiments 1 and 2 as the
MSD is less than those obtained in the previous experiments. An example of a
correctly aligned slice, before and after alignment, can be seen in Figure 6.5(a) and
Figure 6.5(b) respectively.

(a) (b) (c) (d)

Figure 6.5: Aligned Slices

The change in MSD achieved in each experiment for each image volume can
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Table 6.2: Change in MSD

Image Experiment 1 Experiment 2 Experiment 3
001 44.01 41.51 45.69
002 38.20 19.07 26.01
003 39.70 16.88 22.08
004 - 20.97 27.63
005 - 32.51 38.53
006 - 27.55 32.86
007 - 29.45 35.82
008 - 33.36 39.13
009 - 34.28 32.96
010 - 23.55 27.81

Average 12.15 27.91 32.85

Table 6.3: Comparison of Methods

Method Registration improvement
Fischer et al [35] 40%
Collins et al [23] 20%

Proposed 32.85%

be seen in Table 6.2. The average change in MSD obtained by the three image
volumes that did reach convergence is 12.15%. It is evident that this algorithm
is not efficient or approriate for such large volumes. An average change in MSD
of 27.91% is achieved by the algorithm in experiment two and the randomized
algorithm in experiment 3 achieved an average of 32.85%. This proves that the
randomized algorithm performed the best.

The results obtained in experiment 3 is compared to those achieved by Collins
et al [23] and Fischer et al [35]. This is presented in Table 6.3. The proposed
algorithm achieved a higher improvement in alignment compared to that of Collins
but lower than that of Fischer. However, the evaluation of the work presented by
Fischer was evaluated on a very small sample and only two images are registered
at a time. The algorithm here aligns a series of images. The method presented
by Collins is tailored specifically to align or register 3D volumes of the brain with
respect to sulcal tissue. The advantage of the method proposed in this research
can be adjusted for use for any medical image registration or alignment simply by
adjusting the parameters of the ECC alignment algorithm and the threshold value
used by the skeletonization stage.
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6.6 Results of Region of Interest Detection

6.6.1 Experimental Setup

An experiment was set up to test the methodology in a scientific manner. The
experiment consists of two parts; evaluation and comparison of the small and deep
networks for chest slice detection and the evaluation and comparison of the small
and deep networks for the pelvis slice detection. This was done to determine which
convolutional network would perform better to be used in this methodology. There-
after, the methods are compared to related literature.

From the dataset described above, the training set was split up so that 80% of
the images were used to train the networks and 20% was used for validation during
the training. The test set was kept completely out of the training process. The
training and validation ratio of 80:20 was based on the small size of the dataset.
The model needs enough data to be able to generalize well as well as an adequate
amount of data to validate. Through data analysis it was evident that there was
variance throughout the training, validation and test sets therefore, the choice of
split of the dataset is reasonable.

6.6.2 Evaluation

The four trained models are evaluated during the training and after training. Dur-
ing the training of a convolutional neural network classifier, the two types of errors
that are found are training error and validation error. The training error occurs
during training and is also known as loss which is desired to be minimized. The
second type of error is validation error which is made during validation while testing
the model on the validation set.

Other than error rates, accuracy, recall and precision are also used as evaluation
metrics [46]. Accuracy is described as the amount of true positive (TP) classified
examples and true negative (TN) classified examples relative to the total number
of cases. Accuracy is defined in equation 6.2

Accuracy =
TP + TN

TP + FP + TN + FN
(6.2)

Recall is the number of TPs relative to all true positive cases, including missed
examples, which are called false negatives (FN). Recall is defined in equation 6.3

Recall =
TP

TP + FN
(6.3)

Precision is defined as the number of true positives divided by the number of
true positives plus the number of false positives. Precision is defined in equation
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6.4

Precisionl =
TP

TP + FP
(6.4)

The neural network is tested on 2D slices of 3D CT volumes. The number of
slices per CT volume varies from scan to scan and the number of slices in each class
per scan also varies. Each slice can either be a TP, FP, TN, or FN depending on
its classification and its true class.

After the slices are classified by the model the accuracy, recall and precision are
calculated. When the slices of all the CT scans have been evaluated the average
scores are calculated and serve as the final scores for the models.

6.6.3 Results and Discussion

Small Network

The results are presented in the order of evaluation. The results during training
are shown in Figure 6.6(a) for the chest slice detection model and Figure 6.6(b)
for the pelvis slice detection model. Figure 6.6(a) shows that the model converged
around epoch 20 where the purple line representing validation loss and the black line
representing training loss converges and the red line representing training accuracy
and the blue line represenitng validation accuracy converges. Similarly, in Figure
6.6(b)the convergence of the model occurs around epoch 11. The end results of the
training of both models are shown in Table 6.4 and Table 6.5. For the chest slice
detection model training, the loss is 0.0321 and the accuracy is 0.9791. The loss
of validation is 0.0274 and accuracy is 0.9840. The training loss for the pelvis slice
detection model is 0.0300 and the accuracy is 0.9845. The validation loss is 0.0190
and the accuracy is 0.9922.

(a) (b)

Figure 6.6: Training loss and accuracy of small networks during training
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Table 6.4: Results during training of Small Network for Chest Slice Detection

Training Validation
Metric Loss Accuracy Loss Accuracy
Score 0.0321 0.9791 0.0274 0.9840

Table 6.5: Results during training of Small Network for Pelvis Slice Detection

Training Validation
Metric Loss Accuracy Loss Accuracy
Score 0.0300 0.9845 0.0190 0.9922

The results after training are shown in Table 6.6 and Table 6.7 for the pelvis slice
detection model and Table 6.8 and Table 6.9 for the chest slice detection model.
These results show the recall, precision and accuracy after testing the models on the
CT scans from the test dataset. For the chest slice detection model, the accuracy
achieved is 0.95, recall is 1.00 and precision of 0.52. For the pelvis slice detection
model, the accuracy achieved is 0.98, recall is 0.88 and precision of 1.00. The
performance of these detection models is good as they achieved a high accuracy
rate however; the recall and precision are low for the model trained for chest slice
detection due to some misclassifications. The misclassified slices were the ones
where the liver extends into the chest cavity. This resulted in some false positives
and false negatives which further resulted in the low recall and precision.

Table 6.6: Results of Small Network for Pelvis Slice Detection

Image No. of Slices Pelvis (P) Abdomen (N) TP TN FP FN
1 111 - 111 - 111 - -
2 121 - 121 - 121 - -
3 245 53 192 33 192 - 20
4 335 13 322 10 322 - 3
5 183 71 112 70 112 - 1
6 165 75 90 74 90 - 1
7 91 7 84 6 84 - 1
8 258 - 258 - 258 - -
9 97 - 97 - 97 - -
10 73 5 68 3 68 - 2
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Table 6.7: Accuracy of Small Network for Pelvis Slice Detection

Image No. of Slices Recall Precision Accuracy
1 111 1 1 1
2 121 1 1 1
3 245 0.62 1 0.92
4 335 0.77 1 0.99
5 183 0.99 1 0.99
6 165 0.99 1 0.99
7 91 0.86 1 0.99
8 258 1 1 1
9 97 1 1 1
10 73 0.6 1 0.97
Average 0.88 1 0.98

Table 6.8: Results of Small Network for Chest Slice Detection

Image No. of Slices Chest (P) Abdomen (N) TP TN FP FN
1 111 14 97 14 90 7 -
2 121 14 107 14 99 8 -
3 192 5 187 5 180 7 -
4 322 18 304 18 294 10 -
5 112 5 107 5 103 4 -
6 90 8 82 8 77 5 -
7 84 1 83 1 79 3 -
8 258 18 240 18 223 17 -
9 97 2 95 2 94 1 -
10 68 1 67 1 63 4 -
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Table 6.9: Accuracy of Small Network for Chest Slice Detection

Image No. of Slices Recall Precision Accuracy
1 111 1 0.67 0.94
2 121 1 0.64 0.93
3 245 1 0.42 0.96
4 335 1 0.64 0.97
5 183 1 0.56 0.96
6 165 1 0.62 0.94
7 91 1 0.25 0.95
8 258 1 0.51 0.93
9 97 1 0.67 0.99
10 73 1 0.25 0.94
Average 1 0.52 0.95

Deep Network

The deep networks are evaluated in the same manner as the small networks. The
results during training are shown in Figure 6.7(a) for the chest slice detection model
and Figure 6.7(b) for the pelvis slice detection model. Figure 6.7(a) shows that the
model converged around epoch 12 where the purple line representing validation loss
and the black line representing training loss converges and the red line representing
training accuracy and the blue line represenitng validation accuracy converges.
Similarly, in Figure 6.7(b)the convergence of the model occurs around epoch 15.
The end results of the training of both models are shown in Table 6.10 and Table
6.11. For the chest slice detection model training, the loss is 0.0063 and the accuracy
is 0.9959. The loss of validation is 0.0183 and accuracy is 0.9920. The training loss
for the pelvis slice detection model is 0.0098 and the accuracy is 0.9942. The
validation loss is 0.0137 and the accuracy is 0.9932.

(a) (b)

Figure 6.7: Training loss and accuracy of deep networks during training
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Table 6.10: Results of Deep Network for Chest Slice Detection

Training Validation
Metric Loss Accuracy Loss Accuracy
Score 0.0063 0.9959 0.0183 0.9920

Table 6.11: Results of Deep Network for Pelvis Slice Detection

Training Validation
Metric Loss Accuracy Loss Accuracy
Score 0.0098 0.9942 0.0137 0.9932

The results after training are shown in Table 6.12 and Table 6.13 for the chest
slice detection model and Table 6.14 and Table 6.15 for the pelvis slice detection
model. These results show the recall, precision and accuracy after testing the
models on the CT scans from the test dataset. For the chest slice detection model,
the accuracy achieved is 0.97, recall is 0.86 and precision of 0.92. For the pelvis
slice detection model, the accuracy achieved is 0.99, recall is 0.95 and precision of
1.00. The deep networks performed more successfully as is evident in the results.
The reason for a low recall value is the misclassifications of a small number of chest
slices where the liver extends into the chest cavity.

Table 6.12: Results of Deep Network for Chest Slice Detection

Image No. of Slices Chest (P) Abdomen (N) TP TN FP FN
1 111 14 97 5 97 - 9
2 121 14 107 6 107 - 8
3 192 5 187 5 187 - -
4 322 18 304 18 297 7 -
5 112 5 107 4 107 - 1
6 90 8 82 8 76 6 -
7 84 1 83 - 83 - 1
8 258 18 240 18 239 1 -
9 97 2 95 - 95 - 2
10 68 1 67 - 67 - 1
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Table 6.13: Accuracy of Deep Network for Chest Slice Detection

Image No. of Slices Recall Precision Accuracy
1 111 0.36 1 0.92
2 121 0.43 1 0.93
3 245 1 1 1
4 335 1 0.72 0.98
5 183 0.80 1 0.99
6 165 1 0.57 0.93
7 91 0.99 1 0.99
8 258 1 0.95 0.99
9 97 0.98 1 0.98
10 73 0.99 1 0.99
Average 0.86 0.92 0.97

Table 6.14: Results of Deep Network for Pelvis Slice Detection

Image No. of Slices Pelvis (P) Abdomen (N) TP TN FP FN
1 111 - 111 - 111 - -
2 121 - 121 - 121 - -
3 245 53 192 49 192 - 4
4 335 13 322 12 322 - 1
5 183 71 112 70 112 - 1
6 165 75 90 74 90 - 1
7 91 7 84 6 84 - 1
8 258 - 258 - 258 - -
9 97 - 97 - 97 - -
10 73 5 68 4 68 - 1
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Table 6.15: Accuracy of Deep Network for Pelvis Slice Detection

Image No. of Slices Recall Precision Accuracy
1 111 1 1 1
2 121 1 1 1
3 245 0.92 1 0.98
4 335 0.92 1 0.99
5 183 0.99 1 0.99
6 165 0.99 1 0.99
7 91 0.86 1 0.99
8 258 1 1 1
9 97 1 1 1
10 73 0.80 1 0.99
Average 0.95 1 0.99

Comparing the results achieved by the small networks to those of the deep net-
works, it is evident that the deep networks were more successful in their respective
tasks. The deep detection models achieved higher accuracy rates than those of the
small detection models. This was due to the deep detection models having a lower
number of misclassified slices.

Table 6.16: Comparison of Chest Slice Detection Methods

Method Recall Precision Accuracy
AlexNet [95] 0.71 0.63 0.56
GoogLeNet [95] 0.67 0.62 0.58
Proposed (Small network) 0.52 1.0 0.95
Proposed (Deep network) 0.86 0.92 0.97

Table 6.17: Comparison of Pelvis Slice Detection Methods

Method Recall Precision Accuracy
AlexNet [95] 0.42 0.52 0.56
GoogLeNet [95] 0.40 0.60 0.58
Proposed (Small network) 0.88 1.0 0.98
Proposed (Deep network) 0.95 1.0 0.99

The results obtained in this research, are compared to the results obtained
using AlexNet and GoogLeNet in a study done by Sugimori [95]. It is evident in
Table 6.16 and Table 6.17 that the accuracy rate achieved by all network models in
this research are significantly higher than the accuracy rates achieved by AlexNet
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and GoogLeNet. For the chest slice detection models, this research achieved 0.95
and 0.97 using the small and deep network models respectively whereas, AlexNet
achieved 0.56 and GoogLeNet achieved 0.58. For the pelvis slice detection models,
this research achieved 0.98 and 0.99 using the small and deep network models
respectively whereas, AlexNet achieved 0.56 and GoogLeNet achieved 0.58. This
may be because of the very large number of datasets that were used in Sugimori’s
study compared to the small number used in this research. Also, these classification
models were designed for medical images whereas AlexNet and GoogLeNet were
designed specifically to classify natural images. Natural images are optical images
formed by focusing light onto some sort of 2D sensor array through an optical system
whereas medical images are 2D arrays of data where the values for each pixel valus
is converted to an intensity or colour for display [5]. AlexNet and GoogLeNet
were pretrained for the classification of natural images which may influence its
performance in classification of medical images.

6.7 Results of Liver Location and Segmentation

6.7.1 Experimental Setup

An experiment was set up to test the liver location and segmentation methods in
a scientific manner. The experiment consists of two parts. First, the two con-
volutional neural network models; the model without the concatenate layers and
the model with the concatenate layers, are evaluated. This was done to determine
which convolutional network would perform better to be used in this methodol-
ogy. The second part evaluates the whole methodology including the region of
interest detection method as well as the post-processing method. Thereafter, the
methodology is compared to related literature.

From the dataset described above, the training set was split up so that 80%
of the images were used to train the networks and 20% was used for validation
during the training. The test set was kept completely out of the training process
and the training and validation ratio of 80:20 was based on the small size of the
dataset. Through data analysis it was evident that there was variance throughout
the training, validation and test sets therefore, the choice of split of the dataset is
reasonable.

6.7.2 Evaluation

The two trained models are evaluated during training and after training. During
the training of a convolutional neural network, the training and validation errors
or loss are used to evaluate the network. After training the model, the networks
are used to segment the liver in the 2D slices which are reconstructed into a 3D
volume. Thereafter, the resulting segmented volumes are compared to the ground
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truth volumes. The volumes are evaluated using volume overlap error, relative vol-
ume difference, maximum symmetric surface distance, average symmetric surface
distance and root mean square symmetric surface distance [106]. The best per-
forming CNN results are also represented in Dice similarity coefficient in order to
compare its performance with some related work [107].

Volume Overlap Error (VOE): The segmentation volume is compared to the
ground truth volume and the overlap error is calculated in percentage. This cal-
culates the percentage of regions where the two volumes do not overlap with each
other. A perfect segmentation produces an overlap error percentage of 0. Equation
6.5 defines VOE.

V OE = 100

(
1− A ∩B

A ∪B

)
(6.5)

where A denotes the segmented volume produced by the proposed method and B
denotes the segmentated volume done by experts.

Relative Volume Difference (RVD): The segmentation volume is compared to the
ground truth volume and the relative volume difference is calculated in percentage.
Negative values suggest that the segmentation result is smaller than the ground
truth which denotes under-segmentation whereas positive values suggest that the
segmentation result is larger than the ground truth denoting over-segmentation. A
perfect segmentation produces a relative volume difference of 0 percent. Equation
6.6 defines RVD.

RVD = 100

(
| A | − | B |
| B |

)
(6.6)

where |A| is the absolute value of the segmented volume produced by the proposed
method and |B| is the absolute value of the ground-truth volume.

Average Symmetric Surface Distance (ASD): The average symmetric surface
distance is calculated in millimeters. For a perfect segmentation this distance is 0.
Equation 6.7 defines ASD.

ASD =
1

|S(A)|+ |S(B)|

( ∑
SA∈S(A)

d(SA, S(B)) +
∑

SB∈S(B)

d(SB, S(A))

)
(6.7)

where S(A) is the set of surface voxels of A, S(B) is the set of surface voxels of B.
The shortest distance of a voxel in S(B) to S(A) is defined as d(SB, S(A)) and a
voxel in S(A) to S(B) is defined as d(SA, S(B)).

Root Mean Square Symmetric Surface Distance (RMSSD): The root mean
square symmetric surface distance is calculated between the segmentation volume
and the ground truth volume in millimeters. The result for a perfect segmentation
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is 0. This metric punishes large deviations from the contour stronger than the
average symmetric surface distance. Equation 6.8 defines RMSD.

RMSD =

√√√√ 1

|S(A)|+ |S(B)|

( ∑
SA∈S(A)

d2(SA, S(B)) +
∑

SB∈S(B)

d2(SB, S(A))

)
(6.8)

where S(A) is the set of surface voxels of A, S(B) is the set of surface voxels of
B. The square of the shortest distance of a voxel in S(B) to S(A) is defined as
d2(SB, S(A)) and the square of the shortest distance of a voxel in S(A) to S(B) is
defined as d2(SA, S(B)).

Maximum Symmetric Surface Distance (MSSD): The maximum symmetric sur-
face distance is calculated between the segmentation volume and the ground truth
volume in millimeters. For a perfect segmentation this distance is 0. This metric
is sensitive to outliers and returns the true maximum error. Equation 6.9 defines
MaxASD.

MaxSD = max

(
maxSA∈S(A) d(SA, S(B)), maxSB∈S(B) d(SB, S(A))

)
(6.9)

where A is the segmented volume, B is the ground truth volume, S(A) is the set of
surface voxels of A, S(B) is the set of surface voxels of B. The distance of a voxel
in S(B) to S(A) is defined as d(SB, S(A)) and the distance of a voxel in S(A) to
S(B) is defined as d(SA, S(B)).

d(v, S(A)) = minSA∈S(A) ||v − SA|| (6.10)

where || · || is Euclidean distance between voxel v and S(A).

Dice Similary Coefficient (DSC): The dice similarity coefficient measures the
similarity and overlap between the ground truth B segmentation and the segmen-
tation results A achieved. The performance index ranges between zero to one with
an index zero signifying no overlap between B and A while index one signifies a
perfect overlap between them.

DSC = 2
B ∩ A
|B|+ |A|

(6.11)

where A denotes the segmented volume produced by the proposed method and B
denotes the segmentated volume done by experts. |A| is the absolute value of the
segmented volume produced by the proposed method and |B| is the absolute value
of the ground-truth volume.

92



6.7.3 Results and Discussion

The results of CNN without concatenate layers while training is represented in the
Figure 6.8. Figure 6.8(a) shows that the model converged around epoch 20 where
the red line representing validation loss and the blue line representing training loss
converges. Similarly, in Figure 6.8(b) shows the convergence of the model with
respect to validation accuracy represented by the red line and training accuracy
represented by the blue line. The results during training of the network model
without concatenate layers are shown in Table 6.18. The training loss is 0.0101
and the training accuracy is 0.9601. The validation loss is 0.0083 and validation
accuracy is 0.9717. The results while training of CNN with concatenate layers is
represented in the Figure 6.9. Figure 6.9(a) shows that the model converged around
epoch 21 where the red line representing validation loss and the blue line represent-
ing training loss converges. Similarly, in Figure 6.9(b) shows the convergence of the
model with respect to validation accuracy represented by the red line and training
accuracy represented by the blue line. The results during training of the network
model with concatenate layers are shown in Table 6.19. The training loss is 0.0109
and the training accuracy is 0.9585. The validation loss is 0.0061 and validation
accuracy is 0.9754.

(a) (b)

Figure 6.8: Training loss and accuracy of CNN without concatenate layers
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(a) (b)

Figure 6.9: Training loss and accuracy of CNN with concatenate layers

Table 6.18: Results of CNN without Concatenate Layers

Training Validation
Metric Loss Accuracy Loss Accuracy
Score 0.0101 0.9601 0.0083 0.9717

Table 6.19: Results of CNN with Concatenate Layers

Training Validation
Metric Loss Accuracy Loss Accuracy
Score 0.0109 0.9585 0.0061 0.9754

The results after training are shown in Table 6.20 for the convolutional network
model without concatenate layers. The average results obtained are 18.89% for
VOE, -4.58% for RVD, 6.36 for ASD, 4.99mm for RMSD and 81.63mm for MaxASD.
The results after training are shown in Table 6.21 for the convolutional network
model with concatenate layers. The average results obtained are 16.39% for VOE,
-8.77% for RVD, 3.32mm for ASD, 2.98mm for RMSD and 120.97mm for MaxASD.
As is evident in the two sets of results obtained the addition of concatenate layers
has an effect on the results. Even though the results for RVD, ASD, RMSD and
MaxASD increased, the addition of concatenate layers in the network decreases the
VOE. In most cases in the test dataset the VOE decreased with concatenate layers.
There were only two cases, image 1 and 5 in Table6.20 and Table6.21, where the
VOE increased. In 8 out of the ten cases, the VOE decreased and for image 8 the
VOE decreased significantly by 16.50%.
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Table 6.20: Results of CNN without Concatenate Layers

Image VOE[%] RVD[%] ASD[mm] RMSD[mm] MaxASD[mm]
1 15.59 2.50 3.09 3.49 44.87
2 14.82 3.09 4.89 5.19 65.22
3 22.59 -12.60 6.67 4.37 68.86
4 12.79 -0.03 7.04 6.44 129.02
5 20.07 12.16 14.00 9.02 125.72
6 24.85 4.87 10.96 7.92 127.49
7 11.48 -4.58 2.44 3.77 48.75
8 36.05 -33.70 9.92 5.08 152.13
9 14.25 -6.03 2.42 2.52 30.02
10 16.37 -11.52 2.04 2.08 24.19
Average 18.89 -4.58 6.36 4.99 81.63

Table 6.21: Results of CNN with Concatenate Layers

Image VOE[%] RVD[%] ASD[mm] RMSD[mm] MaxASD[mm]
1 16.22 9.16 4.64 5.13 73.99
2 12.79 6.41 3.35 4.479 68.53
3 15.17 -3.55 4.84 4.59 76.35
4 12.57 6.98 7.76 6.94 134.72
5 32.51 39.44 20.16 9.38 169.90
6 24.43 14.69 14.03 8.57 167.94
7 9.99 -2.41 2.35 4.07 48.87
8 19.55 -13.14 7.18 5.80 145.88
9 12.85 -0.94 2.60 3.71 101.99
10 12.09 -3.08 1.70 2.52 33.76
Average 16.82 5.36 6.87 5.52 102.19

The final results achieved by the framework including the region of interest
detection, liver location and segmentation by the CNN without concatenate lay-
ers as well as the post-processing is presented in Table 6.22. The average results
are 16.33% for VOE, -8.45% for RVD, 3.26mm for ASD, 2.74mm for RMSD and
43.59mm for MaxASD. The final results achieved by the framework including the
region of interest detection, liver location and segmentation by the CNN with con-
catenate layers in the model as well as post-processing is presented in Table 6.23.
The average results are 12.07% for VOE, -1.96% for RVD, 2.25mm for ASD, 2.60mm
for RMSD and 43.01mm for MaxASD. All the results except MaxASD decreased
significantly which proves that the framework using concatenate layers improves
the results. This CNN with concatenate layers within the network achieved a DSC
of 93.57%.

The examples of the final results of each CNN model are shown in Fingure
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Table 6.22: Final Results of CNN without Concatenate Layers

Image VOE[%] RVD[%] ASD[mm] RMSD[mm] MaxASD[mm]
1 14.86 1.56 2.28 2.30 31.97
2 12.52 0.20 2.13 2.29 16.61
3 20.81 -16.76 5.79 4.06 51.24
4 10.86 -2.35 3.32 3.06 47.47
5 10.40 -0.55 1.42 1.76 16.67
6 17.57 -7.56 2.64 3.11 38.85
7 10.69 -5.50 1.52 2.09 27.22
8 35.91 -34.81 9.54 4.70 152.12
9 13.64 -6.78 2.07 2.00 29.85
10 15.98 -11.99 1.93 2.01 24.19
Average 16.33 -8.45 3.26 2.74 43.59

Table 6.23: Final Results of CNN with Concatenate Layers

Image VOE[%] RVD[%] ASD[mm] RMSD[mm] MaxASD[mm]
1 14.27 6.57 2.56 2.79 23.19
2 10.33 3.37 1.77 2.41 32.34
3 12.83 -7.07 3.10 3.19 49.30
4 8.67 2.24 2.50 2.48 39.22
5 8.41 1.86 1.19 1.83 18.25
6 14.90 -3.11 2.33 3.20 40.61
7 9.26 -3.24 1.31 1.94 23.26
8 18.58 -14.39 4.29 3.65 145.88
9 11.54 -2.51 1.82 2.05 24.29
10 11.69 -3.55 1.59 2.41 33.76
Average 12.07 -1.96 2.25 2.60 43.01

6.10 where the segmentation outlined in green represent the results obtained by the
CNN without concatenate layers, blue represents the results obtained by the CNN
with concatenate layers and red represents the ground truth segmentation.
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Table 6.24: Comparison of Results of Liver Segmentation Frameworks

Related Work VOE[%] Dice[%]
Peng et al [81] 4.53 97.70
Wu et al [106] 7.87 -
Goryawala et al [41] 72.38 92.00
Stawiaski et al [94] 29.49 -
Furukawa et al [37] 12.80 -
Hu et al [52] 5.36 -
Lu et al [70] 5.90 -
Vivanti et al [103] 16.75 90.47
Dou et al [28] 5.42 -
Massoptier and Casciaro [73] - 95.00
Massoptier and Casciaro [74] - 94.20
Luo et al [?] - 97.30
Li et al [65] - 99.86
Huang et al [53] - 99.00
Goryawala et al [40] - 98.27
Singh et al [93] - 95.00
Christ et al [21] - 89.50
Christ et al [21] - 87.00
Ben-Cohen et al [14] - 89.00
Ben-Cohen et al [14] - 87.00
Ben-Cohen et al [14] - 88.00
Proposed 12.07 93.57

The final results of the framework using the CNN with concatenate layers in the
network model are compared to those of related work. The results are presented in
Table 6.24. The results in terms of volume overlap error and Dice similarity, were
better than those results of Goryawala et al [41], Stawiaski et al [94], Furukawa et
al [37], Vivanti et al [103] as well as the works of Christ et al [21] and Ben-Cohen
et al [14].

6.8 Conclusion

In this chapter, the dataset, the liver segmentation framework and the results
achieved from the framework were discussed. Due to the dataset containing images
of variance, the nuances associated with the dataset were discussed. In order to
understand how the processes combined to reach the final results, the liver seg-
mentation framework was represented in its entirety. The results of the region of
interest detection models were presented, discussed and compared and the results
of the liver location and segmentation models were presented, discussed and com-
pared. Thereafter, the results of the combined processing of the region of interest
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detection, liver location and segmentation and the segmentation refinement were
presented and discussed. Finally, these results were compared to those in related
literature.

The next chapter will draw more indepth conclusions as to what the results
mean. It will also look at what future work can be done to improve the presented
liver segmentation framework described in this dissertation.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.10: Images showing comparison between results of both CNN segmentation
models and ground truth segmentation
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Chapter 7

Conclusion

7.1 Summary

Segmentation of organs are of great importance for the success on CAD systems
in medicine as accurate segmentation of an organ allows for better analysis and a
more accurate diagnosis. The method currently used for segmentation is manual
segmentation from medical imaging that is conducted by a radiologist because
research has not been able to provide an accuracy rate of 100%. However, research
has enabled the use of computers to assist in the diagnostic process as a second-
opinion while an expert physician makes the final decision.

The use of deep-learning has achieved state-of-the-art performance in medi-
cal image analysis. Deep learning techniques have been applied to medical image
analysis with the intention of letting computers learn the features that optimally
represent the problem data at hand. CNNs, one of the most successful techniques in
deep learning, have been used in classification tasks, object or organ detection and
segmentation. Although, deep learning techniques have opened up a new avenue
for the success of medical image analysis, there is still some room for improvement
to increase the accuracy of results.

A method for liver segmentation using 3D CT scans is proposed in this research
work. CNNS are implemented to extract the liver from its background in the CT
image. Firstly, a CNN is used to classify each slice of a 3D scan in order to remove
slices that do not belong to the abdomen. This is done to obtain a region of interest
that contains the liver which is processed further during liver segmentation. The
abdominal slices from the region of interest are processed by a CNN to locate and
segment the liver. The resulting segmented liver slices are then reassembled into a
volume for post-processing. The proposed method does not require user-interaction
and performs automatic segmentation.
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7.1.1 Contributions

• In this research work, a method to align serially acquired 2D slices is presented
[48]. The method consists of four stages where the first stage is pre-processing
where the entire 3D CT volume undergoes smoothing using a median filter.
The second stage applies a Laplacian weighted histogram to determine the
optimal liver threshold which is used in the next stage for skeletonization
of the entire image volume. The last stage includes aligning the slices of
the skeletonized volume with respect to neighbouring slices. The main con-
tribution of this approach is to combine the use of skeletonization and the
randomized alignment algorithm for the alignment of 2D slices. The images
are aligned with their neighbouring slices in a random fashion rather than a
sequential formulation which prevents the propagation through the volume of
errors. This approach performed well as the MSD improved by an average of
32.85% in experiment 3 is which is significantly higher than the improvement
in the other two experiments. This method also ensures that no particular
direction is privileged in the method avoiding any global offsets, biases in the
estimation and error propagation.

• A method to obtain the region of interest for liver segmentation is proposed
[49]. Since the liver occurs in the abdomen, the 2D slices that contain the
pelvis and the chest are detected using two CNNs. These slices are then
removed from the further processing, which localizes further processing to
the abdomen where the liver is located. This also increases the chance of a
higher accuracy rate as well as reduces the computation time of segmentation.
Two different CNNs are implemented and trained to perform the chest slice
detection and pelvis slice detection. One CNN is a small network with a few
layers and the other is a deeper network with many layers where a filter size
is repeated for more than one layer. These networks are trained and tested
on the same dataset in order to determine which network performs better and
can be used prior to the liver segmentation step. Experiments were carried
out and the deeper networks produced better results. The deeper networks
achieved an accuracy rate of 97% for chest slice detection and 99% for pelvis
slice detection while the small networks achieved an accuracy rate of 95%
for chest slice detection and 98% for pelvis slice detection. This proves that
deeper networks produce more accurate results for medical image detection.

• A CNN is implemented to locate and segment the liver from each 2D slice
[50]. This is due to the ability of CNNs to learn where the liver is located
and segment liver tissue. The use of concatenate layers in the network and its
effect on liver segmentation is investigated. Experiments are conducted on two
CNNs to investigate this. One CNN does not contain any concatenate layers
while the other contains two concatenate layers among the convolution layers
in order to test its effectiveness on the segmentation of the liver to determine
whether this addition improves the results produced by the convolutional
neural network. The use of concatenate layers improved the VOE from 18.94%
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to 16.39%, the RVD from 2.61% to -8.77%, the ASD from 6.38mm to 3.32mm,
the RMSD from 5.10mm to 2.98mm and the MaxASD from 144.64mm to
120.97mm. It is evident from these results that the addition of concatenate
layers in a CNN improves the accuracy of the segmentation task.

• Finally, experiments were carried out to test the effect of the region of interest
detection method combined with the liver location and segmentation with
concatenate layers. The accuracy improved the VOE from 16.39% to 12.07%,
the RVD from -8.77% to -2.33%, the ASD from 3.32mm to 2.26mm and the
RMSD from 2.98mm to 2.86mm. From these results, it is evident that the
use of region of interest detection that implements deep learning techniques
improves the accuracy of the entire liver segmentation method. Compared
to the results obtained in related literature, the results achieved in this work
performed better than some. It can be concluded that the proposed liver
segmentation framework performed well.

7.2 Limitations and Future Work

The proposed liver segmentation framework uses deep learning in the form of CNNs
to learn features in the images in order to locate and segment the liver. The methods
presented are successful in their tasks however; there are limitations which can be
improved upon. Therefore, future work will involve finding ways to overcome these
limitations.

Firstly, the segmentation method is strongly tied to the training of the convo-
lutional network models during which important features are learned from scratch
which enables the network model to successfully analyse test images and perform
its task. The model needs enough data to be able to generalize well as well as an
adequate amount of data to validate against. Since the dataset used was relatively
small, future work will improve the model’s ability to generalize and produce more
accurate results by increasing the size of the dataset significantly.

Secondly, during the investigation of the region of interest detection methods
it was concluded that deeper networks produce better results. In future studies,
the use of deeper networks with more convolution layers could be explored as well
as comparisons to the performance of other neural networks that were trained on
medical images.
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