225 research outputs found

    Robotic technology and endoluminal surgery in digestive surgery

    Get PDF
    BACKGROUND. Colorectal cancer (CRC) is the third most common cancer in males and second in females, and the fourth most common cause of cancer death worldwide. The implementation of screening programs has allowed to the identification of an increasing number of early-stage neoplastic lesions. Presently, superficial colorectal neoplasms (including precancerous lesions and early cancer) can be resected in the colon by Endoscopic Mucosal Resection (EMR) and Endoscopic Submucosal Dissection (ESD), while in the rectum by Transanal Endoscopic Microsurgery (TEM). They are the preferred choices inside of the minimally invasive panorama regarding the CRC treatment. TEM technique offers more advantages than EMR and ESD, but it can’t overcome the recto-sigmoid junction. Many authors, research institutes and biomedical industries have proposed different solutions for microsurgery dissection of early lesions in the colon, but all these proposals have in common the development of platforms expressly designed for this use, with significant purchasing and management costs. The aim of our research project is to develop a robotic platform that allows to treat lesions throughout the colon limiting the costs of management and purchasing. This new robotic platform, developed in collaboration with Scuola Superiore Sant’Anna in Pisa, is called RED (Robot for Endoscopic Dissection). At the tip of a standard endoscope a hood (RED) is placed. RED is equipped by two extractable teleoperated robotic arms (i.e., diathermic hook and gripper); their motion is provided by onboard miniaturized commercial motors and a dedicated external platform. The endoscopist holds the endoscope near the lesion, while the operator drives the robotic arms through a remote control. MATERIALS AND METHODS. Several preliminary studies have been conducted in the following order. A first test was conducted for identification of force value for lifting and pulling maneuvers using a modified TEM instrument. A CAD study was conducted to determine the maximum size that the hood must have in order to overcome the critical angle represented by the splenic flexure. Several tests were conducted to determine the degrees of freedom of each robotic arm, starting with the CAD drawing to make subsequently the mock-ups of each configuration. Finally, a 3D mock-up was produced that was assembled on an endoscope to perform the in vitro test to evaluate the workspace and field of view using a pelvic trainer for TEM. RESULTS. The first test shown that the minimum force that the gripper will have to develop with the push-pull is 1.5N. The CAD study shown that the maximum dimensions the hood must have to overcome splenic flexure are: maximum diameter 28mm, maximum length 57mm. After several configurations was been tested, the final prototype features are: gripper arm with pitch sliding and open/close of the tip and diathermic hook arm with pitch, roll and sliding. There will be 6 such distributed motors: 3 external motors for the gripper arm that will operate through cables contained in a sheath adherent to colonscope and 3 embedded motors for diathermic hook arm (one integrated on the hood for the sliding degree of motion and the other two inside of the arm). The in-vitro test has been carried out to evaluate the workspace and they proved that the operating field vision is not obstructed by the hood and the working range is sufficiently wide to perform a dissection. CONCLUSION. Tests conducted up to this point have allowed us to identify the overall layout of the RED: dimensions, degrees of freedom, number and distribution of motors needed for the operation of robotic arms; moreover, it is proved that the device, once assembled, maintained the visual and operational field characteristics necessary to perform an accurate dissection. The next step will be to realize a RED steel final prototype and in-vivo tests will be carry out to replicate an endoscopic dissection into the colon

    Snake-Like Robots for Minimally Invasive, Single Port, and Intraluminal Surgeries

    Full text link
    The surgical paradigm of Minimally Invasive Surgery (MIS) has been a key driver to the adoption of robotic surgical assistance. Progress in the last three decades has led to a gradual transition from manual laparoscopic surgery with rigid instruments to robot-assisted surgery. In the last decade, the increasing demand for new surgical paradigms to enable access into the anatomy without skin incision (intraluminal surgery) or with a single skin incision (Single Port Access surgery - SPA) has led researchers to investigate snake-like flexible surgical devices. In this chapter, we first present an overview of the background, motivation, and taxonomy of MIS and its newer derivatives. Challenges of MIS and its newer derivatives (SPA and intraluminal surgery) are outlined along with the architectures of new snake-like robots meeting these challenges. We also examine the commercial and research surgical platforms developed over the years, to address the specific functional requirements and constraints imposed by operations in confined spaces. The chapter concludes with an evaluation of open problems in surgical robotics for intraluminal and SPA, and a look at future trends in surgical robot design that could potentially address these unmet needs.Comment: 41 pages, 18 figures. Preprint of article published in the Encyclopedia of Medical Robotics 2018, World Scientific Publishing Company www.worldscientific.com/doi/abs/10.1142/9789813232266_000

    Assessment of joystick and wrist control in hand-held articulated laparoscopic prototypes

    Get PDF
    Various steerable instruments with flexible distal tip have been developed for laparoscopic surgery. The problem of steering such instruments, however, remains a challenge, because no study investigated which control method is the most suitable. This study was designed to examine whether thumb (joystick) or wrist control method is designated for prototypes of steerable instruments by means of motion analysis. Methods: Five experts and 12 novices participated. Each participant performed a needle-driving task in three directions with two prototypes (wrist and thumb) and a conventional instrument. Novices performed the tasks in three sessions, whereas experts performed one session only. The order of performing the tasks was determined by Latin squares design. Assessment of performance was done by means of five motion analysis parameters, a newly developed matrix for assigning penalty points, and a questionnaire. Results: The thumb-controlled prototype outperformed the wrist-controlled prototype. Comparison of the results obtained in each task showed that regarding penalty points, the up ? down task was the most difficult to perform. Conclusions: The thumb control is more suitable for steerable instruments than the wrist control. To avoid uncontrolled movements and difficulties with applying forces to the tissue while keeping the tip of the instrument at the constant angle, adding a ‘‘locking’’ feature is necessary. It is advisable not to perform the needle driving task in the up down directionBiomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Laparoscopic robotic surgery : current perspective and future directions

    Get PDF
    Just as laparoscopic surgery provided a giant leap in safety and recovery for patients over open surgery methods, robotic-assisted surgery (RAS) is doing the same to laparoscopic surgery. The first laparoscopic-RAS systems to be commercialized were the Intuitive Surgical, Inc. da Vinci and the Computer Motion Zeus. These systems were similar in many aspects, which led to a patent dispute between the two companies. Before the dispute was settled in court, Intuitive Surgical bought Computer Motion, and thus owned critical patents for laparoscopic-RAS. Recently, the patents held by Intuitive Surgical have begun to expire, leading to many new laparoscopic-RAS systems being developed and entering the market. In this study, we review the newly commercialized and prototype laparoscopic-RAS systems. We compare the features of the imaging and display technology, surgeons console and patient cart of the reviewed RAS systems. We also briefly discuss the future directions of laparoscopic-RAS surgery. With new laparoscopic-RAS systems now commercially available we should see RAS being adopted more widely in surgical interventions and costs of procedures using RAS to decrease in the near future

    The future of robotic-assisted laparoscopic surgery

    Get PDF
    Introduction: Since the first revolution of robotic-assisted surgery officially happened in 2000, the healthcare service worldwide has transformed into a new era due to its superior technological advancements, particularly in laparoscopic surgery. Da Vinci which is seen as a master-slave system and Kymerax which is categorized as a hand-held device are commonly used in robotic-assisted laparoscopic surgery. Whilst a conventional or open method requires a large incision to perform a surgery, laparoscopy - a minimally invasive surgery (MIS) is an advantageous surgical method which reduces an abdominal incision to a minimum, and effectively exploited with robots. Methods: Based on available articles with the object of robotic surgical surgery, two SWOT analysis for Da Vinci and Kymerax were formulated to understand strengths, weaknesses, opportunities and threats of each system in comparison with the traditional laparoscopic surgery. From that, the future outlook is anticipated based on the scientific background. Results: Alongside technological advantages of Da Vinci mainly known as 6-degree of freedom, dexterity enhancement, stereovision, tremor filtering and especially minimal invasive surgery, it still has disadvantages that are not neglectable such as huge investment and lack of haptic feedback. Although the malfunction rate of Da Vinci is not significantly high, surgeons should be aware of it to fix or alter instruments in time. Kymerax is not as advanced as Da Vinci but it can fill in the gap of the Da Vinci which includes thelarge investment and bulky instruments. The Kymerax is the low-cost hand-held device allowing multiple degrees of freedom. It is an optimal combination between traditional performance and robotic performance allowing surgeons to manipulate in their hands and ensure haptic feedback. Conclusions: Both Da Vinci and Kymerax systems offer superior benefits for medical service due to the ongoing technological growth. The cost-effectiveness of Da Vinci system is currently a problematic issue when medical institutions consider to install them. The surgical instruments market, however, has become highly competitive which is likely leading to the decline of the costly investments. In the digital world nowadays, it will be a promising future for more integrated medical inventions

    The future of robotic surgery

    Get PDF
    © 2018 Royal College of Surgeons.For 20 years Intuitive Surgical’s da Vinci® system has held the monopoly in minimally invasive robotic surgery. Restrictive patenting, a well-developed marketing strategy and a high-quality product have protected the company’s leading market share.1 However, owing to the nuances of US patenting law, many of Intuitive Surgical’s earliest patents will be expiring in the next couple of years. With such a shift in backdrop, many of Intuitive Surgical’s competitors (from medical and industrial robotic backgrounds) have initiated robotic programmes – some of which are available for clinical use now. The next section of the review will focus on new and developing robotic systems in the field of minimally invasive surgery (Table 1), single-site surgery (Table 2), natural orifice transluminal endoscopic surgery (NOTES) and non-minimally invasive robotic systems (Table 3).Peer reviewedFinal Published versio

    The Use of Predicates in FDA Regulation of Medical Devices: A Case Study of Robotic Surgical Devices

    Get PDF
    In the last decade, a number of high profile medical device recalls have drawn attention to the regulatory approval process, particularly the streamlined process for devices considered “lower risk” known as the 510(k). Approval of medical devices through the 510(k) Process is not based on clinical data, but rather on “substantial equivalence” to predicate devices approved pre-1976 or legally marketed thereafter. A predicate device is one that shares the same intended use as the new device and technological characteristics which are either the same or different without introducing new safety hazards. Many scholars believe that the premise of approving medical devices based on similarity to existing devices is inherently flawed. In particular, there is worry that presence of technology creep between predicate devices can lead to the approval of medical devices which ultimately do not resemble the original device for which clinical evidence exists, even as that evidence is used to validate device safety. Given these concerns about the safety of the established regulatory process, this thesis explored the impact of predicate creep within the 510(k) Process through a case study of a Robotic Assisted Surgery (RAS) devices, with particular focus on the Intuitive Surgical Da Vinci Surgical System. Through the development of new methodologies using publicly available data to measure predicate creep, this research traces the predicate ancestry of several RAS devices to assess the current impact and implications of predicate creep on the current regulatory process. The study concludes that there is significant evidence of predicate creep within the approval process and recommend new guidelines for classifying device risk and subsequent evidentiary requirements within the 510(k) Process, to reduce the number of devices with high levels of potential risk to public safety released onto the market
    corecore