319 research outputs found

    Embedding a Grid of Load Cells into a Dining Table for Automatic Monitoring and Detection of Eating Events

    Get PDF
    This dissertation describes a “smart dining table” that can detect and measure consumption events. This work is motivated by the growing problem of obesity, which is a global problem and an epidemic in the United States and Europe. Chapter 1 gives a background on the economic burden of obesity and its comorbidities. For the assessment of obesity, we briefly describe the classic dietary assessment tools and discuss their drawback and the necessity of using more objective, accurate, low-cost, and in-situ automatic dietary assessment tools. We explain in short various technologies used for automatic dietary assessment such as acoustic-, motion-, or image-based systems. This is followed by a literature review of prior works related to the detection of weights and locations of objects sitting on a table surface. Finally, we state the novelty of this work. In chapter 2, we describe the construction of a table that uses an embedded grid of load cells to sense the weights and positions of objects. The main challenge is aligning the tops of adjacent load cells to within a few micrometer tolerance, which we accomplish using a novel inversion process during construction. Experimental tests found that object weights distributed across 4 to 16 load cells could be measured with 99.97±0.1% accuracy. Testing the surface for flatness at 58 points showed that we achieved approximately 4.2±0.5 um deviation among adjacent 2x2 grid of tiles. Through empirical measurements we determined that the table has a 40.2 signal-to-noise ratio when detecting the smallest expected intake amount (0.5 g) from a normal meal (approximate total weight is 560 g), indicating that a tiny amount of intake can be detected well above the noise level of the sensors. In chapter 3, we describe a pilot experiment that tests the capability of the table to monitor eating. Eleven human subjects were video recorded for ground truth while eating a meal on the table using a plate, bowl, and cup. To detect consumption events, we describe an algorithm that analyzes the grid of weight measurements in the format of an image. The algorithm segments the image into multiple objects, tracks them over time, and uses a set of rules to detect and measure individual bites of food and drinks of liquid. On average, each meal consisted of 62 consumption events. Event detection accuracy was very high, with an F1-score per subject of 0.91 to 1.0, and an F1 score per container of 0.97 for the plate and bowl, and 0.99 for the cup. The experiment demonstrates that our device is capable of detecting and measuring individual consumption events during a meal. Chapter 4 compares the capability of our new tool to monitor eating against previous works that have also monitored table surfaces. We completed a literature search and identified the three state-of-the-art methods to be used for comparison. The main limitation of all previous methods is that they used only one load cell for monitoring, so only the total surface weight can be analyzed. To simulate their operations, the weights of our grid of load cells were summed up to use the 2D data as 1D. Data were prepared according to the requirements of each method. Four metrics were used to evaluate the comparison: precision, recall, accuracy, and F1-score. Our method scored the highest in recall, accuracy, and F1-score; compared to all other methods, our method scored 13-21% higher for recall, 8-28% higher for accuracy, and 10-18% higher for F1-score. For precision, our method scored 97% that is just 1% lower than the highest precision, which was 98%. In summary, this dissertation describes novel hardware, a pilot experiment, and a comparison against current state-of-the-art tools. We also believe our methods could be used to build a similar surface for other applications besides monitoring consumption

    Using Hidden Markov Models to Segment and Classify Wrist Motions Related to Eating Activities

    Get PDF
    Advances in body sensing and mobile health technology have created new opportunities for empowering people to take a more active role in managing their health. Measurements of dietary intake are commonly used for the study and treatment of obesity. However, the most widely used tools rely upon self-report and require considerable manual effort, leading to underreporting of consumption, non-compliance, and discontinued use over the long term. We are investigating the use of wrist-worn accelerometers and gyroscopes to automatically recognize eating gestures. In order to improve recognition accuracy, we studied the sequential ependency of actions during eating. In chapter 2 we first undertook the task of finding a set of wrist motion gestures which were small and descriptive enough to model the actions performed by an eater during consumption of a meal. We found a set of four actions: rest, utensiling, bite, and drink; any alternative gestures is referred as the other gesture. The stability of the definitions for gestures was evaluated using an inter-rater reliability test. Later, in chapter 3, 25 meals were hand labeled and used to study the existence of sequential dependence of the gestures. To study this, three types of classifiers were built: 1) a K-nearest neighbor classifier which uses no sequential context, 2) a hidden Markov model (HMM) which captures the sequential context of sub-gesture motions, and 3) HMMs that model inter-gesture sequential dependencies. We built first-order to sixth-order HMMs to evaluate the usefulness of increasing amounts of sequential dependence to aid recognition. The first two were our baseline algorithms. We found that the adding knowledge of the sequential dependence of gestures achieved an accuracy of 96.5%, which is an improvement of 20.7% and 12.2% over the KNN and sub-gesture HMM. Lastly, in chapter 4, we automatically segmented a continuous wrist motion signal and assessed its classification performance for each of the three classifiers. Again, the knowledge of sequential dependence enhances the recognition of gestures in unsegmented data, achieving 90% accuracy and improving 30.1% and 18.9% over the KNN and the sub-gesture HMM

    Egocentric vision-based passive dietary intake monitoring

    Get PDF
    Egocentric (first-person) perception captures and reveals how people perceive their surroundings. This unique perceptual view enables passive and objective monitoring of human-centric activities and behaviours. In capturing egocentric visual data, wearable cameras are used. Recent advances in wearable technologies have enabled wearable cameras to be lightweight, accurate, and with long battery life, making long-term passive monitoring a promising solution for healthcare and human behaviour understanding. In addition, recent progress in deep learning has provided an opportunity to accelerate the development of passive methods to enable pervasive and accurate monitoring, as well as comprehensive modelling of human-centric behaviours. This thesis investigates and proposes innovative egocentric technologies for passive dietary intake monitoring and human behaviour analysis. Compared to conventional dietary assessment methods in nutritional epidemiology, such as 24-hour dietary recall (24HR) and food frequency questionnaires (FFQs), which heavily rely on subjects’ memory to recall the dietary intake, and trained dietitians to collect, interpret, and analyse the dietary data, passive dietary intake monitoring can ease such burden and provide more accurate and objective assessment of dietary intake. Egocentric vision-based passive monitoring uses wearable cameras to continuously record human-centric activities with a close-up view. This passive way of monitoring does not require active participation from the subject, and records rich spatiotemporal details for fine-grained analysis. Based on egocentric vision and passive dietary intake monitoring, this thesis proposes: 1) a novel network structure called PAR-Net to achieve accurate food recognition by mining discriminative food regions. PAR-Net has been evaluated with food intake images captured by wearable cameras as well as those non-egocentric food images to validate its effectiveness for food recognition; 2) a deep learning-based solution for recognising consumed food items as well as counting the number of bites taken by the subjects from egocentric videos in an end-to-end manner; 3) in light of privacy concerns in egocentric data, this thesis also proposes a privacy-preserved solution for passive dietary intake monitoring, which uses image captioning techniques to summarise the image content and subsequently combines image captioning with 3D container reconstruction to report the actual food volume consumed. Furthermore, a novel framework that integrates food recognition, hand tracking and face recognition has also been developed to tackle the challenge of assessing individual dietary intake in food sharing scenarios with the use of a panoramic camera. Extensive experiments have been conducted. Tested with both laboratory (captured in London) and field study data (captured in Africa), the above proposed solutions have proven the feasibility and accuracy of using the egocentric camera technologies with deep learning methods for individual dietary assessment and human behaviour analysis.Open Acces

    Advances in Sensors, Big Data and Machine Learning in Intelligent Animal Farming

    Get PDF
    Animal production (e.g., milk, meat, and eggs) provides valuable protein production for human beings and animals. However, animal production is facing several challenges worldwide such as environmental impacts and animal welfare/health concerns. In animal farming operations, accurate and efficient monitoring of animal information and behavior can help analyze the health and welfare status of animals and identify sick or abnormal individuals at an early stage to reduce economic losses and protect animal welfare. In recent years, there has been growing interest in animal welfare. At present, sensors, big data, machine learning, and artificial intelligence are used to improve management efficiency, reduce production costs, and enhance animal welfare. Although these technologies still have challenges and limitations, the application and exploration of these technologies in animal farms will greatly promote the intelligent management of farms. Therefore, this Special Issue will collect original papers with novel contributions based on technologies such as sensors, big data, machine learning, and artificial intelligence to study animal behavior monitoring and recognition, environmental monitoring, health evaluation, etc., to promote intelligent and accurate animal farm management

    Start to finish:Biomechanics of abdominal wall hernia prevention & long-term outcomes of repair

    Get PDF
    Biomechanical insights into incisional hernia prevention. Literature and clinical studies on the outcomes of ventral abdominal wall hernia repair surgery

    Advancing sustainability in the food and nutrition system: a review of artificial intelligence applications

    Get PDF
    Promoting sustainability in food and nutrition systems is essential to address the various challenges and trade-offs within the current food system. This imperative is guided by key principles and actionable steps, including enhancing productivity and efficiency, reducing waste, adopting sustainable agricultural practices, improving economic growth and livelihoods, and enhancing resilience at various levels. However, in order to change the current food consumption patterns of the world and move toward sustainable diets, as well as increase productivity in the food production chain, it is necessary to employ the findings and achievements of other sciences. These include the use of artificial intelligence-based technologies. Presented here is a narrative review of possible applications of artificial intelligence in the food production chain that could increase productivity and sustainability. In this study, the most significant roles that artificial intelligence can play in enhancing the productivity and sustainability of the food and nutrition system have been examined in terms of production, processing, distribution, and food consumption. The research revealed that artificial intelligence, a branch of computer science that uses intelligent machines to perform tasks that require human intelligence, can significantly contribute to sustainable food security. Patterns of production, transportation, supply chain, marketing, and food-related applications can all benefit from artificial intelligence. As this review of successful experiences indicates, artificial intelligence, machine learning, and big data are a boon to the goal of sustainable food security as they enable us to achieve our goals more efficiently

    Start to finish:Biomechanics of abdominal wall hernia prevention & long-term outcomes of repair

    Get PDF
    Biomechanical insights into incisional hernia prevention. Literature and clinical studies on the outcomes of ventral abdominal wall hernia repair surgery

    Capacitive Sensing and Communication for Ubiquitous Interaction and Environmental Perception

    Get PDF
    During the last decade, the functionalities of electronic devices within a living environment constantly increased. Besides the personal computer, now tablet PCs, smart household appliances, and smartwatches enriched the technology landscape. The trend towards an ever-growing number of computing systems has resulted in many highly heterogeneous human-machine interfaces. Users are forced to adapt to technology instead of having the technology adapt to them. Gathering context information about the user is a key factor for improving the interaction experience. Emerging wearable devices show the benefits of sophisticated sensors which make interaction more efficient, natural, and enjoyable. However, many technologies still lack of these desirable properties, motivating me to work towards new ways of sensing a user's actions and thus enriching the context. In my dissertation I follow a human-centric approach which ranges from sensing hand movements to recognizing whole-body interactions with objects. This goal can be approached with a vast variety of novel and existing sensing approaches. I focused on perceiving the environment with quasi-electrostatic fields by making use of capacitive coupling between devices and objects. Following this approach, it is possible to implement interfaces that are able to recognize gestures, body movements and manipulations of the environment at typical distances up to 50cm. These sensors usually have a limited resolution and can be sensitive to other conductive objects or electrical devices that affect electric fields. The technique allows for designing very energy-efficient and high-speed sensors that can be deployed unobtrusively underneath any kind of non-conductive surface. Compared to other sensing techniques, exploiting capacitive coupling also has a low impact on a user's perceived privacy. In this work, I also aim at enhancing the interaction experience with new perceptional capabilities based on capacitive coupling. I follow a bottom-up methodology and begin by presenting two low-level approaches for environmental perception. In order to perceive a user in detail, I present a rapid prototyping toolkit for capacitive proximity sensing. The prototyping toolkit shows significant advancements in terms of temporal and spatial resolution. Due to some limitations, namely the inability to determine the identity and fine-grained manipulations of objects, I contribute a generic method for communications based on capacitive coupling. The method allows for designing highly interactive systems that can exchange information through air and the human body. I furthermore show how human body parts can be recognized from capacitive proximity sensors. The method is able to extract multiple object parameters and track body parts in real-time. I conclude my thesis with contributions in the domain of context-aware devices and explicit gesture-recognition systems

    Proceedings of the 1st Workshop on Multi-Sensorial Approaches to Human-Food Interaction

    Get PDF

    Sensing with Earables: A Systematic Literature Review and Taxonomy of Phenomena

    Get PDF
    Earables have emerged as a unique platform for ubiquitous computing by augmenting ear-worn devices with state-of-the-art sensing. This new platform has spurred a wealth of new research exploring what can be detected on a wearable, small form factor. As a sensing platform, the ears are less susceptible to motion artifacts and are located in close proximity to a number of important anatomical structures including the brain, blood vessels, and facial muscles which reveal a wealth of information. They can be easily reached by the hands and the ear canal itself is affected by mouth, face, and head movements. We have conducted a systematic literature review of 271 earable publications from the ACM and IEEE libraries. These were synthesized into an open-ended taxonomy of 47 different phenomena that can be sensed in, on, or around the ear. Through analysis, we identify 13 fundamental phenomena from which all other phenomena can be derived, and discuss the different sensors and sensing principles used to detect them. We comprehensively review the phenomena in four main areas of (i) physiological monitoring and health, (ii) movement and activity, (iii) interaction, and (iv) authentication and identification. This breadth highlights the potential that earables have to offer as a ubiquitous, general-purpose platform
    • …
    corecore