924 research outputs found

    Mean-offset classifier based on Wi-Fi indoor positioning system

    Get PDF
    A mean-offset classification technique was identified. It was found that the meanoffset classifier provides stability under dynamic indoor conditions and provides consistent results when training and test data combinations are swept from 10 – 95%. In this paper the meanoffset classifier is compared to the K-Nearest Neighbors (KNN) and Naïve Bayesian (NB) classifiers, with a view of developing an adaptable and computationally efficient indoor localization model using machine learning principles. It was seen that the mean-offset classifier improved results considerably and achieved an accuracy of 0.85 m and 1.15 m under line-of-sight (LOS) and non-line-of-sight (NLOS) conditions in residential areas.http://ceur-ws.orgam2020Electrical, Electronic and Computer Engineerin

    Time of Flight and Fingerprinting Based Methods for Wireless Rogue Device Detection

    Get PDF
    Existing network detection techniques rely on SSIDs, network patterns or MAC addresses of genuine wireless devices to identify malicious attacks on the network. However, these device characteristics can be manipulated posing a security threat to information integrity, lowering detection accuracy, and weakening device protection. This research study focuses on empirical analysis to elaborate the relationship between received signal strength (RSSI) and distance; investigates methods to detect rogue devices and access points on Wi-Fi networks using network traffic analysis and fingerprint identification methods. In this paper, we conducted three experiments to evaluate the performance of RSSI and clock skews as features to detect rogue devices for indoor and outdoor locations. Results from the experiments suggest different devices connected to the same access point can be detected (p \u3c 0.05) using RSSI values. However, the magnitude of the difference was not consistent as devices were placed further from the same access point. Therefore, an optimal distance for maximizing the detection rate requires further examination. The random forest classifier provided the best performance with a mean accuracy of 79% across all distances. Our experiment on clock skew shows improved accuracy in using beacon timestamps to detect rogue APs on the network

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Improving performance of pedestrian positioning by using vehicular communication signals

    Get PDF
    Pedestrian-to-vehicle communications, where pedestrian devices transmit their position information to nearby vehicles to indicate their presence, help to reduce pedestrian accidents. Satellite-based systems are widely used for pedestrian positioning, but have much degraded performance in urban canyon, where satellite signals are often obstructed by roadside buildings. In this paper, we propose a pedestrian positioning method, which leverages vehicular communication signals and uses vehicles as anchors. The performance of pedestrian positioning is improved from three aspects: (i) Channel state information instead of RSSI is used to estimate pedestrian-vehicle distance with higher precision. (ii) Only signals with line-of-sight path are used, and the property of distance error is considered. (iii) Fast mobility of vehicles is used to get diverse measurements, and Kalman filter is applied to smooth positioning results. Extensive evaluations, via trace-based simulation, confirm that (i) Fixing rate of positions can be much improved. (ii) Horizontal positioning error can be greatly reduced, nearly by one order compared with off-the-shelf receivers, by almost half compared with RSSI-based method, and can be reduced further to about 80cm when vehicle transmission period is 100ms and Kalman filter is applied. Generally, positioning performance increases with the number of available vehicles and their transmission frequency

    Analysis and evaluation of Wi-Fi indoor positioning systems using smartphones

    Get PDF
    This paper attempts to analyze the main algorithms used in Machine Learning applied to the indoor location. New technologies are facing new challenges. Satellite positioning has become a typical application of mobile phones, but stops working satisfactorily in enclosed spaces. Currently there is a problem in positioning which is unresolved. This circumstance motivates the research of new methods. After the introduction, the first chapter presents current methods of positioning and the problem of positioning indoors. This part of the work shows globally the current state of the art. It mentions a taxonomy that helps classify the different types of indoor positioning and a selection of current commercial solutions. The second chapter is more focused on the algorithms that will be analyzed. It explains how the most widely used of Machine Learning algorithms work. The aim of this section is to present mathematical algorithms theoretically. These algorithms were not designed for indoor location but can be used for countless solutions. In the third chapter, we learn gives tools work: Weka and Python. the results obtained after thousands of executions with different algorithms and parameters showing main problems of Machine Learning shown. In the fourth chapter the results are collected and the conclusions drawn are shown

    TrackInFactory: A Tight Coupling Particle Filter for Industrial Vehicle Tracking in Indoor Environments

    Get PDF
    Localization and tracking of industrial vehicles have a key role in increasing productivity and improving the logistics processes of factories. Due to the demanding requirements of industrial vehicle tracking and navigation, existing systems explore technologies, such as LiDAR or ultra wide-band to achieve low positioning errors. In this article we propose TrackInFactory, a system that combines Wi-Fi with motion sensors, achieving submeter accuracy and a low maximum error. A tight coupling approach is explored in sensor fusion with a particle filter (PF). Information regarding the vehicle's initial position and heading is not required. This approach uses the similarity of Wi-Fi samples to update the particles' weights as they move according to motion sensor data. The PF dynamically adjusts its parameters based on a metric for estimating the confidence in position estimates, allowing to improve positioning performance. A series of simulations were performed to tune the PF. Then the approach was validated in real-world experiments with an industrial tow tractor, achieving a mean error of 0.81 m. In comparison to a loose coupling approach, this method reduced the maximum error by more than 60% and improved the overall mean error by more than 20%

    Investigation of indoor localization with ambient FM radio stations

    Full text link
    Localization plays an essential role in many ubiquitous computing applications. While the outdoor location-aware services based on GPS are becoming increasingly popular, their proliferation to indoor environments is limited due to the lack of widely available indoor localization systems. The de-facto standard for indoor positioning is based on Wi-Fi and while other localization alternatives exist, they either require expensive hardware or provide a low accuracy. This paper presents an investigation into localization system that leverages signals of broadcasting FM radio stations. The FM stations provide a worldwide coverage, while FM tuners are readily available in many mobile devices. The experimental results show that FM radio can be used for indoor localization, while providing longer battery life than Wi-Fi, making FM an alternative to consider for positioning.Comment: 10th IEEE Pervasive Computing and Communication conference, PerCom 2012, pp. 171 - 17

    A New Paradigm for Device-free Indoor Localization: Deep Learning with Error Vector Spectrum in Wi-Fi Systems

    Full text link
    The demand for device-free indoor localization using commercial Wi-Fi devices has rapidly increased in various fields due to its convenience and versatile applications. However, random frequency offset (RFO) in wireless channels poses challenges to the accuracy of indoor localization when using fluctuating channel state information (CSI). To mitigate the RFO problem, an error vector spectrum (EVS) is conceived thanks to its higher resolution of signal and robustness to RFO. To address these challenges, this paper proposed a novel error vector assisted learning (EVAL) for device-free indoor localization. The proposed EVAL scheme employs deep neural networks to classify the location of a person in the indoor environment by extracting ample channel features from the physical layer signals. We conducted realistic experiments based on OpenWiFi project to extract both EVS and CSI to examine the performance of different device-free localization techniques. Experimental results show that our proposed EVAL scheme outperforms conventional machine learning methods and benchmarks utilizing either CSI amplitude or phase information. Compared to most existing CSI-based localization schemes, a new paradigm with higher positioning accuracy by adopting EVS is revealed by our proposed EVAL system

    Indoor positioning with deep learning for mobile IoT systems

    Get PDF
    2022 Summer.Includes bibliographical references.The development of human-centric services with mobile devices in the era of the Internet of Things (IoT) has opened the possibility of merging indoor positioning technologies with various mobile applications to deliver stable and responsive indoor navigation and localization functionalities that can enhance user experience within increasingly complex indoor environments. But as GPS signals cannot easily penetrate modern building structures, it is challenging to build reliable indoor positioning systems (IPS). Currently, Wi-Fi sensing based indoor localization techniques are gaining in popularity as a means to build accurate IPS, benefiting from the prevalence of 802.11 family. Wi-Fi fingerprinting based indoor localization has shown remarkable performance over geometric mapping in complex indoor environments by taking advantage of pattern matching techniques. Today, the two main information extracted from Wi-Fi signals to form fingerprints are Received Signal Strength Index (RSSI) and Channel State Information (CSI) with Orthogonal Frequency-Division Multiplexing (OFDM) modulation, where the former can provide the average localization error around or under 10 meters but has low hardware and software requirements, while the latter has a higher chance to estimate locations with ultra-low distance errors but demands more resources from chipsets, firmware/software environments, etc. This thesis makes two novel contributions towards realizing viable IPS on mobile devices using RSSI and CSI information, and deep machine learning based fingerprinting. Due to the larger quantity of data and more sophisticated signal patterns to create fingerprints in complex indoor environments, conventional machine learning algorithms that need carefully engineered features suffer from the challenges of identifying features from very high dimensional data. Hence, the abilities of approximation functions generated from conventional machine learning models to estimate locations are limited. Deep machine learning based approaches can overcome these challenges to realize scalable feature pattern matching approaches such as fingerprinting. However, deep machine learning models generally require considerable memory footprint, and this creates a significant issue on resource-constrained devices such as mobile IoT devices, wearables, smartphones, etc. Developing efficient deep learning models is a critical factor to lower energy consumption for resource intensive mobile IoT devices and accelerate inference time. To address this issue, our first contribution proposes the CHISEL framework, which is a Wi-Fi RSSI- based IPS that incorporates data augmentation and compression-aware two-dimensional convolutional neural networks (2D CAECNNs) with different pruning and quantization options. The proposed model compression techniques help reduce model deployment overheads in the IPS. Unlike RSSI, CSI takes advantages of multipath signals to potentially help indoor localization algorithms achieve a higher level of localization accuracy. The compensations for magnitude attenuation and phase shifting during wireless propagation generate different patterns that can be utilized to define the uniqueness of different locations of signal reception. However, all prior work in this domain constrains the experimental space to relatively small-sized and rectangular rooms where the complexity of building interiors and dynamic noise from human activities, etc., are seldom considered. As part of our second contribution, we propose an end-to-end deep learning based framework called CSILoc for Wi-Fi CSI-based IPS on mobile IoT devices. The framework includes CSI data collection, clustering, denoising, calibration and classification, and is the first study to verify the feasibility to use CSI for floor level indoor localization with minimal knowledge of Wi-Fi access points (APs), thus avoiding security concerns during the offline data collection process
    • …
    corecore