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Abstract—Localization and tracking of industrial vehicles
have a key role in increasing productivity and improving the
logistics processes of factories. Due to the demanding require-
ments of industrial vehicle tracking and navigation, existing
systems explore technologies, such as LiDAR or ultra wide-band
to achieve low positioning errors. In this article we propose
TrackInFactory, a system that combines Wi-Fi with motion sen-
sors, achieving submeter accuracy and a low maximum error. A
tight coupling approach is explored in sensor fusion with a parti-
cle filter (PF). Information regarding the vehicle’s initial position
and heading is not required. This approach uses the similarity
of Wi-Fi samples to update the particles’ weights as they move
according to motion sensor data. The PF dynamically adjusts its
parameters based on a metric for estimating the confidence in
position estimates, allowing to improve positioning performance.
A series of simulations were performed to tune the PF. Then
the approach was validated in real-world experiments with an
industrial tow tractor, achieving a mean error of 0.81 m. In com-
parison to a loose coupling approach, this method reduced the
maximum error by more than 60% and improved the overall
mean error by more than 20%.

Index Terms—Bayesian filtering, dead reckoning (DR), indoor
positioning, indoor tracking, industrial vehicle, industry 4.0,
particle filter (PF), sensor fusion, tight coupling (TC), Wi-Fi-
based positioning.

I. INTRODUCTION

EHICLES have an important role in the distribution of

materials in industrial environments, thus current and
future generation factories (Industry 4.0) can benefit from
tracking these vehicles to increase productivity, improve logis-
tics processes and enable device intercommunication. Besides,
materials can be tracked along the supply chain by continu-
ously monitoring the position of the vehicles carrying them,
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improving internal and external logistics. With the rapid devel-
opment of research in this area [1], [2], there are already
autonomous vehicles as well as hybrid vehicles (can be human-
operated and also operate autonomously) in factories, which
can benefit from positioning and tracking.

Positioning of industrial vehicles can have two distinct
applications, namely, continuous tracking and monitoring of
the vehicle’s position as it operates (main focus of this work),
and as support for navigation of autonomous vehicles [3], [4].
Both applications have similar requirements, including cov-
erage of the entire operating area (factory plant), submeter
accuracy (or better for navigation), low maximum error, avail-
ability and high reliability. The reliability of a positioning
system is especially important for the localization of vehicles,
as it defines if the provided estimates can be trusted. A posi-
tioning system with low reliability can provide very accurate
estimates as well as estimates with large error, without provid-
ing any feedback as to whether those estimates are accurate or
not. Conversely, a reliable positioning system is able to deter-
mine if a position estimate has a high/low error associated,
i.e., if the position estimate can be trusted.

For many years, the localization of vehicles has been sup-
ported by GPS in outdoor environments, however, GPS does
not properly operate indoors due to the attenuation and dis-
tortion caused by the building structure. Among the available
solutions for indoor positioning, Wi-Fi fingerprinting is widely
used. Wi-Fi fingerprinting works on a simple principle where
the radio environment at each particular position is defined
by a unique fingerprint, i.e., a set of signal strength measure-
ments [5]. A previously collected radio map (RM), composed
of Wi-Fi samples (WSs), is used to obtain the similarity
between each RM sample and an online WS, then an estima-
tor algorithm [e.g., k-nearest-neighbor (kNN) or a weighted
kNN variant] is used to find a position estimate. Although
Wi-Fi networks are already present in most buildings, even
factories, enabling Wi-Fi fingerprinting, it usually provides a
mean positioning error between 2 and 4 m with a presence of
punctual large errors higher than 10 m [6].

Even though Wi-Fi may provide an absolute position, it
is not effective for tracking vehicles, due to significant vari-
ation between position estimates and due to low accuracy.
Alternatively, vehicles can be tracked using dead reckon-
ing (DR) by exploring sensors, such as inertial measurement
units (IMUs) and wheel encoders. DR depends on knowl-
edge about the initial pose (position and heading), which
must be estimated using other methods, and it suffers from
cumulative errors that affect IMU sensors, causing drift in the
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estimated trajectory. Sensor fusion of Wi-Fi with motion sen-
sors allows to benefit from both approaches while minimising
their drawbacks.

To overcome the main challenges of indoor vehicle localiza-
tion, we propose TrackInFactory, a solution for the localization
and tracking of industrial vehicles based on a particle filter
(PF) that performs the sensor fusion in a novel way. The PF
comprises a set of particles which weights represent position
probabilities and uses a set of methods to update particle’s
states and replace the ones with lower weights with new ones.
Data fusion is applied using a tight coupling (TC) approach at
the measurement level by combining raw measurements from
each sensor (Wi-Fi, IMU, and encoder) to provide an estimated
position. Entire coverage of the factory plant is provided by
Wi-Fi, which allows to obtain an initial position. Then, Wi-
Fi, heading and displacement samples allow the PF to update
the particles states considering noise in the sensors. The PF
is capable of estimating the position and heading of the vehi-
cle, continuously. Besides, it can be easily adapted to various
types of manually operated or autonomous industrial vehicles.
We have recurred to simulation to validate our approach before
conducting experiments in the real-world with a real industrial
vehicle in a factory-like environment.

This article introduces two main novel contributions to the
use of PFs for sensor fusion in Wi-Fi-based indoor position-
ing. First, Wi-Fi data is fused with motion data using a TC
approach that maximizes all the available Wi-Fi information.
Second, a new method is introduced to dynamically update the
particles’ weights using a new reliability metric that defines the
confidence of each position estimate. Moreover, a significant
additional contribution of this article is the real-world exper-
iments conducted in an industrial scenario with an industrial
tow tractor, that allowed to compare the performance between
the proposed solution and a loose coupling (LC) solution.

II. RELATED WORK

Different technologies may be used for the localization of
industrial vehicles depending on the application requirements,
being the cost, accuracy and reliability the most important
factors when choosing the technology. The localization of
industrial vehicles indoors may resort to camera vision, ultra-
sounds, magnetic, laser ranging (LiDAR), ultra wide-band
(UWB), RFID, Wi-Fi, or Bluetooth. These technologies are
often combined with motion sensors using sensor fusion to
improve positioning performance. Additional details about
real-time localization systems in industrial settings can be
found in [7].

UWB systems are used for vehicle localization in [2]
and [8]. In [2], UWB is combined with GPS to pro-
vide indoor/outdoor positioning of industrial vehicles. Sensor
fusion is performed with a PF, achieving an average error of
0.16 m in simulations. A drawback of this solution is that it
depends on line-of-sight propagation and it is expensive due
to the use of UWB.

Wu et al. [9] proposed an indoor positioning system (IPS)
for mobile robot localization that does not depend on addi-
tional infrastructure because positioning relies on the magnetic
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field and LiDAR data. The initial position is obtained from
magnetic fingerprinting while a finer position is obtained by
laser scan matching. The empirical experiments performed in
an area of 57x 19 m revealed an RMSE of 1.43 m considering
that the initial pose is known.

RFID has been explored in [3] and [10] for mobile robot
localization. In [3], passive tags placed on walls of the space
are detected by a robot equipped with RFID antennas. The
robot’s pose is obtained from the sensory fusion of RFID with
odometry, using a similarity sensor model. Experiments have
revealed a mean error of 0.14 m in an area with around 230 m?.
Both solutions are complex to scale for larger buildings due
to the installation of RFID tags and since they can also suffer
from interference from Wi-Fi or Bluetooth.

Although UWB, LiDAR and RFID technologies can meet
the demanding requirements of indoor tracking of industrial
vehicles, they are expensive. Alternatively, Wi-Fi is low-cost
and ubiquitous since it is present in most buildings, including
factories, thus it is an ideal technology for deployments that
take advantage of already existing infrastructure. Wi-Fi has
been explored for localization in industrial environments to
improve productivity in [11] and [12], and explored for vehicle
tracking in [13] and [14]. The IPS for vehicles based on Wi-
Fi fingerprinting [14] uses a raw data smoothing technique
to feed a classifier based on neural networks, which can deal
with noisy Wi-Fi signal strength measurements. This solution
achieved a mean error of 2.25 m in performed tests.

Traditionally, sensor fusion for positioning can be per-
formed using LC or TC approaches. In LC, sensor fusion is
performed at the position level, i.e., positions obtained from
distinct estimators are combined into a new estimate. In TC,
measurements from each sensor are combined in an algorithm
to generate a unique estimate. Different Bayesian techniques
have been explored in the literature about sensor fusion in
indoor positioning, namely, the Kalman Filter (KF) [15], the
extended KF (EKF) [16], and the PF [2], [3], [17]. KF models
the uncertainty to be Gaussian distributed, hence it is suitable
for problems where the noise in data tends to be Gaussian and
uni-modal. EKF, a variation of the KF for nonlinear problems,
is used in GPS and navigation as well as in the positioning of
mobile robots [16]. Similarly to the EKF, the unscented KF
(UKF), is used in nonlinear problems. The PF is a subset of
Monte Carlo methods suitable for nonlinear and non-Gaussian
problems because it does not assume linearity and Gaussian
nature of noise in data. Some advantages of the PF are [17]:
many particles represent several possible positions hypothe-
ses simultaneously; it can work with different sensor types,
motion dynamics and noise distributions; and, it is simple to
implement. Even though the PF is computationally expensive,
it is possible to adjust the number of particles, adapting it to
the available computing resources.

In recent years, researchers have been working on novel
approaches aiming to merge Wi-Fi with DR. Some systems
adopt PFs to locate pedestrians using Wi-Fi+PDR [18], [19].
Other systems explore simultaneous localization and map-
ping (SLAM) techniques for indoor localization, e.g., in [20],
a graph is used to combine Wi-Fi fingerprinting with DR
information from a phone. Loop closure and turn detection
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Fig. 1. TC and LC approaches.

are used to correct the estimated trajectory and eliminate
cumulative errors from motion sensors. In experiments con-
ducted in an area of 130 x 70 m, this solution achieved an
accuracy of 0.6 m and 4.76 m with Tango-based PDR (high
motion tracking accuracy using visual-based odometry) and
step-counter-based PDR, respectively.

In our approach, TC sensory fusion of Wi-Fi and motion
data takes advantage of the fusion at the measurement level.
It offers a good cost-benefit balance as it leverages exist-
ing WLAN infrastructure to provide coverage of the entire
operational area and uses motion sensors to allow continu-
ous tracking. In alternative to trajectory correction techniques,
such as loop closure, the proposed solution takes advantage of
the PF and a novel reliability metric that dynamically adjusts
the particles’ weights based on Wi-Fi similarity.

In summary, using accurate sensors (e.g., LIDAR) or tech-
nologies (e.g., UWB or RFID) for indoor localization leads to
high positioning accuracy, but is expensive. On the other hand,
low-cost solutions, such as Wi-Fi, are ubiquitous but have low
accuracy. The wide adoption of PFs in previous works has
shown they are suitable to combine Wi-Fi data with other sen-
sors for indoor localization. In this article, we take advantage
of previous knowledge and use a PF with a novel TC approach
for industrial vehicle tracking, an area of indoor positioning
that lacks significant contributions.

III. TRACKINFACTORY: PARTICLE FILTER BASED ON
TIGHT COUPLING

This section introduces TrackInFactory, an IPS based on
a PF that combines Wi-Fi fingerprinting with DR for more
accurate and reliable position estimates.

A. Tight Coupling Versus Loose Coupling

Since the Wi-Fi RM covers the entire area of the build-
ing and each particle represents the probability of the vehicle
to be at a certain position, Wi-Fi has an important role in
updating particles’ weights. Wi-Fi fingerprinting can be used
either to provide a position estimate [Fig. 1(a)] or to obtain a
set of similarities between the operational WS and the refer-
ence samples of the RM [Fig. 1(b)]. Both outputs can serve
as input for the PF, being the Wi-Fi position estimate related
to a LC approach, whereas the set of similarities related to a
TC approach.

The LC approach, explored in [21]-[23], combines a Wi-Fi
position estimate with data from other sensors in the fusion

algorithm. For instance, a Wi-Fi fingerprinting method based
on kNN first computes the similarity between the WS and the
reference samples from the RM. Then, a position estimate is
obtained based on the most similar WSs and is combined with
data from other sensors to produce a more accurate position
estimate. Large errors are usual in Wi-Fi-based positioning
due to different signal propagation effects, hence this approach
has the additional challenge of trying to eliminate the large
positioning errors.

The TC approach has been explored in [18] (using Wi-Fi)
and in [3] (using RFID). In a TC approach based on Wi-Fi,
the similarities between a new WS and the RM are com-
puted. Then, the similarities are used in updating the particles’
weights. Each particle has a weight based on the similarity
of its closest reference point (RP). In contrast with the LC
approach, which only considers a small set of RM samples,
this approach considers the entire RM, therefore it benefits
from all available information. Moreover, since TC does not
rely on a position estimate, it is less influenced by large
positioning errors.

B. Particle Filter

PFs are one of the best tools to solve nonlinear, non-
Gaussian problems, especially because noise is non-Gaussian
in heading observations (due to magnetic disturbances that
affect the heading provided by the IMU [24]) and in Wi-Fi
signal strength measurements.

Another advantage of PFs is that floor plans can be eas-
ily integrated, which is important for indoor vehicle tracking,
as it allows to define navigable areas (spaces where vehi-
cles operate), consequently, position estimates are improved
by removing particles that hit walls or obstacles.

PFs are based on the idea that a set of particles represents
the belief of the vehicle being in a position and comprise
three iterative steps named predict, update, and resampling.
In the predict step, particles states are estimated based on the
previous particle state and a motion model, taking into account
the noise models of each sensor. In the update step, particles’
weights are updated according to measurements from the sen-
sors. After initialization, particles spread throughout the space
before they start converging into a position where it is more
likely for the vehicle to be at. This is achieved by assigning dif-
ferent weights to particles, being that particles that are closer
to the vehicle’s position have higher weights, conversely, parti-
cles further from the vehicle have lower weights. Lower weight
particles are removed in the resampling step, and new parti-
cles are created by cloning higher weight particles. Finally,
the position and heading of the vehicle are estimated based
on the set of particles with higher weights.

Fig. 2 represents the main algorithm of the proposed PF.
It starts with the particles’ initialization, then waits for sam-
ples from sensors (displacement, heading or Wi-Fi). Particles
move according to heading and displacement measurements
considering noise. Upon receiving a new WS, the particles’
weights are updated and then the particles are subject to resam-
pling. The vehicle’s position and heading are updated after this
process.
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Fig. 2. PF main algorithm.

A particle is defined as p; = (w,x,y, z, h, ho), where w
represents the weight of the particle, x, y, and 7! represent the
position coordinates of the particle, 4 represents the heading
and ho represents the heading offset, necessary to estimate the
heading of the vehicle (see Section III-C).

C. Initialization

Particles are created around the positions where it is more
likely for the vehicle to be at, to minimize large initial errors
due to particles being uniformly dispersed throughout the
operational area.

Before creating particles, an absolute position is necessary
to determine where to place them. Wi-Fi fingerprinting allows
to obtain an absolute position, however, there is a certain prob-
ability to have a high error in the initial position. To minimize
the initial error, access points (APs) signal strengths of the first
few WSs are averaged into a merged WS (only received signal
strength indicator (RSSI) values of detected APs are consid-
ered), to increase the probability of placing the particles closer
to the real position [25]. The similarity between the averaged
sample and all RM samples is obtained, resulting in a list
of samples ordered by similarity. Particles are created around
the positions (RPs) where the most similar RM samples were
collected.

As the initial heading of the vehicle is unknown, each par-
ticle has an initial heading offset (ko) randomly set. Once
particles start moving, the ones with the correct heading off-
set will remain alive because they have higher weights, hence
after a few iterations particles converge to the correct heading.

Algorithm 1 describes how particles are created around RPs
where the merged WS is more similar. See Section III-D1 for
details about the initial particles’ weights.

TFor simplicity, the vehicle is assumed to move in a plane, therefore with
constant z.
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Algorithm 1 Particles Initialization

Input
rm - radio map, set of WSs
ws - sample of averaged RSSIs of first M WSs
k - number of RPs where particles will be created around
N - total number of particles ({N € Z | N > k})
Output
P - set of all particles.

1: procedure PARTICLES INITIALIZATION

2: P={}

3: S = dsim(rm,ws)  //compute Manhattan distance (dis-
similarity) between samples of rm and ws

4: RPs = set of k RPs from S that are more similar with ws

5: np = N/#(RPs)

around each RP

/Inumber of particles to be created

6: for rp € RPs do
7 sp = normalized similarity between ws and rp, defined
in Eq. 2
8: fori=1¢€{1..np}do
9: W < S,
10: x <« rp.x + rand(0, r)
11: y <« rp.y + rand(0, r)
12: 7«1
13: h<0
14: ho < rand(—m, )
15: p < (w,x,y,2z h, ho)
16: P <~ PU{p}
D. Sampling

The prediction and update steps are performed simultane-
ously when new sensor samples are obtained. The prediction
is based on the propagation of particles according to head-
ing and displacement samples, which consider noise modelled
after the IMU and encoder, respectively. Therefore, whenever a
new heading or displacement sample is collected, the sampling
process includes the predict (added noise) and the update (new
observations) in the same step (Section III-D2). The update
step also includes the process to update the particles’ weights,
which is based on the particle’s current state and the latest WS.

1) Update Particles’ Weights: Wi-Fi ensures absolute posi-
tioning coverage of the entire operational area, therefore it is
used to update particles weights as it allows to assign higher
weights to particles that are closer to the most probable posi-
tions, and lower weights to particles that are further away from
the most probable positions.

In this context, the RM is defined by RM =
{(p1,ws1), ..., (Om, wsy)}, which is the set of m WSs, each
associated to the position p where it was collected. Each WS,
defined as ws = {RSSIy, ..., RSSI,} represents the set of
received RSSI values detected by a Wi-Fi interface.

In Wi-Fi fingerprinting, a position estimate is usually
obtained by computing the centroid of the most similar RM
samples. While this estimated position can be used to update
the weights of the particles (LC), this approach does not use all
the available information (set of all the similarities between the
new WS and all the RM samples, defined as S = {s1, ..., si}-
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Fig. 3. Normalized similarity between a WS and RM samples.

Statistically, RM samples that are more similar to the WS are
the ones closer to the true position of the WS, as depicted in
Fig. 3.

In our approach, the set of all similarities is used when
updating particles weights (TC). Two fingerprints are com-
pared using a distance (dissimilarity) or similarity function,
e.g., Manhattan, Euclidean or Minkowski distances, or the
cosine similarity. We have opted for the Manhattan distance
since it showed good performance in Wi-Fi fingerprint-
ing [26]-[28]. The expression that defines the distance between
a WS and a RM sample, obtained with the Manhattan distance,
is presented next

n
s=) |RSSI™ — RSSI*| (1)
i=1
where RSSI; refers to the signal strength of AP; from the RM
sample (rm) and the Wi-Fi sample (ws). If an AP is missing
either in the RM sample or the WS, a default RSSI value of
—90 dBm is used. Once this is performed for all samples of
the RM, the Manhattan distance is normalized and converted
into the Manhattan normalized similarity, defined as
max(S) — s

= —— 2
max(S) — min(s)

where S represents the set of all distances between the WS

and all RM samples.

Fig. 3 shows an example of the normalized similarity
between a WS and the RM samples. Areas with higher simi-
larity are depicted at the top and bottom of the figure. If the
traditional LC approach were used, the centroid could fall in
an area with low similarity (black triangle), which is displaced
with respect to the real location of the WS. This issue does
not exist in a TC approach because it considers all available
information and it does not depend on the estimated position.

The particles’ weights have an important role in the PF as
they define which particles are removed in the resampling pro-
cess, and they are used when estimating the vehicle’s position
and heading. The weight of a particle is defined as

wr=wi—1x (1l —a) + 5, % 3)

where w;_1 represents the previous particle weight, s, repre-
sents the normalized similarity, and «, a factor used to define
how much the latest available Wi-Fi information affects the
particles’ weights.

0.1 0.3 0.7 0.6 0.4

0.2 0.4 0.8 0.9 0.7

0.3 0.4 0.7 0.8 0.6

0.1 0.2 0.3 0.5 0.2
Particles

Radio Map sample w/ normalized

N similarity sp,

Fig. 4. Assigning a similarity value to each particle.

The normalized similarity (s,) component of the particle’s
weight is obtained from the nearest RP as shown in Fig. 4. As
the particle’s weight depends on its closest RP, a dense RM
with a low distance between neighbouring RPs (e.g., 1x1 m
grid), will improve the system performance because it ensures
that the particle’s closest RP is always at a distance lower
than the grid size. A RM with a larger distance between
RPs can also be adopted as long as its density is increased
using log-distance path loss (LDPL) [5], or other techniques
to interpolate RSSI values.

2) Displacement and Heading: Continuous tracking of the
vehicle’s position is achieved by updating particles’ positions
and headings using the data provided by the encoder and
IMU sensors, which measure the displacement and heading
(orientation), respectively.

For each new displacement sample, particles’ positions are
updated as follows:

Xt = X¢—1 + (dr + ng) x sin(hy)
Yt = yi—1 + (d; + ng) x cos(hy) 4

where x;_1, y;—1 represent the previous position of the par-
ticle, d; represents the displacement (in meters) with respect
to the previous reading, &, represents the heading, and ny is
a zero-mean Gaussian distributed random variable added to
the displacement measurement. When a particle hits a wall or
obstacle in this step, its weight is set to zero.

The selected AHRS IMU (see Section V-B) estimates AHRS
orientation data using its algorithms, which take advantage of
reference vectors (i.e., gravity and the earth’s magnetic field)
to compensate for gyroscopes integration drift, resulting in
more reliable orientation data (lower drift), provided in Euler
angles (roll, pitch, and yaw). Particles’ headings are updated
when a new IMU sample is received

hy = 6;+ ng + ho 5

where 6; represents the heading (yaw) measurement from the
sensor at instant f, ng is a zero-mean Gaussian distributed ran-
dom variable and ko represents the heading offset (necessary to
estimate the initial heading, see Section III-C) of the particle.
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E. Resampling

After updating particles’ weights, particles are subject to
resampling. Particles with weights lower than a given thresh-
old are removed and new particles are created from the subset
of particles with higher weights. In order to improve heading
estimation and cope with drift in the heading, which is cumu-
lative over time, new particles have a new heading offset based
on the higher weight particle that was selected to be copied.
This process is described in Algorithm 2.

Removing particles with lower weights has the purpose of
reducing the time it takes the particles to cluster around the
most likely position. In contrast, the removal of these particles
is also a disadvantage of this resampling method because it
may lead to particle impoverishment, which occurs because
of the reduction of truly distinct particles.

Once the particles with lower weights are removed (line 2,
Algorithm 2), the algorithm enters a loop (line 3, Algorithm 2)
to create new particles until a total of N particles exists
in P’. We adopted the multinomial resampling method [29],
where particles are randomly selected according to their
weight, using the weight as the probability of being selected
(line 5, Algorithm 2). This allows higher weight particles to
be selected with higher frequency than the ones with lower
weights. Since we consider the particle’s previous weights
when updating the particle’s weight, our PF does not follow
a standard implementation in resampling where weights are
normalized, to sum up to one, and all particles have the same
weight of 1/N. Instead, newly created particles that are copies
of particles with higher weights inherit the original particle’s
weight. In the unlikely case that all particles have weight lower
than wy,, only 70% of particles are replaced to ensure that there
is particle diversity and avoid particle impoverishment.

In the initialization process, a random heading offset is
assigned to each particle and, as the PF starts converging,
particles that were initialized with the correct heading offset
will have a higher probability of being selected and copied in
this process, which will allow all particles to converge into
similar heading offset values.

In the resampling process, new particles are created with
a new heading offset to compensate for heading drift (line 6,
Algorithm 2).

F. Vehicle’s Position and Heading

The vehicle’s pose is estimated from the weighted average
of particle’s positions and headings

SN pilx, v, 2) X piw
N
Z,‘:l pi-w

tan~! ( YL sin(pi-h) x Pi-W>>. ©)

V(x,y,z,h) = (

Z?]:l cos(p;.h) x pj.w

G. Confidence in Position Estimates and Dynamic o

Larger positioning errors may occur during the first iter-
ations after initialization because the initial position and
heading are unknown. During this period, Wi-Fi should have
a higher influence on particles’ weights because it will result
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Algorithm 2 Resample Particles
Input

wy, - weight threshold, particles with weight lower than it
are removed

npo - zero-mean Gaussian distributed random variable, to
minimize drift and improve heading estimation
QOutput

P’ - set of resampled particles

: procedure RESAMPLE PARTICLES
: P’ = list of particles with weights higher than wy,

1

2

3 if #7/ == 0 then

4 Hf all particles have weights lower than wy,

5: P’ = list of 30% of particles with higher weights

6 while #(P') < N do (multinomial resampling)

7 /lcreate copies of particles from P’

8 p = particle selected from P’ using its weight as
probability

9: ho < p.ho + nyp,
posed of the original particle offset + noise component

10: P < (p.w,px,p.y,p.z, p.h, ho)

11: P <~ P U {p/} /ladd copied particle to the set of
resampled particles

/lparticle’s heading offset com-

in removing particles in areas where it is less likely for the
vehicle to be at. As particles are dispersed throughout the
space during the first iterations of the PF, higher weights will
be attributed to particles in areas where it is more likely for
the vehicle to be, and lower weights to particles that are in
unlikely positions. Since Wi-Fi defines how particles’ weights
are updated, it also has an important role to minimize drift in
the heading. The « parameter, introduced in Section III-DI,
defines how much the particle’s weight is influenced by the
Wi-Fi similarity.

We devised a mechanism in which a confidence measure
is used to define the value of «. When the confidence is
lower (meaning that a higher positioning error might exist),
a larger value is assigned to o which gives a higher influence
to Wi-Fi. This mechanism is continuously performed since the
initialization step.

The dispersion of particles ¥ (in meters), defined as the
average distance between the particles’ positions and the PF
estimated position, is given by

N
9= ]i\,Zd(v, pi) X Wi @
i=1
where V is the PF estimated position, p; represents the ith
particle position and w; represents the particle’s weight.
The dispersion is used to define a metric of confidence as
C(ﬁ):{_ﬁﬂ_‘_l’ 0 <9 < max ®)
0, U > Fmax
where rpax defines the maximum allowed dispersion (in
meters) between particles. We defined ry.x = 4 m, since, even
for tracking, more than 4 m radius is a significant area to have
confidence about the position of the vehicle.
The confidence was modelled after an empirical analysis
of the particles’ dispersion in simulations, as described in
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Section IV. Upon our analysis, we found that when the cloud
of particles is smaller (lower dispersion), there is usually
higher confidence associated. Moreover, when the disper-
sion of particles is larger (e.g., during first iterations) the
positioning error tends to be higher.

The confidence measure has to be a reliable indicator
of whether there is a large error in position estimates,
hence we have conducted experiments with synthetic data to
define the appropriate function that defines the confidence. In
Section IV-E we show the correlation between the confidence
and the positioning error, demonstrating that the confidence
function is reliable.

Even though o« could be a direct translation of the con-
fidence value, ie., « = 1 — C, it would greatly impact the
PF estimated position, as Wi-Fi would have too much influ-
ence on particles’ weights resulting in large errors. Since large
positioning errors occur when o« > 0.6 (see Section IV-C),
was decided to use the next expression to ensure that when
confidence is low, Wi-Fi does not have too much importance

a=06-0.6xC. ©)]

We have used simple (linear) models for C and « in our imple-
mentation, because they have been effective in simulations, but
we intend to explore other models in future works.

IV. SIMULATION

Simulations were performed to tune the PF parameters
before running tests in a real environment. Initially, we cre-
ated a simulated environment and generated synthetic data of
displacement, heading and Wi-Fi measurements, affected by
noise and drift in the heading. Finally, the proposed PF was
tested and its parameters tuned to achieve the best results.

A. Simulation Scenarios

Two simulation scenarios were considered, one representing
an empty building (50 x 20 m), without obstacles, and another
representing a building with the same dimensions but with
space restrictions (the vehicle cannot navigate in some areas).
Six trajectories were considered in these experiments: three
random trajectories (RTs) and three loop trajectories (LTs).
The purpose of RT is to show that the PF is capable of con-
verging, even without any space restrictions, and the purpose
of LT is to show how the PF performs in a realistic scenario,
with obstacles and space restrictions. Each RT is defined by
a random movement with a travelled distance of approximate
500 m. Each LT is defined by a cyclic movement, where the
vehicle performs several laps in a predefined trajectory and
has an average travelled distance of about 1750 m.

B. Synthetic Data

As TrackInFactory depends on data from Wi-Fi and motion
sensors, it is necessary to emulate them by generating syn-
thetic data (heading, displacement and Wi-Fi) synchronized in
time. To achieve that, it was assumed that the vehicle follows
a trajectory from point A to point B at a constant speed of
1 m/s, then it stops for 1 s at B, before proceeding to the next
point. A trajectory is composed of several points. Based on

the output of sensors to be used, sampling rates of heading,
displacement and Wi-Fi were defined as 20, 50, and 1/2 Hz,
respectively. Wi-Fi scanning in the 2.4-GHz frequency range
usually takes more than 1.5 s to collect the signal strength
values, hence it was decided that WSs were generated every
2 s. A displacement sample is defined as

ds = 1 + nyg (10)

where [ represents the true traveled distance and ng; represents
a zero-mean Gaussian random distribution that we defined as
N(0, 0.004 m). Heading samples are generated as

hs = B+ nps + ¢ 1D

where B represents the true absolute heading, nps represents
a zero-mean Gaussian distributed random variable, and ¢
represents the cumulative drift defined in degrees per hour,
meaning that drift increases over time, hence after one hour
drift has a value of ¢ degrees. We defined n;; = N(0, 10°)
and ¢ = 20°/h.

A simple model based on LDPL was used to calculate signal
strength values of APs. A signal strength value is defined as

RSSI = RSSIp — 10 x 1 x log;o(&§) + nrssi (12)

where RSSIj represents the RSSI value at 1 m distance of
the AP, n represents the path loss exponent, & represents
the distance between the AP and the point where the sig-
nal strength is estimated, and n.g; is a zero-mean Gaussian
distributed random variable. We defined RSSIyp = —40 dBm,
nessi = N(0, 4 dBm), and n = 2.

Both RM samples, as well as WSs of trajectories, were
created using this model. The RM of the simulation scenario
comprises 20 WSs at each RP for a 1x1 m grid of RPs.

In the definition of noise components (n;; and ngs) and
drift in the heading (¢), we assumed that the sensors pro-
duced more noise than normal (industrial-grade) sensors, to
test the proposed solution under challenging conditions. The
Wi-Fi noise component was defined considering that Wi-Fi
signals have high variability in indoor environments, due to
multipath and other propagation effects.

C. Analysis of Results Using Constant o

Before modeling the confidence function, described in
Section III-G, we studied how « affects results, using a
constant « in all trajectories.

The PF was run three times for each trajectory, using dif-
ferent random seeds. Table I (top part) shows the overall
positioning error that includes position estimates of all runs
of LT and RT trajectories. The Euclidean distance between
the estimated and true positions was used as the error metric.

A clear deterioration of results was observed for o > 0.6.
This suggests that in the long run, the latest WS should have a
low influence over the particles’ weights, therefore we defined
the value of « (9) varying between O and 0.6 as a function
of the confidence. When the confidence is high, « is low, and
vice-versa. This approach is important in the warm-up period
during which Wi-Fi has more importance while the particles
are still converging into a position and heading where it is
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TABLE I
POSITIONING RESULTS (IN METERS) OF SIMULATED TRAJECTORIES FOR
DIFFERENT & (TOP) AND wy, (BOTTOM) VALUES

@ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Mean  0.70 0.71 0.82 1.47 1.63 3.81 4.36 6.51 4.07 4.63
Median  0.49 0.50 0.56 0.64 0.69 0.80 0.94 3.19 1.12 1.24
P75, 0.86 0.90 1.07 1.29 1.44 2.70 4.04 5.36 327 4.06

Posy 198 209 243 438 502 2056 21.60 3409 2145 24.60
Poosr  3.69 328 354 1945 1824 3124 2975 4694 4383 4126
Max 846 693 651 2791 3678 3810 3530 5219 5243 5008
w01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Mean 088 087 087 081 077 073 071 1230 1659 NA.
Median 049 049 049 049 048 049 050 1161 1601

P 094 092 093 092 090 091 090 1802 23.14

Posyy 278 287 261 215 200 193 209 2593 3381

Poosr 828 803 799 681 565 449 328 3196 44.86

Max 1311 1095 1107 1079 1029 858 693 3493 47.22

more likely to be the true vehicle’s pose. After the warm-up
period, confidence tends to be high, hence o will be lower.

D. Analysis of Weight Threshold wy,

We also analyzed the PF performance for different values
of the weight threshold (wy,) used in the resampling process.
In this process, if the weight threshold is too low, particles
will move freely in RT trajectories or will move freely until
they hit walls or obstacles in LT trajectories. If it is too high,
too many particles are removed in the resampling process.

Based on the previous results, we conducted the same exper-
iment for LT and RT trajectories using o« = 0.2 and tested
different values of wyy, to understand how this parameter affects
results. Table I (bottom part) shows the overall positioning
error that includes position estimates of RT and LT trajectories,
obtained for different wy, values. When wy, = 0.7 it achieves
the best mean, P75, Pogy, and maximum error, therefore it is
the selected value for wy, in experiments, including the ones
of Section IV-C. As expected, the PF performance degrades
when wy, is too high, i.e., for wy, > 0.8 the PF removes an
excessive amount of particles in resampling, hence the PF is
not able to converge.

E. Simulation Results

The following results consider o as a function of C, as
described in Section III-G. Each trajectory was run three times,
as previously. Positioning error statistics include all position
estimates since ¢ = 0, including the initial warm-up period.

In Table II, we show the positioning results of LTs, RTs
and all trajectories. In comparison with the constant « results,
the major improvement was observed in the overall maximum
error from 6.93 m (for « = 0.2) to 5.95 m, besides, all other
performance metrics are also improved. Also, better results are
achieved in LT, in comparison to RT, because many particles
are removed when they hit walls or obstacles. This filters out
those particles that are in a less-likely situation where the vehi-
cle suddenly jumps to an area that is not linked to the previous
positions and, therefore, improving positioning. Conversely,
the positioning error is larger in RT because particles are more
dispersed, and they are removed in the resampling process or
when they hit the limits of the open-space building.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE II
POSITIONING RESULTS OF RT, LT, AND ALL TRAJECTORIES USING A
DYNAMIC « (IN METERS)

LT RT All

Mean 039 1.07 0.66
Median 034 0.86 048
P75, 050 135  0.80
Pos;, 082 246 1.84
Pooy, 151 393  3.15
Max 355 595 595
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Fig. 5. Density plot of position error versus confidence.

F. Positioning Error Versus Confidence

Fig. 5 depicts a density plot of the positioning error versus
confidence, considering all position estimates of all simu-
lations. It shows that there is a relationship between the
confidence (given by the dispersion of particles) and the posi-
tioning error, where the vast majority of position estimates
with high confidence (>0.8) have positioning errors lower than
1 m. There is a strong negative correlation between the posi-
tioning error and confidence, which is statistically significant,
Tpearson = —0.70, p = 0.0. A logarithmic scale is used in the
color scale of Fig. 5 to better represent these results.

G. Parameters

Based on the simulation process and preliminary experi-
ments with the vehicle prototype (see Section V-B), we have
defined the parameters of the PF used in simulations and real-
world experiments. In the initialization process we have set
N = 3000, M = 3, and k = 6. The random variables charac-
terizing noise in the displacement and heading were defined
as ng = N(0,0.01 m) and ng = N(0O, 1°), respectively, based
on sensor’s datasheet information. In the resampling process,
wim = 0.7 and ny, = N(0, 2°) were used.

V. REAL-WORLD EXPERIMENTS

We performed experiments with an industrial vehicle in a
factory-like building. First, we mapped and affixed tags to the
floor to be used as RPs in the testing scenario. Second, we
have equipped the vehicle with a positioning module. Finally,
we performed experiments to evaluate our solution in a real
environment.
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Fig. 6. PIEP building at University of Minho.
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Fig. 7. Floor plan of testing scenario—RPs (gray squares) and the installed
APs according to their model, network standard and height (z).

A. Testing Scenario

Experiments were conducted at the PIEP building (at the
University of Minho) which measures approximately 50 by
20 m and is more than 8 m high. The PIEP building is ded-
icated to research on plastic polymers, hence it is similar to
a factory plant with large open spaces, large machinery and
metal objects (injection molds), as shown in Fig. 6.

Fig. 7 shows RPs where RM samples were collected (gray
squares), the positions and specifications of the APs present in
the building (colored squares and diamonds), and the naviga-
ble areas (places where the vehicle can operate). The distance
between adjacent RPs is 1 m in most cases. Also, we affixed
tags to the floor marking RP locations which allowed collect-
ing ground truth using a video camera (pointed to the floor)
to register the time when the vehicle has passed over a tag. It
took about 180 min. to build the RM with 178 RPs, consider-
ing 40 s to collect 20 WSs at each RP and 30 s to move the
vehicle to a new RP.

B. Vehicle Prototype

We have installed a positioning module in a tow truck
(Toyota BT Movit TSE300) used to transport materials in
factories. Fig. 8 shows the integrated positioning module com-
posed of a Raspberry Pi Model 3B as well as the following
sensors: four Edimax EW-7811un external Wi-Fi interfaces;
an Xsens MTi-300 AHRS IMU to measure the heading; and,
a U.S. Digital A2 absolute encoder to measure the displace-
ment. The encoder sensor is attached to the back of the
vehicle with a custom mount. We use multiple Wi-Fi interfaces
since signals of distinct Wi-Fi interfaces are poorly corre-
lated [25], which allows to average signal strength values into a
merged WS.

Positioning

Module

Fig. 8. Industrial vehicle (tow tractor) used in tests.

= Ground truth
154 + Particle Filter

= Ground truth
154+ Particle Filter

Fig. 9.  Comparison between DR and PF estimated trajectories. (a) DR
trajectory 1. (b) PF trajectory 1. (c) DR trajectory 2. (d) PF trajectory 2.
(e) DR trajectory 3. (f) PF trajectory 3.

The positioning module can be easily installed in other types
of vehicles because it operates independently of the vehicle,
but, it still depends on coupling the encoder to the vehicle.

C. Results

Carried tests with the industrial tow tractor included three
trajectories with a duration of 15, 15, and 7 min, respectively.
The total distance covered over all trajectories sums up to
approximately 775 m.

Fig. 9 displays the DR and PF trajectories. The DR tra-
jectories were obtained using an initial position and heading
of the vehicle, while in the PF trajectories the initial pose
was unknown. Drift in the heading is present in all DR tra-
jectories. Conversely, the PF can compensate for the drift as
shown by the PF estimated trajectory. This is possible due
to the removal of particles that hit walls or obstacles and
also because the heading offset of particles is updated in the
resampling process.

In order to compare TrackInFactory to the LC approach
in [21], Fig. 10 shows how the positioning error varies over
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Fig. 10. Error over time of each trajectory using this PF and the LC approach [21]. (a) Trajectory 1. (b) Trajectory 2. (c) Trajectory 3.

TABLE III
OVERALL POSITIONING RESULTS (IN METERS) OF EXPERIMENTS WITH
INDUSTRIAL VEHICLE

Wi-Fi Loose coupling  Tight coupling

FP approach approach
Overall Overall AW  Overall AW
Mean 2.15 1.03 0.85 0.81 0.71
Median 1.85 0.68 0.66 0.67 0.64
P75 2.97 1.40 1.23 1.08 1.00
Pos,p, 5.39 2.46 2.00 1.72 1.48
Poos 7.48 6.87 2.33 3.01 1.70
Max 12.24 12.26 2.88 4.00 2.06

FP — Fingerprinting; AW — After warm-up.

time for both solutions, in each testing trajectory. As expected,
errors are higher during the initial phase, while the PF is con-
verging. We refer to this phase as the warm-up period and it
comprises the position estimates in the interval # € [0 s, 100 s].

TrackInFactory converges faster, has a lower maximum
error and a better mean error after converging. This is achieved
due to the process to update particles weights and resam-
pling which rapidly removes particles from improbable areas.
In [21], when a particle is more than /2 m of its nearest RP, it
is removed. This method is equivalent to using the floor plan
to remove particles.

Results of all trajectories are aggregated and presented in
Table III. It shows a comparison between the proposed TC
approach, the LC approach [21] and pure Wi-Fi fingerprinting
(KNN with k£ = 5). The proposed TC approach has significant
improvements especially in the last quartile in comparison to
Wi-Fi fingerprinting and the LC approach. The maximum error
with the TC approach after the warm-up time (2.06 m) is
lower than the mean error achieved with Wi-Fi fingerprinting
(2.15 m), showing that the TC approach fuses information
efficiently taking advantage of all information from the set
of similarities, instead of relying on a previously estimated
position based on Wi-Fi, which is the case in fingerprinting
and LC.

Results of experiments in a real environment are similar
to the ones achieved with the simulations (see Section IV-E)
which demonstrate that the PF was properly configured and
the simulation model is reliable.

Fig. 11 shows the CDF curves of the different positioning
methods. CDF curves of TC and LC are similar for prob-
abilities below 0.6, but after that point, we see the clear
improvement of the proposed solution over the LC one. The
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528 &
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Error (m)

Fig. 11. CDF of positioning error.
TABLE IV
OVERVIEW OF THE PROPOSED AND OTHER SYSTEMS
Localization Mean
Solution Technology T . Error
echnique
(m)
[2] UWB + GPS PF 0.16
TrackInFactory A PF w/
(tight coupling) Wi-Fi + MS tight coupling 0.81
(21] . Wi-Fi + MS PF + W-FP 1.03
(loose coupling)
Wi-Fi + odometry +
[13] LiDAR PF 1.2
[18] Wi-Fi + PDR PF 1.2
Wi-Fi + IMU +
[19] FM Transmitters PF w/ W-FP 211
[14] Wi-Fi W-FP 2.25

PF — Particle Filter; MS — Motion Sensors (IMU and encoder);
W-FP — Wi-Fi fingerprinting.

curves after the warm-up are the ones that better represent the
positioning performance in a realistic scenario because it is
expected to be running in vehicles for long periods, in which
the larger errors in the beginning (while the PF is converging)
are less relevant. In positioning applications with demanding
requirements, such as high accuracy and low maximum error,
the performance in the last quartile is very important. Our
solution achieved 1.0 and 1.70 m in the P75, and Pyoy, respec-
tively, showing that it is capable of locating industrial vehicles
accurately.

Table IV shows an overview of the proposed solution
and several positioning systems for the localization of indus-
trial vehicles, mobile robots, and pedestrians. This overview
presents each system according to its technology, localization
technique, and reported accuracy (mean error).
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An overall mean error of 0.81 m is achieved in real-world
experiments, with the proposed TC approach. It performs bet-
ter than the LC approach [21] (with 1.03-m mean error) that
uses the same sensors as the proposed solution. Regarding the
other positioning systems, the results of the solution presented
in this article are in line with systems with similar technologies
based on PFs.

VI. COMPUTATIONAL COMPLEXITY

PFs are known for having demanding computational
requirements due to the high sample rate of sensors, which
demands that the main operation is executed fast enough so
that there is no delay between position estimates provided by
the PF. The computational burden of PFs depends mostly on
the number of particles, as most operations affect all particles
and their states over time. When new heading or displacement
measurements are obtained, the sampling algorithm has low
complexity of O(N), with N representing the number of par-
ticles. In the process to update particles weights, the number
of WSs Nys in the RM, as well as, the number of detected
APs Nap in the latest WS, lead to an asymptotic complex-
ity of O(Nyws X Nap). A similar complexity is achieved in the
process to find the closest RP to each particle, where a compar-
ison is made between the positions of WSs Ny and particles
N, thus achieving an asymptotic complexity of O(Nys x N).
The resampling algorithm, which implements the multinomial
resampling approach [29], has a complexity of O(N log,(N)),
lower than the complexity in updating particles weights, but
also presents asymptotic complexity. The system handles part
of the complexity problem by fixing the number of particles
being used, and the achieved performance reported is for that
specific number of particles. Moreover, the number of parti-
cles used can be the same for larger spaces, not increasing
the computational cost of the system. This leaves the RM as
the only input that can increase the computational cost of the
system. For larger spaces, the number of samples in the RM
may increase, however, this problem can be minimized by
applying a clustering or filtering technique [30] which allows
the reduction of RM search in large areas without compromis-
ing the accuracy. As reported in [30] there are techniques that
effectively reduced the RM size while improving the accuracy
in some cases. Adopting clustering or filtering techniques to
optimize the RM will be part of future work.

In order to evaluate whether the proposed solution can be
deployed in a real factory, the processing time was measured.
Using a computer with a Quad-core@3.1-GHz processor and
20 GB of RAM and estimating the pose every 50 ms (IMU
sampling period), we observed that all the steps of the process
are completed before a new sample of the IMU is available
for processing. This means that TrackInFactory can be used
in a real scenario.

VII. CONCLUSION AND FUTURE WORK

In this article, we presented TrackInFactory, a solution for
indoor positioning and tracking of industrial vehicles, based
on a TC approach for the fusion of data from Wi-Fi, IMU
(heading), and encoder (displacement) sensors, to estimate the

position and heading of the vehicle. Wi-Fi is used when updat-
ing particles’ weights since it provides full coverage of the
space where vehicles navigate. The RM is considered when
obtaining the similarity between a WS and all RM samples
to update the particles’ weights. In addition, we proposed
a reliability metric that measures the confidence in position
estimates, allowing to increase the system’s reliability and to
dynamically update the weights of particles.

Synthetic data was used while designing the PF, allowing
analysis and fine-tuning of different parameters. After defining
the PF parameters, the proposed system was evaluated in real-
world experiments with an industrial tow tractor.

Achieved results have revealed an improved mean error
over similar solutions for vehicle localization and good
performance in the last quartile. The best applications of the
proposed solution are the continuous monitoring and tracking
of the vehicle’s position, as well as assisting in autonomous
navigation. Even though it can be used to assist in autonomous
navigation, in order to support full autonomous navigation,
the proposed solution would require sensors to detect obsta-
cles and allow the vehicle to navigate when larger errors exist,
mainly during the warm-up period.

Future work will focus on further exploring the confidence
metric, to automatically construct or update the RM by saving
annotated fingerprints, in order to reduce or even eliminate
the deployment effort. Our positioning solution was validated
using industrial-grade motion sensors, which are the most
expensive part of the hardware used in the positioning mod-
ule. In the future, we intend to test the proposed solution
with low-cost sensors to evaluate if it can be a cost-effective
solution.

REFERENCES

[11 G. Vasiljevi¢, D. Mikli¢, 1. Draganjac, Z. Kovaci¢, and P. Lista,
“High-accuracy vehicle localization for autonomous warehousing,”

Robot. Comput. Integr. Manuf., vol. 42, pp. 1-16, Dec. 2016.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0736584515300314

[2] J. Fernandez-Madrigal, E. Cruz-Martin, J. Gonzalez, C. Galindo, and
J. Blanco, “Application of UWB and GPS technologies for vehicle local-
ization in combined indoor—outdoor environments,” in Proc. IEEE 9th
Int. Symp. Signal Process. Appl., Feb. 2007, pp. 1-4. [Online]. Available:
http://ieeexplore.ieee.org/document/4555416/

[3] A. Koch and A. Zell, “RFID-enabled location fingerprinting based on
similarity models from probabilistic similarity measures,” in Proc. IEEE
Int. Conf. Robot. Autom., Jun. 2016, pp. 4557-4563.

[4] S. Fu, Z.-G. Hou, and G. Yang, “An indoor navigation system for
autonomous mobile robot using wireless sensor network,” in Proc. Int.
Conf. Netw. Sens. Control, 2009, pp. 227-232. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epicO3/wrapper.htm?arnumber=4919277

[5] P. Bahl and V. Padmanabhan, “RADAR: An in-building RF-based
user location and tracking system,” in Proc. IEEE INFOCOM Conf.
Comput. Commun., vol. 2, 2000, pp. 775-784. [Online]. Available:
http://ieeexplore.ieee.org/document/832252/

[6] J. Torres-Sospedra et al., “Off-line evaluation of mobile-centric indoor
positioning systems: The experiences from the 2017 IPIN competi-
tion,” Sensors, vol. 18, no. 2, p. 487, Feb. 2018. [Online]. Available:
http://www.mdpi.com/1424-8220/18/2/487

[71 A. Récz-Szabd, T. Ruppert, L. Bantay, A. Locklin, L. Jakab, and
J. Abonyi, “Real-time locating system in production management,”
Sensors, vol. 20, no. 23, p. 6766, Nov. 2020. [Online]. Available:
https://www.mdpi.com/1424-8220/20/23/6766



[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

(191

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

R. G. Yudanto and F. Petre, “Sensor fusion for indoor navigation and
tracking of automated guided vehicles,” in Proc. IEEE Int. Conf. Indoor
Position. Indoor Navig. (IPIN), Oct. 2015, pp. 1-8. [Online]. Available:
http://ieeexplore.ieee.org/document/7346941/

Z. Wu, M. Wen, G. Peng, X. Tang, and D. Wang, “Magnetic-
assisted initialization for infrastructure-free mobile robot localization,”
in Proc. 9th IEEE Int. Conf. Cybern. Intell. Syst. (CIS) Robot.
Autom. Mechatron. (RAM), Nov. 2019, pp. 518-523. [Online]. Available:
http://arxiv.org/abs/1911.09313.

A. Motroni, A. Buffi, P. Nepa, and B. Tellini, “Sensor-fusion
and tracking method for indoor vehicles with low-density UHF-
RFID tags,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1-14, 2021,
doi: 10.1109/TTM.2020.3027926.

P. Mpeis et al, “The anyplace 4.0 IoT localization archi-
tecture,” in  Proc. 2I1st IEEE Int. Conf. Mobile Data
Manag. (MDM), Jun. 2020, pp.218-225. [Online]. Available:

https://ieeexplore.ieee.org/document/9162205/

X. Ma and T. Liu, “The application of Wi-Fi RTLS in auto-
matic warehouse management system,” in Proc. IEEE Int. Conf.
Autom. Logist. (ICAL), Aug. 2011, pp. 64-69. [Online]. Available:
http://ieeexplore.ieee.org/document/6024685/

J. Biswas and M. Veloso, “WiFi localization and navigation for
autonomous indoor mobile robots,” in Proc. IEEE Int. Conf. Robot.
Autom., 2010, pp. 4379-4384.

N. Dinh-Van, F. Nashashibi, N. Thanh-Huong, and E. Castelli, “Indoor
intelligent vehicle localization using WiFi received signal strength indi-
cator,” in Proc. IEEE MTT-S Int. Conf. Microw. Intell. Mobility (ICMIM),
2017, pp. 33-36.

Z. Chen, H. Zou, H. Jiang, Q. Zhu, Y. Soh, and L. Xie, “Fusion of WiFi,
Smartphone sensors and landmarks using the Kalman filter for indoor
localization,” Sensors, vol. 15, no. 1, pp. 715-732, Jan. 2015. [Online].
Available: http://arxiv.org/abs/1007.0085.

M. B. Alatise and G. P. Hancke, “Pose estimation of a mobile robot
based on fusion of IMU data and vision data using an extended Kalman
filter,” Sensors, vol. 17, no. 10, p. 2164, 2017.

S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust
Monte Carlo localization for mobile robots,” Artif. Intell.,
vol. 128, nos. 1-2, pp. 99-141, May 2001. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S0004370201000698

Z. Wu, E. Jedari, R. Muscedere, and R. Rashidzadeh,
“Improved particle filter based on WLAN RSSI fingerprint-
ing and smart sensors for indoor localization,” Comput.
Commun., vol. 83, pp.64-71, Jun. 2016. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/S01403664 16300597

R. Liu, C. Yuen, T. N. Do, Y. Jiang, X. Liu, and U. X. Tan, “Indoor
positioning using similarity-based sequence and dead reckoning with-
out training,” in Proc. IEEE Workshop Signal Process. Adv. Wireless
Commun. (SPAWC), Jul. 2017, pp. 1-5.

R. Liu et al., “Collaborative SLAM based on WiFi fingerprint simi-
larity and motion information,” IEEE Internet Things J., vol. 7, no. 3,
pp. 1826-1840, Mar. 2020.

I. Silva, A. Moreira, M. J. Nicolau, and C. Penddo, “Floor plan-free
particle filter for indoor positioning of industrial vehicles,” in Proc.
ICL-GNSS Int. Conf. Localization GNSS, Tampere, Finland, 2020, p. 6.
[Online]. Available: http://ceur-ws.org/Vol-2626/paper2.pdf

L. H. Chen, E. H. K. Wu, M. H. Jin, and G. H. Chen, “Intelligent
fusion of Wi-Fi and inertial sensor-based positioning systems for indoor
pedestrian navigation,” IEEE Sensors J., vol. 14, no. 11, pp. 4034-4042,
Nov. 2014.

A. Panyov, A. A. Golovan, A. S. Smirnov, and V. V. Kosyanchuk,
“Indoor positioning using Wi-Fi fingerprinting, magnetometer and
pedestrian dead reckoning,” in Proc. 21st Saint Petersburg Int. Conf.
Integr. Navig. Syst. (ICINS), 2014, pp. 129-134.

V. Renaudin, M. H. Afzal, and G. Lachapelle, “Magnetic perturbations
detection and heading estimation using magnetometers,” J. Location
Services, vol. 6, no. 3, pp. 161-185, 2012.

A. Moreira, 1. Silva, F. Meneses, M. J. Nicolau, C. Pendao, and
J. Torres-Sospedra, “Multiple simultaneous Wi-Fi measurements in fin-
gerprinting indoor positioning,” in Proc. Int. Conf. Indoor Position.
Indoor Navig. (IPIN), Nov. 2017, pp. 1-8. [Online]. Available:
http://ieeexplore.ieee.org/document/8115914/

J. Torres-Sospedra and A. Moreira, “Analysis of sources of large posi-
tioning errors in deterministic fingerprinting,” Sensors, vol. 17, no. 12,
pp. 1-48, 2017.

N. Marques, F. Meneses, and A. Moreira, “Combining similarity
functions and majority rules for multi-building, multi-floor, WiFi posi-
tioning,” in Proc. Int. Conf. Indoor Position. Indoor Navig. (IPIN), 2012,
pp- 1-9.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

(28]

[29]

(30]

G. Retscher and J. Joksch, “Comparison of different vector distance mea-
sure calculation variants for indoor location fingerprinting,” in Proc. 13th
Int. Conf. Location Based Services, Nov. 2016, pp. 14-16.

J.-A. Fernindez-Madrigal and J. L. Blanco Claraco, Simultaneous

Localization and Mapping for Mobile Robots (Advances in
Computational  Intelligence and  Robotics). London, UK::
IGI  Global, 2013. [Online]. Available: http://services.igi-

global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-2104-6

J. Torres-Sospedra et al., “A comprehensive and reproducible com-
parison of clustering and optimization rules in Wi-Fi fingerprint-
ing,” IEEE Trans. Mobile Comput., early access, Aug. 17, 2020,
doi: 10.1109/TMC.2020.3017176.

Ivo Silva received the M.Sc. degree in telecom-
munications and informatics engineering from the
University of Minho, Guimaraes, Portugal, in 2016,
where he is currently pursuing the Ph.D. degree in
telecommunications engineering, with a focus on the
indoor positioning of industrial vehicles based on
Wi-Fi.

He is a Researcher with the Algoritmi Research
Centre and an Invited Assistant Professor with the
University of Minho. His research interests are in
indoor positioning, mobile computing, and smart
devices.

Cristiano Pendao received the M.Sc. degree in
telecommunications and informatics engineering
from the University of Minho, Guimaraes, Portugal,
in 2012, and the Ph.D. degree in telecommu-
nications/computer science engineering from the
Universities of Minho, Aveiro and Porto, Portugal,
in 2019.

He is a Professor with the School of Engineering,
University of Minho, where he is a Researcher with
the Algoritmi Research Centre. His research interests
are in positioning and navigation systems, computer

vision, and mobile computing.

Joaquin Torres-Sospedra received the Ph.D. degree
in ensembles of neural networks and machine learn-
ing from Universitat Jaume I, Castellén de la Plana,
Spain, in 2011.

Since January 2020, he has been the Manager
of UBIK Geospatial Solutions and Collaborates
with the Institute of New Imaging Technologies,
Castellon, Spain. He has authored more than 120
articles in journals and conferences. His current
research interests include indoor positioning solu-
tions based on Wi-Fi & BLE, machine learning, and

\‘

evaluation.
Dr. Torres-Sospedra is the Chair of the IPIN International Standards
Committee and IPIN Off-Site Competition.

Adriano Moreira (Member, IEEE) received the
Licenciatura degree in electronics and telecommuni-
cations engineering and the Ph.D. degree in electrical
engineering from the University of Aveiro, Aveiro,
Portugal, in 1989 and 1997, respectively.

He is an Associate Professor, with Habilitation,
with the University of Minho, Guimaraes, Portugal,
where he is a Researcher with the Algoritmi
Research Centre. He co-founded the Computer
Communications and Pervasive Media Research
Group, and is the Director of the MAP-Tele Doctoral

Program in Telecommunications. He participated in many research projects
funded by national and EU programs. He has authored several scientific

publications in conferences and journals, and one patent in the area of com-
putational geometry. His research activities have been taking place within the
ubicomp@uminho research subgroup, which has been focusing in the creation

of technologies for smart places.
Dr. Moreira won the First Prize on the Off-Site Track of the EVAAL-

ETRI Indoor Localization Competition (IPIN 2015 and 2017) together with
his colleagues, and the Second Prize of the corresponding competition in
2016.


http://dx.doi.org/10.1109/TIM.2020.3027926
http://dx.doi.org/10.1109/TMC.2020.3017176

