3,686 research outputs found

    Multiobjective Approach to Portfolio Optimization in the Light of the Credibility Theory

    Get PDF
    [EN] The present research proposes a novel methodology to solve the problems faced by investors who take into consideration different investment criteria in a fuzzy context. The approach extends the stochastic mean-variance model to a fuzzy multiobjective model where liquidity is considered to quantify portfolio's performance, apart from the usual metrics like return and risk. The uncertainty of the future returns and the future liquidity of the potential assets are modelled employing trapezoidal fuzzy numbers. The decision process of the proposed approach considers that portfolio selection is a multidimensional issue and also some realistic constraints applied by investors. Particularly, this approach optimizes the expected return, the risk and the expected liquidity of the portfolio, considering bound constraints and cardinality restrictions. As a result, an optimization problem for the constraint portfolio appears, which is solved by means of the NSGA-II algorithm. This study defines the credibilistic Sortino ratio and the credibilistic STARR ratio for selecting the optimal portfolio. An empirical study on the S&P100 index is included to show the performance of the model in practical applications. The results obtained demonstrate that the novel approach can beat the index in terms of return and risk in the analyzed period, from 2008 until 2018.GarcĂ­a GarcĂ­a, F.; GonzĂĄlez-Bueno, J.; Guijarro, F.; Oliver-Muncharaz, J.; Tamosiuniene, R. (2020). Multiobjective Approach to Portfolio Optimization in the Light of the Credibility Theory. Technological and Economic Development of Economy (Online). 26(6):1165-1186. https://doi.org/10.3846/tede.2020.13189S11651186266Acerbi, C., & Tasche, D. (2002). On the coherence of expected shortfall. Journal of Banking & Finance, 26(7), 1487-1503. doi:10.1016/s0378-4266(02)00283-2Ahmed, A., Ali, R., Ejaz, A., & Ahmad, I. (2018). Sectoral integration and investment diversification opportunities: evidence from Colombo Stock Exchange. Entrepreneurship and Sustainability Issues, 5(3), 514-527. doi:10.9770/jesi.2018.5.3(8)Arenas Parra, M., Bilbao Terol, A., & Rodrı́guez Urı́a, M. V. (2001). A fuzzy goal programming approach to portfolio selection. European Journal of Operational Research, 133(2), 287-297. doi:10.1016/s0377-2217(00)00298-8Arribas, I., EspinĂłs-Vañó, M. D., GarcĂ­a, F., & TamoĆĄiĆ«nienė, R. (2019). Negative screening and sustainable portfolio diversification. Entrepreneurship and Sustainability Issues, 6(4), 1566-1586. doi:10.9770/jesi.2019.6.4(2)Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1999). Coherent Measures of Risk. Mathematical Finance, 9(3), 203-228. doi:10.1111/1467-9965.00068Bawa, V. S. (1975). Optimal rules for ordering uncertain prospects. Journal of Financial Economics, 2(1), 95-121. doi:10.1016/0304-405x(75)90025-2BermĂșdez, J. D., Segura, J. V., & Vercher, E. (2012). A multi-objective genetic algorithm for cardinality constrained fuzzy portfolio selection. Fuzzy Sets and Systems, 188(1), 16-26. doi:10.1016/j.fss.2011.05.013Bezoui, M., MoulaĂŻ, M., Bounceur, A., & Euler, R. (2018). An iterative method for solving a bi-objective constrained portfolio optimization problem. Computational Optimization and Applications, 72(2), 479-498. doi:10.1007/s10589-018-0052-9Bi, T., Zhang, B., & Wu, H. (2013). Measuring Downside Risk Using High-Frequency Data: Realized Downside Risk Measure. Communications in Statistics - Simulation and Computation, 42(4), 741-754. doi:10.1080/03610918.2012.655826Carlsson, C., FullĂ©r, R., & Majlender, P. (2002). A possibilistic approach to selecting portfolios with highest utility score. Fuzzy Sets and Systems, 131(1), 13-21. doi:10.1016/s0165-0114(01)00251-2Chen, W., & Xu, W. (2018). A Hybrid Multiobjective Bat Algorithm for Fuzzy Portfolio Optimization with Real-World Constraints. International Journal of Fuzzy Systems, 21(1), 291-307. doi:10.1007/s40815-018-0533-0Choobineh, F., & Branting, D. (1986). A simple approximation for semivariance. European Journal of Operational Research, 27(3), 364-370. doi:10.1016/0377-2217(86)90332-2Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. doi:10.1109/4235.996017Fang, Y., Lai, K. K., & Wang, S.-Y. (2006). Portfolio rebalancing model with transaction costs based on fuzzy decision theory. European Journal of Operational Research, 175(2), 879-893. doi:10.1016/j.ejor.2005.05.020Favre, L., & Galeano, J.-A. (2002). Mean-Modified Value-at-Risk Optimization with Hedge Funds. The Journal of Alternative Investments, 5(2), 21-25. doi:10.3905/jai.2002.319052GarcĂ­a, F., GonzĂĄlez-Bueno, J., Guijarro, F., & Oliver, J. (2020). Forecasting the Environmental, Social, and Governance Rating of Firms by Using Corporate Financial Performance Variables: A Rough Set Approach. Sustainability, 12(8), 3324. doi:10.3390/su12083324GarcĂ­a, GonzĂĄlez-Bueno, Oliver, & Riley. (2019). Selecting Socially Responsible Portfolios: A Fuzzy Multicriteria Approach. Sustainability, 11(9), 2496. doi:10.3390/su11092496GarcĂ­a, F., GonzĂĄlez-Bueno, J., Oliver, J., & TamoĆĄiĆ«nienė, R. (2019). A CREDIBILISTIC MEAN-SEMIVARIANCE-PER PORTFOLIO SELECTION MODEL FOR LATIN AMERICA. Journal of Business Economics and Management, 20(2), 225-243. doi:10.3846/jbem.2019.8317GarcĂ­a, F., Guijarro, F., & Moya, I. (2013). A MULTIOBJECTIVE MODEL FOR PASSIVE PORTFOLIO MANAGEMENT: AN APPLICATION ON THE S&P 100 INDEX. Journal of Business Economics and Management, 14(4), 758-775. doi:10.3846/16111699.2012.668859GarcĂ­a, F., Guijarro, F., & Oliver, J. (2017). Index tracking optimization with cardinality constraint: a performance comparison of genetic algorithms and tabu search heuristics. Neural Computing and Applications, 30(8), 2625-2641. doi:10.1007/s00521-017-2882-2GarcĂ­a, F., Guijarro, F., Oliver, J., & TamoĆĄiĆ«nienė, R. (2018). HYBRID FUZZY NEURAL NETWORK TO PREDICT PRICE DIRECTION IN THE GERMAN DAX-30 INDEX. Technological and Economic Development of Economy, 24(6), 2161-2178. doi:10.3846/tede.2018.6394Goel, A., Sharma, A., & Mehra, A. (2018). Index tracking and enhanced indexing using mixed conditional value-at-risk. Journal of Computational and Applied Mathematics, 335, 361-380. doi:10.1016/j.cam.2017.12.015GonzĂĄlez-Bueno, J. (2019). OptimizaciĂłn multiobjetivo para la selecciĂłn de carteras a la luz de la teorĂ­a de la credibilidad. Una aplicaciĂłn en el mercado integrado latinoamericano. Editorial Universidad Pontificia Bolivariana.Gupta, P., Inuiguchi, M., & Mehlawat, M. K. (2011). A hybrid approach for constructing suitable and optimal portfolios. Expert Systems with Applications, 38(5), 5620-5632. doi:10.1016/j.eswa.2010.10.073Gupta, P., Inuiguchi, M., Mehlawat, M. K., & Mittal, G. (2013). Multiobjective credibilistic portfolio selection model with fuzzy chance-constraints. Information Sciences, 229, 1-17. doi:10.1016/j.ins.2012.12.011Gupta, P., Mehlawat, M. K., Inuiguchi, M., & Chandra, S. (2014). Portfolio Optimization Using Credibility Theory. Studies in Fuzziness and Soft Computing, 127-160. doi:10.1007/978-3-642-54652-5_5Gupta, P., Mehlawat, M. K., Inuiguchi, M., & Chandra, S. (2014). Portfolio Optimization with Interval Coefficients. Studies in Fuzziness and Soft Computing, 33-59. doi:10.1007/978-3-642-54652-5_2Gupta, P., Mehlawat, M. K., Kumar, A., Yadav, S., & Aggarwal, A. (2020). A Credibilistic Fuzzy DEA Approach for Portfolio Efficiency Evaluation and Rebalancing Toward Benchmark Portfolios Using Positive and Negative Returns. International Journal of Fuzzy Systems, 22(3), 824-843. doi:10.1007/s40815-020-00801-4Gupta, P., Mehlawat, M. K., & Saxena, A. (2010). A hybrid approach to asset allocation with simultaneous consideration of suitability and optimality. Information Sciences, 180(11), 2264-2285. doi:10.1016/j.ins.2010.02.007Gupta, P., Mehlawat, M. K., Yadav, S., & Kumar, A. (2020). Intuitionistic fuzzy optimistic and pessimistic multi-period portfolio optimization models. Soft Computing, 24(16), 11931-11956. doi:10.1007/s00500-019-04639-3Gupta, P., Mittal, G., & Mehlawat, M. K. (2013). Expected value multiobjective portfolio rebalancing model with fuzzy parameters. Insurance: Mathematics and Economics, 52(2), 190-203. doi:10.1016/j.insmatheco.2012.12.002Heidari-Fathian, H., & Davari-Ardakani, H. (2019). Bi-objective optimization of a project selection and adjustment problem under risk controls. Journal of Modelling in Management, 15(1), 89-111. doi:10.1108/jm2-07-2018-0106Hilkevics, S., & Semakina, V. (2019). The classification and comparison of business ratios analysis methods. Insights into Regional Development, 1(1), 48-57. doi:10.9770/ird.2019.1.1(4)Huang, X. (2006). Fuzzy chance-constrained portfolio selection. Applied Mathematics and Computation, 177(2), 500-507. doi:10.1016/j.amc.2005.11.027Huang, X. (2008). Mean-semivariance models for fuzzy portfolio selection. Journal of Computational and Applied Mathematics, 217(1), 1-8. doi:10.1016/j.cam.2007.06.009Huang, X. (2009). A review of credibilistic portfolio selection. Fuzzy Optimization and Decision Making, 8(3), 263-281. doi:10.1007/s10700-009-9064-3Huang, X. (2010). Portfolio Analysis. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-642-11214-0Huang, X. (2017). A review of uncertain portfolio selection. Journal of Intelligent & Fuzzy Systems, 32(6), 4453-4465. doi:10.3233/jifs-169211Huang, X., & Di, H. (2016). Uncertain portfolio selection with background risk. Applied Mathematics and Computation, 276, 284-296. doi:10.1016/j.amc.2015.12.018Huang, X., & Wang, X. (2019). International portfolio optimization based on uncertainty theory. Optimization, 70(2), 225-249. doi:10.1080/02331934.2019.1705821Huang, X., & Yang, T. (2020). How does background risk affect portfolio choice: An analysis based on uncertain mean-variance model with background risk. Journal of Banking & Finance, 111, 105726. doi:10.1016/j.jbankfin.2019.105726Jalota, H., Thakur, M., & Mittal, G. (2017). Modelling and constructing membership function for uncertain portfolio parameters: A credibilistic framework. Expert Systems with Applications, 71, 40-56. doi:10.1016/j.eswa.2016.11.014Jalota, H., Thakur, M., & Mittal, G. (2017). A credibilistic decision support system for portfolio optimization. Applied Soft Computing, 59, 512-528. doi:10.1016/j.asoc.2017.05.054Kaplan, P. D., & Alldredge, R. H. (1997). Semivariance in Risk-Based Index Construction. The Journal of Investing, 6(2), 82-87. doi:10.3905/joi.1997.408419Konno, H., & Yamazaki, H. (1991). Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market. Management Science, 37(5), 519-531. doi:10.1287/mnsc.37.5.519Li, B., Zhu, Y., Sun, Y., Aw, G., & Teo, K. L. (2018). Multi-period portfolio selection problem under uncertain environment with bankruptcy constraint. Applied Mathematical Modelling, 56, 539-550. doi:10.1016/j.apm.2017.12.016Li, H.-Q., & Yi, Z.-H. (2019). Portfolio selection with coherent Investor’s expectations under uncertainty. Expert Systems with Applications, 133, 49-58. doi:10.1016/j.eswa.2019.05.008Li, X., & Qin, Z. (2014). Interval portfolio selection models within the framework of uncertainty theory. Economic Modelling, 41, 338-344. doi:10.1016/j.econmod.2014.05.036Liagkouras, K., & Metaxiotis, K. (2015). Efficient Portfolio Construction with the Use of Multiobjective Evolutionary Algorithms: Best Practices and Performance Metrics. International Journal of Information Technology & Decision Making, 14(03), 535-564. doi:10.1142/s0219622015300013Liu, B. (2004). Uncertainty Theory. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-540-39987-2Baoding Liu, & Yian-Kui Liu. (2002). Expected value of fuzzy variable and fuzzy expected value models. IEEE Transactions on Fuzzy Systems, 10(4), 445-450. doi:10.1109/tfuzz.2002.800692Liu, N., Chen, Y., & Liu, Y. (2018). Optimizing portfolio selection problems under credibilistic CVaR criterion. Journal of Intelligent & Fuzzy Systems, 34(1), 335-347. doi:10.3233/jifs-171298Liu, Y.-J., & Zhang, W.-G. (2018). Multiperiod Fuzzy Portfolio Selection Optimization Model Based on Possibility Theory. International Journal of Information Technology & Decision Making, 17(03), 941-968. doi:10.1142/s0219622018500190Mansour, N., Cherif, M. S., & Abdelfattah, W. (2019). Multi-objective imprecise programming for financial portfolio selection with fuzzy returns. Expert Systems with Applications, 138, 112810. doi:10.1016/j.eswa.2019.07.027Markowitz, H. (1952). PORTFOLIO SELECTION*. The Journal of Finance, 7(1), 77-91. doi:10.1111/j.1540-6261.1952.tb01525.xMarkowitz, H., Todd, P., Xu, G., & Yamane, Y. (1993). Computation of mean-semivariance efficient sets by the Critical Line Algorithm. Annals of Operations Research, 45(1), 307-317. doi:10.1007/bf02282055Martin, R. D., Rachev, S. (Zari), & Siboulet, F. (2003). Phi-alpha optimal portfolios and extreme risk management. Wilmott, 2003(6), 70-83. doi:10.1002/wilm.42820030619Mehlawat, M. K. (2016). Credibilistic mean-entropy models for multi-period portfolio selection with multi-choice aspiration levels. Information Sciences, 345, 9-26. doi:10.1016/j.ins.2016.01.042Mehlawat, M. K., Gupta, P., Kumar, A., Yadav, S., & Aggarwal, A. (2020). Multiobjective Fuzzy Portfolio Performance Evaluation Using Data Envelopment Analysis Under Credibilistic Framework. IEEE Transactions on Fuzzy Systems, 28(11), 2726-2737. doi:10.1109/tfuzz.2020.2969406Mehralizade, R., Amini, M., Sadeghpour Gildeh, B., & Ahmadzade, H. (2020). Uncertain random portfolio selection based on risk curve. Soft Computing, 24(17), 13331-13345. doi:10.1007/s00500-020-04751-9Moeini, M. (2019). Solving the index tracking problem: a continuous optimization approach. Central European Journal of Operations Research. doi:10.1007/s10100-019-00633-0Narkunienė, J., & Ulbinaitė, A. (2018). Comparative analysis of company performance evaluation methods. Entrepreneurship and Sustainability Issues, 6(1), 125-138. doi:10.9770/jesi.2018.6.1(10)Palanikumar, K., Latha, B., Senthilkumar, V. S., & Karthikeyan, R. (2009). Multiple performance optimization in machining of GFRP composites by a PCD tool using non-dominated sorting genetic algorithm (NSGA-II). Metals and Materials International, 15(2), 249-258. doi:10.1007/s12540-009-0249-7Pflug, G. C. (2000). Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk. Probabilistic Constrained Optimization, 272-281. doi:10.1007/978-1-4757-3150-7_15Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. The Journal of Risk, 2(3), 21-41. doi:10.21314/jor.2000.038Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7), 1443-1471. doi:10.1016/s0378-4266(02)00271-6Rubio, A., BermĂșdez, J. D., & Vercher, E. (2016). Forecasting portfolio returns using weighted fuzzy time series methods. International Journal of Approximate Reasoning, 75, 1-12. doi:10.1016/j.ijar.2016.03.007Saborido, R., Ruiz, A. B., BermĂșdez, J. D., Vercher, E., & Luque, M. (2016). Evolutionary multi-objective optimization algorithms for fuzzy portfolio selection. Applied Soft Computing, 39, 48-63. doi:10.1016/j.asoc.2015.11.005Sharpe, W. F. (1966). Mutual Fund Performance. The Journal of Business, 39(S1), 119. doi:10.1086/294846Sharpe, W. F. (1994). The Sharpe Ratio. The Journal of Portfolio Management, 21(1), 49-58. doi:10.3905/jpm.1994.409501Sortino, F. A., & Price, L. N. (1994). Performance Measurement in a Downside Risk Framework. The Journal of Investing, 3(3), 59-64. doi:10.3905/joi.3.3.59Srinivas, N., & Deb, K. (1994). Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 2(3), 221-248. doi:10.1162/evco.1994.2.3.221Vercher, E., & BermĂșdez, J. D. (2012). Fuzzy Portfolio Selection Models: A Numerical Study. Financial Decision Making Using Computational Intelligence, 253-280. doi:10.1007/978-1-4614-3773-4_10Vercher, E., & Bermudez, J. D. (2013). A Possibilistic Mean-Downside Risk-Skewness Model for Efficient Portfolio Selection. IEEE Transactions on Fuzzy Systems, 21(3), 585-595. doi:10.1109/tfuzz.2012.2227487Vercher, E., & BermĂșdez, J. D. (2015). Portfolio optimization using a credibility mean-absolute semi-deviation model. Expert Systems with Applications, 42(20), 7121-7131. doi:10.1016/j.eswa.2015.05.020Vercher, E., BermĂșdez, J. D., & Segura, J. V. (2007). Fuzzy portfolio optimization under downside risk measures. Fuzzy Sets and Systems, 158(7), 769-782. doi:10.1016/j.fss.2006.10.026Wang, S., & Zhu, S. (2002). Fuzzy Optimization and Decision Making, 1(4), 361-377. doi:10.1023/a:1020907229361Yue, W., & Wang, Y. (2017). A new fuzzy multi-objective higher order moment portfolio selection model for diversified portfolios. Physica A: Statistical Mechanics and its Applications, 465, 124-140. doi:10.1016/j.physa.2016.08.009Yue, W., Wang, Y., & Xuan, H. (2018). Fuzzy multi-objective portfolio model based on semi-variance–semi-absolute deviation risk measures. Soft Computing, 23(17), 8159-8179. doi:10.1007/s00500-018-3452-yZadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-xZhai, J., & Bai, M. (2018). Mean-risk model for uncertain portfolio selection with background risk. Journal of Computational and Applied Mathematics, 330, 59-69. doi:10.1016/j.cam.2017.07.038Zhao, Z., Wang, H., Yang, X., & Xu, F. (2020). CVaR-cardinality enhanced indexation optimization with tunable short-selling constraints. Applied Economics Letters, 28(3), 201-207. doi:10.1080/13504851.2020.174015

    How to Handle Uncertainty

    Get PDF
    -

    An econophysics approach to analyse uncertainty in financial markets: an application to the Portuguese stock market

    Get PDF
    In recent years there has been a closer interrelationship between several scientific areas trying to obtain a more realistic and rich explanation of the natural and social phenomena. Among these it should be emphasized the increasing interrelationship between physics and financial theory. In this field the analysis of uncertainty, which is crucial in financial analysis, can be made using measures of physics statistics and information theory, namely the Shannon entropy. One advantage of this approach is that the entropy is a more general measure than the variance, since it accounts for higher order moments of a probability distribution function. An empirical application was made using data collected from the Portuguese Stock Market.Comment: 8 pages, 2 figures, presented in the conference Next Sigma-Phi 200

    Black-Litterman model with intuitionistic fuzzy posterior return

    Full text link
    The main objective is to present a some variant of the Black - Litterman model. We consider the canonical case when priori return is determined by means such excess return from the CAPM market portfolio which is derived using reverse optimization method. Then the a priori return is at risk quantified uncertainty. On the side, intensive discussion shows that the experts' views are under knightian uncertainty. For this reason, we propose such variant of the Black - Litterman model in which the experts' views are described as intuitionistic fuzzy number. The existence of posterior return is proved for this case.We show that then posterior return is an intuitionistic fuzzy probabilistic set.Comment: SSRN Electronic Journal 201

    Multi-objective possibilistic model for portfolio selection with transaction cost

    Get PDF
    AbstractIn this paper, we introduce the possibilistic mean value and variance of continuous distribution, rather than probability distributions. We propose a multi-objective Portfolio based model and added another entropy objective function to generate a well diversified asset portfolio within optimal asset allocation. For quantifying any potential return and risk, portfolio liquidity is taken into account and a multi-objective non-linear programming model for portfolio rebalancing with transaction cost is proposed. The models are illustrated with numerical examples

    A methodology for the selection of new technologies in the aviation industry

    Get PDF
    The purpose of this report is to present a technology selection methodology to quantify both tangible and intangible benefits of certain technology alternatives within a fuzzy environment. Specifically, it describes an application of the theory of fuzzy sets to hierarchical structural analysis and economic evaluations for utilisation in the industry. The report proposes a complete methodology to accurately select new technologies. A computer based prototype model has been developed to handle the more complex fuzzy calculations. Decision-makers are only required to express their opinions on comparative importance of various factors in linguistic terms rather than exact numerical values. These linguistic variable scales, such as ‘very high’, ‘high’, ‘medium’, ‘low’ and ‘very low’, are then converted into fuzzy numbers, since it becomes more meaningful to quantify a subjective measurement into a range rather than in an exact value. By aggregating the hierarchy, the preferential weight of each alternative technology is found, which is called fuzzy appropriate index. The fuzzy appropriate indices of different technologies are then ranked and preferential ranking orders of technologies are found. From the economic evaluation perspective, a fuzzy cash flow analysis is employed. This deals quantitatively with imprecision or uncertainties, as the cash flows are modelled as triangular fuzzy numbers which represent ‘the most likely possible value’, ‘the most pessimistic value’ and ‘the most optimistic value’. By using this methodology, the ambiguities involved in the assessment data can be effectively represented and processed to assure a more convincing and effective decision- making process when selecting new technologies in which to invest. The prototype model was validated with a case study within the aviation industry that ensured it was properly configured to meet the

    A portfolio stock selection model based on expected utility, entropy and variance

    Get PDF
    In the context of investment decision-making, the selection of stocks is important for a successful construction of portfolios. In this paper the expected utility, entropy and variance (EU-EV) model is applied for stock selection, which can be used as preselection model for mean-variance portfolio optimization problems. Based on the EU-EV risk, stocks are ranked and the best ranked stocks with lower risk are selected in order to form subsets of stocks, which are then used to construct portfolios. The EU-EV model is applied to the PSI 20 index, to the Euro Stoxx 50 index and to the Nasdaq 100 index. Subsets of selected stocks are analysed and their portfolios' efficiencies are compared with those of the portfolios obtained from the whole set of stocks using the mean-variance model. The results reveal that the EU-EV model is an adequate stock selection model for building up efficient portfolios with a lower number of stocks.The author thanks the reviewers for helpful comments. The author thanks support from FCT (“Fundação para a CiĂȘncia e a Tecnologia”) through the Projects UIDB/00013/2020 and UIDP/00013/2020

    Dynamic changes and multi-dimensional evolution of portfolio optimization

    Get PDF
    Although there has been an increasing number of studies investigate portfolio optimization from different perspectives, few attempts could be found that focus on the development trend and hotspots of this research area. Therefore, it motivates us to comprehensively investigate the development of portfolio optimization research and give some deep insights into this knowledge domain. In this paper, some bibliometric methods are utilized to analyse the status quo and emerging trends of portfolio optimization research on various aspects such as authors, countries and journals. Besides, ‘theories’, ‘models’ and ‘algorithms’, especially heuristic algorithms are identified as the hotspots in the given periods. Furthermore, the evolutionary analysis tends to presents the dynamic changes of the cutting-edge concepts of this research area in the time dimension. It is found that more portfolio optimization studies were at an exploration stage from mean-variance analysis to consideration of multiple constraints. However, heuristic algorithms have become the driving force of portfolio optimization research in recent years. Multidisciplinary analyses and applications are also the main trends of portfolio optimization research. By analysing the dynamic changes and multi-dimensional evolution in recent decades, we contribute to presenting some deep insights of the portfolio optimization research directly, which assists researchers especially beginners to comprehensively learn this research field
    • 

    corecore