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a b s t r a c t

In this paper, we introduce the possibilistic mean value and variance of continuous
distribution, rather than probability distributions. We propose a multi-objective Portfolio
based model and added another entropy objective function to generate a well diversified
asset portfolio within optimal asset allocation. For quantifying any potential return and
risk, portfolio liquidity is taken into account and amulti-objective non-linear programming
model for portfolio rebalancing with transaction cost is proposed. The models are
illustrated with numerical examples.
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1. Introduction

The theory of mean–variance efficient portfolios was first given in [1,2], who also gave his critical linemethod for finding
these. Markowitz published his work, which paved the foundation of modern portfolio analysis. It combines probability
and optimization theory to model the behavior of economic agents under uncertainty. The mean-variance approach has
also been subject to a lot of criticism. One of the most important reasons for this, is the computational difficulty associated
with solving a large-scale quadratic programming problem. Konno and Yamazaki [3] used absolute deviation risk function
to replace the risk function in Markowitz’s model. Consequently, other measures of risk, such as Value at (VaR), expected
shortfall, semi-variance and so on are used.
Because of the information incompleteness and the complexity of a financial market, it is impossible to precisely predict

the future return and the actual risk of a portfolio. In order to represent vagueness in everyday life, Zadeh [4] introduced the
concept fuzzy sets in 1965. Based on this concept, Bellman and Zadeh [5] defined decision-making in a fuzzy environment
with a decision set which unifies a fuzzy objective and fuzzy constraint. Watada [6] presented another type of portfolio
selection model based on the fuzzy principle. In traditional portfolio theory, a distributive investment has been regarded as
a good policy to reduce the risk. Therefore, an application of possibilistic programming to portfolio selection can be expected.
In possibilistic programming approaches, the expected return rates are not treated as random variables but as possibilistic
variables.
Transaction cost is one of the main concerns for portfolio manager. Obviously, transaction costs have a direct impact on

one’s performance. Arnott and Wagner [7] found that ignoring transaction costs would result in an inefficient portfolio. In
some cases, investors may consider other factors such as liquidity besides two fundamental factors · · ·return and risk. The
level of return that an investor might aspire to, the risk, and the liquidity of portfolio are vague in an uncertain financial
environment. Here we propose a multi-objective non-linear programming model for portfolio rebalancing with transaction
cost, by considering liquidity.
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This paper organized as follows. Portfolio Selection Problem and basic concept of fuzzy set are given in Sections 2 and
3. A multi-objective possibilistic model is given in Section 4. In Section 5 we introduce the Mathematical analysis of multi-
objective non-linear programming model. Numerical examples are given in Section 6. Some conclusions are finally given in
Section 7.

2. Portfolio selection problem

Suppose that a prosperous individuals has a opportunity to invest an asset in n different bonds and stocks.
Notations are as follows:

xi Proportion of the total amount of money devoted to security i, i = 1, 2, . . . , n
li, ui Minimum, maximum proportion invested to security i respectively
Ri Random rate of return on the risky asset i, i = 1, 2, . . . , n
σij Cov(Ri, Rj), covariance between Ri and Rj, i, j = 1, 2, . . . , n
ci Rate of transaction cost of i risky asset i = 1, 2, . . . , n

n∑
i=1

xi = 1, xi ≥ 0, i = 1, 2, . . . , n.

As in [8] and other, it is assumed that the transaction cost is a V-shaped function of the difference between a newportfolio
x = (x1, x2, . . . , xn), and the existing portfolio xo = (xo1, x

o
2, . . . , x

o
n). Thus the total transaction cost of the portfolio is∑n

i=1 ci|xi − x
o
i |

For new investors, we can set xoi = 0, i = 1, 2, . . . , n.
Model-1: The mean–variance (MV) bi-objective model with transaction costs can be stated as:

Maximize M(x) = E(R)−
n∑
i=1

ci|xi − xoi |, R =
n∑
i=1

Rixi

Minimize V (x) =
n∑
i=1

n∑
j=1

Cov(Ri, Rj)xixj

subject to
n∑
i=1

xi = 1

li ≤ xi ≤ ui, xi ≥ 0, i = 1, 2, . . . , n.

(1)

The Markowitz mean variance (MV) criterion simply states that an investor should always choose an efficient portfolio.
The main problem in optimal MV portfolio is that the portfolios are often extremely concentrated on a few assets, which
is a contradiction to the notion of diversification. Therefore there is scope for introducing another criterion viz one for
diversification and the best candidate for this. It is not surprising that entropy is used as the divergence measure of asset
portfolio in finance literature. They usually solve quadratic problem for MV portfolio selection and then, apply an entropy
measure to infer how much the portfolio is diversified [9,10]. In this paper, we maximize the entropy function

S(x) = −
n∑
i=1

xi log xi.

Model-2: So, the real life problem in analogy to problem (1) is a portfolio selection problem with diversification, which can
be written as:

Maximize S(x) = −
n∑
i=1

xi ln(xi)

Maximize M(x) = E(R)−
n∑
i=1

ci|xi − xoi |, R =
n∑
i=1

Rixi (2)

Minimize V (x) =
n∑
i=1

n∑
j=1

Cov(Ri, Rj)xixj

subject to
n∑
i=1

xi = 1

li ≤ xi ≤ ui, xi ≥ 0, i = 1, 2, . . . , n.
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Fig. 1. Trapezoidal fuzzy number.

3. Basic concept in fuzzy set theory

Let X be a collection of objects called the universe of discourse. A fuzzy set Ã of X is defined by membership function
µÃ : X −→ [0, 1]. µÃ(x) is the degree of membership of x in Ã. The closer the value of µÃ(x) is to unity, higher the grade of
x in Ã. Therefore, Ã is completely characterized by the set of ordered pairs : Ã = {(x, µÃ(x))|x ∈ X}.

1. Normally fuzzy set: A fuzzy set Ã of the universe of discourse X is called a normal fuzzy set, which implies that there
exists at least one x ∈ X , such that µÃ(x) = 1.

2. Convex fuzzy set: A fuzzy set Ã of the universe of discourse X is convex iff for all x1, x2 in X , µÃ(λx1 + (1− λ)x2) ≥min
(µÃ(x1), µÃ(x2)), 0 < λ < 1.

3. Boundary of a fuzzy set: The boundary of a fuzzy set Ã on X, is the set of points in X , such that

Boundary(̃A) = {x : 0 < µA(x) < 1, x ∈ X}.

4. Support of a fuzzy set: The support of a fuzzy set Ã on X, is denoted by Supp(̃A), is the set of points in X at which isµÃ(x)
positive, i.e.

Supp(̃A) = {x ∈ X : µÃ(x) > 0}.

5. α-cut of a fuzzy set: The α level set of the fuzzy set Ã of X is a crisp set Aα , that contains all the elements of X that have
membership values in Ã greater than or equal to α i.e.

Aα = {x, µÃ(x)) ≥ α, x ∈ X, 0 ≤ α ≤ 1} = [u1(α), u2(α)].

3.1. Fuzzy number

A fuzzy number Ã is a fuzzy set of the real line (X ≡ R, set of real numbers as the universe of discourse) that satisfies the
conditions for normality and convexity.
Trapezoidal Fuzzy Number (TrFN): In this paper, we consider a Trapezoidal fuzzy number. A TrFN can be represented
completely by a quadruplet Ã = (al, a1, a2, ar) and its membership function has the following form:

µÃ(x) =


µlÃ(x) =

x− al
a1 − al

, if al ≤ x ≤ a1
1, if a1 ≤ x ≤ a2
µrÃ(x) =

ar − x
ar − a2

, if a2 ≤ x ≤ ar
0, otherwise

(3)

where al ≤ a ≤ ar are real numbers and µlÃ, µ
r
Ã
are left, right membership function of fuzzy number Ã respectively. The

pictorial representation of the above membership function is Fig. 1. It is noted that a Triangular Fuzzy Number (TFN) is a
special type of a TrFN with a1 = a2.
Consider two trapezoidal fuzzy numbers Ã = (al, a1, a2, ar) and B̃ = (bl, b1, b2, br) The sum of the two trapezoidal fuzzy

numbers is also a trapezoidal fuzzy number and the product with scalar k is also a trapezoidal fuzzy number ie. we have
Ã+ B̃ = (al + bl, a1 + b1, a2 + b2, ar + br)
k× Ã = (kal, ka1, ka2, kar), k ≥ 0

= (kar , ka2, ka1, kal), k < 0

Ã− B̃ = (al − br , a1 − b2, a2 − b1, ar − bl).
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3.2. Posssibilistic mean value and variance

In 1987 Dubois and Prade [11] defined an interval valued expectation of fuzzy numbers, viewing them as consonant
random sets. In this paper we use crisp possibilistic mean and variance of continuous possibility distributions [12], which
are consistent with the extension principle.
Let Aα = [u1(α), u2(α)], then the crisp possibilistic mean value of Ã = (al, a1, a2, ar) is

E (̃A) =
∫ 1

0
α[u1(α)+ u2(α)]dα

=

∫ 1

0
α[al + α(a1 − al)+ ar − α(ar − a2)]dα

=
a1 + a2
3
+
al + ar
6

. (4)

Now we introduce the possibilistic variance of Ã as

Var(̃A) =
1
2

∫ 1

0
α[u2(α)− u1(α)]2dα

=
1
2

∫ 1

0
α[ar − α(ar − a2)− al − α(a1 − al)]2dα

=
(a1 + ar − al − a2)2

8
+
(ar − al)2

4
−
(a1 + ar − al − a2)(ar − al)

3
. (5)

Let Aα = [u1(α), u2(α)] and Bα = [v1(α), v2(α)], then the possibilistic covariance between fuzzy numbers Ã =
(al, a1, a2, ar) and B̃ = (bl, b1, b2, br) is defined as

Cov(̃A, B̃) =
1
2

∫ 1

0
α[[u2(α)− u1(α)][v2(α)− v1(α)]]dα

=
(a1 + ar − al − a2)(b1 + br − bl − b2)

8
+
(ar − al)(br − bl)

4

−
(a1 + ar − al − a2)(br − bl)+ (b1 + br − bl − b2)(ar − al)

6
. (6)

4. Multi-objective posibilistic model

Multi-criteria portfolio optimization started with two fundamental factors; expected return and risk. In some cases,
investors may consider other factors, such as liquidity and use the turnover rate of securities tomeasure it. Withmarketable
cash investments, liquidity generally means how easily and quickly one may exchange a security for cash, with little price
concession from its going rate, and usually investors prefer greater liquidity. Due to the uncertain financial market it is
impossible to predict turnover rates of securities. In many cases, it might be easier to estimate the possibility distribution
of turnover rate on securities rather than probability distribution. Here we consider a turnover rate of the i securities by the
trapezoidal fuzzy number T̃i = (Til, Ti1, Ti2, Tir), i = 1, 2, . . . , n and crisp possibilistic mean value of the turnover rate of the
portfolio is

E (̃T ) =
n∑
i=1

(
Ti1 + Ti2
3

+
Til + Tir
6

)
xi, xi ≥ 0 (7)

in which the portfolio liquidity is always greater or equal to a given constant λ by the investor, by rebalancing the existing
portfolio.
Denote the rate of return on security i, (i = 1, 2, . . . , n) by the trapezoidal fuzzy numbers R̃i = (Ril, Ri1, Ri2, Rir) and we

formulate the possibilistic portfolio model as
Model-3

Maximize S(x) = −
n∑
i=1

xi ln(xi)

Maximize M(x) = E

(
n∑
i=1

R̃ixi

)
−

n∑
i=1

ci|xi − xoi |
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Minimize V (x) =
n∑
i=1

n∑
j=1

Cov(̃Ri, R̃j)xixj

Subject to E

(
n∑
i=1

T̃ixi

)
≥ λ

n∑
i=1

xi = 1 li ≤ xi ≤ ui, li, ui > 0, i = 1, 2, . . . , n

where E

(
n∑
i=1

R̃ixi

)
=

n∑
i=1

(
Ri1 + Ri2
3

+
Ril + Rir
6

)
xi

Cov(̃Ri, R̃j) =
(Ri1 + Rir − Ril − Ri2)(Rj1 + Rjr − Rjl − Rj2)

8
+
(Rir − Ril)(Rjr − Rjl)

4

−
(Ri1 + Rir − Ril − Ri2)(Rjr − Rjl)+ (Rj1 + Rjr − Rjl − Rj2)(Rir − Ril)

6
.

5. Mathematical Analysis: Multi-objective non-linear programming (MONLP) problem

Here, we discuss the general form of the MONLP problem and technique to solve this type of problem:

5.1. Multi-objective non-linear programming (MONLP) problem

A general MONLP problem may be taken in the following Vector Minimization Problem (VMP):
Minimize k non-linear objective functions

Minimize Z(x) = [Z1(x), Z2(x), . . . , Zk(x)]. (8)

Subject to the inequality constraints

Subject to x ∈ X = {x : gj(x) ≤ bj, (j = 1, 2, . . . ,m), li ≤ xi ≤ ui (i = 1, 2, . . . , n)}.

A direct application of the optimality for single objective non-linear programming to theMONLP leads us to the following
complete optimality concept.

5.2. Fuzzy programming technique to solve MONLP problem

Zimmermann [13] showed that a fuzzy programming technique could be used nicely to solve the multi-objective
programming problem. To solve the MONLP (8) problem, the following steps are used:
Step 1: Solve the MONLP (8) as a single objective non-linear programming problem using only one objective at a time

and ignoring the others. These solutions are known as ideal solutions.
Step 2: From the results of step 1, determine the corresponding values for every objective at each solution derived. With

the values of all objectives at each ideal solution, the pay-off matrix can be formulated as follows:

Z1(x) Z2(x) ...... Zk(x)

x1 Z∗1 (x
1) Z2(x1) ...... Zk(x1)

x2 Z1(x2) Z∗2 (x
2) ...... Zk(x2)

.. ... ...... ...
xk Z1(xk) Z2(xk) ...... Z∗k (x

k)

where x1, x2, . . . , xk are the ideal solutions of the k objective function.

Ur = max{Zr(x1), Zr(x2), . . . , Zr(xk)}
Lr = min{Zr(x1), Zr(x2), . . . , Zr(xk)}.

Step 3: Using aspiration levels of objective functions of the VMP (8) written as follows:
Find x such that

Zr(x)≤̃Lr , (r = 1, 2, . . . , k), x ∈ X . (9)
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Fig. 2. Membership function.

Here objective functions (8) are considered as fuzzy constraints, which are quantified by the membership function

µr(Zr(x)) = 0 if Zr(x) ≥ Ur(x)
= dr(x) if Lr(x) ≤ Zr(x) ≤ Ur(x)
= 1 if Zr(x) ≤ Lr(x). (10)

Here, dr(x) is a strictly monotonic decreasing function with respect to Zr(x) and the Fig. 2 illustrates the graph ofµr(Zr(x)).
Having elicited the membership functions (as in (10)) Zr(x)) for r = 1, 2, . . . , k, a general aggregation function which is

in the following form.

µD̃(x) = G(µ1(Z1(x)), µ2(Z2(x)), . . . , µk(Zk(x))).

So a fuzzy multi-objective decision making problem can be defined as

Maximize µD̃(x) (11)
Subject to x ∈ X .

Based on the the convex operator in fuzzy decision making process [5], the problem (11) is reduced to

Maximize µD̃(x) =
k∑
r=1

wrµr(Zr(x)) (12)

Subject to 0 ≤ µr(Zr(x)) ≤ 1, for r = 1, 2, . . . , k

x ∈ X and wr ≥ 0,
k∑
r=1

wr = 1.

Step 4: Solve (12) to get Pareto optimal solution
Some basic definitions on Pareto optimal solutions are introduced below.

Definition 1 (Complete Optimal Solution). x∗ is said to be a complete optimal solution to the MONLP (2) if and only if, there
exists x∗ ∈ X such that Zr(x∗) ≤ Zr(x), for r = 1, 2, . . . , k and for all x ∈ X . However, when the objective functions of
the MONLP conflict with each other, a complete optimal solution does not always exist, and hence the Pareto Optimality
Concept arises and it is defined as follows.

Definition 2 (Pareto Optimal Solution). x∗ is said to be a Pareto optimal solution to the MONLP (2) if and only if, there does
not exist another x ∈ X , such that Zr(x∗) ≤ Zr(x), for r = 1, 2, . . . , k and Zj(x) 6= Zj(x∗) for at least one j, j ∈ {1, 2, . . . , k}.

5.3. Fuzzy programming technique to solve multi-objective possibilistic portfolio selection model (MOPM)

Model—can be formulated as Vector Minimization problem (VMP)

Minimize [−S(x)] =
n∑
i=1

xi ln(xi)

Minimize [−M(x)] = −E

(
n∑
i=1

R̃ixi

)
+

n∑
i=1

ci|xi − xoi |

Minimize V (x) =
n∑
i=1

n∑
j=1

Cov(̃Ri, R̃j)xixj

Subject to
n∑
i=1

(
Ti1 + Ti2
3

+
Til + Tir
6

)
xi ≥ λ (13)
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n∑
i=1

xi = 1 li ≤ xi ≤ ui, xi ≥ 0, i = 1, 2, . . . , n

where E

(
n∑
i=1

R̃ixi

)
=

n∑
i=1

(
Ri1 + Ri2
3

+
Ril + Rir
6

)
xi

Cov(̃Ri, R̃j) =
(Ri1 + Rir − Ril − Ri2)(Rj1 + Rjr − Rjl − Rj2)

8
+
(Rir − Ril)(Rjr − Rjl)

4

−
(Ri1 + Rir − Ril − Ri2)(Rjr − Rjl)+ (Rj1 + Rjr − Rjl − Rj2)(Rir − Ril)

6
.

To solve VMP form (13), step-1 of (5.2) is used. After that, the pay-off matrix is formulated as follows :

S(x) M(x) V (x)

x1 S(x1) M(x1) V (x1)
x2 S(x2) M(x2) V (x2)
x3 S(x3) M(x3) V (x3)

Now we find the upper bounds US , UM , UV and lower bounds LS , LM , LV
where US = max{S(x1), S(x2), S(x3)}, LS = min{S(x1), S(x2), S(x3)}
UM = max{M(x1),M(x2),M(x3)}, LM = min{M(x1),M(x2),M(x3)}
UV = max{V (x1), V (x2), V (x3)}, LV = min{V (x1), V (x2), V (x3)}.

For simplicity, the membership functions are µ−S(−S(x)), µ−M(−M(x)) and µV (V (x)) for the objective functions
S(x),M(x) and V (x) are defined as follows:

µ−S(−S(x)) =


0, if −S(x) ≥ −LS(
S(x)− LS
US − LS

)
, if −US < −S(x) < −LS

1, if − S(x) ≤ −US

µ−M(−M(x)) =


0, if −M(x) ≥ −LM(
M(x)− LM
UM − LM

)
, if −UM < −M(x) < −LM

1, if −M(x) ≤ −UM

µV (V (x)) =


0, if V (x) ≥ UV(
UV − V (x)
UV − LV

)
, if LV < V (x) < UV

1, if Dk(v) ≥ UDk .

According to step 3, with the above membership functions crisp non-linear programming problem of (13) is formulated as
follows:

Maximize F = w1µ−S(−S(x))+ w2µ−M(−M(x))+ w3µV (V (x)) (14)

Subject to
n∑
i=1

(
Ti1 + Ti2
3

+
Til + Tir
6

)
xi ≥ λ

n∑
i=1

xi = 1 li ≤ xi ≤ ui, xi ≥ 0, i = 1, 2, . . . , n.

0 ≤ µ−S(−S(x)), µ−M(−M(x)), µV (V (x)) ≤ 1,
3∑
i=1

wi = 1.

Problem (14) can also be written as

Maximize F = w1

(
S(x)− LS
US − LS

)
+ w2

(
M(x)− LM
UM − LM

)
+ w3

(
UV − V (x)
UV − LV

)
(15)

Subject to
n∑
i=1

(
Ti1 + Ti2
3

+
Til + Tir
6

)
xi ≥ λ

n∑
i=1

xi = 1 li ≤ xi ≤ ui, xi ≥ 0, i = 1, 2, . . . , n.
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0 ≤
(
S(x)− LS
US − LS

)
,

(
M(x)− LM
UM − LM

)
,

(
UV − V (x)
UV − LV

)
≤ 1

3∑
i=1

wi = 1.

The problem is equivalent to

Maximize F1 = −K1
n∑
i=1

xi ln(xi)+ K2

[
E

(
n∑
i=1

R̃ixi

)
−

n∑
i=1

ci|xi − xoi |

]
− K3

n∑
i=1

n∑
j=1

Cov(̃Ri, R̃j)xixj

Subject to
n∑
i=1

(
Ti1 + Ti2
3

+
Til + Tir
6

)
xi ≥ λ

n∑
i=1

xi = 1 li ≤ xi ≤ ui, xi ≥ 0, i = 1, 2, . . . , n.

K1 =
w1

US − LS
, K2 =

w2

UM − LM
, K3 =

w3

UV − LV

F(x) = F1(x)−
w1LS
US − LS

−
w2LM
UM − LM

+
w3UV
UV − LV

3∑
i=1

wi = 1

where E

(
n∑
i=1

R̃ixi

)
=

n∑
i=1

(
Ri1 + Ri2
3

+
Ril + Rir
6

)
xi (16)

Cov(̃Ri, R̃j) =
(Ri1 + Rir − Ril − Ri2)(Rj1 + Rjr − Rjl − Rj2)

8
+
(Rir − Ril)(Rjr − Rjl)

4

−
(Ri1 + Rir − Ril − Ri2)(Rjr − Rjl)+ (Rj1 + Rjr − Rjl − Rj2)(Rir − Ril)

6
.

6. Numerical examples

In this section,wewill give a numerical example to illustrate the proposedmulti-objective possibilistic portfolio selection
model. Consider six securities problems with the following possibility distribution.

0 ≤ xi ≤ 0.5

i (Ril, Ri1, Ri2, Rir ) ci xoi (Til, λTi1, λTi2, Tir ), λ = 0.3

1 (0.046, 0.069, 0.074, 0.081) 0.003 0.15 (0.002, 0.012, 0.024, 0.042)
2 (0.048, 0.070, 0.076, 0.084) 0.001 0.20 (0.003, 0.015, 0.027, 0.045)
3 (0.048, 0.072, 0.078, 0.088) 0.005 0.15 (0.001, 0.012, 0.015, 0.028)
4 (0.050, 0.076, 0.082, 0.090) 0.004 0.15 (0.002, 0.012, 0.042, 0.072)
5 (0.060, 0.078, 0.086, 0.095) 0.003 0.20 (0.001, 0.009, 0.024, 0.039)
6 (0.062, 0.088, 0.098, 0.100) 0.001 0.15 (0.0015, 0.006, 0.030, 0.045)

In Table 1 results have been presented for different weights to the objectives. In type III expected return is higher than
that in type-I. but risk also increases.

7. Conclusion

Portfolio selection is a usual multi-objective problem. In this paper, we considered an optimum portfolio for a private
investor, taking into account multi-criteria: return, risk, liquidity and added entropy as the objective function to generate
well diversified asset. These objectives, in general, are not crisp from the point of view of the investor, so we will deal with
them in fuzzy terms. we considered a trapezoidal possibility distribution as the possibility distribution of the rates of returns
on the securities. In this study, we proposed a multi-objective non-linear programming model with transaction cost, and a
fuzzy non-linear programming technique is used to solve the problem.
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Table 1
Pareto optimal solution of Model – IV using different weights

Weights x∗1 x∗2 x∗3 x∗4 x∗5 x∗6 S(x∗) M(x∗) V (x∗) Type

w1 = 1/3
w2 = 1/3 0.083 0.086 0.115 0.097 0.202 0.417 0.524 0.072 0.041 I
w3 = 1/3

w1 = 0.45
w2 = 0.45 0.217 0.057 0.133 0.167 0.171 0.255 0.409 0.047 0.029 II
w3 = 0.10

w1 = 0.45
w2 = 0.15 0.157 0.129 0.089 0.121 0.150 0.354 0.217 0.089 0.051 III
w3 = 0.40
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