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Abstract

In the context of investment decision-making, the selection of stocks is im-
portant for a successful construction of portfolios. In this paper the expected
utility, entropy and variance (EU-EV) model is applied for stock selection,
which can be used as preselection model for mean-variance portfolio opti-
mization problems. Based on the EU-EV risk, stocks are ranked and the
best ranked stocks with lower risk are selected in order to form subsets of
stocks, which are then used to construct portfolios. The EU-EV model is
applied to the PSI 20 index, to the Euro Stoxx 50 index and to the Nasdaq
100 index. Subsets of selected stocks are analysed and their portfolios’ effi-
ciencies are compared with those of the portfolios obtained from the whole
set of stocks using the mean-variance model. The results reveal that the
EU-EV model is an adequate stock selection model for building up efficient
portfolios with a lower number of stocks.

Keywords: decision analysis, portfolio optimization, stock selection, risk
analysis, expected utility, entropy and variance model

1. Introduction

In modern portfolio theory introduced by Markowitz (Markowitz (1952),
Markowitz (2000)), mean-variance analysis is used in investment decision-
making. According to that theory, portfolios, which are weighted combina-
tions of their component stocks, are assessed and assembled by minimizing
the risk, expressed by variance, for a given expected return or maximizing
the expected return for a given risk. In this sense, the optima portfolios
constitute the efficient set of portfolios. Depending on the risk aversion of
the investor, a portfolio lying on the efficient frontier can then be chosen
to invest in. The risk aversion is related to the level of risk the investor is
willing to undertake, where a higher risk level is associated with a higher
expected return. The diversification in building up portfolios is a strategy
to reduce their risks, since increasing the number of stocks in a portfolio
can lead to a decreasing portfolio variance. However, the problem of de-
termining the number of stocks to invest in or the selection of those stocks
is not directly addressed with the mean-variance analysis. For example it
would be useful to have an insight in advance about the subsets of stocks
that are worthwhile to invest in and regarding diversification to have an
idea about the number of stocks to construct optimal portfolios. Since the
mean-variance model was presented by Markowitz, various other portfolio
stock selection methods have been proposed in the literature and few of
them attempt to tackle the issue of the particular selection of stocks. The
cardinality-constrained portfolio optimization limits the maximum number
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of stocks for investment, allowing the mean-variance model to select at most
the imposed maximum number of stocks. Due to the introduction of a car-
dinality constraint the portfolio selection problem becomes more complex,
implied by the higher combinatorial possibilities (Gao & Li, 2013). Various
solution methods have been proposed for cardinality-constrained portfolio
optimization, including heuristics or relaxation methods (see e.g. Chang,
Meade, Beasley, & Sharaiha (2000), Deng, Lin, & Lo (2012), or Gao &
Li (2013) and Leung & Wang (2022) and references therein). Other port-
folio stock selection methods deal also with the problem of assessing risk
in an adequate way, using other risk or uncertainty measures than vari-
ance. Ortobelli, Rachev, Stoyanov, Fabozzi, & Biglova (2005) emphasized
that risk cannot be assessed by measuring only the uncertainty and popular
uncertainty measures, such as the standard deviation or variance, are not
always adequate as a proxy for risk (Rachev, Ortobelli, Stoyanov, Fabozzi,
& Biglova, 2018). Even so there are cases where the variance can serve as
an index for risk as discussed in Levi (1992). A popular measure used in
several models to assess risk is entropy, which has the advantage that it
can be computed from nonmetric data and is free from an assumption con-
cerning the underlying distribution. In finance and economic literature one
can find entropy models and measures to model an uncertain environment
and to obtain optimal economic decisions in modelling portfolio investment
risk, e.g the mean-entropy model used in Philippatos & Wilson (1972) and
studied in Philippatos & Gressis (1975), the logarithmic expectation en-
tropy model (Yin, 2019), or the adaptive entropy model (Song & Chan,
2020), which incorporates entropy into the mean-variance model. Bera &
Park (2008) used a cross-entropy measure for optimal portfolio diversifi-
cation. Models based on entropy and also on higher order moments are
the mean-variance-skewness-entropy model (Usta & Kantar, 2011) and the
mean-variance-skewness-kurtosis-entropy model (Aksarayli & Pala, 2018).
Mercurio, Wu, & Xie (2020) introduced the return-entropy portfolio opti-
mization problems, where a mean-entropy objective function is used.

Portfolio selection problems were also discussed for fuzzy environments.
Recently, in Georgescu & Fono (2019), a possibilistic porfolio choice problem
using possibilistic expected utility was presented, where the return of a risky
asset is a fuzzy number. Huang (2008b) proposed fuzzy mean-semivariance
models for portfolio selection and Li, Zhang, & Xu (2015) developed a fuzzy
portfolio selection model with background risk, based on the definitions of
the possibilistic return and possibilistic risk. Parra, Terol, & Uria (2001) de-
veloped a fuzzy goal programming approach for the portfolio selection prob-
lem. A mean-variance-skewness model for portfolio selection considering
fuzzy returns was applied in Li, Qin, & Kar (2010). Models based on fuzzy
set theory, including entropy, were presented in Jana, Roy, & Mazumder
(2009), in Huang (2008a), where mean-entropy models for fuzzy portfo-
lio selection were proposed, and in Qin, Li, & Ji (2009) fuzzy cross-entropy
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models were considered. Galankashi, Mokhatab Rafiei, & Ghezelbash (2020)
developed a fuzzy analytic network process to assess and select portfolios and
presented a literature review about portfolio selection models investigating
the portfolio selection criteria.

Other portfolio optimization problems are based on uncertainty theory.
Mehralizade, Amini, Gildeh, & Ahmadzade (2020) considered the uncertain
random portfolio selection problem and a new corresponding risk criterion.
In Li, Sun, Aw, & Teo (2019) a new uncertain risk measure for the mod-
elling of investment risk was defined and an uncertain portfolio optimization
model was formulated. In the context of uncertainty theory, stock selection
models based on the entropy measure are the mean-entropy-skewness mod-
els (Bhattacharyya, Chatterjee, & Samarjit, 2013) and the mean-variance-
entropy model (Li & Zhang, 2021).

Other extensions of the mean-variance model were proposed in Xia, Liu,
Wang, & Lai (2000), where the portfolio selection model is based on an order
of expected returns of securities, and in Dai & Wang (2019), where sparse
and robust mean-variance portfolio optimization problems were introduced.

Also machine learning methodologies have been employed in the research
on stock selection and portfolio optimization. For example, Liu & Yeh (2017)
used neural networks to build stock selection decision support systems. Min,
Dong, Liu, & Gong (2021) developed hybrid robust portfolio models, intro-
ducing a trade-off parameter to adjust the portfolio optimism level and used
machine learning algorithms including long short-term memory (LSTM) and
eXtreme Gradient Boosting (XGBoost) to evaluate the potential market
movements and provide forecasting information to generate the parameter
for modeling. Huang (2012) used support vector regression, together with
genetic algorithms, to develop a methodology for effective stock selection,
where top-ranked stocks are selected to form a portfolio. This can be seen as
a preselection method for optimal portfolio construction. In fact, the prese-
lection of stocks is relevant for portfolio optimization. For example, Chang,
Yang, & Chang (2009) analysed and solved portfolio optimization problems
with different risk measures using genetic algorithms and concluded that
portfolios with a smaller number of assets (one third of the total assets) out-
perform those containing more assets. Several preselection methods, where
assets or stocks are preselected before forming optimal portfolios, were con-
sidered in the research context of portfolio theory. Wang, Li, Zhang, &
Liu (2020) explored the preselection process of assets using a deep LSTM
method in order to obtain high-quality inputs for an optimal portfolio for-
mation and proposed a combined method of preselection and mean-variance
model. Paiva, Cardoso, Hanaoka, & Duarte (2019) applied the support
vector machine (SVM) method, a classifier based on machine learning, to
classify assets that reach a certain target of gain and select the best assets to
compose optimal investment portfolios with the mean-variance method. Hai
& Min (2021) designed a machine-learning based preselection method, us-
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ing random forests (RF) and SVM, for picking out high-quality risky assets.
Lozza, Shalit, & Fabozzi (2013) used a preselection technique to reduce the
dimensionality of large scale portfolio problems, where stocks that present
the highest Rachev ratio, a reward-risk performance measure depending on
the conditional value-at-risk, are chosen before optimizing the portfolio. Qu,
Zhou, Xiao, Liang, & Suganthan (2017) proposed two asset preselection pro-
cedures for large-scale portfolio optimization that consider return and risk
of individual asset and pairwise correlation to remove assets that may not
potentially be selected into any portfolio. Chen, Zhang, Mehlawat, & Jia
(2021) developed a novel portfolio optimization model based on machine
learning, using extreme gradient boosting for preselection of stocks with
higher potential returns before employing the mean - variance model. Yang,
Feng, & Qiu (2017) proposed the expected utility and entropy (EU-E) model
for stock selection. There, the authors show that the efficient portfolios con-
structed from smaller subsets of stocks selected with their model from the
total set of stocks have almost the same efficient frontier than the initial set.
Marasović, Kalinić, & Jerković (2021) and Marasović & Kalinić (2019) ap-
plied the EU-E model to stock selection for different markets and managed
to reduce the number of stocks in a given capital market by 50% without
changing majorly the properties of efficient portfolios.

The purpose of this paper is to present a new stock selection model
based on expected utility, entropy and variance, the EU-EV model, which
can be used as stock preselection model for optimal portfolio construction.
The paper is organized as follows. In section 2, the EU-EV risk model is
presented and its application to the modelling of stock investment risks and
to stock selection is proposed. In section 3, the model is applied to the
selection of stock components of the PSI 20 index. The stocks are ranked
using the EU-EV risk measure and the best ranked stocks with lowest EU-
EV risk are selected. Subsets with different numbers of stocks are formed
and optimal portfolios are constructed applying the mean-variance model.
The efficient frontiers are compared with the efficient frontier obtained from
the whole set of stocks. Furthermore, the results are also compared with the
solutions obtained by the cardinality-constrained mean-variance model. In
section 4, the EU-EV risk measure and the mean-variance model are applied
to the Euro Stoxx 50 index and to the Nadaq 100 index. The numerical
experiments in sections 3 and 4 were done in Matlab. The Conclusions are
presented in section 4. The appendix contains information about stocks
used in section 4.

2. EU-EV stock selection model

The EU-EV model, that will be presented in this section, can be adapted
and applied to stock selection for the construction of portfolios. In order
to set up the EU-EV model for stock selection, consider a portfolio or a
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set of stocks S = {S1, . . . , SI} and let ai be the action of selecting stock
Si, i = 1, . . . , I, so that the action space is given by A = {a1, . . . , aI}.
The returns of stock Si collected over T previous days will be denoted by
ri1, . . . , riT and the return at day t, where t = 1, . . . , T , from stock Si is
represented by rit. Setting

rmin = min
1≤i≤I

{ri1, . . . , riT }

rmax = max
1≤i≤I

{ri1, . . . , riT },

then the interval [rmin, rmax] contains all returns of the stocks Si, i = 1, . . . , I.
In order to determine the frequency distribution of stock returns, the interval
[rmin, rmax] is divided into N subintervals, or bins, of equal lengths: [r0, r1),
[r1, r2),. . ., [rN−1, rN ], where rmin = r0 < r1 < · · · < rN−1 < rN = rmax.
The subintervals will be denoted by Jn, n = 1, . . . , N . The length of each
subinterval is given by

∆ =
rmax − rmin

N

and the subintervals can be constructed using

Jn =

{
[rn−1, rn−1 +∆), n = 1, . . . , N − 1,
[rn−1, rn], n = N.

(1)

The relative frequency of the return of stock Si in the subinterval Jn is given
by

pin =
|{rit ∈ Jn : t = 1, . . . , T}|

T
, (2)

where | · | denotes the number of elements in the set. The expected return
of stock Si from the subinterval Jn is estimated by

xin =
1

|{rit ∈ Jn : t = 1, . . . , T}|
∑

rit∈Jn
t=1,...,T

rit. (3)

The EU-EV model was proposed in Brito (2020) for risk decision mak-
ing. The model depends on entropy and variance as uncertainty risk factors,
which are combined with expected utility as preference factor using a trade-
off parameter. The model can be seen as an extension of the EU-E decision
model introduced in Yang & Qiu (2005), since it uses the variance as addi-
tional risk factor.

Let G(Θ, A, u) be a decision analysis model, where Θ is the state space,
A, the action space, and u = u(X(a, θ)) is the utility function, a non-
decreasing function, with X(a, θ) being the outcome corresponding to state
θ ∈ Θ when taking the action a ∈ A. For a finite action space with finite
state space, consider A = {a1, a2, . . . , aI} and let θi be the state correspond-
ing to action ai for i = 1, . . . , I. Suppose that each state θi has N outcomes:
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θi = {θi1, θi2, . . . , θiN}, the state space being then Θ = {θ1, . . . , θI}. Let
pin, i = 1, . . . , I, n = 1, . . . , N , denote the distribution law of θi, where∑N

n=1 pin = 1 and pin ≥ 0. Then pin = P (θ = θin|a = ai) denotes the
probability that state θin occurs when taking action ai. The correspond-
ing payoff, when taking action ai while state θin occurs, will be denoted by
xin = X(ai, θin), i = 1, . . . , I, n = 1, . . . , N . The action ai can be repre-
sented in the form

ai = (xi1, pi1;xi2, pi2; . . . ;xiN , piN ). (4)

Given an action ai defined by (4), one can characterize the distribution of its
outcomes using a simplified notation, where the outcomes can be represented
by a discrete random variableXi taking values xi1, . . . , xiN with probabilities
P (Xi = xin) = pin, n = 1, . . . , N .

The EU-EV risk measure and associated EU-EV risk decision model are
presented in Definition 1 and Definition 2, respectively.

Definition 1. Consider an action space A = {a1, a2, . . . , aI}, where the
actions

ai = (xi1, pi1;xi2, pi2; . . . ;xiN , piN ), i = 1, . . . , I,

have outcomes xin occurring with probabilities pin, n = 1, . . . , N . The ex-
pected utility, entropy and variance (EU-EV) measure of risk for the action
ai ∈ A is defined by

R(ai) =
λ

2

H(Xi) +
Var[Xi]

max
ai∈A

{Var[Xi]}

− (1− λ)
E[u(Xi)]

max
ai∈A

{|E[u(Xi)]|}
, (5)

where λ is a real constant satisfying 0 ≤ λ ≤ 1, u(·) is the utility function
and H(Xi) is the entropy expressed by

H(Xi) = −
N∑

n=1

pin ln pin. (6)

The risk of action ai, R(ai), depends on the trade-off parameter λ, which
is used to balance the decision maker’s expected utility of an action and the
uncertainty reflected by the entropy and variance associated with the action.
In this risk measure, entropy and variance are combined as arithmetic mean.
If λ = 0, then the risk measure depends only on the expected utility and
if λ = 1 the risk measure uses only the uncertainty factors entropy and
variance to assess risk. If λ ∈ (0, 1), then the effect of the expected utility
on the risk measure is bigger if λ approaches 0 and if λ approaches 1, the risk
measure will be more influenced by the uncertainty than by the expected
utility.
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Assuming that there exists a preference relation based on the risk mea-
sure denoted by ⪰ (also designated as weak preference relation), where ≻
denotes the strict preference and ∼ the indifference, and that the prefer-
ence relation is used by a decision-maker in choosing between two actions,
where a1 ⪰ a2 means that a1 is preferred over a2 (a1 ≻ a2 meaning that
a1 is strictly preferred over a2 and a1 ∼ a2 that a1 is indifferent to a2), the
EU-EV decision model is defined as follows.

Definition 2. Let G(Θ, A, u) be a decision analysis model.

1. Consider two actions a1, a2 ∈ A with EU-EV risk measures R(a1) and
R(a2). Then:

(a) a1 ≻ a2 if R(a1) < R(a2);
(b) a1 ⪰ a2 if R(a1) ≤ R(a2);
(c) a1 ∼ a2 if R(a1) = R(a2).

2. Consider various actions, A = {a1, a2, . . . , aI}, then they can be or-
dered using the EU-EV measure of risk. The optimal action is the one
with minimum EU-EV risk. In that case, one chooses ak if

R(ak) = min
ai∈A

R(ai).

The EU-EV risk measure for stock selection can then be formulated as
follows. Consider that ai is the action of investing in stock Si. The EU-EV
risk measure presented in Definition 1 for investing in stock Si is then given
by (5), with xin and pin, n = 1, . . . , N , defined in (3) and (2), respectively,

and Var[Xi] =
∑N

n=1 x
2
inpin −

(∑N
n=1 xinpin

)2
, E[u(Xi)] =

∑N
n=1 u(xin)pin.

Consider two stocks S1 and S2. If R(a1) < R(a2), then, according to
Definition 2, one has a1 ≻ a2, indicating that it is preferable to invest in
stock S1 than in stock S2. This means that the optimal stock with lowest
EU-EV risk is S1. We can establish a correspondence between the preference
in terms of ai and in terms of Si and we will write S1 ≻ S2, indicating that
stock S1 is preferred over S2. In this case a decision-maker would select S1.

Consider the set of stocks S = {S1, . . . , SI}. The stock selection problem
consists in choosing from the set S a subset with K ≤ I stocks with lowest
EU-EV risk. For that purpose, the I stocks are ordered according to their
EU-EV risk-measure in ascending order and the K stocks with lowest EU-
EV risk measure are selected.

3. Application to the selection of stock components of the PSI 20
index

The aim is to apply the EU-EV decision model to the selection of stocks
from a stock market in order to investigate if the EU-EV model adequately
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selects the relevant stocks for an efficient portfolio construction with a re-
duced number of stocks. For this purpose, in subsection 3.1, subsets of
stocks are preselected with the EU-EV model and the mean-variance model
is applied to those subsets. The obtained results are compared with those
obtained from considering the whole set of stocks. Later, in subsection 3.2,
the cardinality-constrained mean-variance model is applied and the results
obtained with both methodologies are compared.

In this analysis, the Portuguese Stock market will be considered. The
Portuguese Stock Index PSI 20 consists, from January 2019 to December
2020, of 18 component stocks of companies with the largest market capi-
talization. As initial set the set S = {S1, . . . , S18} containing the 18 stocks
from PSI 20 indicated in Table 1 will be considered.

Table 1: Components of PSI 20.

Stock Company Stock Company Stock Company

S1 Altri S7 GALP S13 The Navigator
S2 BCP S8 Ibersol S14 Pharol
S3 Corticeira Amorim S9 Jerónimo Martins S15 Ramada
S4 CTT S10 Mota-Engil S16 REN
S5 Energias de Portugal S11 Novabase S17 Semapa
S6 EDP Renováveis S12 NOS S18 Sonae

From each stock, the daily closing prices from January 2019 to December
2020 are collected from Investing.com, yielding a set {Pi0, . . . , PiT } with
T + 1 = 512 closing prices for each Si, i = 1, . . . , 18.

The stock returns are calculated using the formula

rit = ln

(
Pit

Pi(t−1)

)
, (7)

where i = 1, . . . , 18 and t = 1, . . . , 511. The set of returns from stock Si is
then given by {ri1, . . . , ri511}. From all stock returns, one determines the
minimum and maximum return, which for the given data are rmin = −0.258
and rmax = 0.28, so that

rit ∈ [−0.258, 0.28],

for i = 1, . . . , 18 and t = 1, . . . , 511. The interval [−0.258, 0.28] is divided
into N = 15 subintervals of length ∆ = 0.036 according to (1):

J1 = [−0.258,−0.222), . . . , J15 = [0.244, 0.28].

Consider the action ai = (xi1, pi1; . . . ;xi15, pi15) of investing in stock Si, i =
1, . . . , 18, with pin and xin, n = 1, . . . , 15, defined in (2) and (3), respectively.
In order to calculate the EU-EV risk measure (5) for each stock Si one needs
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further to define the utility function. Here the following utility function will
be used

u(x) =

{
ln(1 + x), x ≥ 0,

− ln(1− x), x < 0.
(8)

This utility function is a S-shaped utility function, which is concave for
gains and convex for losses. S-shaped utility functions were proposed in
Kahneman & Tversky (1979) to model the behaviour of decision makers
towards risk. Now, the EU-EV risk measure (5) can be determined for
each stock Si. As for the trade-off coefficient, in the present study the risk
measures are calculated for values of λ from 0 to 1 equally spaced in steps of
0.05, as done in Marasović & Kalinić (2019) with the EU-E risk measure.
The stocks are ranked according to their EU-EV risk for all values of λ.
Table 2 contains the normalized expected utilities (NEU), the entropies (H)
and the normalized variances (NVar) and the EU-EV risks corresponding to
the trade-off factors λ = 0, 0.25, 0.5, 0.75, 1 for all 18 stocks.

Table 2: EU-EV risks for components of PSI 20.

Stock NEU(ai) H(ai) NVar(ai)
R(ai)

λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1

S1 -0.1190 1.0654 0.6634 0.1190 0.3054 0.4917 0.6781 0.8644
S2 -0.5714 1.0893 0.7647 0.5714 0.6603 0.7492 0.8381 0.9270
S3 0.2352 0.8488 0.2959 -0.2352 -0.0333 0.1685 0.3704 0.5723
S4 -0.2108 1.0164 0.5379 0.2108 0.3524 0.4940 0.6356 0.7772
S5 0.5238 0.7677 0.3212 -0.5238 -0.2567 0.0103 0.2774 0.5445
S6 1.0000 0.8002 0.3038 -1.0000 -0.6120 -0.2240 0.1640 0.5520
S7 -0.4299 1.0078 0.6400 0.4299 0.5285 0.6270 0.7254 0.8239
S8 -0.1781 1.0080 1.0000 0.1781 0.3846 0.5911 0.7975 1.0040
S9 0.2770 0.7622 0.2726 -0.2770 -0.0784 0.1202 0.3188 0.5174
S10 -0.4018 1.1948 0.9801 0.4018 0.5732 0.7446 0.9160 1.0874
S11 0.3885 0.9828 0.7835 -0.3885 -0.0706 0.2473 0.5653 0.8832
S12 -0.5714 0.8607 0.3550 0.5714 0.5805 0.5896 0.5988 0.6079
S13 -0.3364 0.9241 0.4209 0.3364 0.4204 0.5045 0.5885 0.6725
S14 -0.2854 1.0450 0.6925 0.2854 0.4312 0.5770 0.7229 0.8687
S15 -0.4312 0.9940 0.7376 0.4312 0.5398 0.6485 0.7571 0.8658
S16 -0.0215 0.5005 0.1313 0.0215 0.0951 0.1687 0.2423 0.3159
S17 -0.3256 0.8978 0.3961 0.3256 0.4059 0.4863 0.5666 0.6470
S18 -0.1788 0.8762 0.3392 0.1788 0.2860 0.3933 0.5005 0.6077

Table 3 contains the ranked stocks for various trade-off factors λ ∈ [0, 1],
where the number from 1 to 10 represents the order of a stock, considering
the ranking in ascending order, where 1 corresponds to the lowest EU-EV
risk and 10 to the highest EU-EV risk.
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Table 3: Ranked stocks by EU-EV risk for trade-off factors λ ∈ [0, 1].
λ S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18

0 7 17/18 5 10 2 1 15 8 4 14 3 17/18 13 11 16 6 12 9
0.05 7 18 5 10 2 1 15 9 4 14 3 17 13 11 16 6 12 8
0.1 7 18 5 10 2 1 14 9 4 15 3 17 13 11 16 6 12 8
0.15 7 18 5 9 2 1 14 10 4 15 3 17 13 11 16 6 12 8
0.2 8 18 5 9 2 1 14 10 4 16 3 17 13 12 15 6 11 7
0.25 8 18 5 9 2 1 14 10 3 16 4 17 12 13 15 6 11 7
0.3 8 18 5 9 2 1 14 11 3 17 4 16 12 13 15 6 10 7
0.35 8 18 4 9 2 1 14 12 3 17 5 16 11 13 15 6 10 7
0.4 8 18 4 9 2 1 14 12 3 17 5 15 11 13 16 6 10 7
0.45 8 18 4 9 2 1 14 13 3 17 5 15 11 12 16 6 10 7
0.5 9 18 4 10 2 1 15 14 3 17 6 13 11 12 16 5 8 7
0.55 11 17 5 10 2 1 15 14 3 18 6 12 9 13 16 4 8 7
0.6 11 17 5 10 2 1 14 15 4 18 6 12 9 13 16 3 8 7
0.65 12 17 5 10 2 1 14 16 4 18 6 11 9 13 15 3 8 7
0.7 12 17 5 11 2 1 14 16 4 18 7 10 9 13 15 3 8 6
0.75 12 17 5 11 3 1 14 16 4 18 7 10 9 13 15 2 8 6
0.8 12 17 5 11 3 1 13 16 4 18 10 8 9 14 15 2 7 6
0.85 12 16 5 10 3 2 13 17 4 18 11 8 9 14 15 1 7 6
0.9 13 16 5 10 3 2 12 17 4 18 11 7 9 14 15 1 8 6
0.95 13 16 5 10 4 2 11 17 3 18 12 7 9 14 15 1 8 6
1 12 16 5 10 3 4 11 17 2 18 15 7 9 14 13 1 8 6

3.1. EU-EV stock selection and MV model

Based on the ranking of stocks obtained with the EU-EV model, the best
ranked stocks with lowest EU-EV risk will be selected, considering different
ranges of the trade-off parameter. Subsets with a half number of stocks and
subsets with four stocks will be formed. The mean-variance model will be
applied to those subsets in order to construct efficient portfolios. The effi-
cient frontiers will be compared with the efficient frontier of the portfolios
obtained from the whole set of stocks. The purpose of this analysis is to in-
vestigate if the EU-EV model is able to select the best and relevant stocks for
an efficient portfolio construction with a reduced number of stocks. Consid-
ering the number of stocks necessary for the optimum portfolio construction,
this analysis will also give an insight about the number of stocks to invest
in to obtain the efficient portfolios.

3.1.1. EU-EV preselection with 9 stocks

From the set of 18 ranked stocks by EU-EV risk, first, subsets with the
half number of stocks will be determined. Considering different values of λ,
9 stocks with lowest EU-EV risk are selected. One can observe from Table 3
that for certain values of λ the subsets with 9 stocks having lowest EU-EV
risk are maintained. One obtains the following subsets Qi, i = 1, . . . , 5, for
the values of λ considered in Table 3:

Q1 = {S1, S3, S5, S6, S8, S9, S11, S16, S18}, λ = 0, 0.05, 0.1;
Q2 = {S1, S3, S4, S5, S6, S9, S11, S16, S18}, λ = 0.15, . . . , 0.45;
Q3 = {S1, S3, S5, S6, S9, S11, S16, S17, S18}, λ = 0.5;
Q4 = {S3, S5, S6, S9, S11, S13, S16, S17, S18}, λ = 0.55, . . . , 0.75;
Q5 = {S3, S5, S6, S9, S12, S13, S16, S17, S18}, λ = 0.8, . . . , 1.

(9)
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Comparing Q1 and Q2, the difference is that stock S8, which belongs to Q1 is
substituted in Q2 by stock S4, the other stocks remaining the same in Q1 and
Q2. Calculating the corresponding risks using (5) and the results in Table 2
one obtains R(a4) = 0.5664λ+ 0.2108 and R(a8) = 0.8259λ+ 0.1781. Since
the risks are strictly increasing functions of λ ∈ [0, 1], one concludes that
there exists a value λ⋆ ∈ [0.1, 0.15] such that R(a4) > R(a8) for λ < λ⋆ and
R(a4) < R(a8) for λ > λ⋆. Equating both risk expressions R(a4) = R(a8)
and solving for λ, it turns ou that λ⋆ = 0.1260. In an analogous way one can
determine the other values of λ, which correspond to intersection points of
two risk measures implying the replacement of a given stock in one subset by
a different stock in the succeding subset due to the change in the inequality
of the corresponding risk measures. Proceeding in this way, one obtains
the interval ranges Iλ ⊂ [0, 1], listed in Table 4, for which Qi, i = 1, . . . , 5,
contain the stocks given in (9).

Table 4: Sets of 9 stocks with lowest EU-EV risk.
Iλ Qi

[0, 0.1260) Q1 = {S1, S3, S5, S6, S8, S9, S11, S16, S18}
[0.1260, 0.4685) Q2 = {S1, S3, S4, S5, S6, S9, S11, S16, S18}
[0.4685, 0.5311) Q3 = {S1, S3, S5, S6, S9, S11, S16, S17, S18}
[0.5311, 0.7771) Q4 = {S3, S5, S6, S9, S11, S13, S16, S17, S18}
[0.7771, 1] Q5 = {S3, S5, S6, S9, S12, S13, S16, S17, S18}

One can observe that there are 6 stocks which belong to all subsets Qi,
i = 1, . . . , 5, namely S3, S5, S6, S9, S16, S18. S11 belongs to 4 subsets, S1

and S17 to 3 subsets, S13 to 2 subsets and S4 and S12 to one subset.
The set Q1 corresponds to trade-off coefficients λ ∈ [0, 0.1260), in which

case more weight is given to the return’s expected utility, almost ingnoring
the effect of variance and entropy. In fact, Q1 is equal to the set obtained
with λ = 0, where only the return’s expected utility is taken into account.

Considering the ordered set for λ = 0 with respect to the EU-EV risk,
from the lowest to the highest risk, or, in this case with respect to the
expected utility, from the highest to the lowest, according to Table 3, the
ordered nine stocks are:

S6 ≻ S5 ≻ S11 ≻ S9 ≻ S3 ≻ S16 ≻ S1 ≻ S8 ≻ S18.

Thus, in set Q1, S6 has the lowest risk (or the highest expected utility) and
S18 the highest risk (or the lowest expected utility). Considering the set Q2,
where more weight is given to expected utility than to entropy and variance,
since λ ∈ [0.1260, 0.4685), one obtains the following ordering:

S6 ≻ S5 ≻ S9 ≻ S3 ≻ S11 ≻ S16 ≻ S18 ≻ S1 ≻ S4.

In this set, S4, which entered inQ2 by replacing S8 inQ1, has now the highest
risk. The set Q3 corresponds to trade-off coefficients λ ∈ [0.4685, 0.5311),
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which is equal to the set obtained with λ = 0.5, where an equal weight is
given to variance and entropy, on the one hand, and to expected utility,
on the other hand. In this case, where λ = 0.5, the set has the following
ordered stocks (see Table 3):

S6 ≻ S5 ≻ S9 ≻ S3 ≻ S16 ≻ S11 ≻ S18 ≻ S17 ≻ S1,

where now S1 has the highest EU-EV risk. One can observe that the risk
positions of the stocks inQ2 are maintained inQ3, except the positions of S11

and S16, which interchange, of S1 and S4 being replaced by S17. Considering
the set Q4, corresponding to decisions where more weight is given to entropy
and variance than to expected utility, with λ ∈ [0.5311, 0.7771), the ordering
is the following:

S6 ≻ S5 ≻ S16 ≻ S9 ≻ S3 ≻ S11 ≻ S18 ≻ S17 ≻ S13,

where S13 replaces S1 of Q3 in the highest risk position and considering the
remaining higher ranked stocks, the only change being that S16 passes from
the fifth lowest risk position to the third lowest risk position. Considering
the set Q5, obtained for λ ∈ [0.7771, 1], it equals the set corresponding to
λ = 1, where the preferences are taken regarding only uncertainty given by
entropy and variance. The ordered stocks with respect to the EU-EV risk
of the set for λ = 1 are:

S16 ≻ S9 ≻ S5 ≻ S6 ≻ S3 ≻ S18 ≻ S12 ≻ S17 ≻ S13,

where, differently from the previous sets, S16 appears now in the lowest
risk position, this stock having the lowest uncertainty given by entropy and
variance.

Figures 1—3 contain the graphs of the EU-EV risk measures as functions
of λ for the stocks of the sets Q1, Q2, Q3, Q4 and Q5.

Figure 1: Left panel: EU-EV risks for Q1. Right panel: EU-EV risks for Q2.
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Figure 2: Left panel: EU-EV risks for Q3. Right panel: EU-EV risks for Q4.

Figure 3: EU-EV risks for Q5.

One can observe in Figures 1—3 that the risks of all stocks increase with
λ, that is, the risks increase with the uncertainty described by variance and
entropy. In all three sets, stock S6 has the lowest EU-EV risk for a range
of λ ∈ [0, 0.8122), 0.8122 being the intersection point of the EU-EV risk
lines R(a6) and R(a16). For this reason, S6 was ranked with lowest risk
in the sets Q1, Q2, Q3 and Q4, corresponding to λ < 0.7771. Considering
λ ∈ (0.8122, 1], stock S16 reveals to be the optimal one, so that for λ = 1
this stock appears in the highest ranking position in terms of lowest EU-EV
risk. Among the considered stocks, S8 ∈ Q1 has the highest EU-EV risk
for a wide range of λ, which was classified as the stock with second highest
risk for λ = 0, where it is exceeded by the risk of S18, and it was excluded
from the other sets by the ranking. In Q3 (see left panel of Figure 2), it
is S1 that for λ = 0.5 has the highest risk, which due to a higher slope,
intersects the EU-EV risk of S17 at λ = 0.4872 and exceeds it for higher
values. In Q4 (see right panel of Figure 2), one can see that the high ranked
EU-EV risks of S13 and S17 are very similar. In Figure 3, one can observe
that S12, which for low values of λ has the highest EU-EV risk among all
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considered stocks and was therefore not included in the other sests, has a
line with approximately constant slope, which for values of λ higher than
0.8 is overtaken by the risks of S17 and S13.

In general, one can conclude that stock S6 followed by S5 have the best
performance in terms of lowest EU-EV risk for λ ∈ [0, 0.7771). For higher
values of λ these stocks remain in low risk positions (S5 has the third lowest
risk and S6 the fourth lowest risk), where then S16 appears as best per-
forming stock (for preferences based on a high weight given to entropy and
variance). Notable is that the EU-EV risk of S6 has the highest slope, it
increases from −1 to 0.5520, considering the range of λ, and that the EU-EV
risk of S12 is almost not affected by varying λ, it increases from 0.5714 to
0.6079. Interesting is also the very similar EU-EV risk performance of the
higher risk ranked stocks S13 and S17.

Having obtained a preselection of stocks with lowest EU-EV risk for
different values of λ presented in Table 4 and analysed the ranking of stocks
for different values of λ, now the mean-variance optimization problem will
be considered.

3.1.2. MV model for subsets with 9 stocks

The mean-variance model proposed by Markowitz (1952) consists of the
following optimization problem. Given the stocks S1, . . . , SI , the aim is to
determine portfolios, which are weighted combinations of the stocks, that
have minimum risk expressed by variance, for a given mean return, denoted
by µ̄. The mean-variance portfolio optimization problem can be formulated
as follows:

minimize
I∑

i=1

I∑
j=1

wiwjσij

subject to

I∑
i=1

wiµi = µ̄

I∑
i=1

wi = 1

0 ≤ wi ≤ 1, i = 1, . . . , I,

where wi are the portfolio weights, σij is the covariance between the stocks
Si and Sj given by σij = E[(Xi−E[Xi])(Xj−E[Xj ])], and µi is the expected
return of stock Si given by µi = E[Xi].

The expected return of the portfolio is the weighted average of its ex-

pected stock returns and by the constraint

I∑
i=1

wiµi = µ̄ it is equal to a

specified mean return µ̄. The risk of the portfolio is given by the variance
and can be expressed by the standard deviation. Efficient portfolios are the
optimal portfolios, which have for a given expected return the minimum
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risk (or, for a given risk the highest expected return). The set of all efficient
portfolios defines the efficient frontier.

Applying the mean-variance optimization problem, the efficient frontiers
of the sets Q1, . . . , Q5 (see Table 4) obtained with the EU-EV model are
compared with the efficient frontier of the set S consisting of all 18 stocks
of PSI 20. Figures 4-6 contain the graphs of the efficient frontiers of Qi,
i = 1, . . . , 5, and of the set S.

Figure 4: Left panel: Efficient frontier for Q1. Right panel: Efficient frontier for Q2.

Figure 5: Left panel: Efficient frontier for Q3. Right panel: Efficient frontier for Q4.
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Figure 6: Efficient frontier for Q5.

One can observe that the efficient frontiers of Q1, Q2, Q3 and Q4 seem
to be very similar or almost equal and these are approximately equal to the
efficient frontier of S, the differences being notable for standard deviations
in the interval [0.008, 0.009]. This means that the performance of the sets
Q1, . . . , Q4 of 9 stocks corresponding to trade-off factors λ ∈ [0, 0.7771) is
similar to the performance of S obtained with all 18 stocks, if the aim is
to minimize risk expressed by variance (or standard deviation) for a given
expected return of the portfolio. Therefore, instead of investing in stocks
contained in the set S of 18 stocks, one could invest in stocks belonging to
Q1, . . . , Q4, which only contain 9 stocks, in order to obtain for a given risk
(standard deviation) almost the same expected return. In this sense, the
subsets of stocks Q1, . . . , Q4 approximate well S.

As for the set Q5, which was obtained for λ close to 1 and therefore priv-
ileging stocks with lower uncertainty and almost ignoring expected utility,
it performs less well than S. Due to the high weight given to uncertainty,
which depends on variance, and the very low importance assigned to ex-
pected utility in the EU-EV risk, the expected return of the selected stocks
may be lower and therefore the efficiency decays with respect to those of S.

Considering the sets Q1, . . . , Q4, weights of selected stocks of 10 efficient
portfolios are determined and the results are compared. The risks (standard
deviations) and returns of those portfolios are indicated in Figures 7 and 8.
The weights of their stock components are listed in Tables 5–8. Table 9
contains the weights of stocks of 10 efficient portfolios of the set of all stocks
S (also plotted in Figures 7 and 8).
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Figure 7: Left panel: Efficient frontier with 10 portfolios for Q1 and S. Right panel:
Efficient frontier with 10 portfolios for Q2 and S.

Figure 8: Left panel: Efficient frontier with 10 portfolios for Q3 and S. Right panel:
Efficient frontier with 10 portfolios for Q4 and S.

Table 5: Weights of components of efficient portfolios (EP) of Q1.

EP
Weights

Risk Return
S6 S5 S11 S9 S3 S16 S1 S8 S18

P1 0.0659 0 0.1774 0.1666 0.1654 0.4147 0 0.0101 0 0.0087 0.0004
P2 0.1459 0 0.1882 0.1579 0.1631 0.3441 0 0.0008 0 0.0088 0.0005
P3 0.2292 0 0.1992 0.1477 0.1605 0.2635 0 0 0 0.0091 0.0007
P4 0.3128 0 0.2102 0.1373 0.1579 0.1819 0 0 0 0.0095 0.0009
P5 0.3963 0 0.2212 0.1269 0.1553 0.1003 0 0 0 0.0101 0.0010
P6 0.4799 0 0.2322 0.1164 0.1527 0.0188 0 0 0 0.0107 0.0012
P7 0.5855 0 0.2405 0.0702 0.1038 0 0 0 0 0.0116 0.0014
P8 0.6976 0 0.2480 0.0133 0.0410 0 0 0 0 0.0126 0.0015
P9 0.8248 0 0.1652 0 0 0 0 0 0 0.0142 0.0017
P10 1 0 0 0 0 0 0 0 0 0.0173 0.0019
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Table 6: Weights of components of efficient portfolios (EP) of Q2.

EP
Weights

Risk Return
S6 S5 S9 S3 S11 S16 S18 S1 S4

P1 0.0651 0 0.1635 0.1617 0.1778 0.4156 0 0 0.0162 0.0087 0.0004
P2 0.1439 0 0.1583 0.1631 0.1880 0.3467 0 0 0 0.0088 0.0005
P3 0.2277 0 0.1479 0.1605 0.1990 0.2649 0 0 0 0.0091 0.0007
P4 0.3115 0 0.1374 0.1579 0.2100 0.1831 0 0 0 0.0095 0.0009
P5 0.3953 0 0.1270 0.1553 0.2211 0.1014 0 0 0 0.0100 0.0010
P6 0.4790 0 0.1166 0.1527 0.2321 0.0196 0 0 0 0.0107 0.0012
P7 0.5846 0 0.0707 0.1043 0.2405 0 0 0 0 0.0116 0.0014
P8 0.6970 0 0.0136 0.0414 0.2480 0 0 0 0 0.0126 0.0015
P9 0.8344 0 0 0 0.1656 0 0 0 0 0.0142 0.0017
P10 1 0 0 0 0 0 0 0 0 0.0173 0.0019

Table 7: Weights of components of efficient portfolios (EP) of Q3.

EP
Weights

Risk Return
S6 S5 S9 S3 S16 S11 S18 S17 S1

P1 0.0666 0 0.1679 0.1655 0.4222 0.1778 0 0 0 0.0087 0.0004
P2 0.1496 0 0.1576 0.1630 0.3411 0.1887 0 0 0 0.0088 0.0005
P3 0.2327 0 0.1472 0.1604 0.2600 0.1996 0 0 0 0.0091 0.0007
P4 0.3158 0 0.1369 0.1578 0.1790 0.2106 0 0 0 0.0095 0.0009
P5 0.3988 0 0.1265 0.1552 0.0979 0.2215 0 0 0 0.0101 0.0010
P6 0.4819 0 0.1162 0.1526 0.0168 0.2325 0 0 0 0.0108 0.0012
P7 0.5875 0 0.0692 0.1027 0 0.2407 0 0 0 0.0116 0.0014
P8 0.6990 0 0.0126 0.0403 0 0.2481 0 0 0 0.0127 0.0015
P9 0.8358 0 0 0 0 0.1642 0 0 0 0.0142 0.0017
P10 1 0 0 0 0 0 0 0 0 0.0173 0.0019

Table 8: Weights of components of efficient portfolios (EP) of Q4.

EP
Weights

Risk Return
S6 S5 S16 S9 S3 S11 S18 S17 S13

P1 0.0666 0 0.4222 0.1679 0.1655 0.1778 0 0 0 0.0087 0.0004
P2 0.1496 0 0.3411 0.1576 0.1630 0.1887 0 0 0 0.0088 0.0005
P3 0.2327 0 0.2600 0.1472 0.1604 0.1996 0 0 0 0.0091 0.0007
P4 0.3158 0 0.1790 0.1369 0.1578 0.2106 0 0 0 0.0095 0.0009
P5 0.3988 0 0.0979 0.1265 0.1552 0.2215 0 0 0 0.0101 0.0010
P6 0.4819 0 0.0168 0.1162 0.1526 0.2325 0 0 0 0.0108 0.0012
P7 0.5875 0 0 0.0692 0.1027 0.2407 0 0 0 0.0116 0.0014
P8 0.6990 0 0 0.0126 0.0403 0.2481 0 0 0 0.0127 0.0015
P9 0.8358 0 0 0 0 0.1642 0 0 0 0.0142 0.0017
P10 1 0 0 0 0 0 0 0 0 0.0173 0.0019
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Table 9: Weights of components of efficient portfolios (EP) of S.

EP
Weights

Risk Return
S3 S6 S9 S11 S12 S14 S15 S16

P1 0.1415 0.0549 0.1461 0.1603 0.0776 0.0055 0.0594 0.3546 0.0085 0.0002
P2 0.1479 0.1206 0.1467 0.1734 0.0508 0 0.0446 0.3162 0.0085 0.0004
P3 0.1533 0.1869 0.1461 0.1865 0.0220 0 0.0298 0.2755 0.0088 0.0006
P4 0.1575 0.2569 0.1435 0.2001 0 0 0.0135 0.2285 0.0092 0.0007
P5 0.1569 0.3435 0.1334 0.2142 0 0 0 0.1519 0.0097 0.0009
P6 0.1540 0.4376 0.1217 0.2266 0 0 0 0.0600 0.0104 0.0011
P7 0.1276 0.5429 0.0918 0.2377 0 0 0 0 0.0112 0.0013
P8 0.0569 0.6693 0.0277 0.2461 0 0 0 0 0.0124 0.0015
P9 0 0.8140 0 0.1860 0 0 0 0 0.0139 0.0017
P10 0 1 0 0 0 0 0 0 0.0173 0.0019

From Tables 5–8, one can observe that the stocks S6, S11, S3, S9, S16

are privileged in the efficient portfolio construction from Q1, Q2, Q3 and
Q4, where in Q1 the additional stock S18 enters with very low weights for
portfolios with low risks and in Q2 the additional stock S4. The risks and
returns for the efficient portfolios P1-P10 obtained for Q1, Q2, Q3 and Q4

are almost equal, only the weights of the corresponding stocks differ slightly.
It is notable that the high returns are achieved with higher weights of S6

in the first position for Q1, Q2, Q3 and Q4, followed by weights of S11 and
then also by weights of S3 and S9, however these representing a very small
contribution when compared with S6, or also with S11. In all cases, stock
S16 plays an important role, followed by stock S11, in constructing efficient
portfolios with low risks, since their weights are higher than those of other
stocks in the portfolios P1 and P2.

The results in Table 9 indicate that the efficient portfolio construction
based on the whole set of stocks S privileges stocks S6, S11, S3, S9, S16, S15,
S12 and S14, where as in the efficient portfolio construction for Q1, Q2, Q3

and Q4, the stock S6 with highest weights is again the most relevant one
for obtaining high returns, followed by S11 and by S3 and S9 with very low
weights. One can observe that the efficient portfolios with higher returns
constructed with stocks from S are very similar to those obtained with stocks
from Q1, Q2, Q3 and Q4. Concerning efficient portfolios with low risks, here
also stock S16 contributes with the highest weight, followed by stock S11.
The risks and returns obtained from S are similar to those obtained from
Q1, Q2, Q3 and Q4, it is only worth to mention the slight difference that S
allows for portfolios with lower risks (0.0085 instead of 0.0087) as one can
also observe in Figures 7 and 8.

The results show that the efficient portfolios can be constructed with
a smaller subset of stocks, namely a number of 5 or 6 stocks from Q1,
Q2, Q3 and Q4, containing 9 stocks, than the number of 8 stocks from S,
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containing 18 stocks, since the risk and return values are approximately
equal. Another conclusion is that the sets Q1, Q2, Q3 and Q4, which consist
of 9 of the 18 stocks of S, contain the most relevant stocks for the efficient
portfolio construction, these being S6, S11, S3 and S9, considering their
presence and weights in the efficient porfolios. And these 4 stocks play also
the most relevant role in the efficient portfolios obtained from S. These
results suggest to construct efficient portfolios from smaller subsets of S, in
particular to analyse the construction with sets of 4 stocks, which will be
considered in the following subsection.

In order to confirm that the EU-EV model is in fact useful for the se-
lection of stocks for efficient portfolio construction, before carrying out the
cardinality-constrained portfolio optimization (in subsection 3.2), a com-
parison with randomly picked stock sets, in number equal to the number
of stocks in Qi, i = 1, . . . , 5, will be performed. The mean-variance opti-
mization problem will be applied to the new sets and the efficient frontiers
will be confronted with the efficient frontier of S. Additionally, the specific
stock set Q6 containing the stocks that were mostly left out by the EU-EV
selection for Q1, Q2, Q3, Q4 and Q5 will also be used in this analysis:

Q6 = {S2, S4, S7, S8, S10, S12, S13, S14, S15}.

The following randomly picked stock sets will be considered:

Q7 = {S3, S5, S6, S7, S8, S11, S14, S16, S17},
Q8 = {S3, S4, S10, S11, S12, S14, S15, S16, S17},
Q9 = {S2, S4, S5, S6, S9, S10, S11, S15, S18},
Q10 = {S1, S2, S4, S6, S8, S14, S15, S16, S18}.

Applying the mean-variance optimization problem to the set Q6, that
consists of stocks classified with the EU-EV model as having the highest
risk, one obtains the efficient frontier in Figure 9, containing also the effi-
cient frontier of the whole stock set S. The set Q6 has in fact a very poor
performance, all mean return values are negative.
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Figure 9: Efficient frontier for Q6.

Figure 10: Left panel: Efficient frontier for Q7. Right panel: Efficient frontier for Q8.

Figure 11: Left panel: Efficient frontier for Q9. Right panel: Efficient frontier for Q10.

Comparing the efficient frontiers of Q7, Q8, Q9 and Q10 with those of S
(see Figures 10 and 11), one can observe that withQ8 andQ10 it is impossible
to achieve the return levels of S in the given range (the highest return level
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associated with highest risk obtained with Q10 being an exception). The
efficient frontiers of Q7 and Q9 partially approache the efficient frontier
of S, namely for standard deviations greater than 0.012, where Q7 yields a
better approximation. However, comparing the performance of these stocks,
in particular that of Q7, with those of Q1 − Q4 (see Figures 4 and 5), it
becomes evident that for lower risk ranges Q1 −Q4 lead to higher returns,
so that these sets obtained with the EU-EV model outperform Q7 (and
Q8−Q10). Note that the set Q7 contains the stocks S3, S5, S6, S11 and S16,
which are common to Q1 − Q4, and these stocks occupy in those sets the
lower EU-EV risk ranking positions. For this reason, Q7 performs better
than Q6 and Q8 −Q10.

3.1.3. EU-EV preselection with 4 stocks

In the following paragraphs, subsets of 4 stocks with lowest EU-EV risk
will be formed and analysed, analogously to the previous case. Considering
the results in Table 3, one obtains the sets of 4 stocks with lowest EU-EV
risk presented in Table 10 corresponding to specific interval ranges Iλ of λ.

Table 10: Sets of 4 stocks with lowest EU-EV risk.
Iλ Qi

[0, 0.3303) Q1 = {S5, S6, S9, S11}
[0.3303, 0.5001) Q2 = {S3, S5, S6, S9}
[0.5001, 1] Q3 = {S5, S6, S9, S16}

The set Q1 equals the set obtained for λ = 0. The stocks in this set
maximize therefore the return’s expected utility, the entropy and variance
being more irrelevant. The ordered stocks for λ = 0, with respect to the
EU-EV risk, are

S6 ≻ S5 ≻ S11 ≻ S9.

The set Q2 equals the set for λ = 0.5. The stocks in this set are those which
perform best, when the assessment is characterized by weighting equally the
return’s expected utility, on the one hand, and the entropy and variance, on
the other hand. The ordered stocks for λ = 0.5, with respect to the EU-EV
risk, are

S6 ≻ S5 ≻ S9 ≻ S3.

The set Q3 equals the set obtained for λ = 1. The stocks in this set minimize
therefore the return’s entropy and variance, ignoring the return’s expected
utility. The ordered stocks for λ = 1, with respect to the EU-EV risk, are

S16 ≻ S9 ≻ S5 ≻ S6.

Figures 12 and 13 contain the graphs of the EU-EV risks as functions of
λ for the stocks of sets Q1, Q2 and Q3.
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Figure 12: Left panel: EU-EV risks for Q1. Right panel: EU-EV risks for Q2.

Figure 13: EU-EV risks for Q3.

The sets Q1, Q2 and Q3 have in common the stocks S5, S6 and S9. One
can observe in Figures 12 and 13 that, in set Q1, the additional stock S11

has a low EU-EV risk for low values of λ, however it increases with a higher
slope when compared with the EU-EV risks of S3, included in Q2, and S16,
included in Q3. On the contrary, the EU-EV risk of S16 due to its lower
slope is responsible for a better performance in terms of lower EU-EV risk of
set Q3 for higher values of λ. Considering set Q2, one can observe that the
evolution of the EU-EV risk with λ of the additional stock S3 is very similar
to that of S9, the slopes of the corresponding lines being almost equal and
the difference between both risks being small. In all sets, S6 has the lowest
risk for a wider range of λ, except for higher values, where in Q3 it is more
evident that S16 performs better for higher values of λ, this being consistent
with the ranking obtained previously for the cases λ = 0, λ = 0.5 and λ = 1.

3.1.4. MV model for subsets with 4 stocks

The mean-variance optimization problem will now be applied to the sets
consisting of 4 stocks and their efficiencies will be compared with those of
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the whole set S through a graphical analysis and an analysis of particular
efficient portfolios. The efficient frontiers of the sets Q1, Q2, Q3 and of the
set containing all stocks S are presented in Figure 14.

Figure 14: Efficient frontiers for Q1, Q2, Q3 and S.

Comparing the efficient frontiers corresponding the three subsets of 4
stocks Q1, Q2, Q3 and the initial set of 18 stocks S, one can observe that the
efficient frontier of portfolios constructed from stocks of set Q1, consisting
of the best ranked stocks for λ ∈ [0, 0.3303), approximates the efficient
frontier of portfolios from S better than the efficient frontiers corresponding
to Q2 and Q3. However, the approximation is only achieved for standard
deviations greater than 0.011, since it is not possible to attain lower risks
with Q1. Also, one can observe that for standard deviations greater than
0.012, the efficient frontier of Q1 approximates well the efficient frontier of
S. This means that the optimal portfolios constructed with stocks of Q1

yield approximately the same expected returns as the optimal portfolios
constructed with stocks from S for given standard deviations greater than
0.012. The efficient frontiers of Q2 and Q3 lie notably below those of Q1

and S. These results indicate that the higher weight given to the expected
utility in the EU-EV risk, through values of λ close to 0, is relevant for the
sets of four stocks to attain the optimal portfolios with higher mean returns.
Instead, an approximate equal weight given to entropy and variance on the
one hand and expected utility on the other hand, as in the formation of
set Q2, and a higher weight attributed to entropy and variance, as in the
formation of set Q3, will decrease the mean returns of the portfolios

One concludes that the 4 stocks of set Q1 are sufficient to obtain the
highest expected returns for risks higher than 0.012. Therefore, one could
pay attention to these stocks instead of considering the set of all 18 stocks,
if the aim is to achieve the highest expected returns, although coupled with
a higher degree of risk.

Considering the set Q1, weights of 10 efficient portfolios constructed with
stocks of Q1 are listed in Table 11, together with the corresponding risks
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and returns. The risks (standard deviations) and returns of those portfolios
are plotted on the efficient frontier in Figure 15 together with the efficient
frontier and risks and returns of 10 efficient portfolios of the set of all stocks
S. The weights of the 10 efficient portfolios indicated on the efficient frontier
of S in Figure 15 are listed in Table 9.

Figure 15: Efficient frontier with 10 portfolios for Q1 and S.

Table 11: Weights of components of efficient portfolios (EP) of Q1.

EP
Weights

Risk Return
S6 S5 S11 S9

P1 0.2695 0.1683 0.2603 0.3019 0.0112 0.0011
P2 0.3526 0.1245 0.2600 0.2630 0.0113 0.0012
P3 0.4357 0.0807 0.2596 0.2241 0.0114 0.0013
P4 0.5187 0.0369 0.2592 0.1852 0.0117 0.0013
P5 0.5996 0 0.2586 0.1418 0.0121 0.0014
P6 0.6688 0 0.2563 0.0749 0.0125 0.0015
P7 0.7380 0 0.2540 0.0079 0.0131 0.0016
P8 0.8239 0 0.1761 0 0.0140 0.0017
P9 0.9119 0 0.0881 0 0.0155 0.0018
P10 1 0 0 0 0.0173 0.0019

One can observe in Table 11 that the efficient portfolios with higher
returns can be formed with stocks S6 and S11 of Q1, since only these con-
tribute with their weights to the highest returns, where S6 enters with higher
weights in the portfolio construction. Efficient porfolios with lower risks
are constructed with all four stocks, where S9 contributes with the highest
weight to achieve the lowest risk. Comparing these results with those of
the efficient portfolios obtained from S, which are listed in Table 9, one can
observe that also for S, the stocks S6 and S11 lead to the highest returns.
The difference is that in S, S3 and S9 contribute next to the intermediate
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returns, followed then by S16, whereas in Q1 the stock S9 is included, how-
ever with low weights, to obtain portfolios with intermediate returns. The
4 stocks in Q1 are not sufficient to achieve lower risks associated with lower
returns. For that purpose, more stocks should be included, diversifying more
the portfolios. In fact, in S (see Table 9) the lowest risk portfolios on the
efficient frontier are constructed by including more stocks.

3.2. Comparison with the cardinality-constrained MV model

In this subsection, the results obtained in the previous subsection will be
compared with the results obtained by adding a cardinality constraint to the
MV model. The maximum number of stocks in the portfolio optimization
problem will first be limited to 9 stocks and then to 4 stocks.

The mean-variance portfolio optimization problem with cardinality con-
straint can be formulated as follows:

minimize
I∑

i=1

I∑
j=1

wiwjσij

subject to
I∑

i=1

wiµi = µ̄

I∑
i=1

wi = 1

0 ≤ wi ≤ 1, i = 1, . . . , I,
I∑

i=1

δ(wi) ≤ K,

where now the last condition is introduced to limit the maximum number of
stocks to K, with K ≤ I, and δ(wi) = 0 if wi = 0 and δ(wi) = 1 if wi ̸= 0,
indicating thus if stock Si will be included in the portfolio.

3.2.1. MV model with a maximum number of 9 stocks

Applying the mean-variance optimization problem with cardinality con-
traint, considering K = 9, one obtains the efficient frontier in Figure 16,
where U denotes the set of portfolios formed with the additional constraint.
Figure 16 also contains the efficient frontier of S, however both efficient
frontiers seem to coincide. Table 12 contains the weights of 10 efficient
constrained portfolios, plotted in Figure 16.
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Figure 16: Efficient frontier with 10 portfolios for U and S.

Table 12: Weights of components of efficient portfolios (EP) of U .

EP
Weights

Risk Return
S3 S6 S9 S11 S12 S14 S15 S16

P1 0.1413 0.0548 0.1459 0.1603 0.0773 0.0065 0.0595 0.3543 0.0085 0.0002
P2 0.1479 0.1204 0.1467 0.1733 0.0508 0 0.0446 0.3162 0.0085 0.0004
P3 0.1568 0.1745 0.1525 0.1850 0 0 0.0348 0.2965 0.0088 0.0006
P4 0.1599 0.2492 0.1452 0.2018 0 0 0 0.2439 0.0092 0.0007
P5 0.1569 0.3434 0.1335 0.2142 0 0 0 0.1520 0.0097 0.0009
P6 0.1540 0.4375 0.1217 0.2266 0 0 0 0.0601 0.0104 0.0011
P7 0.1276 0.5428 0.0919 0.2377 0 0 0 0 0.0112 0.0013
P8 0.0570 0.6692 0.0277 0.2461 0 0 0 0 0.0124 0.0015
P9 0 0.8139 0 0.1861 0 0 0 0 0.0139 0.0017
P10 0 1 0 0 0 0 0 0 0.0173 0.0019

Comparing the results of Table 12 with those of Table 9, where no car-
dinality constraint was imposed, one concludes that the results are very
similar, the same eight stocks are used to build up the efficient portfolios,
when the maximum number of stocks in the portfolio is K = 9.

Comparing these results with those of subsection 3.1.2, where the mean-
variance model was applied to the 9 stocks, preselected with the EU-EV
model, one concludes that the cardinality-constrained mean-variance model
represents in this case only an improvement for approaching the efficient
frontier of S for low standard deviations in the interval [0.008, 0.009], asso-
ciated with the lowest expected returns, as one can observe in Figure 17.
Note that in Figure 17, the efficient frontiers of Qi, i = 1, . . . , 4 coincide (or
almost coincide, c.f. subsection 3.1.2), as well as the efficient frontiers of S
and U . One can conclude that applying the EU-EV model with trade-off
factors λ ∈ [0, 0.7771) together with the mean-variance model or using the
cardinality-constrained mean-variance model will lead approximately to the
same efficient frontier for standard deviations greater than 0.009.
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Figure 17: Efficient frontier with 10 portfolios for Qi, i = 1, 2, 3, U and S.

3.2.2. MV model with a maximum number of 4 stocks

Considering now the cardinality-constrained mean-variance optimization
problem with K = 4, one obtains the efficient frontier in Figure 18, where
U denotes the corresponding set of portfolios formed with the imposed con-
straint. Comparing the efficient frontier with those of S, one can observe
that both efficient frontiers seem to coincide for standard deviations greater
than 0.0105 (or expected returns greater than 1.2). For lower standard de-
viations, the cardinality-constrained portfolios have lower expected returns
than the unconstrained portfolios, the deviation being small. Table 13 con-
tains the weights of 10 efficient constrained portfolios, plotted in Figure 18.

Figure 18: Efficient frontier with 10 portfolios for U and S.
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Table 13: Weights of components of efficient portfolios (EP) of U .

EP
Weights

Risk Return
S3 S6 S9 S11 S16

P1 0.1713 0 0.1887 0.1749 0.4651 0.0088 0.0003
P2 0.1946 0.1426 0 0.1966 0.4662 0.0091 0.0004
P3 0.1899 0.2274 0 0.2072 0.3755 0.0093 0.0006
P4 0.1851 0.3140 0 0.2180 0.2829 0.0096 0.0008
P5 0.1802 0.4007 0 0.2288 0.1903 0.0101 0.0010
P6 0.1847 0.4409 0.1436 0.2308 0 0.0106 0.0012
P7 0.1174 0.5611 0.0826 0.2389 0 0.0114 0.0013
P8 0.0503 0.6815 0.0214 0.2469 0 0.0125 0.0015
P9 0 0.8229 0 0.1771 0 0.0140 0.0017
P10 0 1 0 0 0 0.0137 0.0019

Comparing the results of Table 13 with those of Table 11, where the
cardinality constraint was ignored in the mean-variance model and the pres-
election of 4 stocks with the EU-EV model was applied with λ ∈ [0, 0.3303),
one can see that in both methods the stock S6 followed by S11 are the most
relevant stocks for obtaining efficient portfolios. Also stock S9 contributes
to the efficient portfolio construction with both methods. The difference is
that with the EU-EV model, stock S5 was selected as fourth contributing
stock, whereas with the cardinality-constrained model the stocks S3 and S16

are the third and fourth most relevant stocks for the efficient portfolios. The
stock S16 is important for constructing efficient portfolios with lower risks,
since as one can see, S16 contributes with higher weights to the construc-
tion of those portfolios. This explains the better performance of U when
compared with those of Q1 for lower standard deviations (see Figure 19).

Figure 19: Efficient frontier with 10 portfolios for Qi, i = 1, 2, 3, U and S.

In this case, both methods have in common that the efficient frontier of
S is better approximated for middle and higher standard deviations in the
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given range, associated with higher returns, than for lower standard devi-
ations. However, considering also lower standard deviations, then one can
conclude that the cardinality-constrained mean-variance model permits ob-
taining portfolios with efficiency close to the efficiency of S, whereas with the
preselection of 4 stocks with the EU-EV model it is not possible to construct
portfolios with standard deviations approximately lower than 0.011.

3.2.3. General remarks

The mathematical advantage of the cardinality-constrained mean-variance
model is that all combinatorial possibilities of sets with the limited number of
stocks are directly taken into account in the optimization process. However,
from the practical or numerical point of view, the cardinality-constrained
portfolio optimization is very complex. Although, the solution methods for
this optimization problem, including exact, relaxation and heuristic methods
have evolved in determining optimal solutions, some computational prob-
lems were referred in the literature (see e.g. Gao & Li (2013)), such as
failure in computing optimal solutions for higher numbers of stocks, com-
promised quality of the solutions and failure in guaranteeing the optimal-
ity of solutions. In the here considered problem, where the total number
of stocks is small, the cardinality-constrained portfolio optimization deter-
mines effectively optimal stock sets, whose efficiency is very close to that of
the whole stock set (the approximation being better for a maximum number
of 9 stocks than for a maximum number of 4 stocks).

Considering the combined EU-EV preselection and mean-variance model,
one advantage is the computational simplification, achieved by applying the
mean-variance model to a specific set with a reduced number of stocks, ob-
tained from a simple ranking procedure of individual stocks with respect to
the EU-EV risk. Another advantage is that the preselection with the EU-EV
risk measure gives a priori an insight about the individual characterization
and individual performance of stocks in terms of variance, entropy and ex-
pected utility for different values of the trade-off factor. Also of interest is
that this methodology permits in this way assessing risk in a different way
taking into account more different aspects of risk, since the use variance alone
as risk measure in the traditional mean-variance model may limit the risk
assessment (as also pointed out in the literature). The EU-EV preselection
and mean-variance model permit thus obtaining both and individual stock
assessment and then the implied collective assessment of stocks. The disad-
vantage of this process is that the ranking with the EU-EV risk ignores the
linear combination of weighted stocks and therefore the collective behaviour
of stocks, so that optimal combinations may not be captured by leaving out
certain stocks when applying the mean-variance model. However, the results
of the application show that optimal solutions with efficiency very close to
that of the whole set of stocks were obtained with this method, when reduc-
ing the number of stocks to the half. With sets of four stocks, i.e. with 20%
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of the total number of stocks, the efficiency is achieved only for medium and
high risks associated with medium and high expected returns.

4. Application to the selection of stock components of Euro Stoxx
50 index and Nasdaq 100 index

In this section, the EU-EV model and the mean-variance model will
be applied to the stock market index Euro Stoxx 50, which consists of 50
component stocks of companies from different European countries, and to
the Nasdaq 100 index, consisting of 102 component stocks. The data were
collected from January 2019 to December 2020 from Yahoo Finance.

4.1. Euro Stoxx 50 index

In the following analysis, 502 daily closing prices, from January 2019 to
December 2020, of 48 stocks of the Euro Stoxx 50 index, listed in Table A.14
in the appendix, will be considered and the EU-EV model will be applied
to select subsets with 24 stocks having lowest EU-EV risk. Then, the mean-
variance model will be applied to those subsets and their efficient frontiers
will be compared with the efficient frontier of the whole set of stocks.

Following the methodology explained in detail in the previous section,
the EU-EV risks are calculated for the 48 stocks and the stocks are or-
dered with respect to the EU-EV risk considering the trade-off factors λ =
0, 0.25, 0.5, 0.75, 1. Altogether there are 13 different subsets of stocks that
can be formed for the equally spaced values of λ, ranging from 0 to 1 in inter-
vals of 0.05. However, due to the similarity, only five subsets corresponding
to the mentioned trade-off factors are considered for the respresentation of
the efficient frontiers in order to analyse the influence of the change in λ and
for the comparison with the efficient frontier obtained from the set of all 48
stocks. The best ranked 24 stocks are selected to form the subsets desig-
nated by Qλ=0, Qλ=0.25,..., Qλ=1. The stocks belonging to these subsets are
listed in Table A.15 in the appendix. Applying the mean-variance model to
these subsets consisting of 24 stocks and to the set of all 48 stocks, desig-
nated by S, one obtains the efficient frontiers presented in Figures 20-22,
where Figure 22 (right panel) contains all efficient frontiers of the considered
subsets.
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Figure 20: Left panel: Efficient frontier for Qλ=0. Right panel: Efficient frontier for
Qλ=0.25.

Figure 21: Left panel: Efficient frontier for Qλ=0.5. Right panel: Efficient frontier for
Qλ=0.75.

Figure 22: Left panel: Efficient frontier for Qλ=1. Right panel: Efficient frontier for Qλ=0,
Qλ=0.25, Qλ=0.5, Qλ=0.75, Qλ=1 and S.

One can observe that the subsets with intermediate values of λ: λ = 0.25,
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λ = 0.5 and λ = 0.75, lead to efficient frontiers that are approximately equal
to the efficient frontier of S, the approximation with λ = 0.75 being the best.
For λ = 0, the efficient frontier is also close to the efficient frontier of S,
however for a smaller range of risk values, namely for standard deviations
greater than 0.009. The set formed with λ = 1 presents a poor performance,
since its efficient frontier lies entirely below those of S. Due to the fact that
in this case the stocks are assessed using only the risk factors entropy and
variance, the objective of achieving the high portfolio returns of S fails (see
Figure 22 on the left).

One concludes with this experiment that the EU-EV model is able to
select the stocks that are relevant for the efficient portfolio construction with
the half number of stocks, reducing the initial set of 48 stocks to 24 stocks.

4.2. Nasdaq 100 index

In the following analysis, 504 daily closing prices, from January 2019 to
December 2020, of 96 component stocks of the Nadaq 100 index, listed in
Table A.16 in the appendix, will be considered. In this case the EU-EV
model is used to form subsets with 48 stocks and the mean-variance model
is then applied in order to compare the subsets’ efficient frontiers with the
efficient frontier of the entire set with 96 stocks.

The EU-EV risks are computed for the 96 stocks and the stocks are
ordered with respect to the EU-EV risk for the trade-off factors λ = 0,
0.1,. . ., 0.9, 1. Here, 17 different subsets of stocks can be formed for λ
ranging from 0 to 1 in intervals of 0.05. However, for the illlustrations of
the efficient frontiers only 11 subsets for the mentioned trade-off factors will
be used, due to the same reasons noted in the previous analysis. Then, the
best ranked 48 stocks are selected to form the subsets designated by Qλ=0,
Qλ=0.1,..., Qλ=0.9, Qλ=1, whose corresponding stocks are listed in Table A.17
in the appendix. Applying the mean-variance model to these subsets and
to the set of all 96 stocks, S, one obtains the efficient frontiers presented in
Figures 23-28, where Figure 28 (right panel) contains all efficient frontiers
of the considered subsets.
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Figure 23: Left panel: Efficient frontier for Qλ=0. Right panel: Efficient frontier for
Qλ=0.1.

Figure 24: Left panel: Efficient frontier for Qλ=0.2. Right panel: Efficient frontier for
Qλ=0.3.

Figure 25: Left panel: Efficient frontier for Qλ=0.4. Right panel: Efficient frontier for
Qλ=0.5.
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Figure 26: Left panel: Efficient frontier for Qλ=0.6. Right panel: Efficient frontier for
Qλ=0.7.

Figure 27: Left panel: Efficient frontier for Qλ=0.8. Right panel: Efficient frontier for
Qλ=0.9.

Figure 28: Left panel: Efficient frontier for Qλ=1. Right panel: Efficient frontier for Qλ=0,
Qλ=0.1,. . . , Qλ=0.9, Qλ=1 and S.

Observing Figures 23-28, one can conclude that the efficient frontiers of
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the subsets corresponding to λ = 0.1, 0.2, 0.3 are very similar and approx-
imately equal to the efficient frontier of S (ignoring the very low standard
deviation values, below 0.013), the best approximation being obtained for
λ = 0.3. Considering λ = 0, the efficient frontier of the corresponding subset
also approximates well the efficient frontier of S, however for values of stan-
dard deviations greater than 0.017. Regarding the subsets corresponding to
λ = 0.4, 0.5, a good approximation to the efficient frontier of S is achieved
for higher risks (standard deviations greater than 0.033) associated with
higher expected returns (see Figure 25); for lower risks the efficient frontier
deviates slightly from those of S. As for λ greater than 0.6, the results reveal
that the efficiencies of the subsets’ frontiers decrease with increasing λ, the
deviation from the efficient frontier of S being highest when λ approaches
1. Thus, when more weight is given to entropy and variance in the EU-EV
risk measure and ignoring the expected utility term when λ = 1, it be-
comes evident in the results that the selected stocks lead to portfolios with
lower expected returns and that the efficient frontier with minimal portfolio
returns corresponds to λ = 1.

The conclusion of this experiment, where an initial set of 96 stocks was
reduced to subsets with 48 stocks having lowest EU-EV risk, is that the EU-
EV model effectively selects the most relevant stocks for an efficient portfolio
construction and that the performance of the subsets is more similar to the
performance of S when more weight is given to the expected utility term in
the EU-EV risk, that is for trade-off factors less than 0.5.

5. Conclusions

In this paper, a new stock selection model, the EU-EV model, was pre-
sented, which can be used as preselection model for the construction of
optimal mean-variance portfolios. The EU-EV risk model depends on en-
tropy and variance and on expected utility, which are combined through a
trade-off parameter. The selection is based on minimizing the EU-EV risk by
reducing the uncertainty given by variance and entropy and increasing the
expected utility. The proposed methodology consists in ranking the stocks
of a given set according to their EU-EV risk and in selecting the best ranked
stocks with lowest EU-EV risk with the purpose to form subsets with a lower
number of stocks than the initial whole set of stocks. The mean-variance
model is then applied to the subsets containing the preselected stocks in
order to construct efficient portfolios.

The methodology was applied to the PSI 20 index containing 18 stocks,
with data from January 2019 to December 2020. Subsets with a half number
of stocks and subsets with four stocks, preselected with the EU-EV risk
model, were built and the mean-variance model was applied to those subsets
of stocks. The efficient frontiers of the subsets were compared with the
efficient frontier of the total set of stocks. The results showed that the
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efficient frontiers of portfolios with a half number of stocks, preselected with
the EU-EV model, excluding higher values of the trade-off parameter, are
approximately equal to the efficient frontier obtained with the whole set of
stocks. Considering the subsets of four stocks, the efficient frontier of the
whole set is well approximated, however only for medium and higher risks
coupled to medium and higher returns, respectively, and for low values of
the trade-off parameter. However, in order to decrease risk and to have
portfolios with lower risks coupled to lower returns, which can be preferred
by risk-averse investors, one should construct portfolios from a larger set of
stocks. Four stocks were not sufficient to capture returns with lower risks,
however the portfolios constructed from sets of nine stocks revealed that
it is possible to achieve lower risks. A comparison with the cardinality-
constrained mean-variance model, where the maximum number of stocks
was limited to 9 stocks and to 4 stocks, revealed that, considering sets with
4 stocks, the cardinality-constrained mean-variance model permitted also
obtaining efficient portfolios with lower risks. However, considering sets
with the half number of stocks, it was possible to obtain approximately
equal efficient portfolios with both methodologies. One concludes that a
reduction of the number of stocks to the half using the EU-EV risk model
as stock preselection model, with low and intermediate values of the trade-
off parameter, leads to an approximate equal performance in the mean-
variance optimization problem regarding the efficient portfolio construction.
If the aim is to concentrate on efficient portfolios with higher risks coupled
to higher returns, regarding for example risk-tolerant investors, one could
reduce the number of stocks more by applying the EU-EV stock preselection
model with very low values of the trade-off parameter and construct the
efficient portfolios with the reduced number of stocks.

In order to further test the applicability of the proposed methodology to
reduce the number of stocks to the half for an efficient portfolio construction,
the EU-EV risk model and the mean-variance model were applied to the
Euro Stoxx 50 index, containing 48 stocks with data from January 2019 to
December 2020, and to the Nasdaq 100 index, containing 96 stocks with data
in the same time range. The results indicated also in these cases that the
reduction of the number of stocks to the half using the EU-EV risk model
with low and intermediate values of the trade-off parameter leads to an
efficient portfolio construction in the mean-variance optimization problem,
with an approximately equal performance to those obtained with the entire
initial sets of stocks.

One can conclude that with the EU-EV risk model it is possible to cap-
ture the optimal stocks that play the most relevant role in the efficient
mean-variance portfolio construction. The EU-EV risk model can therefore
be used as stock preselection model for the formation of efficient portfolios
with a reduced number of stocks.

38



Acknowledgments

The author thanks the reviewers for helpful comments. The author
thanks support from FCT (“Fundação para a Ciência e a Tecnologia”)
through the Projects UIDB/00013/2020 and UIDP/00013/2020.

Appendix A. Components of Euro Stoxx 50 index and Nasdaq
100 index and selected sets

Table A.14: Components of Euro Stoxx 50.

Stock Ticker Stock Ticker Stock Ticker Stock Ticker
S1 AI.PA S13 BNP.PA S25 IBE.MC S37 RWE.DE
S2 ALV.DE S14 CA.PA S26 ITX.MC S38 SAN.PA
S3 ABI.BR S15 SGO.PA S27 INGA.AS S39 SAP.DE
S4 MT.AS S16 CRH.L S28 ISP.MI S40 SU.PA
S5 ASML.AS S17 BN.PA S29 PHIA.AS S41 SIE.DE
S6 G.MI S18 DBK.DE S30 OR.PA S42 GLE.PA
S7 CS.PA S19 DTE.DE S31 MC.PA S43 TEF.MC
S8 BBVA.MC S20 ENEL.MI S32 MBG.DE S44 TTE.PA
S9 SAN.MC S21 ENGI.PA S33 MUV2.DE S45 UCG.MI
S10 BAS.DE S22 ENI.MI S34 NOKIA.HE S46 DG.PA
S11 BAYN.DE S23 EOAN.DE S35 ORA.PA S47 VIV.PA
S12 BMW.DE S24 EL.PA S36 REP.MC S48 VOW.DE
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Table A.15: Sets of 24 stocks from Euro Stoxx 50 with lowest EU-EV risk.
Qλ=0 Qλ=0.25 Qλ=0.5 Qλ=0.75 Qλ=1

S1 S1 S1 S1 S1

S2 S2 S2 S2 S2

S4 S5 S5 S5 S6

S5 S7 S6 S6 S7

S10 S15 S7 S7 S14

S13 S16 S15 S16 S17

S15 S18 S16 S17 S19

S16 S19 S19 S19 S20

S18 S20 S20 S20 S21

S20 S23 S23 S21 S23

S24 S24 S24 S23 S24

S25 S25 S25 S24 S25

S26 S26 S26 S25 S26

S29 S29 S29 S29 S29

S30 S30 S30 S30 S30

S31 S31 S31 S31 S31

S33 S33 S33 S33 S33

S37 S37 S37 S35 S35

S39 S39 S38 S37 S37

S40 S40 S39 S38 S38

S41 S41 S40 S39 S39

S46 S46 S41 S40 S40

S47 S47 S47 S41 S41

S48 S48 S48 S47 S47
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Table A.16: Components of Nasdaq 100.

Stock Ticker Stock Ticker Stock Ticker Stock Ticker
S1 AAPL S25 ADP S49 CDNS S73 ILMN
S2 MSFT S26 SBUX S50 ORLY S74 ROST
S3 AMZN S27 MDLZ S51 KHC S75 DLTR
S4 TSLA S28 GILD S52 PAYX S76 WBA
S5 GOOG S29 AMAT S53 ADSK S77 BIDU
S6 GOOGL S30 ADI S54 EXC S78 PCAR
S7 META S31 BKNG S55 MELI S79 VRSK
S8 NVDA S32 ISRG S56 NXPI S80 FAST
S9 PEP S33 VRTX S57 CTAS S81 IDXX
S10 COST S34 CHTR S58 XEL S82 BIIB
S11 AVGO S35 CSX S59 ASML S83 SGEN
S12 CSCO S36 FISV S60 FTNT S84 CPRT
S13 TMUS S37 MU S61 MRVL S85 EBAY
S14 ADBE S38 REGN S62 LULU S86 SIRI
S15 CMCSA S39 ATVI S63 MCHP S87 ANSS
S16 TXN S40 LRCX S64 EA S88 ZS
S17 QCOM S41 MRNA S65 AZN S89 VRSN
S18 AMD S42 PANW S66 TEAM S90 ALGN
S19 AMGN S43 KDP S67 CTSH S91 NTES
S20 INTC S44 AEP S68 DXCM S92 SWKS
S21 HON S45 SNPS S69 PDD S93 MTCH
S22 INTU S46 MAR S70 WDAY S94 SPLK
S23 PYPL S47 KLAC S71 JD S95 DOCU
S24 NFLX S48 MNST S72 ODFL S96 OKTA
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Table A.17: Sets of 48 stocks from Nasdaq 100 with lowest EU-EV risk.

Qλ=0 Qλ=0.1 Qλ=0.2 Qλ=0.3 Qλ=0.4 Qλ=0.5 Qλ=0.6 Qλ=0.7 Qλ=0.8 Qλ=0.9 Qλ=1

S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S2

S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S5

S4 S4 S4 S4 S4 S4 S5 S5 S5 S5 S6

S7 S7 S7 S7 S5 S5 S6 S6 S6 S6 S9

S8 S8 S8 S8 S6 S6 S7 S7 S7 S9 S10

S13 S10 S10 S10 S7 S7 S9 S9 S9 S10 S12

S14 S13 S13 S13 S8 S8 S10 S10 S10 S12 S13

S17 S14 S14 S14 S9 S9 S13 S13 S12 S13 S14

S18 S17 S17 S17 S10 S10 S14 S14 S13 S14 S15

S22 S18 S18 S18 S13 S13 S15 S15 S14 S15 S16

S23 S22 S22 S22 S14 S14 S16 S16 S15 S16 S19

S24 S23 S23 S23 S17 S15 S21 S19 S16 S19 S21

S29 S29 S29 S29 S18 S18 S22 S21 S19 S21 S22

S34 S34 S34 S34 S22 S22 S23 S22 S21 S22 S25

S37 S37 S39 S39 S23 S23 S25 S23 S22 S25 S26

S39 S39 S40 S40 S27 S26 S26 S25 S23 S26 S27

S40 S40 S41 S41 S29 S27 S27 S26 S25 S27 S28

S41 S41 S42 S42 S34 S34 S34 S27 S26 S28 S32

S42 S42 S45 S45 S39 S39 S39 S32 S27 S32 S34

S45 S45 S47 S47 S40 S40 S42 S34 S28 S34 S35

S47 S47 S48 S48 S42 S42 S43 S35 S32 S35 S36

S49 S49 S49 S49 S45 S45 S44 S39 S34 S36 S42

S53 S53 S53 S53 S47 S47 S45 S42 S35 S42 S43

S55 S55 S55 S55 S48 S48 S48 S43 S39 S43 S44

S56 S56 S57 S57 S49 S49 S49 S44 S42 S44 S45

S57 S57 S59 S59 S53 S53 S50 S45 S43 S45 S48

S59 S59 S60 S60 S55 S55 S52 S48 S44 S48 S49

S60 S60 S61 S61 S57 S57 S55 S49 S45 S49 S50

S61 S61 S62 S62 S59 S58 S57 S50 S48 S50 S51

S62 S62 S66 S66 S61 S59 S58 S52 S49 S52 S52

S63 S66 S68 S68 S62 S61 S59 S53 S50 S54 S54

S66 S68 S69 S69 S66 S62 S62 S57 S52 S57 S57

S68 S69 S71 S71 S68 S66 S64 S58 S57 S58 S58

S69 S71 S72 S72 S69 S69 S65 S59 S58 S59 S64

S71 S72 S79 S79 S71 S71 S71 S62 S59 S64 S65

S72 S79 S80 S80 S72 S72 S72 S64 S64 S65 S67

S81 S81 S81 S81 S79 S79 S78 S65 S65 S67 S72

S83 S83 S83 S83 S80 S80 S79 S71 S72 S72 S75

S84 S84 S84 S84 S81 S81 S80 S72 S78 S78 S78

S87 S87 S87 S85 S83 S83 S81 S78 S79 S79 S79

S88 S88 S88 S87 S84 S84 S83 S79 S80 S80 S80

S90 S90 S90 S88 S85 S85 S84 S80 S81 S81 S81

S91 S91 S91 S90 S87 S87 S85 S81 S84 S84 S84

S92 S92 S92 S92 S88 S88 S87 S84 S85 S85 S85

S93 S93 S93 S93 S93 S93 S89 S85 S86 S86 S86

S95 S95 S95 S95 S95 S95 S95 S87 S87 S87 S87

S96 S96 S96 S96 S96 S96 S96 S89 S89 S89 S89
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