2,364 research outputs found

    Mixed Cumulative Distribution Networks

    Full text link
    Directed acyclic graphs (DAGs) are a popular framework to express multivariate probability distributions. Acyclic directed mixed graphs (ADMGs) are generalizations of DAGs that can succinctly capture much richer sets of conditional independencies, and are especially useful in modeling the effects of latent variables implicitly. Unfortunately there are currently no good parameterizations of general ADMGs. In this paper, we apply recent work on cumulative distribution networks and copulas to propose one one general construction for ADMG models. We consider a simple parameter estimation approach, and report some encouraging experimental results.Comment: 11 pages, 4 figure

    Sequences of regressions and their independences

    Full text link
    Ordered sequences of univariate or multivariate regressions provide statistical models for analysing data from randomized, possibly sequential interventions, from cohort or multi-wave panel studies, but also from cross-sectional or retrospective studies. Conditional independences are captured by what we name regression graphs, provided the generated distribution shares some properties with a joint Gaussian distribution. Regression graphs extend purely directed, acyclic graphs by two types of undirected graph, one type for components of joint responses and the other for components of the context vector variable. We review the special features and the history of regression graphs, derive criteria to read all implied independences of a regression graph and prove criteria for Markov equivalence that is to judge whether two different graphs imply the same set of independence statements. Knowledge of Markov equivalence provides alternative interpretations of a given sequence of regressions, is essential for machine learning strategies and permits to use the simple graphical criteria of regression graphs on graphs for which the corresponding criteria are in general more complex. Under the known conditions that a Markov equivalent directed acyclic graph exists for any given regression graph, we give a polynomial time algorithm to find one such graph.Comment: 43 pages with 17 figures The manuscript is to appear as an invited discussion paper in the journal TES

    Graphical Markov models: overview

    Full text link
    We describe how graphical Markov models started to emerge in the last 40 years, based on three essential concepts that had been developed independently more than a century ago. Sequences of joint or single regressions and their regression graphs are singled out as being best suited for analyzing longitudinal data and for tracing developmental pathways. Interpretations are illustrated using two sets of data and some of the more recent, important results for sequences of regressions are summarized.Comment: 22 pages, 9 figure

    Marginal log-linear parameters for graphical Markov models

    Full text link
    Marginal log-linear (MLL) models provide a flexible approach to multivariate discrete data. MLL parametrizations under linear constraints induce a wide variety of models, including models defined by conditional independences. We introduce a sub-class of MLL models which correspond to Acyclic Directed Mixed Graphs (ADMGs) under the usual global Markov property. We characterize for precisely which graphs the resulting parametrization is variation independent. The MLL approach provides the first description of ADMG models in terms of a minimal list of constraints. The parametrization is also easily adapted to sparse modelling techniques, which we illustrate using several examples of real data.Comment: 36 page

    Graphical Markov models, unifying results and their interpretation

    Full text link
    Graphical Markov models combine conditional independence constraints with graphical representations of stepwise data generating processes.The models started to be formulated about 40 years ago and vigorous development is ongoing. Longitudinal observational studies as well as intervention studies are best modeled via a subclass called regression graph models and, especially traceable regressions. Regression graphs include two types of undirected graph and directed acyclic graphs in ordered sequences of joint responses. Response components may correspond to discrete or continuous random variables and may depend exclusively on variables which have been generated earlier. These aspects are essential when causal hypothesis are the motivation for the planning of empirical studies. To turn the graphs into useful tools for tracing developmental pathways and for predicting structure in alternative models, the generated distributions have to mimic some properties of joint Gaussian distributions. Here, relevant results concerning these aspects are spelled out and illustrated by examples. With regression graph models, it becomes feasible, for the first time, to derive structural effects of (1) ignoring some of the variables, of (2) selecting subpopulations via fixed levels of some other variables or of (3) changing the order in which the variables might get generated. Thus, the most important future applications of these models will aim at the best possible integration of knowledge from related studies.Comment: 34 Pages, 11 figures, 1 tabl

    Smooth, identifiable supermodels of discrete DAG models with latent variables

    Full text link
    We provide a parameterization of the discrete nested Markov model, which is a supermodel that approximates DAG models (Bayesian network models) with latent variables. Such models are widely used in causal inference and machine learning. We explicitly evaluate their dimension, show that they are curved exponential families of distributions, and fit them to data. The parameterization avoids the irregularities and unidentifiability of latent variable models. The parameters used are all fully identifiable and causally-interpretable quantities.Comment: 30 page

    Margins of discrete Bayesian networks

    Full text link
    Bayesian network models with latent variables are widely used in statistics and machine learning. In this paper we provide a complete algebraic characterization of Bayesian network models with latent variables when the observed variables are discrete and no assumption is made about the state-space of the latent variables. We show that it is algebraically equivalent to the so-called nested Markov model, meaning that the two are the same up to inequality constraints on the joint probabilities. In particular these two models have the same dimension. The nested Markov model is therefore the best possible description of the latent variable model that avoids consideration of inequalities, which are extremely complicated in general. A consequence of this is that the constraint finding algorithm of Tian and Pearl (UAI 2002, pp519-527) is complete for finding equality constraints. Latent variable models suffer from difficulties of unidentifiable parameters and non-regular asymptotics; in contrast the nested Markov model is fully identifiable, represents a curved exponential family of known dimension, and can easily be fitted using an explicit parameterization.Comment: 41 page

    Binary Models for Marginal Independence

    Full text link
    Log-linear models are a classical tool for the analysis of contingency tables. In particular, the subclass of graphical log-linear models provides a general framework for modelling conditional independences. However, with the exception of special structures, marginal independence hypotheses cannot be accommodated by these traditional models. Focusing on binary variables, we present a model class that provides a framework for modelling marginal independences in contingency tables. The approach taken is graphical and draws on analogies to multivariate Gaussian models for marginal independence. For the graphical model representation we use bi-directed graphs, which are in the tradition of path diagrams. We show how the models can be parameterized in a simple fashion, and how maximum likelihood estimation can be performed using a version of the Iterated Conditional Fitting algorithm. Finally we consider combining these models with symmetry restrictions
    corecore