1,079 research outputs found

    Architecture and communication protocol to monitor and control water quality and irrigation in agricultural environments

    Full text link
    [ES] La introducción de soluciones tecnológicas en la agricultura permite reducir el uso de recursos y aumentar la producción de los cultivos. Además, la calidad del agua de regadío se puede monitorizar para asegurar la seguridad de los productos para el consumo humano. Sin embargo, la localización remota de la mayoría de los campos presenta un problema para proveer de cobertura inalámbrica a los nodos sensores y actuadores desplegados en los campos y los canales de agua para regadío. El trabajo presentado en esta tesis aborda el problema de habilitar la comunicación inalámbrica entre los dispositivos electrónicos desplegados para la monitorización de la calidad del agua y el campo a través de un protocolo de comunicación y arquitectura heterogéneos. La primera parte de esta tesis introduce los sistemas de agricultura de precisión (PA) y la importancia de la monitorización de la calidad del agua y el campo. Asimismo, las tecnologías que permiten la comunicación inalámbrica en sistemas PA y el uso de soluciones alternativas como el internet de las cosas bajo tierra (IoUT) y los vehículos aéreos no tripulados (UAV) se introducen también. Después, se realiza un análisis en profundidad del estado del arte respecto a los sensores para la monitorización del agua, el campo y las condiciones meteorológicas, así como sobre las tecnologías inalámbricas más empleadas en PA. Además, las tendencias actuales y los desafíos de los sistemas de internet de las cosas (IoT) para regadío, incluyendo las soluciones alternativas introducidas anteriormente, han sido abordados en detalle. A continuación, se presenta la arquitectura propuesta para el sistema, la cual incluye las áreas de interés para las actividades monitorización que incluye las áreas de los canales y el campo. A su vez, la descripción y los algoritmos de operación de los nodos sensores contemplados para cada área son proporcionados. El siguiente capítulo detalla el protocolo de comunicación heterogéneo propuesto, incluyendo los mensajes y alertas del sistema. Adicionalmente, se presenta una nueva topología de árbol para redes híbridas LoRa/WiFi multisalto. Las funcionalidades específicas adicionales concebidas para la arquitectura propuesta están descritas en el siguiente capítulo. Éstas incluyen algoritmos de agregación de datos para la topología propuesta, un esquema de las amenazas de seguridad para los sistemas PA, algoritmos de ahorro de energía y tolerancia a fallos, comunicación bajo tierra para IoUT y el uso de drones para adquisición de datos. Después, los resultados de las simulaciones para las soluciones propuestas anteriormente son presentados. Finalmente, se tratan las pruebas realizadas en entornos reales para el protocolo heterogéneo presentado, las diferentes estrategias de despliegue de los nodos empleados, el consumo energético y la función de cuantificación de fruta. Estas pruebas demuestran la validez de la arquitectura y protocolo de comunicación heterogéneos que se han propuesto.[CA] La introducció de solucions tecnològiques en l'agricultura permet reduir l'ús de recursos i augmentar la producció dels cultius. A més, la qualitat de l'aigua de regadiu es pot monitoritzar per assegurar la qualitat dels productes per al consum humà. No obstant això, la localització remota de la majoria dels camps presenta un problema per a proveir de cobertura sense fils als nodes sensors i actuadors desplegats als camps i els canals d'aigua per a regadiu. El treball presentat en aquesta tesi tracta el problema d'habilitar la comunicació sense fils entre els dispositius electrònics desplegats per a la monitorització de la qualitat de l'aigua i el camp a través d'un protocol de comunicació i arquitectura heterogenis. La primera part d'aquesta tesi introdueix els sistemes d'agricultura de precisió (PA) i la importància de la monitorització de la qualitat de l'aigua i el camp. Així mateix, també s'introdueixen les tecnologies que permeten la comunicació sense fils en sistemes PA i l'ús de solucions alternatives com l'Internet de les coses sota terra (IoUT) i els vehicles aeris no tripulats (UAV). Després, es realitza una anàlisi en profunditat de l'estat de l'art respecte als sensors per a la monitorització de l'aigua, el camp i les condicions meteorològiques, així com sobre les tecnologies sense fils més emprades en PA. S'aborden les tendències actuals i els reptes dels sistemes d'internet de les coses (IoT) per a regadiu, incloent les solucions alternatives introduïdes anteriorment. A continuació, es presenta l'arquitectura proposada per al sistema, on s'inclouen les àrees d'interès per a les activitats monitorització en els canals i el camp. Finalment, es proporciona la descripció i els algoritmes d'operació dels nodes sensors contemplats per a cada àrea. El següent capítol detalla el protocol de comunicació heterogeni proposat, així como el disseny del missatges i alertes que el sistema proposa. A més, es presenta una nova topologia d'arbre per a xarxes híbrides Lora/WiFi multi-salt. Les funcionalitats específiques addicionals concebudes per l'arquitectura proposada estan descrites en el següent capítol. Aquestes inclouen algoritmes d'agregació de dades per a la topologia proposta, un esquema de les alertes de seguretat per als sistemes PA, algoritmes d'estalvi d'energia i tolerància a fallades, comunicació per a IoUT i l'ús de drons per a adquisició de dades. Després, es presenten els resultats de les simulacions per a les solucions proposades. Finalment, es duen a terme les proves en entorns reals per al protocol heterogeni dissenyat. A més s'expliquen les diferents estratègies de desplegament dels nodes empleats, el consum energètic, així com, la funció de quantificació de fruita. Els resultats d'aquetes proves demostren la validesa de l'arquitectura i protocol de comunicació heterogenis propost en aquesta tesi.[EN] The introduction of technological solutions in agriculture allows reducing the use of resources and increasing the production of the crops. Furthermore, the quality of the water for irrigation can be monitored to ensure the safety of the produce for human consumption. However, the remote location of most fields presents a problem for providing wireless coverage to the sensing nodes and actuators deployed on the fields and the irrigation water canals. The work presented in this thesis addresses the problem of enabling wireless communication among the electronic devices deployed for water quality and field monitoring through a heterogeneous communication protocol and architecture. The first part of the dissertation introduces Precision Agriculture (PA) systems and the importance of water quality and field monitoring. In addition, the technologies that enable wireless communication in PA systems and the use of alternative solutions such as Internet of Underground Things (IoUT) and Unmanned Aerial Vehicles (UAV) are introduced as well. Then, an in-depth analysis on the state of the art regarding the sensors for water, field and meteorology monitoring and the most utilized wireless technologies in PA is performed. Furthermore, the current trends and challenges for Internet of Things (IoT) irrigation systems, including the alternate solutions previously introduced, have been discussed in detail. Then, the architecture for the proposed system is presented, which includes the areas of interest for the monitoring activities comprised of the canal and field areas. Moreover, the description and operation algorithms of the sensor nodes contemplated for each area is provided. The next chapter details the proposed heterogeneous communication protocol including the messages and alerts of the system. Additionally, a new tree topology for hybrid LoRa/WiFi multi-hop networks is presented. The specific additional functionalities intended for the proposed architecture are described in the following chapter. It includes data aggregation algorithms for the proposed topology, an overview on the security threats of PA systems, energy-saving and fault-tolerance algorithms, underground communication for IoUT, and the use of drones for data acquisition. Then, the simulation results for the solutions previously proposed are presented. Finally, the tests performed in real environments for the presented heterogeneous protocol, the different deployment strategies for the utilized nodes, the energy consumption, and a functionality for fruit quantification are discussed. These tests demonstrate the validity of the proposed heterogeneous architecture and communication protocol.García García, L. (2021). Architecture and communication protocol to monitor and control water quality and irrigation in agricultural environments [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17422

    Beyond Tissue replacement: The Emerging role of smart implants in healthcare

    Get PDF
    Smart implants are increasingly used to treat various diseases, track patient status, and restore tissue and organ function. These devices support internal organs, actively stimulate nerves, and monitor essential functions. With continuous monitoring or stimulation, patient observation quality and subsequent treatment can be improved. Additionally, using biodegradable and entirely excreted implant materials eliminates the need for surgical removal, providing a patient-friendly solution. In this review, we classify smart implants and discuss the latest prototypes, materials, and technologies employed in their creation. Our focus lies in exploring medical devices beyond replacing an organ or tissue and incorporating new functionality through sensors and electronic circuits. We also examine the advantages, opportunities, and challenges of creating implantable devices that preserve all critical functions. By presenting an in-depth overview of the current state-of-the-art smart implants, we shed light on persistent issues and limitations while discussing potential avenues for future advancements in materials used for these devices

    Amorphous Computing

    Get PDF
    The goal of amorphous computing is to identify organizationalprinciples and create programming technologies for obtainingintentional, pre-specified behavior from the cooperation of myriadunreliable parts that are arranged in unknown, irregular, andtime-varying ways. The heightened relevance of amorphous computingtoday stems from the emergence of new technologies that could serve assubstrates for information processing systems of immense power atunprecedentedly low cost, if only we could master the challenge ofprogramming them. This document is a review of amorphous computing

    A Preventive Medicine Framework for Wearable Abiotic Glucose Detection System

    Get PDF
    In this work, we present a novel abiotic glucose fuel cell with battery-less remote access. In the presence of a glucose analyte, we characterized the power generation and biosensing capabilities. This system is developed on a flexible substrate in bacterial nanocellulose with gold nanoparticles used as a conductive ink for piezoelectric deposition based printing. The abiotic glucose fuel cell is constructed using colloidal platinum on gold (Au-co-Pt) and a composite of silver oxide nanoparticles and carbon nanotubes as the anodic and cathodic materials. At a concentration of 20 mM glucose, the glucose fuel cell produced a maximum open circuit voltage of 0.57 V and supplied a maximum short circuit current density of 0.581 mA/cm2 with a peak power density of 0.087 mW/cm2 . The system was characterized by testing its performance using electrochemical techniques like linear sweep voltammetry, cyclic voltammetry, chronoamperometry in the presence of various glucose level at the physiological temperatures. An open circuit voltage (Voc) of 0.43 V, short circuit current density (Isc) of 0.405 mA/cm2 , and maximum power density (Pmax) of 0.055 mW/cm2 at 0.23 V were achieved in the presence of 5 mM physiologic glucose. The results indicate that glucose fuel cells can be employed for the development of a self-powered glucose sensor. The glucose monitoring device demonstrated sensitivity of 1.87 uA/mMcm2 and a linear dynamic range of 1 mM to 45 mM with a correlation coefficient of 0.989 when utilized as a self-powered glucose sensor. For wireless communication, the incoming voltage from the abiotic fuel cell was fed to a low power microcontroller that enables battery less communication using NFC technology. The voltage translates to the NFC module as the digital signals, which are displayed on a custom-built android application. The digital signals are converted to respective glucose concentration using a correlation algorithm that allows data to be processed and recorded for further analysis. The android application is designed to record the time, date stamp, and other independent features (e.g. age, height, weight) with the glucose measurement to allow the end-user to keep track of their glucose levels regularly. Analytics based on in-vitro testing were conducted to build a machine learning model that enables future glucose prediction for 15, 30 or 60 minutes

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    7. GI/ITG KuVS Fachgespräch Drahtlose Sensornetze

    Get PDF
    In dem vorliegenden Tagungsband sind die Beiträge des Fachgesprächs Drahtlose Sensornetze 2008 zusammengefasst. Ziel dieses Fachgesprächs ist es, Wissenschaftlerinnen und Wissenschaftler aus diesem Gebiet die Möglichkeit zu einem informellen Austausch zu geben – wobei immer auch Teilnehmer aus der Industrieforschung willkommen sind, die auch in diesem Jahr wieder teilnehmen.Das Fachgespräch ist eine betont informelle Veranstaltung der GI/ITG-Fachgruppe „Kommunikation und Verteilte Systeme“ (www.kuvs.de). Es ist ausdrücklich keine weitere Konferenz mit ihrem großen Overhead und der Anforderung, fertige und möglichst „wasserdichte“ Ergebnisse zu präsentieren, sondern es dient auch ganz explizit dazu, mit Neueinsteigern auf der Suche nach ihrem Thema zu diskutieren und herauszufinden, wo die Herausforderungen an die zukünftige Forschung überhaupt liegen.Das Fachgespräch Drahtlose Sensornetze 2008 findet in Berlin statt, in den Räumen der Freien Universität Berlin, aber in Kooperation mit der ScatterWeb GmbH. Auch dies ein Novum, es zeigt, dass das Fachgespräch doch deutlich mehr als nur ein nettes Beisammensein unter einem Motto ist.Für die Organisation des Rahmens und der Abendveranstaltung gebührt Dank den beiden Mitgliedern im Organisationskomitee, Kirsten Terfloth und Georg Wittenburg, aber auch Stefanie Bahe, welche die redaktionelle Betreuung des Tagungsbands übernommen hat, vielen anderen Mitgliedern der AG Technische Informatik der FU Berlin und natürlich auch ihrem Leiter, Prof. Jochen Schiller

    Low-Power and Programmable Analog Circuitry for Wireless Sensors

    Get PDF
    Embedding networks of secure, wirelessly-connected sensors and actuators will help us to conscientiously manage our local and extended environments. One major challenge for this vision is to create networks of wireless sensor devices that provide maximal knowledge of their environment while using only the energy that is available within that environment. In this work, it is argued that the energy constraints in wireless sensor design are best addressed by incorporating analog signal processors. The low power-consumption of an analog signal processor allows persistent monitoring of multiple sensors while the device\u27s analog-to-digital converter, microcontroller, and transceiver are all in sleep mode. This dissertation describes the development of analog signal processing integrated circuits for wireless sensor networks. Specific technology problems that are addressed include reconfigurable processing architectures for low-power sensing applications, as well as the development of reprogrammable biasing for analog circuits

    Low-Power and Programmable Analog Circuitry for Wireless Sensors

    Get PDF
    Embedding networks of secure, wirelessly-connected sensors and actuators will help us to conscientiously manage our local and extended environments. One major challenge for this vision is to create networks of wireless sensor devices that provide maximal knowledge of their environment while using only the energy that is available within that environment. In this work, it is argued that the energy constraints in wireless sensor design are best addressed by incorporating analog signal processors. The low power-consumption of an analog signal processor allows persistent monitoring of multiple sensors while the device\u27s analog-to-digital converter, microcontroller, and transceiver are all in sleep mode. This dissertation describes the development of analog signal processing integrated circuits for wireless sensor networks. Specific technology problems that are addressed include reconfigurable processing architectures for low-power sensing applications, as well as the development of reprogrammable biasing for analog circuits
    corecore