701 research outputs found

    Improved algorithm for maximizing service of carousel storage

    Get PDF
    Department of Logistics2005-2006 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    A survey on performance analysis of warehouse carousel systems

    Get PDF
    This paper gives an overview of recent research on the performance evaluation and design of carousel systems. We discuss picking strategies for problems involving one carousel, consider the throughput of the system for problems involving two carousels, give an overview of related problems in this area, and present an extensive literature review. Emphasis has been given on future research directions in this area

    A Lindley-type equation arising from a carousel problem

    Get PDF
    In this paper we consider a system with two carousels operated by one picker. The items to be picked are randomly located on the carousels and the pick times follow a phase-type distribution. The picker alternates between the two carousels, picking one item at a time. Important performance characteristics are the waiting time of the picker and the throughput of the two carousels. The waiting time of the picker satisfies an equation very similar to Lindley's equation for the waiting time in the PH/U/1 queue. Although the latter equation has no simple solution, we show that the one for the waiting time of the picker can be solved explicitly. Furthermore, it is well known that the mean waiting time in the PH/U/1 queue depends on to the complete interarrival time distribution, but numerical results show that, for the carousel system, the mean waiting time and throughput are rather insensitive to the pick-time distribution.Comment: 10 pages, 1 figure, 19 reference

    Comparison of solar output of vertical and inclined solar panels in the high north

    Get PDF
    Abstract. This thesis presents a comprehensive literature review on the endurance of solar photovoltaic (PV) systems in high north conditions and the optimized setup parameters for maximizing their output. To simulate data, PV panels were considered in the high north region of Oulu, Finland, and their output was measured under various setup parameters. The data was then analyzed using SketchUp simulation with the Skelion plug- in to determine the optimized setup parameters that yield maximum output. The findings of the study highlight the importance of tilt angles and orientation for maximizing energy production. The evaluation of different tilt angles, including vertical panels, roof-mounted panels with varying tilt angles, and inclined panels on a carousel, revealed that tilt angles closer to 45 to 47 degrees contribute to improved solar PV performance. Inclined panels exhibited peak outputs during the summer months, while vertically mounted panels performed better during spring. The optimal tilt angle was determined to be 45–47 degrees, enabling effective energy generation throughout the year. The study also emphasized the significance of south-facing panel orientation, which consistently yielded higher energy production compared to other orientations. Furthermore, the thesis suggests future research directions, including the incorporation of complex weather variables, analysis of regional variation and temperature patterns, and the integration of advanced technologies into solar PV system simulations. Overall, this research contributes valuable insights for the design, installation, and optimization of solar PV systems in high north conditions, promoting the adoption of efficient and sustainable solar energy solutions

    The NASA, Marshall Space Flight Center drop tube user's manual

    Get PDF
    A comprehensive description of the structural and instrumentation hardware and the experimental capabilities of the 105-meter Marshall Space Flight Center Drop Tube Facility is given. This document is to serve as a guide to the investigator who wishes to perform materials processing experiments in the Drop Tube. Particular attention is given to the Tube's hardware to which an investigator must interface to perform experiments. This hardware consists of the permanent structural hardware (with such items as vacuum flanges), and the experimental hardware (with the furnaces and the sample insertion devices). Two furnaces, an electron-beam and an electromagnetic levitator, are currently used to melt metallic samples in a process environment that can range from 10(exp -6) Torr to 1 atmosphere. Details of these furnaces, the processing environment gases/vacuum, the electrical power, and data acquisition capabilities are specified to allow an investigator to design his/her experiment to maximize successful results and to reduce experimental setup time on the Tube. Various devices used to catch samples while inflicting minimum damage and to enhance turnaround time between experiments are described. Enough information is provided to allow an investigator who wishes to build his/her own furnace or sample catch devices to easily interface it to the Tube. The experimental instrumentation and data acquisition systems used to perform pre-drop and in-flight measurements of the melting and solidification process are also detailed. Typical experimental results are presented as an indicator of the type of data that is provided by the Drop Tube Facility. A summary bibliography of past Drop Tube experiments is provided, and an appendix explaining the noncontact temperature determination of free-falling drops is provided. This document is to be revised occasionally as improvements to the Facility are made and as the summary bibliography grows

    A Lindley-type equation arising from a carousel problem

    Get PDF
    Abstract: In this paper we consider a system with two carousels operated by one picker. The items to be picked are randomly located on the carousels and the pick times follow a phasetype distribution. The picker alternates between the two carousels, picking one item at a time. Important performance characteristics are the waiting time of the picker and the throughput of the two carousels. The waiting time of the picker satisfies an equation very similar to Lindley’s equation for the waiting time in the P H/U/1 queue. Although the latter equation has no simple solution, it appears that the one for the waiting time of the picker can be solved explicitly. Furthermore, it is well known that the mean waiting time in the P H/U/1 queue depends on to the complete inter-arrival time distribution, but numerical results show that, for the carousel system, the mean waiting time and throughput are rather insensitive to the pick-time distribution

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial

    Lindley-type recursions

    Get PDF
    In dit proefschrift staat de volgende Lindley-achtige recursie centraal: Wn+1 = max{0,Bn+1 - An -Wn}. (1) Deze "niet-stijgende" recursie is belangrijk in de analyse van systemen waarbij een bediende alterneert tussen twee bedieningsstations. Een station biedt ruimte voor ´e´en klant. De bediende alterneert tussen beide stations en bediend ´e´en klant per keer. Aangenomen wordt dat voortdurend bij beide stations klanten staan te wachten. Zodra een wachtende klant een station betreed, begint de eerste fase van zijn bediening, die bestaat uit een voorbereidende fase. De bediende is hier niet bij betrokken: pas nadat de voorbereidende fase is afgerond kan een klant aan de tweede fase van zijn bediening beginnen, welke wordt uitgevoerd door de bediende. Dus de eigenlijke bediening bestaat alleen uit de tweede fase. Het kan voorkomen dat de bediende moet wachten totdat de voorbereiding van de volgende klant is afgelopen. We zijn dan ook ge¨interesseerd in de wachttijd van de bediende. Als Bn de voorbereidingstijd is voor de n-de klant en An de bedieningstijd is van de n-de klant, dan kan de wachttijd van de bediende voor de (n + 1)-ste klant beschreven worden door middel van Recursie (1). Een belangrijke observatie is dat deze recursie vrijwel identiek is aan Lindley’s recursie. Het enige verschil is het min-teken voor Wn. Dit model is gemotiveerd door diverse toepassingen waarvan er twee worden besproken in Hoofdstuk 1. De eerste toepassing betreft oog-operaties. De tweede toepassing is gerelateerd aan carousel systemen. Dit soort systemen zijn uitgebreid bestudeerd; Sectie 1.3 geeft een literatuuroverzicht. Verderop in dit hoofdstuk geven we een gedetailleerde modelbeschrijving en noemen we enkele verschillen tussen de analyse van dit model en het standaard wachtrijmodel. Hoofdstuk 2 bestudeert enkele algemene eigenschappen van Recursie (1), zoals de stabiliteit van het systeem, existentie van een evenwichtsverdeling, convergentie naar deze verdeling als n naar oneindig gaat en het staartgedrag en de covariantie functie van de verdeling van de wachttijd van de bediende. Een rode draad in dit proefschrift is de afleiding van de evenwichtsverdeling van de wachttijd van de bediende. In de volgende drie hoofdstukken leiden we deze verdeling af onder diverse aannames over de verdeling van de voorbereidingstijd en bedieningstijd van een generieke klant. We bestuderen gevallen die analoog zijn aan de klassieke M/G/1, G/PH/1 en PH/P/1 wachtrijmodellen, waarbij "P" staat voor polynomiale verdelingen. Ge¨inspireerd door de toepassingen van ons model, bekijken we enkele prestatiematen voor dit systeem, zoals de doorzet. Dit maakt een vergelijk met de prestatie van niet-alternerende systemen mogelijk. In Hoofdstuk 6 onderzoeken we methoden om de wachttijdverdeling te benaderen door de verdeling van de voorbereidingstijd of bedieningstijd te benaderen met een verdeling die exacte berekeningen mogelijk maakt. We beschrijven hoe zo’n verdel- ing kan worden gevonden en we geven een bovengrens voor de fout tussen de werkelijke wachttijdverdeling en zijn benadering. In alle voorgaande hoofdstukken hebben we aangenomen dat alle voorbereidingstijden en bedieningstijden onafhankelijk van elkaar zijn. In Hoofdstuk 7 laten we deze aanname vallen. We onderzoeken twee specifieke vormen van afhankelijkheid tussen deze variabelen. Voor beide vormen leiden we opnieuw de limietverdeling af van de wachttijd van de bediende. Hoofdstuk 8 analyseert een recursie welke een uitbreiding is van zowel Lindley’s recursie als (1). We bekijken, namelijk, de recursie Wn+1 = max{0,Bn+1 - An + YnWn}, met Yn een stochastische variabele die zowel de waarde 1 als -1 kan aannemen. Voor deze recursie onderzoeken we stabiliteit, en we berekenen de limietverdeling in twee specifieke gevallen, waarmee we de bestaande theorie voor Lindley’s recursie en Recursie (1) generaliseren. De analyse maakt duidelijk dat de technieken voor het analyseren van (1) en voor het analyseren Lindley’s recursie moeten worden gecombineerd. Diverse methoden om Lindley’s recursie te analyseren zijn ook nuttig voor de analyse van (1). Wanneer we aannemen dat de voorbereidingstijd een fase-type verdeling heeft, dan reduceert de analyse van (1) tot de analyse van een Markovketen met eindige toestandsruimte. Ook kunnen Laplace-transformaties of Wiener- Hopf technieken in diverse gevallen worden toegepast (cf. Sectie 1.6). In andere gevallen moet een niet-standaard differentiaalvergelijking worden opgelost, of moet uitgeweken worden naar een iteratieve benadering van de wachttijdverdeling. In Hoofdstuk 5 dient ook een speciale klasse van verdelingen ge¨introduceerd te worden die het mogelijk maakt om een Fredholm vergelijking op te lossen. In de meeste gevallen zijn de resultaten expliciet of kunnen worden weergegeven in termen van de oplossing van een lineair stelsel vergelijkingen, zie bijvoorbeeld Stelling 4.8. Het proefschrift wordt afgesloten met enkele afsluitende opmerkingen en diverse suggesties voor verder onderzoek
    corecore