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Notation

An service time of the n-th customer

Bn preparation time of the n-th customer

Wn waiting time of the server for the n-th customer

Xn+1 Bn+1 −An

A, B, W generic service, preparation, and waiting time respectively

FY distribution function of the random variable Y ; e.g., FA is the
service-time distribution

fY density function of the random variable Y

α, β , ω Laplace-Stieltjes transform of A, B, W respectively

φ Laplace-Stieltjes transform of A+W

λ the scale parameter of the phase-type distribution associated with
the service times, whenever relevant

µ the scale parameter of the phase-type distribution associated with
the preparation times, whenever relevant

π0 P[W = 0], i.e., the mass of the waiting-time distribution FW at the
origin

c(k) the covariance function cov[W1,W1+k]

θ throughput

Gi the Erlang distribution with i stages

E[Y ;E] E[Y · 1[E]], where Y is a random variable and E is an event

c2Y the squared coefficient of variation of the random variable Y

f (i) the i-th derivative of the function f

R+ the set of nonnegative real numbers
D= equal in distribution
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Chapter 1

Introduction

1.1 Scope of the thesis

We have all had the unpleasant experience of waiting for too long at some queue.
We seem to lose a significant amount of time waiting for some operator to reply to
our call, or for the doctor to be able to see us. We see queues form in practically
every aspect of modern life. A typical example of a queue is the phone calls arriving
at a call centre. Several operators provide service to the customers that are calling.
The phone calls may be diverted to different queues according to the selection a cus-
tomer makes based on his needs, or they may be randomly assigned to an available
operator. Furthermore, there may be some operators with a specific specialisation,
such as the knowledge of a foreign language or expertise in financial matters.

Queues are the object of study of queuing theory . Under queuing theory we un-
derstand the branch of probability theory that studies models that involve a number
of servers providing service to at least one queue of customers. The customers may
come one by one or in groups. Neither the customers nor the servers are necessarily
individuals. They may be objects, computer programmes, cars, data packets, etc.
For example, in a computer we may think of the processes and applications we are
currently using as the “customers” who are served by the central processing unit
(CPU).

The study of queuing models is usually motivated by a specific application.
For example, one may need to study how many operators are necessary in a call
centre, so that customers do not have to wait more than a certain amount of time.
One may also study a queuing model as a first approach in understanding the
operation of a complicated network (for example in industry or telecommunications).
Characteristics that determine a queuing model include the number of the servers,
the way in which they serve the customers, which is called service discipline, the
way customers arrive (for example, one by one or in groups), and the way all the
involved parts interact with one another. Every change in these parameters, no
matter how small it may seem, has the potential to alter the model significantly.
The subjects that are studied can usually be traced back to questions concerning
the quality of service (for example, the waiting time of an arriving customer) or the
performance of the system (for example, the average queue length).

In this dissertation, we study a specific equation, which originates from a queuing
model that emerges from the manufacturing and warehousing world. However, this
model also describes other systems met in everyday situations. In the following sec-
tion, we shall give in detail various examples of real-life problems that are described
by this model and that will serve as our working examples for this monograph. The
main characteristic of our model is that it is a system that involves two stations
alternatingly served by one server. The equation we are interested in describes a

1
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certain relation between the server and the customers.
The scope of this thesis is twofold. First, we study this equation under various

settings; second, we apply these results to the queuing model we are interested
in. Furthermore, we also study various other aspects of this model and derive
performance characteristics, such as the throughput of the system, that provide us
with deeper understanding on how such systems work in practice. Moreover, we
shall compare the results we derive for this equation to already existing results in
queuing theory, we shall compare our model to similar models that have been studied
before, and we shall discuss how our results complement the existing literature on
queuing theory.

1.2 Background motivation

Consider an ophthalmologist who performs laser surgeries for cataracts. Since
the procedure lasts only 10 minutes and is rather simple, he will typically schedule
many consecutive surgeries in one day. Before surgery, the patient undergoes a
preparation phase, which does not require the surgeon’s attendance. In order to
optimise the doctor’s utilisation, the following strategy is followed. There are two
operating rooms that are constantly occupied with patients. While the surgeon
works in one of them, the next patient is being prepared in the other one. As soon
as the surgeon completes one operation, he moves to the other room and a new
patient starts his preparation period in the room that has just been emptied.

In the above example, the surgeon is the server of our model, and the patients
waiting for surgery are the customers. The characteristics of the system are per-
haps not so evident. Clearly, there is a single server. Furthermore, there are two
service points (i.e. the two operating rooms in the above example) that need to be
served by the same server. However, the way the customers arrive does not seem
to be relevant. In this example we have assumed that the surgeon has scheduled
“a sufficient amount of appointments” in one day. This implies that the surgeon
will not have to stop working because there are no patients in the waiting room.
Therefore, for all practical purposes, we can safely assume that there is an infinite
amount of work to be done. Another important feature is that the customers have
a special preparation phase before the server can help them. In our example, this
preparation time usually includes tasks such as registering the patient, placing him
on the operating chair, giving him the local anaesthesia, and waiting for the drugs
to take effect. Finally, yet importantly, the server in this model is obliged to alter-
nate. In the example, the surgeon is obliged to operate next on the patient in the
other operating room. A reason may be that a patient who has already received
anaesthesia during his preparation phase must be operated before the effects of the
drug wear out.

Apart from the above example, we may think of a hairdresser who has an assis-
tant to help with the preparation of the customers or of a canteen with one employee
and two counters that the employee serves in turns. It is common practice at hair-
dressers to have two chairs for customers. In one chair, the hairdresser serves a
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customer, while some other customer is being prepared at the next chair. For rea-
sons of fairness, the hairdresser has to serve that particular customer next. The
key characteristic common in all these examples is that they involve a single server
that alternates between two stations. Although the example of the surgeon we have
mentioned seems to be a fairly interesting one, not much research has been devoted
to alternating service models.

Another application we are interested in comes from the warehousing world. This
example originates from a system involving two carousels served by a picker that
alternates between them. Contrary to alternating service models, carousel models
have received quite a substantial attention in the literature. We shall review some
of the main directions of the literature on carousel models in the next section.

Before getting into the details of the system, we describe the basic characteristics
of carousels. A carousel is an automated storage and retrieval system, widely used
in modern warehouses. It consists of a number of shelves or drawers, rotating in
a closed loop. It is operated by a picker that has a fixed position in front of the
carousel, which, by rotating, brings the items to the picker. Carousels come in a
huge variety of configurations, sizes, and types. They can be horizontal or vertical
and rotate in either one or both directions. Carousels are used in many different
situations. For example, e-commerce companies use them to store small items and
manage small individual orders.

The system we are interested in consists of two identical bidirectional carousels
and one picker. At each carousel, there is an infinite supply of pick orders that need
to be processed. The picker alternates between the two carousels, picking one order
at a time. Each pick order requires exactly one item. The picking process may be
visualised as follows. There is one randomly positioned item at each carousel. When
the picker is about to pick an item at one of the carousels, he may have to wait until
it is rotated in front of him. In the meantime, the other carousel rotates towards
the position of the next item. If the other carousel reaches the origin before the
picker completes his previous pick, then the carousel stops and waits for the picker.
After completion of a pick, the carousel is instantaneously replenished and starts
rotating so that the following item to be collected reaches the origin. The picker in
the meantime turns to the other carousel, where he may or may not have to wait,
and so on.

Clearly, the server in this system is the picker, and the items are the customers.
As before, we have again two service points (i.e., the two carousels) that need to be
alternately served by the server. Furthermore, the preparation time of a customer
evidently is the time it takes for the carousel to rotate until the item is placed in
front of the picker. Another important assumption that we have made also for this
problem is that there is an infinite supply of pick orders; in other words, there is an
infinite amount of work to be done. The analogies of this example to the previous
one are evident. Both examples can be described by a single model. In Section 1.4
we shall formulate the model. Before that though, we shall review some of the
developments in the literature on carousels.
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1.3 The history of carousels

Carousel models have received much attention in the literature and continue to
pose interesting problems. There is a rich literature on carousels that dates back
to 1980 [177]. We shall review some of the main research topics that have been of
interest to the research community so far. The list of references presented is by no
means exhaustive; it rather serves the purpose of indicating the continuing interest
in carousels.

As we have mentioned, a carousel is an automated warehousing system. It
consists of a series of shelves which are linked together and are rotating in a closed
loop. Each shelf has several bins or drawers on which the various stocked items are
stored. A typical vertical carousel is given in Figure 1.1. An order is a set of items
that must be picked together (as, for instance, for a single customer). One of the
most important benefits of a carousel is that, instead of having the picker, human or
robotic, travel to retrieve an item, the item can travel to the picker. Thus, while the
item is travelling, the picker has time to package, label, or pick from another carousel.
This practice enhances the operational efficiency of the warehouse. Although both
unidirectional (one-way rotating) or bidirectional (two-way rotating) carousels are
encountered in practice, the bidirectional types are the most common (as well as
being the most efficient) [81]. Usually a carousel is modelled as a circle, either as
a discrete model [14, 91, 155, 182], where the circle consists of a fixed number of
locations, or as a continuous one [69, 116, 164, 173], where the circle has unit length
and the locations of the required items are represented as arbitrary points on the
circle.

In the following, we classify the literature on carousels according to the main
theme handled. There are other ways to review the literature (for example, in
chronological order). However, this taxonomy allows for a better overview of the
variety of the subjects examined. A crucial distinction is made between systems
that involve a single carousel and systems with multiple carousels. The first four
categories presented relate to single-carousel systems, while systems with multiple
carousels are examined later on.

1.3.1 Storage

The performance of a carousel system depends greatly upon the way it is loaded
and the demand frequency of the items placed on it. An effective storage scheme
may reduce significantly the travel time of the carousel. Several strategies have
been followed in practice to store items on a carousel. The simplest strategy is to
place the items randomly on the carousel. Randomised policies have been examined
extensively [85, 116], and various performance characteristics have been derived
under the assumption that the items are uniformly distributed on the carousel.

One way to improve the throughput of a carousel system is to adopt a storage
policy other than the randomised assignment policy. Ha and Hwang [74] have stud-
ied what they call the “two-class-based storage”, which is a storage scheme that
divides the items in two classes based on their demand frequency. The items with
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Figure 1.1: A typical vertical carousel.
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a higher turnover are randomly assigned to one continuous region of the carousel,
while the less frequently asked items occupy the complementary region. The au-
thors show by simulation that the two-class-based storage can reduce significantly
the expected cycle time, both in the case where a cycle is a single pick or storage of
an item (single-command cycle), and in the case where a cycle consists of the paired
operations of storing and retrieving (dual-command cycle). The same authors in
[86] examine the effects of the two-class-based storage policy on the throughput of
the system, and present a case where there is a 16.29% improvement of this policy
over the randomised policy.

Another storage scheme is suggested by Stern [155]. Assignments are made
using a maximal adjacency principle, that is, two items are placed closely if their
probability of appearing in the same order is high. The author evaluates this storage
assignment analytically by using a Markov chain model he develops.

The organ pipe arrangement for a carousel system is introduced in Lim et al. [114]
and is proven to be optimal in Bengü [16] and in Vickson and Fujimoto [168] under
a wide variety of settings. The organ pipe arrangement has been widely used in
storage units, such as magnetic tapes [20] and warehouses [124]. This arrangement
is based on the classical mathematical work of Hardy, Littlewood and Polya [77].
Their concept is used to minimise the expected distance travelled by an access head
as it travels from one musical record to another. Various optimality properties of
this arrangement have been proven; see for example Keane et al. [98] and references
therein.

987654321Bin
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Figure 1.2: Illustration of the organ pipe arrangement, where the upper numbers
indicate the frequency ranking of an item.
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In carousel systems, this arrangement places the item with the highest demand
in an arbitrary bin, the items with the second and third highest demands in the bin
next to the first one but from opposite sides, and sequentially all other items next
to the previous ones, where the odd-numbered items according to their frequency
are grouped together and placed next to one another in a decreasing order from
the one side of the most frequent item (and similarly the even-numbered items are
grouped together and placed to the other side). Figure 1.2 illustrates the organ
pipe arrangement. The numbers at the top indicate the ranking of an item in a
decreasing order of frequency.

Another question related to storage is about the number of items of each type
that should be stored on the carousel in order to maximise the number of orders
that can be retrieved without having to reload. This question is examined in Jacobs
et al. [91], where the authors propose a heuristic that yields a reasonable solution,
the error of which can be bounded. This method has been improved by Yeh [182],
where a more accurate solution is obtained, and further on by Kim [101], where it
is observed that the heuristic described in [182] does not always lead to the optimal
solution. The author constructs an algorithm that yields the optimal solution. This
algorithm is further improved in Li and Wan [111].

1.3.2 Picking a single order

One of the most important performance characteristics of a carousel system is
the total time to pick an order. The total time to retrieve all items of an order
may be expressed as a sum of the total time that the carousel is travelling plus
the total time that the carousel is stopped for picking. The latter is effectively the
total pick time, and it is not affected by the sequence in which we choose to retrieve
the objects. However, the total travelling time greatly depends upon the retrieval
sequence. The analysis of the travel time under various strategies is, in general, a
non-trivial problem. This problem, however, has been resolved for independent and
uniformly distributed item locations [116].

Various picking strategies have been proposed. Bartholdi and Platzman [14]
assume a discrete model and study the performance of an algorithm and three
heuristics that determine an efficient, but not necessarily optimal, sequence of re-
trieving all items. A heuristic is a simpler, non-optimal procedure that is based on
a specific strategy. The heuristic methods proposed are the nearest-item heuristic,
where the next item to be picked is always the one that is closer to the picker at
any given moment, the shorter-direction heuristic, where the carousel chooses the
shortest direction between the route that simply rotates clockwise and the route
that rotates counterclockwise, and the monomaniacal heuristic, that always chooses
to rotate to the right and pick items sequentially. The optimal retrieval algorithm
that is presented enumerates all possible paths; therefore, it is guaranteed to find
the quickest sequence in which to retrieve a single order. In [14] the authors prove
among other things that the travel time under the nearest-item heuristic is never
greater than one rotation of the carousel. Litvak et al. [120] improve this upper
bound and show that the new upper bound is tight. In [118] Litvak and Adan as-
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sume that the positions of the items are independent and uniformly distributed and
give a detailed analysis of the distribution of the travel time under this heuristic
and its asymptotic behaviour when the number of items tends to infinity.

An interesting picking strategy is the so-called m-step strategy , where the ca-
rousel chooses the shortest route among the ones that change direction at most once,
and only do so after collecting at most m items. Rouwenhorst et al. [148] analyse
the m-step strategy for m 6 2. This means that the carousel changes direction after
collecting at most two items. They give stochastic upper bounds for the minimum
travel time and study the distribution of the travel time under these assumptions.
Their results indicate that this strategy performs very well. Litvak and Adan in
[119] compare the nearest-item heuristic with the m-step strategy to conclude that
already for m = 2, the m-step strategy is very close to optimal, and better than
the nearest-item heuristic. Furthermore, they assume that the items are randomly
placed on the carousel and derive the distribution and the moments of the travel
time, provided that n > 2m, where n is the number of items in an order.

Wen and Chang [179] model the carousel as a discrete bidirectional loop and
assume that the time to move between the bins of a shelf is not negligible. They
propose three heuristic solution procedures and compare their performance. An
earlier version of this work can be found in Wen [178].

Ghosh and Wells [69] model the carousel as a continuum of clusters and gaps,
where a cluster is a segment on the circle that corresponds to a series of locations
that have to be visited for the retrieval of an order, while a gap is the segment of
the circle between two clusters. The authors develop two algorithms to find optimal
retrieval strategies.

Stern [155] studies properties of the optimal, i.e. minimal, picking sequence both
for the open-loop strategy, where the carousel remains stationary at the point where
the last item was retrieved (awaiting the next order to be fed), and for the closed-
loop strategy, where the carousel returns to a predefined point after the retrieval
of an order is completed. He formally shows that under the open-loop strategy the
carousel will change its direction at most once when following the optimal picking
sequence, while under the closed-loop strategy the carousel will turn at most twice.
A recursive expression for the distribution of the minimal travel time for randomly
distributed items is given explicitly by Litvak and Van Zwet [121].

More recent literature includes the work of Wan and Wolff [176] that focuses
on minimising the travel time for “clumpy” orders, that is, orders concentrated
on a relatively small segment of the carousel, and introduces the nearest-endpoint
heuristic for which they obtain conditions for it to be optimal. Under this setting,
one can no longer assume that the items’ locations are uniformly distributed. The
model with non-uniform items’ locations reflects a relevant situation when some of
the items are required more frequently than others. An interesting work on non-
uniformly distributed items is given by Litvak [117], where the focus is on the length
of the shortest rotation time needed to collect a single order when the order size
is large and the items’ locations have a non-uniform continuous distribution with a
positive density f on [0, 1].
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1.3.3 Picking multiple orders

A popular strategy for reducing the mean travel time per order in carousel stor-
age and retrieval systems is batching together a number of orders and then picking
them sequentially. A batch is a set of orders that is picked in a single tour. Two
consecutively picked items do not necessarily belong to the same order. An excel-
lent literature survey by Van den Berg [165] on planning and control of warehousing
systems addresses this issue and the problems that arise if large batches are formed.
Apart from the questions mentioned before, Stern [155] also considers the perfor-
mance of a carousel for a fixed set of order types (for example, big orders with many
items, and small ones).

Bartholdi and Platzman [14] are mainly concerned with sequencing batches of re-
quests in a bidirectional carousel. They specify the number of orders to be retrieved
(ignoring any new arrivals) and propose three heuristic methods to solve this static
problem. Orders may be picked in any sequence (and not necessarily at the order
they arrive), but picks within the same order are performed consecutively. They
define the minimum spanning interval , which is the shortest interval containing all
the items of an order and, by assuming that the picker always begins and finishes
retrieving an order at one of the endpoints of this interval, they construct the short-
est matching chain by ordering the orders accordingly. This procedure may fail to
give an uninterrupted sequence in which to pick the orders; therefore, they propose
the following heuristics. The first one, called the hierarchical heuristic, picks any
order that happens to have a common endpoint with another order, and then trav-
els clockwise until an unpicked endpoint is encountered, and repeats the procedure.
The nearest-order heuristic is practically an extension of the nearest-item heuristic
described earlier in the paper, as is the case with the second monomaniacal heuristic
they propose. Under these heuristics, they obtain upper bounds for the travel time.

Ghosh and Wells [69] assume that the orders have to be picked under a FIFO
sequencing restriction, which means that the first order to arrive at the warehouse
is the first order that will be picked, and so on. Since the orders are retrieved in
a FIFO fashion, the problem is reduced to finding how to retrieve each individual
order so that the best overall retrieval is achieved. They develop an algorithm for
the optimal retrieval path of n orders via dynamic programming, and show how to
update dynamically the solution when new orders arrive.

Rouwenhorst et al. [148] model the carousel as an M/G/1 queuing system, where
the orders are the “customers” that require service, and the service they get depends
on the pick strategy that is followed. This approach permits the derivation of various
queuing characteristics such as the mean response time and the waiting time when
orders arrive randomly. The authors mention that the tight upper bounds for the
mean response time can be further exploited to obtain also good approximations for
excess probabilities of the response time.

Van den Berg [164] assumes either a fixed or an arbitrary sequence of orders.
When the sequence of the orders is given, he presents an efficient dynamic program-
ming algorithm that finds an optimum path that visits all orders in the specified
sequence. Furthermore, when there is no given order sequence, he simplifies the
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problem to a rural postman problem on a circle and solves this problem to optimal-
ity. The rural postman problem is a problem of finding the shortest route in an
undirected graph which includes all edges at least one time. Van den Berg [164]
concludes that the obtained solution requires at most 1.5 revolutions more than
a lower bound of an optimal solution to the original problem. Simulation results
suggest that the average rotation time may be reduced up to 25% when allowing a
free order sequence.

1.3.4 Design issues

All research papers mentioned so far that deal with travel time models of carousel
systems assume average uniform velocity of the carousel. In other words, the main
assumption is that the carousel travels with constant speed and the acceleration
from the stationary position (when a pick is performed) to its full speed, as well
as the deceleration from the maximum speed to zero speed, are negligible factors
when computing the travel time of the carousel. Guenov and Raeside [73] give
some empirical evidence that the error induced when neglecting acceleration and
deceleration of an order picking vehicle is indeed negligible. Thus the problem of
minimising retrieval times can be considered to be equivalent to the problem of
minimising the average distance travelled by the carousel per retrieval.

Hwang et al. [88], however, develop strategies for picking that take into con-
sideration the variation in speed of the carousel. For unit-load automated storage
and retrieval systems there are several travel-time models that consider the speed
profiles of the storage and retrieval robot. In [88] some relevant references are given.
Unlike the unit-load automated storage and retrieval systems, almost all the exist-
ing travel-time models for carousel systems assume that the effects of the variation
in speed are negligible. In [88] the authors try to bridge this gap in the literature.
They assume that the items are randomly distributed on the carousel and derive
the expected travel time both in the case of a single command cycle and in the
case of a dual command cycle. They verify the accuracy of the proposed models by
comparing the results to results directly obtained from discrete racks.

Egbelu and Wu [57] study the problem of pre-positioning the carousel in antici-
pation of storage or retrieval requests in order to improve the average response time
of the system. Choosing the right starting point of a carousel in anticipation of an
order is also referred as the dwell point selection problem. This strategy becomes
relevant when the items are stored under the organ pipe arrangement. In this situ-
ation the dwell point should be chosen to be the location of the most popular item;
see, e.g., [16].

Spee [153] is concerned with developing design criteria for carousels. He states
the basic conditions for designing an automatic order picking system with carousels
and comments on the optimal storage design. Namely, he is interested in finding the
right number of picking robots and the right number and dimensions of a carousel
so that the investment is minimised, provided that the size of the orders that need
to be retrieved is given.

McGinnis [127] studies some of the design and control issues relevant to rotary
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racks. A rotary rack is an automated storage and retrieval system that strongly
resembles carousels. In fact, conceptually, a rotary rack is simply a carousel, where
the only difference is that each level or shelf of this carousel can rotate independently
of the others. The author concludes that, while rotary racks appear to be a simple
generalisation of conventional carousels, the control strategies that have been shown
effective for carousels do not appear to be as effective for these systems. Rotary
racks can be viewed as a multiple-carousel system (where each level is considered as
a sub-carousel) with a single picker.

1.3.5 Problems involving multiple carousels

While almost all work mentioned before concerns one-carousel models, real appli-
cations have triggered the study of models involving multiple carousels. The study
of such models is not as developed yet as the study of models involving a single
carousel. The list of references that follows seems to be complete.

Systems with multiple carousels tend to be more complicated. The system can-
not be viewed as a number of independently operating carousels, since there may
be some interaction between two separate carousels by means of the picker that
is assigned to them. Namely, if the number of pickers is less than the number of
carousels, then the picking strategy that is chosen for an isolated carousel may affect
significantly the waiting time and/or the travel time of another carousel. Thus, one
cannot guarantee that minimising the travel time of a single carousel minimises the
total travel time of all carousels (and consequently the throughput); the outcome
may be quite the contrary because of the system’s interdependency. Therefore,
multiple-carousel systems merit a special reference.

Multiple-carousel systems tend to have a higher level of throughput; however,
they increase the investment cost due to the extra driving and control mechanisms
[85, 87]. A natural question is how much the throughput of a standard carousel
can be improved by the corresponding multiple-carousel system that has the same
number of shelves as the standard carousel.

Perhaps the first academic study that investigates the performance of a system
involving several carousels is that of Emerson and Schmatz [60]. The authors sim-
ulated the operation of the warehouse of Rockwell’s Collins Telecommunications
Products. The system consists of twenty-two carousels, where each pair of carousels
had a single-operator station (so there are in total eleven operator stations). The
questions they are concerned with are how big the batch size of orders should be
so as to complete the week’s work (which is used as a performance measure) and
keep all operators busy, what happens when a carousel or a station is down, and
how is an overload or an imbalance (for example, unequal operator performance,
unequal carousel loading, or large orders) handled. In order to investigate potential
solutions to these three imbalance conditions, the authors investigate two operating
rules.

The first operating rule studies six different storage schemes with seven carousel
pairs (and thus seven operators). It uses simulation models to study simple storage
schemes such as random storage, sequential alternating storage, and storage in the
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carousel with the largest number of openings. The aim in [60] is to study the degree
of carousel usage. The authors find that there is no significant difference between the
carousel loads among the storage schemes. However, they do not treat the problem
of optimally assigning items to carousel bins, and do not present any analytical
models to help investigate the problem. The second operating rule they investigate
is a floating operator. This is an operator who is trained to work at any station,
and who is moving to different stations according to specific needs (for example,
depending on the size of the queue at a particular station). They conclude that this
solution seems advantageous for the purposes of the warehouse they investigate.

Koenigsberg [105] presents analytic solutions for evaluating the performance of
a single carousel, and discusses the ways in which his approach can be extended
to a system involving two unidirectional carousels both served by a single robotic
operator. The carousels are related only through the state of the robot, which means
that each carousel is independent of the other except for the time it waits for an
operation to commence (such as pick, storage, or repair) because the robot is busy
at the other carousel. The author concludes that under some conditions, it is often
more advantageous to have two carousels of identical length instead of one carousel
of double the length. Furthermore, going to three carousels of equal length (i.e. one
third of the length of the single carousel) will offer little further improvement.

Hwang and Ha [85] study the throughput performance both of a single and
of a double carousel system. Based on a randomised storage assignment policy,
cycle time models are developed for single and dual commands. Furthermore, they
examine the value of the information on the succeeding jobs in terms of system
efficiency, which may lead to better scheduling of the jobs to be processed.

In a later work, Hwang et al. [87] attempt to measure analytically the effects
of double shuttles of the storage and retrieval machine (i.e. the robotic picker) on
the throughput both of the standard and of the double carousel system. Storage
and retrieval machines with double shuttles are machines that have space for two
items. Thus, for example, an item can be retrieved from the carousel and stored
on one shuttle, while the other shuttle has an item that needs to be stored to the
carousel. After this item is stored, a second item can be retrieved from the carousel
and placed on the empty shuttle. All these operations occur during a single cycle
of the carousel operation. For the double carousel system, a retrieval sequence
rule is proposed which utilises the characteristics of the two independently rotating
carousels. From the test results, double shuttles are shown to have a substantial
improvement over single shuttles. This improvement tends to be more prominent in
the double carousel system. Due to cost concerns, the authors note that an economic
evaluation will be needed to justify the extra cost of double carousel systems and
double shuttles before implementing them in real world situations.

Wen et al. [180] consider a system comprised of two carousels and a single re-
trieval machine. Their main assumption is that every order must be picked in a
single tour, i.e., an order cannot be divided into two or more sub-tours. Batching
orders together is also not allowed. They analyse the retrieval time and propose
four heuristic algorithms for the scheduling sequence of retrieving items from the
system to satisfy an order. Their method is an extension of the algorithm presented
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in [14] and [155].
Recently, Hassini and Vickson [81] studied storage locations for items, aiming to

minimise the long-run expected travel time in a two-carousel setting with a single
server. They assume that the products are available at all times (so as to be able to
ignore possible delays due to lack of stock), and that orders are not batched; that is,
the carousel system processes only single-item orders. This is applicable in situations
where individual product orders are processed in a first-come-first-served policy, or
when the next item to be retrieved is known only after the present one has been
picked. The authors compare the performance of three heuristic storage schemes
and a genetic algorithm [70] that for small-sized problems completely enumerates
the solution space. They conclude that none of the heuristic approaches leads to a
solution that outperforms the algorithmic solution they provide.

The same model is also studied by Park et al. [140]. As is the case in [81],
in [140] the basic assumptions are that there is an infinite number of items to be
picked and that an order consists of a single item. The authors, however, are not
interested in storage issues. They further assume that the single operator, the picker,
is alternately serving the two carousels. This may cause the picker to have to wait
for an amount of time until the item at the carousel he is currently serving is rotated
in front of him. They derive the distribution of the waiting time of the picker under
specific assumptions for the pick times. This allows them to derive expressions for
the system throughput and the picker utilisation.

The models described in Koenigsberg [105], Hassini and Vickson [81], and Park et
al. [140] are almost identical. However, the questions that are examined differ. This
dissertation is motivated by the question investigated by Park et al. [140], namely
the waiting time of the picker. The waiting time of the picker for each item is given
by a very interesting recursion that combines the rotation time of the carousel and
the pick time for this item. We shall formally describe the model and derive this
recursion in the following section.

1.4 The model

As it is mentioned in Section 1.2, the examples that are given there can be
described by a single model. In this section, we shall formulate the model, derive
the equation that is the main focus of this dissertation, and introduce the basic
notation.

To this end, consider a system consisting of one server and two service points.
Only one customer can occupy each service point. The server alternates between
the service points, serving one customer at a time. The server is obliged to alter-
nate; therefore, he serves all odd-numbered customers at one service point and all
even-numbered customers at the other. It is assumed that the system is slightly
oversaturated so that at the moment one customer completes his service time an-
other one is immediately available to occupy the same service point. Although in
practice the queue at times may be empty, the amount of time it remains so is
assumed insignificant. Therefore, we can as well assume that at each service point
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there is an infinite queue of customers that needs to be served.
Once a customer enters the service point, his total service is divided into two

separate phases. First there is a preparation phase, where the server is not involved
at all. After the preparation phase is completed, the customer is allowed to start
with the second phase, which is the actual service. Figure 1.3 shows a schematic
representation of this model.

The customer either has to wait for the server to return from the other service
point, where he may be still busy with the previous customer, or he may commence
with his actual service immediately after completing his preparation phase. This
would be the case only if the server had completed serving the previous customer
and was waiting for this customer to complete his preparation phase. Thus the
server, after having finished serving a customer at one service point, may have to
wait. Once the service is completed, a new customer immediately enters the empty
service point and starts his preparation phase without any delay. We are interested
in the waiting time of the server.
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Figure 1.3: The model.

Let Bn denote the preparation time for the n-th customer, and let An and
Wn be the times the server spends on this customer on service and on waiting for
the customer to complete his preparation phase, respectively. Then the server has
to wait for the (n + 1)-st customer at most as long as the preparation time of this
customer, which is equal to Bn+1. However, when the (n+1)-st customer started his
preparation time, the server had just moved to serve the n-th customer. Therefore,
we need to subtract the time that the customer was busy there, either waiting for the
n-th customer, or serving him. Naturally, if An+Wn is greater than the preparation
of the (n + 1)-st customer, then the server did not have to wait for this customer
and could proceed immediately with the service. Summarising the above, we have
that the waiting time Wn+1 of the server for the (n + 1)-st customer satisfies the
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recursion
Wn+1 = max{0, Bn+1 −An −Wn}, n > 1. (1.1)

Unless stated otherwise, we assume that {An} and {Bn} are two mutually inde-
pendent sequences of independent and identically distributed (i.i.d.) non-negative
random variables. For the sake of simplicity, from now on we shall use the shorthand
Xn+1 = Bn+1 −An, n > 1, unless it is necessary to distinguish between the prepa-
ration and the service times. For reasons that will become evident in the sequel, we
shall further assume that P[Xn < 0] > 0.

Evidently, all examples given in Section 1.2 are described by this model. The
main aim is to calculate explicitly the distribution of the steady-state waiting time
of the server, if it exists. In Chapter 2 we prove that such a distribution indeed
exists, provided that P[Xn < 0] > 0. For now, it suffices to say that obtaining a
closed-form expression of the distribution is, in general, a non-trivial task. When
referring to the system in steady state, all subscripts will be suppressed; therefore,
the steady-state service, preparation and waiting time are denoted by A, B and W
respectively. Naturally, we have that X = B−A. So, in steady state, (1.1) becomes

W
D= max{0, B −A−W}, (1.2)

where A and B are independent. By “ D= ” we mean equality in distribution. For
this model we shall try to obtain an explicit expression for the distribution of the
waiting time W . This will allow us to derive various performance measures, such
as the throughput of the system, which is strongly connected to the mean waiting
time, and the probability that the server does not have to wait for a customer, which
is equal to the mass π0 of the steady-state waiting time distribution at zero.

For a random variable Y we denote its distribution and its density by FY and
fY respectively. So, for example, the distribution of the steady-state waiting time
of the server is denoted by FW and the density of B is simply fB . Additionally, the
Laplace-Stieltjes transforms of A, B andW are indicated by α, β and ω respectively,
so for example,

ω(s) =
∫ ∞

0

e−sx dFW (x).

The derivative of order i of ω is denoted by ω(i) and by definition ω(0) = ω . Similarly,
we define the derivatives of all other distributions, densities, and Laplace transforms
that appear. Any further notation will be introduced when it first becomes relevant.

There is a significant difference between the various examples that we have de-
scribed in Section 1.2. To be precise, in the example inspired by the medical world,
the support of the preparation time B is unbounded, while the preparation time in
the two-carousel model is limited by the time for a complete rotation of the carousel.
We shall observe an important distinction among the techniques that are used and
the results that are obtained based on the support of B. Namely, calculations be-
come somewhat cumbersome, although straightforward, when the support of B is
bounded. On the other hand, as we shall see in Chapter 5, an unbounded support
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does not guarantee that the method followed will necessarily be evident, but it does
tend to lead to more simple expressions.

Another important observation that needs to be made is that Equation (1.1)
has a striking similarity to Lindley’s recursion for the waiting time of a customer
in a single-server queue. If only the sign of Wn at the right-hand side of (1.1) were
different, then (1.1) would be Lindley’s recursion. Lindley’s recursion is one of the
fundamental and most well-studied equations in queuing theory. We shall discuss
this recursion in the following section.

1.5 Lindley’s recursion

Lindley’s recursion [115] describes the waiting time Wn+1 of a customer in a
single-server queue in terms of the waiting time of the previous customer, his or her
service time Bn, and the interarrival time An between them. It is assumed that the
customers are served in order of arrival. As Figure 1.4 indicates, Lindley’s recursion
is given by

Wn+1 = max{0, Bn −An +Wn}.

Throughout this thesis, when we refer to “the single-server queue”, we imply that
the first customer to be served is the first one to come; that is, we refer to a single-
server queue where the waiting times of the server are described by the equation
above.
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Wn+1

arrival

An

n-th
arrival

Bn (service)Wn

n + 1-st

Figure 1.4: Lindley’s recursion.

David G. Kendall [100] developed in 1953 a convenient shorthand notation sys-
tem to classify queuing systems that has to a large extent become standard since
then. Kendall’s notation has been extended to include various interesting queu-
ing characteristics; a queuing system is denoted by a string of the type α/β/γ/δ/ε,
where α refers to the form of the interarrival distribution, β to the form of the service
distribution, γ is the number of servers, δ is the capacity of the waiting room, and
ε denotes the service discipline. In case only the first three parameters are used,
it is implied that the waiting room has infinite capacity and that customers are
served in order of arrival. For more details on Kendall’s notation see, for example,
Asmussen [6, Chapter III].
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In this work we adapt this standard notation as follows. We describe the alter-
nating service model we are concerned with by a string of two letters of the fashion
α/β, where α now stands for the distribution of the service time A and β refers to
the form of the distribution of the preparation time B. The reason, evidently, is that
(1.1) differs from the standard Lindley’s recursion only in the sign of W that appears
at the right-hand side of the equality. Therefore, we can maintain the notation that
is widely used for the classic single-server queue. So, for example, M/G refers to the
system with exponential service times and generally distributed preparation times,
while, in this context, we use “E” when the service or preparation times follow an
Erlang distribution. This facilitates the comparison between the two systems.

Some basic queuing models are the M/G/1, the G/M/1, and the G/G/1 queues.
Here “G” implies that the interarrival or service times are generally distributed,
and “M” (for Markovian or memoryless) indicates that the underlying distribution
is the exponential distribution. Markovian assumptions often greatly simplify the
modelling and the solution. They are, therefore, the first approach when faced
with a new type of problem, and they will be used here to look into phenomena
requiring considerable effort in more general settings. The Markovian set-up has its
drawbacks, however. One is that we need to rely on assumptions such as exponential
service or preparation times. Phase-type distributions present a partial solution; this
class of distributions is dense in the space of distribution functions defined on [0,∞).
Therefore, one can extend the Markovian set-up to a class of models that is also
in a certain sense dense. So, motivated by classic queuing theory, we shall analyse
(1.2) assuming that the service times are generally distributed and the preparation
times follow a phase-type distribution, and vice versa.

Since Lindley’s equation is so similar to (1.1), it is reasonable to examine the
methods used to derive the steady-state distribution of the waiting time of a cus-
tomer in a single server queue. One can expect that some of these methods may
help determine the distribution of W in (1.2). A wide range of techniques has been
used for Lindley’s recursion. These techniques usually vary depending on the spe-
cific assumptions of the model examined. For the M/G/1 queue, Laplace-Stieltjes
transforms yield a straightforward solution (e.g. Cohen [46, Chapter II.4]). Another
method used both for the M/G/1 and the G/M/1 queues utilises properties of ran-
dom walks (e.g. Asmussen [6, Chapter VIII]). Cohen [46, Chapter II.6]) lists another
six methods that are often very effective in dealing with special questions regarding
the single-server queue. These include Lindley’s integral equation, which is in fact a
Wiener-Hopf integral equation, and the phase method and its variants. The latter
method makes use of the special structure of the phase-type distribution involved
by introducing stochastic variables specifying the phase of the service time or of the
interarrival time.

Not all of these methods are effective when dealing with the alternating service
system described in Section 1.4. For example, the recursion we are dealing with is
not a random walk, and therefore no techniques that involve properties of random
walks can be used in this case. However, some of the methods mentioned above, or
generalisations of them, are effective. For the alternating service model, Laplace-
Stieltjes transforms yield simple and straightforward results in case the service time
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is generally distributed and the preparation time follows a phase-type distribution;
see Chapter 4. The corresponding G/PH/1 single-server queue cannot be solved
simply by computing the Laplace-Stieltjes transform of W . In the following section,
we shall outline the differences in the analysis and the results of the two models.

In the applied probability literature there has been a considerable amount of
interest in generalisations of Lindley’s recursion, namely the class of Markov chains
described by the recursion Wn+1 = g(Wn, Xn). For earlier work on such stochastic
recursions see for example Bacelli and Brémaud [12], Borovkov and Foss [29] and
Brandt et al. [38]. Our model is a special case of this general recursion and it
is obtained by taking g(w, x) = max{0, x − w}. Many structural properties of
the recursion Wn+1 = g(Wn, Xn) have been derived. For example, Asmussen and
Sigman [10] develop a duality theory, relating the steady-state distribution to a ruin
probability associated with a risk process. More references in this domain can be
found for example in Asmussen and Schock Petersen [9], Harrison and Resnick [80],
Prabhu [142], and Seal [150].

An important assumption which is frequently made in these studies is that the
function g(w, x) is monotone non-decreasing in its main argument w; see for example
Borovkov [28] and Kalashnikov [96]. For example, in [10] this assumption is crucial
for their duality theory to hold. Clearly, in the model we discuss here, we have that
g(w, x) = max{0, x−w}, which implies that this assumption does not hold, since g
now is a monotone non-increasing function in w. For this reason, a detailed study
of (1.1) is of theoretical interest.

1.6 A generalised Wiener-Hopf problem

Since Recursion (1.1) is only a sign apart from Lindley’s recursion, it is natural
to assess the differences in complexity between these two models. In this section, we
present some considerations on this matter. The so-called generalised Wiener-Hopf
problem will feature prominently in these considerations. Therefore, we formulate
this problem.

The Wiener-Hopf problem

First, we briefly consider the ordinary Wiener-Hopf procedure. The Wiener-Hopf
procedure, also featuring as Wiener-Hopf technique in the literature, was originally
invented to solve an integral equation of the type∫ ∞

0

f(ξ)K(x− ξ) dξ = g(x) (1.3)

where K and g are given, and f is to be found, cf. Noble [135, p. 49]. As it is shown
in [135], this integral equation can be transformed into an equation of the form

A(s)Φ+(s) +B(s)Ψ−(s) + C(s) = 0, (1.4)

where Φ+ and Ψ− are unknown regular functions in the upper and lower half-planes
respectively, A, B, and C are known analytic functions, and this equation holds in a
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strip of the complex plane. We call (1.3) or (1.4) the Wiener-Hopf integral equation
of the first kind.

The fundamental step in the Wiener-Hopf procedure towards solving (1.4) is to
find two regular functions K+ and K− such that

A(s)/B(s) = K+(s)/K−(s).

Then, by decomposing K−(s)C(s)/B(s) in the form C+(s) + C−(s), (1.4) can be
rearranged so as to define a function J(s) by

J(s) = K+(s)Φ+(s) + C+(s) = −K−(s)Ψ−(s)− C−(s). (1.5)

By analytic continuation, J can be defined over the whole complex plane, and it
can be shown to be regular. Suppose now that it can be shown that

|K+(s)Φ+(s) + C+(s)| < |s|p

|K−(s)Ψ−(s) + C−(s)| < |s|q.

Then, by Liouville’s theorem we have that J is a polynomial, i.e. both functions
K+(s)Φ+(s) +C+(s) and K−(s)Ψ−(s) +C−(s) are equal to this polynomial, which
means that Φ+(s) and Ψ−(s) are determined within a finite number of arbitrary
constants which must be determined otherwise. The task of solving equations in
the form of (1.3) or (1.4), either by using the Wiener-Hopf procedure or otherwise,
is what we call the Wiener-Hopf problem.

The crucial step in this technique is finding functions K+ and K− such that
they satisfy Equation (1.5). All other steps of this technique can be completed
by applying general theorems; see Noble [135, pp. 36–38]. For an application, see
Chapter 8.

The generalised Wiener-Hopf problem

Let us consider now the generalised Wiener-Hopf equation

A(s)Φ+(s) +B(s)Ψ−(s) + C(s) +D(s)Φ1(s) + E(s)Φ+(−s) = 0, (1.6)

where the functions A, . . . , E are known, Φ+, Ψ− are unknown, and Φ1 is an un-
known integral function. Generalised Wiener-Hopf equations differ from the classi-
cal Wiener-Hopf equations since the involved plus and minus functions are defined
into two different complex planes. Equation (1.6) cannot be solved exactly by the
Wiener-Hopf technique. It is remarkable that in some cases a suitable mapping
reduces the generalised Wiener-Hopf equations to the classical ones [54].

Usually the Wiener-Hopf formulation involves the factorisation of kernels. How-
ever, closed form factorisations of kernels are not available and one often needs to
resort to approximate factorisation techniques. Chapter V in [135] discusses some
approximate methods which can be used to deal with problems that can be formu-
lated as equations of the form (1.6), or special cases of this equation that do not
reduce to equations of the form (1.4). The task of solving equations in the form of
(1.6) is what we call the generalised Wiener-Hopf problem.
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The time-dependent distribution

It is known that for Lindley’s recursion one may obtain an explicit expression
(see Cohen [46, p. 278]) for the double transform

f(r, s) =
∞∑
n=1

rnE[e−sWn ],

which determines the distribution of Wn given that W1 = 0, by solving a Wiener-
Hopf problem. This transform is the generating function of the Laplace-Stieltjes
transform of Wn. If one is able to invert (explicitly or numerically) the generat-
ing function, then one might obtain an explicit expression for the Laplace-Stieltjes
transform, which uniquely defines the time-dependent distribution of the waiting
times.

However, the time-dependent distribution of the waiting times for Lindley’s re-
cursion is a highly non-trivial problem. An expression is explicitly known only for
the M/M/1 queue, while for other settings only an expression for the above men-
tioned double transform is given. For the Laplace-Stieltjes transform of the weak
limit W of Wn one is also called to solve a Wiener-Hopf problem; see, for example,
Asmussen [6, Section VIII.3] for more information.

For our model, let H be the generating function of the distribution of Wn, i.e.,
for |r| 6 1,

H(r, x) =
∞∑
n=0

rnP[Wn+1 6 x], x > 0.

Assume now that for all n, Xn+1−Wn is continuous. Naturally, it suffices to assume
that either FW or FX is continuous. Then, from (1.1) we have that for n > 1,

P[Wn+1 6 x] = 1− P[Xn+1 −Wn > x] = 1−
∫ ∞

x

P[Wn 6 y − x] dFX(y).

Consequently,

H(r, x) = P[W1 6 x] +
∞∑
n=1

rnP[Wn+1 6 x]

= P[W1 6 x] +
r

1− r
−

∞∑
n=1

rn
∫ ∞

x

P[Wn 6 y − x] dFX(y)

= P[W1 6 x] +
r

1− r
− r

∫ ∞

x

H(r, y − x) dFX(y). (1.7)

If one is able to solve the above equation and obtain values for H(r, x) then one can
obtain values for P[Wn 6 x] by inverting the generating function H (for example,
by applying the Fast Fourier Transform). However, Equation (1.7) can be reduced
to a generalised Wiener-Hopf equation which cannot be solved in general. To see
this, assume that W1 and X have densities fW1

and fX on (0,∞). Under these
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assumptions, we see from (1.7) that H has a derivative h on (0,∞); therefore, by
differentiating with respect to x, (1.7) yields

h(r, x) = fW1
(x) + rH(r, 0)fX(x) + r

∫ ∞

x

h(r, y − x)fX(y) dy

= fW1
(x) + rH(r, 0)fX(x) + r

∫ ∞

0

h(r, u)fX(u+ x) du. (1.8)

Notice that h(r, x) =
∫∞
0
h(r, y)δ(x − y) dy, with δ being the Dirac δ-function.

Combining this with (1.8), we obtain that∫ ∞

0

h(r, y)
[
δ(x− y)− rfX(x+ y)

]
dy = rH(r, 0)fX(x) + fW1

(x). (1.9)

This equation is equivalent to a generalised Wiener-Hopf equation; see No-
ble [135, p. 233]. It is shown there that such equations can sometimes be solved, but
a general solution, as is possible for the classical Wiener-Hopf problem (arising in
Lindley’s recursion), seems to be absent; see also a discussion in Section 5.2, where
we shall derive a generalised Wiener-Hopf equation for the distribution of W in the
M/G model.

The fact that we are dealing with a generalised Wiener-Hopf equation could
indicate that deriving the distribution of Wn or W for the alternating service model
may be more complicated than for Lindley’s recursion. One point we make in this
dissertation is that this is not necessarily the case.

The integral equation (1.7) has the following property, which is proven to be
valuable in overcoming the difficulties arising by the fact that we are dealing with
a generalised Wiener-Hopf equation. Consider the space L∞

(
[0,∞)

)
, i.e., the space

of measurable and bounded functions on the real line with the norm

‖F‖ = sup
x>0

|F (x)|.

In this space we define the mapping Tr by (cf. (1.7))

(TrF )(x) = P[W1 6 x] +
r

1− r
− r

∫ ∞

x

F (y − x) dFX(y).

Then for two arbitrary functions F1 and F2 in this space we have

‖(TrF1)− (TrF2)‖ = sup
x>0

∣∣(TrF1)(x)− (TrF2)(x)
∣∣

= sup
x>0

∣∣∣r ∫ ∞

x

[
F2(y − x)− F1(y − x)

]
dFX(y)

∣∣∣
6 |r| sup

x>0

∫ ∞

x

sup
t>0

∣∣F2(t)− F1(t)
∣∣ dFX(y)

= |r| ‖F1 − F2‖ sup
x>0

(
1− FX(x)

)
= |r| ‖F1 − F2‖ P[X > 0].
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Since |r| 6 1 and P[X > 0] < 1, we see that Tr is a contraction mapping on
L∞
(
[0,∞)

)
with contraction coefficient |r|P[X > 0]. Thus, iterating Tr is an ap-

proach in order to obtain H numerically. Summarising the above, we see that we
can either try to find H exactly by solving a generalised Wiener-Hopf equation, or
numerically by iterating the mapping Tr. If this first step is successful, then one
may invert H exactly or numerically (by applying the Fast Fourier Transform) to
obtain values for P[Wn 6 x].

Comparison with the G/M/1 queue

There is no explicit expression known so far for the time-dependent distribution
of the waiting times in the G/M/1 queue. However, for our model we obtain a very
simple and explicit expression for P[Wn 6 x] for the G/M case; see Chapter 4. In
our case, this distribution is simply an exponential distribution with mass at the
origin. Moreover, it is also very simple to extend these results to the G/PH case.
Furthermore, all results are obtained by employing a direct approach, rather than
obtaining expressions for the generating function. The reason for this spectacular
reduction in complexity is that, if B has a mixed-Erlang distribution, then we can
completely describe the system in terms of the evolution of a finite-state Markov
chain; for details see Chapter 4.

Not only the time-dependent distribution produces surprising results, but also
the steady-state distribution of W yields some striking differences. As we have
mentioned, the G/PH model, contrary to the G/PH/1 queue, can indeed be ex-
plicitly solved by using Laplace-Stieltjes transforms. The waiting-time distribution
in this case is a mixture of Erlang distributions with the same scale parameter for
all exponential phases. For the classical G/PH/1 queue, Adan and Zhao [2] show
that the waiting-time distribution is a mixture of exponentials with different scale
parameters. For a discussion see Chapter 4.

Comparison with the M/G/1 queue

For the M/G/1 queue, although there is no explicit expression for FW , the
Laplace-Stieltjes transform of W can be derived straightforwardly. Moreover, the
distribution FW itself can be rewritten as an infinite sum involving the n-fold convo-
lutions of the residual service time [6]. In our case, however, the M/G model presents
the most difficulties. As is the case for the time-dependent distribution with gen-
erally distributed service times, also for this case the Laplace-Stieltjes transform of
W is the solution of a generalised Wiener-Hopf problem that can not be solved for
all distributions of the preparation times. Thus, it is not surprising that not even
the transform can be derived explicitly. None of the methods used for Lindley’s re-
cursion leads to results in this case. We present a partial solution to this intriguing
problem in Chapter 5.

Furthermore, it is also not surprising that, since the derivation of the steady-state
distribution of the waiting time is presenting difficulties, it does not seem possible
to derive the time-dependent distribution of the waiting times. In comparison, for
the M/G/1 queue, the generating function of the Laplace-Stieltjes transform of Wn
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conditioned on the number of customers at time zero is completely known; see
Cohen [46, Sec. II.4.5].

As will be evident in the sequel, the fact that we are concerned with a gen-
eralised Wiener-Hopf problem will naturally generate some additional complexity.
However, in specific cases, this model is surprisingly far simpler to analyse than
Lindley’s recursion. Throughout this monograph, we shall compare the results and
the methods used for the alternating service system to the results obtained and the
methods used for the analogous case in Lindley’s recursion.

1.7 Overview of the thesis

This thesis is organised according to the specific model that is studied. Before
making any assumptions on the distribution of the preparation or the service times,
we study some general properties of Recursion (1.1) in Chapter 2. The contents of
this chapter are based on parts of the work presented in [169] and [174]. In particular,
we prove that under some assumptions, there is a unique equilibrium distribution,
and the system converges to it. Furthermore, we derive a first crude upper bound
for the rate of convergence to the limiting distribution. Moreover, we show that if
the limiting distribution of the waiting time of the server is a continuous function
on (0,∞), then it satisfies a contraction mapping, and we retrieve the same upper
bound for the rate of convergence to the limiting distribution. We also study the
tail asymptotics of W for various classes of distributions of the preparation times,
and we derive some properties of the covariance function of the waiting times.

Motivated by the carousel application presented in Section 1.2, in Chapter 3 we
review the results obtained by Park et al. [140] for the M/U model, and extend
these results in two directions. First, we study the PH/U model. In other words, we
assume that the service times follow a phase-type distribution, while the prepara-
tion times are uniformly distributed and derive the distribution of W . This setting
corresponds to uniformly distributed rotation times of the carousels (i.e. the items
are randomly located on it) and phase-type distributed pick times. This analysis
has already been presented in [173]. Later on, we study the M/P model, where
“P” stands for polynomial distributions, and derive the distribution of W . Polyno-
mial distributions are a useful class of distributions since they can approximate any
continuous distribution on a bounded support arbitrarily closely. The extension to
polynomial distributions is based on the work concluded in [171].

In Chapter 4 we study the G/PH model. This chapter contains almost the com-
plete contents of [170] and [174]. We first discuss the time-dependent distribution
of the waiting times and then derive the limiting distribution of W . Furthermore,
we drop the assumption that the server is obliged to alternate and derive the time-
dependent and the limiting distribution of the waiting times of the server for this
model too. We conclude by comparing the two models analytically and numerically.

In Chapter 5 we attempt to derive the steady-state distribution of the M/G
model. Although many properties of the M/G/1 queue are known, in our case the
M/G model presents the most difficulties. We show again that the derivation of the
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steady-state distribution can be formulated as a generalised Wiener-Hopf problem,
and we explain why none of the methods presented in the previous chapters or the
methods applied to the M/G/1 queue leads to results in this case. In order to obtain
reasonable results, we introduce a new class of distributions, in which the derivation
of an explicit expression for FW is possible. The analysis in this chapter is based
on parts of [169].

Stimulated by the observation that a wide range of distributions does not belong
to the class of distributions introduced in the previous chapter, in Chapter 6 we
discuss how we can use the results obtained so far in order to approximate the
distribution of W in case that exact computations are not possible. We obtain an
upper bound for the incurred approximation error, as presented in [171], and discuss
the scenario when the preparation times follow a distribution of a mixed type, i.e.,
a mixture of a discrete and a continuous distribution.

In Chapter 7 we no longer assume that the preparation times and the service
times are two mutually independent sequences of independent and identically dis-
tributed random variables. In order to introduce some specific relation between
service and preparation times, we turn to the carousel problem and describe an ap-
plication that leads to dependencies between a consecutive preparation and service
time. We analyse this model and study how the different picking strategies affect
the waiting time of the picker.

Chapter 8 attempts to bridge the distance between Lindley’s recursion and the
recursion studied in this thesis. In other words, we study a recursion that has both
Lindley’s recursion and Recursion (1.1) as special cases. For this system we derive
the distribution of the waiting time of the server in case A is generally distributed
and B follows a phase-type distribution, and in case A is exponentially distributed
and B is deterministic. As we observe in this chapter, the analysis clearly demon-
strates the effects both of Lindley’s recursion and of Recursion (1.1). The results
derived in this chapter can be found in [36].

As mentioned before, we compare all results obtained to the analogous cases for
Lindley’s recursion. Furthermore, we try to develop an intuitive perception of the
results obtained by displaying graphs and numerical results when these are worth
mentioning. We present our conclusions and further remarks in Chapter 8.4.



Chapter 2

General properties

2.1 Introduction

In this chapter we study various general properties of Recursion (1.1). These
properties form the basis of the more detailed analysis that follows in the thesis.
Throughout this chapter we do not need to assume that the sequences of the pre-
paration and the interarrival times are independent of one another. Moreover, we
make no assumptions on the exact distribution of An or Bn. We see these random
variables aggregated in the random variables Xn+1 = Bn+1 − An, for which we
assume that they are independent of one another and identically distributed. Sec-
tions 2.2 to 2.5 are mainly based on the work presented in [169], while Section 2.3
is presented in [174].

We should first note that, evidently, {Wn} is a regenerative process, which in
intuitive terms means that the process can be split into cycles that are mutually
independent and stochastically equal to one another. The process regenerates every
time a zero waiting time occurs. We denote by C the random variable expressing
the length of such a cycle. Furthermore, {Wn} may be possibly delayed; that is,
the process might not start from a regeneration point. Therefore, the time until the
first regeneration will have a different distribution than the one of C. We denote
the first cycle length by C1.

In the following, we shall review the subjects we are concerned with in this
chapter.

Stability

Naturally, the first property we are concerned with is the stability of the system.
In particular, in Section 2.2 we study under which conditions the waiting times Wn

converge to a limiting generic waiting time W . We show that there is a unique
limiting distribution FW , and that the system converges to it geometrically fast.

We distinguish between two cases. In the first case, we assume that P[Xn < 0] >
0. This condition implies that, with positive probability, the preparation time will
be for some customer less than the service time of the previous customer, which will
then cause a zero waiting time for the server. For this case, the process is aperiodic
and can be shown to have a finite mean cycle length. Thus, the existence of a
limiting distribution and the convergence of the system to it is a direct consequence
of standard limiting theorems for regenerative processes.

In a G/G/1 queuing system with arrival rate 1/E[A] and mean service time E[B]
the stability condition that is necessary so that Wn converges in distribution to W
is that the occupation rate (usually denoted by ρ) is less than the server’s capacity,
that is taken to be equal to one. In other words, E[B] < E[A]; see, for example,

25



26 General properties

Asmussen [6, Section III.6]. As we see, the stability condition for Lindley’s recursion
is stronger, since E[B] < E[A] implies that P[B −A < 0] > 0.

In the second case, we assume that P[Xn < 0] = 0. This case is even more
interesting mathematically. The theorems used for the previous case are no longer
applicable, since one cannot argue directly that the process is aperiodic with a finite
mean cycle length. For this case, we examine the conditions under which a limiting
distribution exists and we derive a geometric bound for the rate of convergence of
the process to the limiting distribution.

Contraction

As we have seen in Section 1.6, the integral equation for the generating func-
tion H that determines the distribution of Wn for our system can be reduced to a
generalised Wiener-Hopf equation. Due to this fact, one expects that determining
exactly the distribution of W may be a non-trivial task in general. In Section 2.3,
however, we prove that, as is the case for H, the distribution FW is the fixed point
of a functional equation that is a contraction, provided that FX is continuous. The
proof is similar to the one we have presented in Section 1.6. The analogous func-
tional equation for Lindley’s equation is not a contraction mapping. The analysis
of (1.2) is greatly simplified at times because of this property. A direct conclusion
is that the distributions of Wn converge to the distribution of W geometrically fast
also for the case where P[Xn < 0] > 0.

Tail asymptotics

In Section 2.5 we shall study the tail asymptotics of W for various classes for the
distribution of the preparation times. To do so, we first give all necessary definitions
and results in Section 2.4. For our problem we show that, for the cases we examine,
the tail of W behaves asymptotically like the tail of X.

The tail behaviour of the single-server queue is a well-studied subject in the
literature. A comprehensive register of the different theorems on this subject can
be found in Korshunov [106]. For Lindley’s recursion, the study of the problem is
split in three regimes. The tail of W is either exponential when B is light-tailed
and satisfies a condition called the “Cramér condition” (cf. Asmussen [6, Section
XIII.5]), or it behaves as the tail of the stationary excess distribution of B (cf.
Asmussen [6, Section X.9]) if the excess distribution of B is subexponential [59]
(which in intuitive terms means that large values of a sum of i.i.d. random variables
are most likely caused by a large value of a single term rather than the joint effect
of a set of them, as is the case for light-tailed distributions). There exist results also
for the case where B is light-tailed but does not satisfy the Cramér condition; see
again [106].
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Covariance function

If one cannot determine the limiting distribution function of the waiting time
analytically, but wants to obtain an estimation from a simulation of the system,
then two relevant questions are

1. how long should the simulation run and

2. how big is the variance of the mean of a sample of successive waiting times.

For the determination of the magnitude of this variance it is necessary and suffi-
cient to know the covariance function of the process {Wn}. We study some properties
of the covariance function in Section 2.6. We show that the covariance function be-
tween two waiting times is of an alternating sign, and we obtain an upper bound for
its absolute value, from which we conclude that the covariance function converges
to zero geometrically fast. An explicit expression of the covariance function for the
G/PH model will be given in Chapter 4.

The literature on the covariance function of the waiting times for the single-
server queue seems to be sporadic. For the M/G/1 queuing system Blomqvist [23]
studies the covariance function of the waiting times. Beneš [15] considers a slightly
different notion of waiting times. He studies the general properties of the covariance
function of the process W (t) of virtual waiting times, where W (t) is the waiting
time a customer would encounter if he arrived at time t. For the G/M/1 queue
Pakes [139] derives results analogous to those in [23].

Both studies of Blomqvist [23] and Pakes [139] involve the generating functions
of the autocorrelations of the waiting times in terms of the probability generating
function of the distribution of the number of customers served in a busy period. The
latter functions are only implicitly determined as solutions to functional equations.
Blanc [22] is concerned with the numerical inversion of the generating functions of
the autocorrelations of the waiting times, as they are given in [23] and [139].

For the G/G/1 queue, Daley [53] and Blomqvist [24, 25] give some general prop-
erties. In particular, in [53] it is shown that the serial correlation coefficients of a
stationary sequence of waiting times are non-negative and decrease monotonically
to zero. Further results are obtained for the M/G/1 and M/M/1 queues. In [24] the
mean square error of the average waiting times is determined asymptotically by an
expression involving the covariance function of the stationary waiting-time process,
while in [25] the author gives two heavy-traffic limits for the serial autocorrelation
coefficients.

For the single server queue, a few other papers study problems related to the
correlation coefficients of various series of random variables. For example, for the
M/M/1 queue, Morse [132] investigates the time-continuous n(t)-process, where
n(t) is the number of customers in the system at time t. For this process, he also
obtains the autocorrelation function and studies its properties. From this study,
the derivation of an approximation for the relaxation time of the queue length is
straightforward, while the standard error of the average queue length is determined
by Gebhard [67]. In a recent study, Blanc [21] numerically computes the autocorre-
lations of interdeparture times.
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2.2 Stability

Naturally, the first property we are concerned with is the stability of the system.
In this section, we study the convergence of the process {Wn} to a limiting waiting
time W . We consider two separate cases.

2.2.1 The case P[X < 0] > 0

For the existence of a unique equilibrium distribution, one should note that the
stochastic process {Wn} is a (possibly delayed) regenerative process with the time
points where Wn = 0 being the regeneration points. Since P[Xn < 0] > 0, the
process is moreover aperiodic. In order to show that the process has a finite mean
cycle length define the stopping time τ = inf{n : W1 = W1+n = 0}, and observe
that

P[τ > n] 6 P[Xk > 0 for all k = 2, . . . , n] = P[X2 > 0]n−1,

and P[X2 > 0] < 1 because of the stability condition we have imposed. Therefore,
from the standard theory on regenerative processes it follows that the limiting dis-
tribution exists and the process converges to it in total variation; see for example
Corollary VI.1.5 or Theorem VII.3.6 in Asmussen [6]. For the application of Theo-
rem VII.3.6 in [6, p. 202] one simply needs to notice that since {0} is a regeneration
set of the process, {Wn} is a Harris chain.

2.2.2 The case P[X < 0] = 0

In the previous case we have examined, the condition that P[X < 0] > 0 guar-
anteed that the cycle-length distribution is aperiodic and has a finite mean. These
statements prove the existence of a total variation limit of the process. However,
if we remove this condition, then the above statements do not hold in general, and
thus the stability of the system cannot be established by the previously mentioned
theorems. In this section, we shall discuss the existence of a limiting distribution
and the convergence of the system to it in case P[X < 0] = 0.

In order to prove that there is a unique equilibrium distribution for this case,
we need to address three issues: the existence of an invariant distribution, the
uniqueness of it and the convergence to it, irrespective of the state of the system at
zero. Recall that throughout the thesis we use the following notation: for a random
variable Y and an event E we have that P[Y 6 x ;E] = E[1[Y6x] · 1[E]].

Existence

To prove the existence of an equilibrium distribution, we first give the definition of
tightness.

Definition 2.1
A sequence νn, n > 1, of probability measures on R+ is said to be tight if for

every ε > 0 there is a number M <∞ such that νn[0,M ] > 1− ε, for all n.
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In other words, almost all the mass of each measure is included in a compact set.
Consider now the recursion Wn+1 = max{0, Xn+1−Wn}, where {Xn} is an i.i.d.

sequence of almost surely finite random variables. Let W1 = w and M > w. Then,
since Wn+1 6 max{0, Xn+1} for all n > 1, we have that

P[Wn+1 6 M ] > P[max{0, Xn+1} 6 M ] = P[max{0, X2} 6 M ].

So we can choose M to be the maximum of w and the 1− ε quantile of max{0, X2}.
Thus, the sequence P[Wn 6 x] is tight.

Moreover, since the function g(w, x) = max{0, x−w} is continuous in both x and
w, the existence of an equilibrium distribution is a direct application of Theorem
4 of Foss and Konstantopoulos [65]. Both the probability space Ω and the Polish
space X that are mentioned in this theorem can be substituted by R in our case,
and the shift (mapping) Θ can be taken to be the function g(w, x) = max{0, x−w}
given here. So there exists an almost surely finite random variable W , such that

W
D= max{0, X2 −W}.

Uniqueness

Before proving the uniqueness of the equilibrium distribution and the convergence
of the process to it, we shall construct a random time that will be useful in proving
both results. To do so, along with the assumptions that {Xn}n>2 is an i.i.d. sequence
of almost surely finite random variables distributed as X and P[X < 0] = 0 we shall
need the additional assumption that X is non-deterministic.

Since X is non-deterministic, we have that there exist constants ε ∈ R+, n ∈ N,
such that P[X > (n+ 1)ε] > 0 and P[X 6 nε] > 0. Consider now the event

En,i = {Xi 6 nε;Xi+1 > (n+1)ε;Xi+2 6 nε; . . . ;Xi+2n−1 > (n+1)ε;Xi+2n 6 nε};

since the random variables Xi are i.i.d., we shall ignore the second index whenever
this is of no consequence. We have that

P[En] = P[X > (n+ 1)ε]nP[X 6 nε]n+1 = q > 0.

Consequently, if En,i occurs, then we have that

Wi 6 max{0, Xi} 6 nε,

Wi+1 = Xi+1 −Wi > ε,

Wi+2 = max{0, Xi+2 −Wi+1} 6 (n− 1)ε,
Wi+3 = Xi+3 −Wi+2 > 2ε

and so on. That is, for k = 0, . . . , n− 1,

Wi+2k 6 (n− k)ε and Wi+2k+1 > (k + 1)ε.
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Thus, on En,i we have that Wi+2n = 0. Notice that on En,i this result holds
irrespective of the value of Wi−1.

Define now the hitting time

τEn
= inf{` > 2 : X` 6 nε ;X`+1 > (n+ 1)ε ; . . . ;X`+2n 6 nε}.

We shall prove the following proposition.

Proposition 2.1. For k > 1, P[τEn
> (2n+ 1)k] 6 (2n+ 1)(1− q)k.

Proof. In order for the event τEn = j to happen, we should have that all events
En,i did not occur for all i = 2, . . . , j − 1, while En,j did occur. Let Ecn,i denote the
complement of the event En,i. Then, by conditioning we have that

P[τEn > (2n+ 1)k] =
∞∑
i=0

P[τEn > (2n+ 1)k;Ecn,2; . . . ;E
c
n,(2n+1)k+i−1;En,(2n+1)k+i]

=
∞∑
i=0

P[Ecn,2 ; . . . ;Ecn,(2n+1)k+i−1 ;En,(2n+1)k+i].

Since En,i is not independent from En,j for all j = i, . . . , i + 2n, we shall bound
the above probability by discarding a number of events so that the remaining ones
are independent from one another. Specifically, we keep the event Ecn,2, discard the
next 2n events, keep Ecn,2n+3, and so on. In every probability appearing in the sum
above, the last two terms we keep are the events

Ec
n,[ (2n+1)k+i

2n+1 ]−1
and En,(2n+1)k+i,

where [i] denotes the integer part of i. Thus,

P[τEn
> (2n+ 1)k]

6
∞∑
i=0

P[Ecn,2 ;Ecn,(2n+1)+2 ; . . . ;Ecn,(2n+1)`+2, ` = 0, . . . ,
[
(2n+ 1)k + i

2n+ 1

]
− 1;

En,(2n+1)k+i]

= q
∞∑
i=0

(1− q)[
(2n+1)k+i

2n+1 ] = q(1− q)k
∞∑
i=0

(1− q)[
i

2n+1 ] = (2n+ 1)(1− q)k.

So far we have that that if X is non-deterministic, there is an event En de-
pending only on the sequence {Xi}, which occurs with positive probability, and
which guarantees that the last time associated with this event will produce a zero
waiting time. Naturally, the process may reach zero before this time, but the im-
portant point here is that we can actually construct such a time. The coupling time,
that is, the random time after which two processes will coincide, we now use is the
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time τ = τEn
+ 2n. From the above proposition we shall conclude that the rate of

convergence to the equilibrium distribution has a geometric bound.
To prove the uniqueness of the equilibrium distribution we assume that there are

two solutions W 1, W 2, such that for i = 1, 2, we have that W i D= max{0, X −W i}.
In order to show thatW 1 andW 2 have the same distribution, we shall first construct
two sequences of waiting times that converge to W 1 and W 2. These sequences are
given by W i

n+1 = max{0, Xn+1 −W i
n} for i = 1, 2, where for every n, Xn is equal

in distribution to X and W i
1
D= W i. Therefore, {W i

n}, i = 1, 2, is a stationary
sequence. Recall that the events En,i depend only on the sequence {Xi}. Since the
sequences are generated by the same sequence {Xi}, an event En will occur at the
same time for both processes. Thus, after some finite time equal to τ = τEn + 2n
both processes simultaneously reach zero, and afterwards they coincide. This implies
that they have the same invariant distribution.

Convergence

We need to show that a system that does not start in equilibrium will eventually
converge to it. To achieve this, we will compare two systems that are identical,
apart from the fact that one of them does not start in equilibrium while the other
one does. To this end, for i = 1, 2 let the process {W i

n} satisfy the recursion
W i
n+1 = max{0, Xn+1 −W i

n}, where where W 1
1 is not distributed as W while for

every n > 1, W 2
n
D= W . As before, we observe that since the events En,i guarantee

that Wi+2n = 0 irrespective of Wi−1, the processes couple after τ . By using this
coupling time we readily have from Proposition 2.1 a geometric bound of the rate
of convergence to the limiting distribution.

As it is made evident from the above, the conditions that either P[X < 0] > 0
or that X is non-deterministic are crucial in order to prove the uniqueness of the
steady-state distribution and the convergence of the process to this distribution.
To see the effect of this condition, assume that, for every n, Bn = 5 and An = 1.
Therefore, for every n, Xn = 4, i.e., strictly positive and deterministic. Further-
more, assume that the first waiting time is equal to the first preparation time, i.e.,
W1 = B1(= 4). This last assumption is not restrictive at all; it is made only for
symmetry reasons and one can start with any other deterministic value for the
first waiting time. The process will only reach equilibrium slightly later. In the
situation we describe, we have that every odd-numbered waiting time is equal to
four and every even-numbered waiting time is equal to zero. Therefore, the limit
limn→∞ P[Wn 6 x] is not defined for all values of x.

The above results on uniqueness and convergence are fairly general since we did
not have to impose any conditions on the distributions of X or W . Nonetheless, it
only proves that there exists a unique invariant distribution FW ; that is, there is only
one element of the class of all distribution functions that satisfies Equation (1.2). If
we demand though that FW is continuous, then we can, in fact, prove more. We can
expand the class of distributions to the class of measurable bounded functions and
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prove that the solution of (1.2) is still unique. The proof of this is the subject of
the following section. For the remainder of the thesis we assume that P[X < 0] > 0.

2.3 The recursion revisited

The aim of this section is to examine the set of functions that satisfy (1.2). Note,
first, that for x > 0 Equation (1.2) yields that FW (x) = P[W 6 x] = P[X−W 6 x].
Assuming that FX is continuous, then the last term is equal to 1− P[X −W > x],
which gives us that

FW (x) = 1−
∫ ∞

x

P[W 6 y − x] dFX(y) = 1−
∫ ∞

x

FW (y − x) dFX(y).

This means that the invariant distribution of W , provided that FX is continuous,
satisfies the functional equation

F (x) = 1−
∫ ∞

x

F (y − x) dFX(y). (2.1)

Therefore, there exists at least one function that is a solution to (2.1). The question
remains though whether there exist other functions, not necessarily distributions,
that satisfy (2.1). The following theorem clarifies this matter.

Theorem 2.2. There is a unique measurable bounded function F : [0,∞) → R that
satisfies the functional equation

F (x) = 1−
∫ ∞

x

F (y − x) dFX(y).

Proof. Let us consider the space L∞
(
[0,∞)

)
, i.e. the space of measurable and

bounded functions on the real line with the norm

‖F‖ = sup
t>0

|F (t)|.

In this space we define the mapping

(T F )(x) = 1−
∫ ∞

x

F (y − x) dFX(y). (2.2)

Note that T F : L∞
(
[0,∞)

)
→ L∞

(
[0,∞)

)
, i.e., T F is measurable and bounded.
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For two arbitrary functions F1 and F2 in this space we have

‖(T F1)− (T F2)‖ = sup
x>0

∣∣(T F1)(x)− (T F2)(x)
∣∣

= sup
x>0

∣∣∣∫ ∞

x

[
F2(y − x)− F1(y − x)

]
dFX(y)

∣∣∣
6 sup

x>0

∫ ∞

x

sup
t>0

∣∣F2(t)− F1(t)
∣∣ dFX(y)

= ‖F1 − F2‖ sup
x>0

(
1− FX(x)

)
= ‖F1 − F2‖

(
1− FX(0)

)
.

Thus,

‖(T F1)− (T F2)‖ 6 ‖F1 − F2‖
(
1− FX(0)

)
= ‖F1 − F2‖ P[B > A].

Since P[X < 0] > 0, i.e., P[B > A] < 1 we have a contraction mapping. Further-
more, we know that L∞

(
[0,∞)

)
is a Banach space, therefore by the Banach Fixed

Point Theorem [90] we have that (2.1) has a unique solution.

The set of continuous and bounded functions on [0,∞) with the norm ‖F‖ =
supt |F (t)| is also a Banach space, since it is a closed subspace of L∞([0,∞)). Since
FW , in case it is continuous, is a solution to Equation (2.1), we have the following
corollary.

Corollary 2.3. The only function satisfying Equation (2.1) that is continuous and
in L∞([0,∞)) is the unique limiting distribution FW .

One should also note the usefulness of the above result in calculating numerically
the invariant distribution. Since we have a contraction mapping, we can evaluate
the distribution of W by successive iterations. One can start from some (trivial)
distribution and substitute it into the right-hand side of (2.1). This will produce the
second term of the iteration, and so on. Furthermore, this iterative approach gives us
the distribution of Wn for a given distribution for W1. Note that we also computed
a geometric upper bound for the rate of convergence to the invariant distribution,
namely the probability P[X > 0]. We shall utilise this idea of successive iterations
in Chapter 7.

So far we know that a limiting distribution of the waiting time exists, and that
it can be approximated by successive iterations that will converge to the real distri-
bution geometrically fast. If, however, the knowledge of the full distribution of W is
not necessary, one can still estimate the shape of it by examining its tail behaviour.
In Section 2.5 we shall discuss the tail behaviour of FW under various assumptions
on the random variable B. To do so though, we will first introduce the notions of
regular and rapid variation, and of heavy-, light-, or long-tailed distribution func-
tions in the following section.
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2.4 Classification of distribution functions

In this section we introduce some basic definitions concerning (distribution) func-
tions. Although for most of the definitions we present, there are alternative or
equivalent statements, here we shall present only one definition for each case. For
the scope of this section, let Y be a random variable with distribution function F .
We start from the definition of a heavy-tailed distribution.

Definition 2.2
A distribution F on (0,∞) is called heavy-tailed if for all ε > 0∫ ∞

0

eεx dF (x) = ∞. (2.3)

In other words, a distribution is heavy-tailed if it has no finite exponential moments.
Consequently, we call a distribution light-tailed if it does have at least one expo-
nential moment. A subclass of the class of heavy-tailed distributions is the class of
long-tailed distributions, defined as follows.

Definition 2.3
The distribution F of the random variable Y is called long-tailed if for any y > 0

lim
x→∞

P[Y > x+ y | Y > x] = lim
x→∞

1− F (x+ y)
1− F (x)

= 1.

One should note here that there is no universally-accepted definition for heavy-
tailed distributions [130]. For example, in Sigman [151] Definition 2.3 is given as the
definition of a heavy-tailed distribution, while the term “long-tailed distribution” is
not mentioned. As noted in [151], (2.3) is a property of long-tailed distributions,
i.e. if F is long tailed, then it satisfies (2.3). The definition chosen for heavy-
tailed distributions, as well as all other definitions in this section, can be found in
Zwart [183].

Next we give the definition of a regularly varying function. A comprehensive
account of the theory and applications of regular variation is given by Bingham,
Goldie and Teugels [19].

Definition 2.4
A measurable function f > 0 is called regularly varying of a finite index κ if for

all ` > 0 f satisfies

lim
x→∞

f(`x)
f(x)

= `κ.

In particular, we call the random variable Y regularly varying, if its tail behaves
almost like a power law. In other words, Y is regularly varying if P[Y > x] is
regularly varying with index −κ, κ > 0. This implies that

P[Y > x] = L(x)x−κ,
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where L(x) is a slowly varying function, i.e. for all ` > 0, L(`x)/L(x) → 1, as
x→∞.

Another notion closely related to regular variation is the domain of attraction of
a stable law . We say that the distribution function F of the random variable Y is in
the domain of attraction of a stable law with exponent κ < 2 if the normalised sum
of n independent copies of Y converges in distribution to Y . The following theorem
of Breiman [40] gives an equivalent definition that is related to Definition 2.4.

Theorem 2.4 (Breiman [40, p. 207]). The distribution function F is in the domain
of attraction of a stable law with exponent κ < 2 if and only if there are constants
a, b > 0, a+ b > 0, such that

1. lim
x→∞

F (−x)
1− F (x)

=
a

b
2. For all ` > 0,

b > 0 ⇒ lim
x→∞

1− F (`x)
1− F (x)

=
1
`κ

a > 0 ⇒ lim
x→∞

F (−`x)
F (−x)

=
1
`κ

The definition of regular variation demands that the index κ appearing there is
finite. This definition can be extended to include the case that κ is equal to infinity,
leading to the notion of rapid variation. For the purposes of this thesis we shall
consider only the case when κ is equal to minus infinity.

Definition 2.5
A measurable function f : (0,∞) → (0,∞) is rapidly varying of index −∞ if it

satisfies

lim
x→∞

f(`x)
f(x)

=


0, if ` > 1;
1, if ` = 1;
∞, if 0 < ` < 1.

As before, in case of distributions, the function f in the above definition can be
considered to be the distribution tail, which is then extremely light tailed, i.e. lighter
than any exponential tail. As it is noted in [19], some of the standard theorems for
regularly varying functions have partial analogues for rapid variation.

By convention, we call a random variable regularly varying, heavy-, long-, or
light-tailed, if its distribution has the corresponding property. Furthermore, we
shall also write “f ∼ g” when

lim
x→∞

f(x)
g(x)

= 1.

We can now proceed with studying the tail behaviour of the distribution of W .
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2.5 Tail behaviour

We are interested in the tail asymptotics of W . In other words, we would like to
know when we can estimate the probability that W exceeds some large value x by
using only information from the given distributions of A and B. This information
is relevant when, for example, the distribution of W cannot be computed exactly,
or when no further knowledge on the distribution is necessary.

Suppose that for some finite constant κ > 0

lim
x→∞

P[B > x+ y]
P[B > x]

= e−κy.

Then

lim
x→∞

P[eB > ex · ey]
P[eB > ex]

= (ey)−κ,

which means that eB is regularly varying with index −κ. For the random variable
B this means that if κ = 0, then B is long-tailed, and thus, in particular, heavy-
tailed. If κ > 0, then B is light-tailed, but not lighter than an exponential tail. The
above expressions are also useful to demonstrate the connection that exists between
regularly-varying and long-tailed or light-tailed random variables.

In order to study the tail behaviour of W we shall need the following proposition
that is first shown by Breiman [39].

Proposition 2.5 (Breiman [39, Proposition 3]). Let the random variable Y > 0 be
in the domain of attraction of a stable law with exponent 0 < κ < 1 and let Z be a
random variable independent of Y with E|Z| finite. Then Y Z is in the domain of
attraction of a stable law with the same exponent.

This result has been further refined by Cline and Samorodnitsky [45] as follows.

Proposition 2.6 (Cline and Samorodnitsky [45, Corollary 3.6]). If Y > 0 is a
regularly varying random variable with index −κ, κ > 0, and Z > 0 is independent
of Y with E[Zκ+ε] finite for some ε > 0, then Y Z is regularly varying with index
−κ. In particular

P[Y · Z > x] ∼ E[Zκ]P[Y > x].

In order to derive the tail asymptotics of W observe that from Equation (1.2)
we have that

P[W > x] = P[B − (W +A) > x]

which implies that
P[eW > ex] = P[eBe−(W+A) > ex]. (2.4)

Applying now Proposition 2.6 to the right-hand side of (2.4) we have that

P[eW > ex] ∼ P[eB > ex]E[e−κ(W+A)]
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or

P[W > x] ∼ P[B > x]E[e−κW ]E[e−κA].

In other words, the tail of W behaves asymptotically as the tail of B, multiplied by
a constant. One can write the above result in terms of the tail of X. It suffices to
note that

P[X > x] = P[B −A > x] = P[eBe−A > ex],

and since eB is regularly varying with index −κ we have from Proposition 2.6 that
the above expression is asymptotically equal to P[B > x]E[e−κA]. The above findings
are summarised in the following theorem.

Theorem 2.7. Let eB be regularly varying with index −κ. Then for the tail of W
we have that

P[W > x] ∼ P[X > x] E[e−κW ].

An example of a random variable B that satisfies the conditions of this theorem
is the one having asymptotically the tail distribution P[B > x] ∼ c0x

c1e−c2x, for
some real-valued constants ci, i = 0, 1, 2, where c0, c2 > 0.

Another case that is particularly interesting is when eB is rapidly varying with
index −∞, that is

lim
x→∞

P[eB > ex · ey]
P[eB > ex]

= lim
x→∞

P[B > x+ y]
P[B > x]

=


0, if y > 0;
1, if y = 0;
∞, if y < 0.

This is equivalent to letting the index κ that was given previously go to infinity. For
the random variable B this means that B is extremely light tailed. That would be
the case if, for example, the tail of B is given by P[B > x] = e−x

2
. As before, we

are interested in deriving the asymptotic behaviour of the tail of W in terms of the
tail of X. We shall first prove the following lemma.

Lemma 2.1. If eB is rapidly varying, then also eX is rapidly varying.

Proof. It suffices to show that for y > 0,

lim
x→∞

P[X > x+ y]
P[X > x]

= 0.

We have that

P[X > x+ y]
P[X > x]

=
P[B −A > x+ y]

P[B −A > x]
=

∫∞
0

P[B > x+ y + z] dFA(z)∫∞
0

P[B > x+ z] dFA(z)
. (2.5)

Since eB is rapidly varying and y > 0, we have that

lim
x→∞

P[B > x+ y + z]
P[B > x+ z]

= 0,
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or in other words, for every δ > 0 there is a finite constant ηδ, such that if x+z > ηδ,
then P[B > x+ y + z] 6 δP[B > x+ z]. By taking the limit of (2.5) for x going to
infinity, we have that

lim sup
x→∞

P[X > x+ y]
P[X > x]

6 lim sup
x→∞

δ
∫∞
0

P[B > x+ z] dFA(z)∫∞
0

P[B > x+ z] dFA(z)
= δ,

which proves the assertion, since the left-hand side of the above expression is inde-
pendent of δ, and δ can be chosen to be arbitrarily small.

To derive the tail asymptotics we shall first decompose the tail of W as follows.

P[W > x] = P[X −W > x] = P[X −W > x ;W = 0] + P[X −W > x ;W > 0]
= P[X > x]P[W = 0] + P[X −W > x ; 0 < W < ε]+

+ P[X −W > x ;W > ε], (2.6)

for some ε > 0. Since the last two terms of the right-hand side of (2.6) are positive,
we can immediately conclude that

lim inf
x→∞

P[W > x]
P[X > x]P[W = 0]

> 1.

For the upper limit we first observe that

P[X −W > x ; 0 < W < ε] 6 P[X > x] P[0 < W < ε]

and that

P[X −W > x ;W > ε] 6 P[X > x+ ε] P[W > ε].

Furthermore, since eX is rapidly varying, we have that for ε > 0

lim
x→∞

P[X > x+ ε]
P[X > x]

= 0,

or in other words
P[X > x+ ε] = o(P[X > x]).

Combining the above arguments we obtain from (2.6) that

lim sup
x→∞

P[W > x]
P[X > x]P[W = 0]

6 1 +
P[0 < W < ε]

P[W = 0]
. (2.7)

By taking the limit for ε→ 0 we have that

lim sup
x→∞

P[W > x]
P[X > x]P[W = 0]

= 1,

since the inequalities in P[0 < W < ε] are strict and the left-hand side of (2.7) does
not depend on ε. The above results are summarised in the following proposition.



2.5 Tail behaviour 39

Theorem 2.8. Let eB be rapidly varying with index −∞. Then for the tail of W
we have that

P[W > x] ∼ P[X > x] P[W = 0].

In the case when eB was regularly varying, it was possible to express the tail
of W also in terms of the tail of B – instead of the tail of X – simply by applying
Breiman’s result. In the rapidly-varying case though, this does not seem to be so
straightforward. However, in some special situations it is indeed possible to derive
the tail of X in terms of the tail of B, and consequently use this form for the
tail asymptotics of the waiting time. In the following we shall give one particular
example where it is possible to do so.

Assume that A is exponentially distributed with parameter µ and the tail of
B is given by P[B > x] = e−x

p

, where p > 1. In this example we shall limit
ourselves to p = 2. However, the extension to the set of natural numbers is almost
straightforward. For the tail of X we have that

P[X > x] = P[B −A > x] =
∫ ∞

0

µe−µye−(x+y)2dy

= e−x
2
∫ ∞

0

µe−µy−y
2
e−2xy dy

= e−x
2 1
x

∫ ∞

0

µe−µ
u
x−

u2

x2 e−2u du.

Note that the prefactor e−x
2

is equal to the tail of B and that the integral at the
right-hand side behaves asymptotically like µ/2, as x goes to infinity. In other words,
we have that

P[X > x] ∼ P[B > x]
µ

2x
.

For p being any natural number greater than 1, the procedure is exactly the same.
The change of variables that will be the most adequate is xp−1y = u. Specifically,
we have that

P[X > x] =
∫ ∞

0

µe−µye−(x+y)p

dy

= e−x
p

∫ ∞

0

µe−µy−y
p

e
−

p−1P
i=1

(p
i)xiyp−i

dy

= e−x
p 1
xp−1

∫ ∞

0

µe−µ
u

xp−1− up

xp(p−1) e
−

p−2P
i=1

(p
i) up−i

xp(p−i−1) e−pu du.

Using exactly the same arguments as for the case p = 2 we conclude that the
asymptotic behaviour of X in this situation is given by

P[X > x] ∼ P[B > x]
µ

pxp−1
.
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2.6 The covariance function

In this section we study properties of the covariance function

c(k) = cov[W1,W1+k].

In particular, in Theorem 2.9 we show that the covariance between two waiting
times is of alternating sign, while in Theorem 2.10 we bound the absolute value of
c(k) to conclude that the covariance function converges to zero geometrically fast.

The result of Theorem 2.9 is an expected effect of the non-standard sign of Wn

in Recursion (1.1), while the conclusion we draw from Theorem 2.10 reinforces the
results of Section 2.3, where it is shown that P[Wn 6 x] converges geometrically
fast to FW . Recall that C1 = inf{n > 1 : Wn+1 = 0}. We proceed with stating
Theorem 2.9.

Theorem 2.9. The covariance function c(k) is non-negative if k is even and non-
positive if k is odd. If in addition, X has a strictly positive density on an interval
(a, b), 0 < a < b, and W D= W1, then c(k) > 0 if k is even, and c(k) < 0 if k is odd.

In order to prove this theorem we shall first prove the following lemma, which is
a variation of a result by Angus [4].

Lemma 2.2. Let Y be a random variable and f a non-decreasing (non-increasing)
function defined on the range of Y . Then, provided the expectations exist,

cov[Y, f(Y )] > 0 (cov[Y, f(Y )] 6 0).

Furthermore, if

P[Y ∈ {y : f(y) strictly increasing (decreasing) in y}] > 0,

then
cov[Y, f(Y )] > 0 (cov[Y, f(Y )] < 0).

Proof. We prove this lemma only for f being non-decreasing. The proof for non-
increasing f follows analogously. We use the same argument as Angus [4]. Let Z
be an i.i.d. copy of Y . So, if f is non-decreasing, then we have that(

Y − Z
)(
f(Y )− f(Z)

)
> 0.

Furthermore, let IY be the subset of the domain of f where the function is strictly
increasing, i.e., IY = {y : f(y) strictly increasing in y}. Then, if P[Y ∈ IY ] > 0, we
have that

P[
(
Y − Z

)(
f(Y )− f(Z)

)
> 0] > 0.

By taking expectations, and using the fact that Y and Z are i.i.d. we obtain

E[
(
Y − Z

)(
f(Y )− f(Z)

)
] = 2 cov[Y, f(Y )],

which is non-negative, and strictly positive if P[Y ∈ IY ] > 0.
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Proof of Theorem 2.9. For k = 0 the statement is trivial. For any fixed integer
k > 0 let Xi = xi, i = 2, . . . , k + 1, where for all i, xi ∈ R. Furthermore, define
recursively the functions gi as follows;

g1(w) = w and gi+1(w) = max{0, xi+1 − gi(w)}, i = 1, . . . , k.

It can easily be shown now that g1 is non-decreasing, g2 is non-increasing and, by
iterating, that gi is non-increasing if i is even, and non-decreasing if i is odd.

Let the first waiting time be fixed; that is, W1 = w1. Then, it is clear that, for
all i = 1, . . . , k+1, the i-th waiting time will be equal to gi(w1), cf. Recursion (1.1).
Now, write

cov[W1,W1+k] =
∫
· · ·
∫

x2∈R,...,xk+1∈R

cov[W1, gk+1(W1)] dP[X2 6 x2, . . . , Xk+1 6 xk+1].

From Lemma 2.2, we obtain that cov[W1, gk+1(W1)] > 0 if k is even and that
cov[W1, gk+1(W1)] 6 0 if k is odd. This concludes the first part of the theorem.

Assume now that X has a strictly positive density on (a, b); therefore, for all
a1, a2 ∈ (a, b), with 0 < a1 < a2, we have that P[X ∈ (a1, a2)] > 0. We know
already that for any set of fixed constants {xi}, i = 2, . . . , k+1, the functions gi are
monotone (i.e., either non-decreasing or non-increasing). Moreover, observe that if
these constants have the property that xk+1 > xk > · · · > x2, then gk+1 is strictly
monotone in (0, x2).

Furthermore, since P[X ∈ (a1, a2)] > 0 and W D= W1, we have that

P[W ∈ (a1, a2)] = P[max{0, X −W} ∈ (a1, a2)] > P[W = 0]P[X ∈ (a1, a2)] > 0,

which implies that P[W1 ∈ (a1, a2)] > 0 for all a1, a2 ∈ (a, b), with 0 < a1 < a2. So
we have that if x2 > a, then

P[W ∈ (0, x2)] > P[W1 ∈ (a, x2)] > 0,

which can be rewritten as

P[W ∈ {w : gk+1(w) strictly monotone in w}] > 0.

Therefore, by Lemma 2.2 we have that cov[W1, gk+1(W1)] > 0 (< 0) if k is even
(odd).

Now, let S be the subset of Rk defined as follows,

S =
{
(x2, x3, . . . , xk+1) : xk+1 > xk > · · · > x2 > a

}
,

and let Sc be its complement. Then

cov[W1,W1+k] =∫
· · ·
∫

(x2,x3,...,xk+1)∈S

cov[W1, gk+1(W1)] dP[X2 6 x2, . . . , Xk+1 6 xk+1]+

+
∫
· · ·
∫

(x2,x3,...,xk+1)∈Sc

cov[W1, gk+1(W1)] dP[X2 6 x2, . . . , Xk+1 6 xk+1]. (2.8)
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We know that the second integral at the right-hand side of (2.8) is greater than or
equal to zero if k is even and less than or equal to zero if k is odd. It remains to
show that the first integral at the right-hand side of (2.8) is strictly positive if k is
even and strictly negative if k is odd. Since we integrate over the set S, we have
shown that cov[W1, gk+1(W1)] > 0 (< 0) if k is even (odd). So it suffices to show
that P[S′] > 0, where

S′ =
{
(X2, X3, . . . , Xk+1) ∈ S

}
=
{
Xk+1 > Xk > · · · > X2 > a

}
.

Indeed, take a partition {ai} of (a, b) such that ai = a + [i(b − a)]/k, i = 0, . . . , k.
Then we have that

P [Xk+1 > Xk > · · · > X2 > a] >

P [Xk+1 ∈ (ak−1, b) ;Xk ∈ (ak−2, ak−1) ; · · · ;X2 ∈ (a, a1)] =
k+1∏
i=2

P [Xi ∈ (ai−2, ai−1)] > 0,

since X has a strictly positive density on (a, b).

This technique can be also applied to other stochastic recursions; for example,
for Lindley’s recursion the above argument shows under weak assumptions that the
covariance between the waiting time of customer 1 and k + 1 is strictly positive.

Having seen that the correlations have alternating sign, we now turn to the
question of the behaviour of the covariance function c(k) for large k.

Theorem 2.10. For every value of k we have that

|c(k)| 6 2E[W1]E[X | X > 0]P[X > 0]k.

We see that c(k) converges to zero geometrically fast in k. This is consistent
with the fact that the distribution of Wn converges geometrically fast to that of W .

Proof. Write

cov[W1,W1+k] = cov[W1,W1+k ;C1 6 k] + cov[W1,W1+k ;C1 > k]. (2.9)

For the first term of the right-hand side of the above equation we have that

cov[W1,W1+k ;C1 6 k] =
k∑
j=1

cov[W1,W1+k ;C1 = j]

=
k∑
j=1

cov[W1,W1+k | C1 = j] P[C1 = j]. (2.10)

Since C1 = j, j ∈ {1, . . . , k}, implies that Wj = 0, from the Markov property we
immediately conclude thatW1+k is independent ofW1. Therefore, for j ∈ {1, . . . , k},
we have that cov[W1,W1+k | C1 = j] = 0. So (2.10) yields that

cov[W1,W1+k ;C1 6 k] = 0.
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Thus, from (2.9) and Theorem 2.9 we have that

c(k) = cov[W1,W1+k ;C1 > k] > 0 (6 0), if k is even (odd).

Furthermore, observe that the following bounds hold.

cov[W1,W1+k ;C1 > k] 6 E[W1W1+k ;C1 > k] + E[W1]E[W1+k]P[C1 > k], (2.11)

cov[W1,W1+k ;C1 > k] > −E[W1+k]E[W1 ;C1 > k]− E[W1]E[W1+k ;C1 > k].
(2.12)

So, if k is even, then it is bounded from below by zero and above by the right-hand
side of (2.11), and similarly for k odd we use (2.12).

Assume now that k is even. In order to bound (2.11) note first that

{C1 > k} ⊂ {X2 > 0 ; · · · ;Xk+1 > 0} and Wk+1 6 max{0, Xk+1}. (2.13)

Therefore, for k > 1 we have for the first term of the right-hand side of (2.11) that

E[W1W1+k ;C1 > k] 6 E[W1 max{0, Xk+1} ;X2 > 0 ; · · · ;Xk+1 > 0]

= E[W1]E[Xk+1 | Xk+1 > 0]P[X > 0]k.

So (2.11) now yields that

cov[W1,W1+k ;C1 > k] 6 E[W1]E[X | X > 0]P[X > 0]k + E[W1]E[W1+k]P[C1 > k].

Since

P[C1 > k] 6 P[X1 > 0]k and E[W1+k] 6 E[X+
k+1] 6 E[Xk+1 | Xk+1 > 0],

we obtain that
c(k) 6 2E[W1]E[X | X > 0]P[X > 0]k,

which is exactly what we set to prove for k even.
Assume now that k is odd. So c(k) is now bounded from below by (2.12), which

implies that

|c(k)| = −cov[W1,W1+k ;C1 > k]
6 E[W1+k]E[W1 ;C1 > k] + E[W1]E[W1+k ;C1 > k]. (2.14)

All terms in this expression can be straightforwardly bounded, using again (2.13).
In particular we obtain as before that E[W1+k] 6 E[X | X > 0] and that

E[W1 ;C1 > k] 6 E[W1]P[X > 0]k

and

E[W1+k ;C1 > k] 6 E[X | X > 0]P[X > 0]k.

Combining these bounds with (2.14) proves the theorem for odd values of k.
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As mentioned before, in [53] it is shown that the serial correlation coefficients of
a stationary sequence of waiting times are non-negative and decrease monotonically
to zero. Comparing these results to the ones we have obtained in this section, we
first observe that the result of Theorem 2.9 is not surprising. It is rather a natural
effect of the minus sign that appears in front of Wn in (1.1). However, the condition
implied by Theorem 2.10 for the stationary sequence is that E[B] <∞, which is less
restrictive than demanding that the third moment of the service times is finite, as is
the case for Lindley’s recursion. Furthermore, from Theorem 2.10 we immediately
have that the infinite sum of all correlations is finite. For Lindley’s recursion, the
finiteness of the third moment of B is not sufficient to guarantee this. Even in this
case, the series may be converging so slowly to zero, that the sum is infinite. As it
is stated in Theorem 2 of [53], what is necessary and sufficient is that the fourth
moment of B is also finite.

As we shall see in Chapter 6, to some degree many of the properties mentioned
in this chapter are useful to approximate the distribution FW . We shall first derive,
however, an exact expression of the steady-state distribution of the waiting times
under different assumptions on the distribution of A and B. In the following chapter
we shall focus on preparation times on a bounded support. In the special case that
B is uniformly distributed on [0, 1], the results have a direct application to the
two-carousel model we have presented in Section 1.2.



Chapter 3

Preparation times on a

bounded support

3.1 Introduction

Motivated by the carousel application presented in Section 1.2, in this Chapter
we are set to study Equation (1.2)

W
D= max{0, B −A−W}

under a setting that is relevant to the carousel application we have in mind.

We have already introduced the model in Sections 1.2 and 1.4. As we have
explained there, the service points are the two carousels, the preparation time is
the time needed until an item rotates in front of the picker, and the service time is
the pick time. The pick time is defined as the time from the point that the picker
begins the n-th pick until the point he is ready to start picking items from the
other carousel. So for example, the time he needs in order to walk between the
two carousels – if any – is included in the pick time. Here, we shall reiterate some
of the basic characteristics of the model while emphasising various points that are
particularly connected to carousels.

To this end, we model the carousel as a continuous loop, rather than consisting of
a number of discrete locations. For sake of simplicity, we assume that the maximum
time to rotate between any two points on the carousel is one. So we may think
of a unidirectional carousel of length one, or of a bidirectional one of length two.
Therefore, the mean rotation time for each pick is 1/2. The carousels rotate at a
constant (unit) speed and the time they need to accelerate between zero and the
maximum speed is considered to be negligible. Each pick order requires exactly one
item, and the orders are processed in the sequence they arrive.

For the first part of this study, we shall assume that the locations of the requested
items are independent and uniformly distributed on the carousel. In other words, B
follows a uniform distribution on [0, 1]. As mentioned in Section 1.3.5, this model
has been studied by various authors [81, 105, 140], and in particular, the focus in
Park et al. [140] is on the waiting-time distribution. In the following section we
review the results obtained in [140], we present the results obtained in this chapter,
and we discuss how our results contribute to the existing literature.

In the sequel, we shall substitute the words “pick”, “rotation”, “carousel”, and
their derivatives, by “service”, “preparation”, and “service point”.

45
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3.2 Previous results

In their work, Park et al. [140] show that the random variables Wn form an
aperiodic, recurrent Harris chain [128], in order to conclude that the invariant dis-
tribution FW exists, and that the probabilities P[Wn 6 x] converge to it in total
variation. The total variation norm is defined as

‖νn − ν‖ = sup{|νn(S)− ν(S)| : S ∈ B},

where B is the collection of Borel sets in R. By choosing S to belong to the class
{(−∞, x] : x ∈ R}, we see that convergence in total variation implies weak con-
vergence. Furthermore, they formally prove that the throughput θ of the system is
given by

θ =
(
E[A] + E[W ]

)−1

and they derive two equivalent expressions for the waiting time density. We shall
present both of them here.

Since the preparation time B is upper bounded by one, then the maximum
waiting time of the server is also upper bounded by one. Furthermore, if A has
a density, then one can easily show that W has a density too as follows. From
Equation (1.2) we readily have that

P[W 6 x] =
∫ ∞

−∞
P[A > y − x] dFB−W (y).

Since A has a density, we conclude that the integral∫ ∞

−∞
fA(y − x) dFB−W (y)

exists and is the density of FW . Recall that π0 = P[W = 0]; then from Equation (1.2)
we have that

FW (x) = P[W 6 x] = P[B −A−W 6 x]

=
∫ ∞

0

∫ ∞

0

P[B 6 x+ y + z] dFA(z)dFW (y)

= π0

∫ ∞

0

P[B 6 x+ z] dFA(z) +
∫ 1

0

∫ ∞

0

P[B 6 x+ y + z]fW (y) dFA(z)dy.

(3.1)

So, for the distribution FW we have that

FW (x) = π0

(∫ 1−x

0

(x+ z) dFA(z) +
∫ ∞

1−x
dFA(z)

)
+

+
∫ 1−x

0

∫ 1−x−y

0

(x+ y + z)fW (y) dFA(z)dy+

+
∫ 1−x

0

∫ ∞

1−x−y
fW (y) dFA(z)dy +

∫ 1

1−x
fW (y) dy.
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Now, by differentiating with respect to x, we have that

fW (x) = π0FA(1− x) +
∫ 1−x

0

FA(1− x− y)fW (y) dy. (3.2)

Thus, to determine the invariant distribution FW it suffices to determine the mass
π0 and the density fW , provided that 0 6 π0 6 1, fW > 0, and that both quantities
satisfy (3.2) and the normalisation equation

π0 +
∫ 1

0

fW (x) dx = 1. (3.3)

Similarly, one can easily prove that (3.2) is equivalent to

fW (x) = P[A+W 6 1− x]. (3.4)

Park et al. [140] consider two specific cases for the service-time distribution.
They examine the case of A being deterministic or being exponentially distributed.

Deterministic service times

Assuming that the service times are a constant d might be a reasonable assump-
tion for a robotic server. The main goal in [140] is to determine the throughput of
the system. Thus, the non-trivial analysis emerges for 0 6 d 6 1, since for d > 1,
the throughput is equal to d−1.

The authors derive a linear differential equation as follows. Equation (3.4) can
now be written as fW (x) = FW (1− x− d), so differentiating twice with respect to
x yields

f
(1)
W (x) = −fW (1− x− d) and f

(2)
W (x) = f

(1)
W (1− x− d) = −fW (x).

In other words, they obtain the following second-order homogeneous linear differen-
tial equation

f
(2)
W (x) + fW (x) = 0, 0 6 x 6 1− d.

The solution to this differential equation is given by

fW (x) =
cos(x) + sin(1− d− x)

1 + sin(1− d)
,

FW (x) =
sin(x) + cos(1− d− x)

1 + sin(1− d)
,

which implies that

π0 =
cos(1− d)

1 + sin(1− d)
.

Thus, the throughput is given by

θ =

{
1+sin(1−d)
cos(1−d) , 0 6 d < 1

1
d , d > 1.
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Exponential service times

Exponentially distributed service times (with rate λ) may be reasonable for
human servers. The method followed in [140] in order to derive the density of
the waiting times is again by means of differentiation. In particular, they substitute
the distribution of A in (3.2) and differentiate two times with respect to x to obtain
the equation

f
(2)
W (x) = λf

(1)
W (x) + λfW (1− x).

Then, substitute fW (1−x) by using (3.2) and differentiate the new equation another
two times with respect to x to obtain the linear differential equation

f
(4)
W (x)− λ2f

(2)
W (x)− λ2fW (x) = 0, 0 6 x 6 1.

Notice that this substitution is practically equivalent to a change of variables, where
1−x is replaced by x and the procedure is repeated (namely, differentiate again two
times). This observation will clarify one of the steps in the analysis that follows in
Section 3.4. Now, the solution to the latter equation is given by

fW (x) = c1er1x + c2e−r1x + c3 cos(r2x) + c4 sin(r2x)

FW (x) =
c1
r1

er1x − c2
r1

e−r1x +
c3
r2

sin(r2x)−
c4
r2

cos(r2x) + c5

which implies that

π0 =
c1
r1
− c2
r1
− c4
r2

+ c5.

In the above given expression, the constants ci are known and the roots ri are
determined by the characteristic equation. Namely,

r1 =

√
λ2 + λ

√
λ2 + 4

2
and r2 =

√
−λ2 + λ

√
λ2 + 4

2
.

The throughput is easy to derive since we know the distribution of W .

In this chapter we complement the above mentioned results in two directions.
First, we maintain the assumption that B is uniformly distributed on [0, 1] and we
analyse (1.2) for more general distributions of the service time A. In particular,
in the following section we present an iterative method that is useful for numerical
approximations. This method is valid for any distribution FA. In Sections 3.4 and
3.5 we analytically derive explicit expressions for FW , when A follows an Erlang
distribution or a phase-type distribution respectively. These results are based on
[172] and [173].

In the second direction, we extend the results to more general preparation time
distributions. Namely, we consider the case where B has a polynomial distribu-
tion. Since any continuous distribution on a bounded support can be approximated
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arbitrarily close by a polynomial distribution (cf. Chapter 6), this assumption al-
lows for good approximations of distributions on a bounded support. The results of
Section 3.6 have been presented in [171].

We conclude the chapter with numerical results and further comments. A state-
ment we shall make there is that the methods presented in this chapter for either
direction are closely related. However, before going into details on the matter, we
shall proceed with the analysis.

3.3 Iterative approach

Throughout this section we assume that B is uniformly distributed on [0, 1].
Equation (3.2) is a Fredholm equation [126]; therefore, a natural way to proceed is
by successive substitutions. So, substitute fW at the right-hand side of (3.2) with
the left-hand side of the equation to obtain for 0 6 x 6 1

fW (x) = π0FA(1− x) + π0

∫ 1−x

0

FA(1− x− y)FA(1− y) dy+

+
∫ 1−x

0

∫ 1−y

0

FA(1− x− y)FA(1− y − z)fW (z) dzdy.

Define now iteratively the function

Fn ∗A (1− x) def=
∫ 1−x

0

FA(1− x− y)F (n−1) ∗
A (1− y) dy, n > 2, (3.5)

while F 1 ∗
A (1 − x) is defined to be equal to FA(1 − x). Then, after n iterations we

have that the density fW is given by

fW (x) = π0

n+1∑
i=1

F i ∗A (1−x)+
∫ 1−x

0

∫ 1−x1

0

· · ·
∫ 1−xn

0

FA(1−x−x1)FA(1−x1−x2)×

× · · · × FA(1− xn − xn+1)fW (xn+1) dxn+1dxn . . .dx1.

Notice, however, that

lim
n→∞

∫ 1−x

0

· · ·
∫ 1−xn

0

FA(1− x− x1)× · · · × FA(1− xn − xn+1)×

× fW (xn+1) dxn+1 . . .dx1 = 0.

To see this, observe that∫ 1−xn

0

FA(1− xn − xn+1)fW (xn+1) dxn+1 = P[A+W 6 1− xn] = p < 1,

since A has a support on [0,∞), and that for the same reason, q = FA(1−x−y) < 1,
for 0 6 x, y 6 1. Therefore, the limit above is less than or equal to

lim
n→∞

p qn
∫ 1−x

0

· · ·
∫ 1−xn−1

0

dxn . . .dx1 = 0,
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since the multiple integral in the above limit is bounded by one (keep in mind that
for all i, 0 6 xi 6 1) and q is strictly less than one.

So, by letting n go to infinity, we obtain the formal solution

fW (x) = π0

∞∑
i=1

F i ∗A (1− x), 0 6 x 6 1. (3.6)

Since FA is a distribution, then from (3.5) we have that for n > 1,

F
(n+2) ∗
A (x) 6

∫ x

0

F
(n+1) ∗
A (1− y) dy

6
∫ x

0

∫ 1−y

0

Fn ∗A (1− z) dzdy

=
∫ x

0

∫ 1

y

Fn ∗A (z) dzdy, (3.7)

which implies that

F 3 ∗
A (x) 6

∫ x

0

∫ 1

y

FA(z) dzdy 6
∫ x

0

(1− y) dy 6
∫ 1

0

(1− y) dy =
1
2
.

Now, by induction, it can be easily shown that, for n > 1

F
2(n+1) ∗
A (x) 6 F

(2n+1) ∗
A (x) 6

1
2n
, 0 6 x 6 1. (3.8)

One only needs to observe that

F 2 ∗
A (x) =

∫ x

0

FA(x− y)FA(1− y) dy 6
∫ x

0

FA(x) · 1 dy = xFA(x) 6 FA(x),

since 0 6 x 6 1 and that if Fn ∗A (x) 6 F
(n−1) ∗
A (x), then

F
(n+1) ∗
A (x) =

∫ x

0

FA(x− y)Fn ∗A (1− y) dy

6
∫ x

0

FA(x− y)F (n−1) ∗
A (1− y) dy = Fn ∗A (x).

For the second inequality of (3.8) just notice that for 0 6 x 6 1

F
2(n+1) ∗
A (x) 6

∫ x

0

F
(2n+1) ∗
A (1− y) dy 6

1
2n

∫ x

0

dy 6
1
2n
.

Furthermore, for 0 6 x 6 1 we have that (cf. (3.7))

F
(2n+3) ∗
A (x) 6

∫ x

0

∫ 1

y

F
(2n+1) ∗
A (z) dzdy 6

1
2n
(
x− x2

2

)
6

1
2n+1

.
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This means that the infinite sum (3.6) converges (uniformly) for 0 6 x 6 1; there-
fore, fW is well defined. However, for a non-trivial distribution FA, one cannot
easily compute fW explicitly using (3.6). The difficulty lies in the fact that Fn ∗A is
not the n-fold convolution of the distribution function FA, so all terms have to be
computed explicitly.

One should note here though, that if FA(1 − x − y) is a continuous kernel on
the compact space [0, 1]2, then one can show with a method similar to the one
applied in Section 2.3 that the right-hand side of the integral equation (3.2) is a
contraction mapping with the contraction constant being equal to P[A + U 6 1],
where U is a uniformly distributed random variable on [0, 1] (keep in mind that
A has an unbounded support, so this probability is strictly less than one). So the
infinite series

π0

∞∑
i=1

F i ∗A (1− x)

converges to the steady-state density of the waiting time with at least a geometric
rate equal to P[A + U 6 1]. Moreover, the upper bounds of the individual terms
of the series, as they are given by Equation (3.8), are not tight. For example,
(3.8) suggests that F 6 ∗

A (x) 6 1/4; however, one can easily show by writing out the
definition of F 6 ∗

A , using the subsequent definitions for F 4 ∗
A and F 5 ∗

A , and bounding
F 3 ∗
A by 1/2, that F 6 ∗

A (x) 6 1/6. Naturally, neither this bound is tight, since the
bound for F 3 ∗

A is not tight. The point is though, that the series converges to the
invariant density sufficiently fast, so it is a useful estimate of fW . The disadvantage
of this solution is that it is only a numerical approximation. In the sequel, we shall
focus on explicit solutions that lead to more tractable results.

3.4 Erlang service times

Throughout this section we assume that the service times follow an Erlang dis-
tribution with scale parameter λ and n stages; that is,

FA(x) = 1− e−λx
n−1∑
i=0

(λx)i

i!
, x > 0.

As before, B is uniformly distributed on [0, 1]. We shall present two methods that
lead to explicit expressions for the density fW . The advantage of the first method
over the second one is that it gives some insight into the relation of various elements
that appear in the solution, and it is computationally more efficient. However, the
second method formalises the method used in Park et al. [140], and involves simpler
calculations. Although the two methods seem different in nature at first, they are
connected to one another, and we shall highlight the connection between them.

3.4.1 Laplace transforms approach

In this section we will use Laplace transforms to solve (1.2). Since B has a
bounded support, so does W . Therefore, we shall consider Laplace transforms over
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a bounded interval. Let ω denote the Laplace transform of fW over the interval
[0, 1]; that is,

ω(s) =

1∫
0

e−sxfW (x) dx.

We emphasise that, for the Laplace transform over a bounded interval, the standard
properties are no longer valid, in the sense that there are no standard results for
calculating the inverse transform over a bounded interval. Note that ω is analytic
in the whole complex plane. It is convenient to replace x by 1− x in (3.2), yielding

fW (1− x) = π0FA(x) +
∫ x

0

FA(x− z)fW (z) dz, 0 6 x 6 1. (3.9)

By taking the Laplace transform of (3.9) and using the normalisation equation (3.3)
we obtain

e−s ω(−s) = π0

(
1− e−s

s
−
n−1∑
i=0

λi

(λ+ s)i+1
+
n−1∑
i=0

i∑
j=0

λi

j!(λ+ s)i+1−j e
−(λ+s)

)
−

− e−s

s
(1− π0) +

1
s
ω(s)−

n−1∑
i=0

λi

(λ+ s)i+1
ω(s)+

+ e−(λ+s)
n−1∑
i=0

i∑
j=0

j∑
`=0

(
j

`

)
λi

j!(λ+ s)i+1−j ω
(`)(−λ),

which, by rearranging terms and using the identity

n−1∑
i=0

λi

(λ+ s)i+1
=

(λ+ s)n − λn

s(λ+ s)n
,

can be simplified to

e−s ω(−s)− λn

s(λ+ s)n
ω(s) =

π0

(
λn

s(λ+ s)n
+ e−(λ+s)

n−1∑
i=0

i∑
j=0

λi

j!(λ+ s)i+1−j

)
−

− e−s

s
+ e−(λ+s)

n−1∑
i=0

i∑
j=0

j∑
`=0

(
j

`

)
λi

j!(λ+ s)i+1−j ω
(`)(−λ). (3.10)

In the above expression, ω(`) denotes the `-th derivative of ω . We have used the
fact that for a natural number n, the incomplete Gamma function can be written
as

Γ(n, x) =
∫ ∞

x

yn−1e−y dy = (n− 1)! e−x
n−1∑
i=0

xi

i!
.
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A further simplification of (3.10) is possible if we write the distribution of the service
time as

FA(x) = e−λx
∞∑
i=n

(λx)i

i!
.

However, this form of (3.10) is more practical for numerical computations, since it
does not involve infinite sums.

Note that both ω(−s) and ω(s) appear in (3.10). To obtain an additional equa-
tion we replace s by −s in (3.10) and form a system from which ω(s) can be solved,
yielding the following theorem.

Theorem 3.1. For all s, the transform ω satisfies

ω(s)R(s) = −e−ss(λ+ s)nT (−s)− λnT (s), (3.11)

where

R(s) = s2(λ2 − s2)n + λ2n,

T (s) = π0

(
λn + e−(λ+s)

n−1∑
i=0

i∑
j=0

sλi(λ+ s)n−i−1+j

j!

)
− e−s(λ+ s)n+

+ e−(λ+s)
n−1∑
i=0

i∑
j=0

j∑
`=0

(
j

`

)
sλi(λ+ s)n−i−1+j

j!
ω(`)(−λ).

In (3.11) we still need to determine the n + 1 unknowns π0 and ω(`)(−λ) for
` = 0, . . . , n − 1. Note that for any zero of the polynomial R, the left-hand side of
(3.11) vanishes (since ω is analytic everywhere). This implies that the right-hand
side should also vanish. Hence, the zeros of R provide the equations necessary to
determine the unknowns.

Lemma 3.1. The polynomial R has exactly 2n + 2 simple zeros r1, . . . , r2n+2 sat-
isfying r2n+3−i = −ri, for i = 1, . . . , n+ 1.

Proof. Since R(s) is a polynomial in s2 of degree n + 1, it follows that R(s) has
exactly 2n+ 2 zeros, with the property that each zero s has a companion zero −s.
Furthermore, we have that the derivative of R is

R′(s) = −2s(λ2 − s2)n−1
(
(n+ 1)s2 − λ2

)
.

Therefore, the roots of R′ are the following

s = 0, s = ±λ, and s = ± λ√
1 + n

.

Now it is easily verified that for all the above roots of R′, we have that R(s) 6= 0. In
other words, gcd[R(s), R′(s)] = 1. This means that the polynomials R(s) and R′(s)
have no common factor of degree greater than zero, or that R(s) has only simple
zeros.
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In the following lemma we prove that the 2n + 2 zeros of R produce n + 1
independent linear equations for the unknowns.

Lemma 3.2. The probability π0 and the quantities ω(`)(−λ), ` = 0, . . . , n − 1 are
the unique solution to the n+ 1 linear equations,

e−riri(λ+ ri)nT (−ri) + λnT (ri) = 0, i = 1, . . . , n+ 1.

Proof. For any zero of R the right-hand side of (3.11) should vanish. Hence, for two
companion zeros ri and r2n+3−i = −ri, i = 1, . . . , n+ 1, we have

e−riri(λ+ ri)nT (−ri) + λnT (ri) = 0, (3.12)
−eriri(λ− ri)nT (ri) + λnT (−ri) = 0. (3.13)

The determinant of (3.12) and (3.13), treated as equations for T (−ri) and T (ri), is
equal to ∣∣∣∣e−riri(λ+ ri)n λn

λn −eriri(λ− ri)n

∣∣∣∣ = R(ri) = 0.

Hence, (3.12) and (3.13) are dependent, and so we may omit one of them. This leaves
a system of n+1 linear equations for the unknowns π0 and ω(`)(−λ), ` = 0, . . . , n−1.
The uniqueness of the solution follows from the general theory of Markov chains
that implies that there is a unique equilibrium distribution and thus also a unique
solution to (3.10).

Once π0 and ω(`)(−λ), ` = 0, . . . , n−1 are determined, the transform ω is known.
It remains to invert the transform. By collecting the terms that include e−s we can
rewrite (3.11) in the form

ω(s) =
P (s)
R(s)

+ e−s
Q(s)
R(s)

, (3.14)

where P (s) and Q(s) are polynomials of degree 2n+ 1 and n+ 1 respectively. Note
that, without the last term, the transform is rational so computing the inverse
would be straightforward if we had Laplace transforms on [0,∞). As it is, we must
proceed more carefully. Since deg[R] is greater than deg[P ] and deg[Q], (3.14) can
be decomposed into distinct irreducible fractions. This leads to

ω(s) =
c1

s− r1
+ · · ·+ c2n+2

s− r2n+2
+ e−s

( ĉ1
s− r1

+ · · ·+ ĉ2n+2

s− r2n+2

)
,

where the coefficients ci and ĉi are given by

ci = lim
s→ri

P (s)
R(s)

(s− ri) =
P (ri)
R′(ri)

, ĉi = lim
s→ri

Q(s)
R(s)

(s− ri) =
Q(ri)
R′(ri)

. (3.15)

Note that the derivative R′(ri) is non-zero, since ri is a simple zero. Since ω(s) is
analytic everywhere, we have for every root ri of R(s) that

P (ri) = −e−riQ(ri), i = 1, . . . , 2n+ 2.
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Hence, from (3.15) it follows that

ci = −e−ri ĉi, (3.16)

and thus

ω(s) =
2n+2∑
i=1

ci
s− ri

(
1− eri−s

)
,

which is the transform (over a bounded interval) of a mixture of 2n + 2 exponen-
tials. Now that the density is known, (3.3) can be used to derive a simple explicit
expression for π0. These findings are summarised in the following theorem.

Theorem 3.2. The density of W on [0, 1] is given by

fW (x) =
2n+2∑
i=1

cierix, 0 6 x 6 1, (3.17)

and

π0 = P[W = 0] = 1−
2n+2∑
i=1

ci
ri

(eri − 1). (3.18)

Corollary 3.3. The throughput θ satisfies

θ−1 = E[A] + E[W ] =
n

λ
+

2n+2∑
i=1

ci
r2i

[1 + (ri − 1)eri ].

Although the roots ri and coefficients ci may be complex, the expressions (3.17)
and (3.18) will be positive. This follows from the fact that the equilibrium equation
(3.2) and the normalisation equation (3.3) have a unique solution. Of course, it is
also clear that each root ri and coefficient ci have a companion conjugate root and
conjugate coefficient, which implies that the imaginary parts in (3.17) and (3.18)
cancel.

3.4.2 Differential equations approach

The alternative method to calculate the density fW is by means of differentia-
tion. This method has been used implicitly in Park et al. [140]. The authors there
commented that “the approach of deriving a differential equation for each pick-time
distribution was rather ad hoc”. However, this method can be generalised to include
phase-type distributions as well. In this section we shall formalise this method and
explain its connection to the Laplace transforms approach we have just developed.

To this end, differentiate (3.9) with respect to x obtaining

d
dx
[
fW (1− x)

]
= π0λ

ne−λx
xn−1

(n− 1)!
+
∫ x

0

λne−λ(x−z) (x− z)n−1

(n− 1)!
fW (z) dz. (3.19)
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Multiplying with eλx and differentiating m more times, m = 1, . . . , n − 1, with
respect to x gives us

dm

dxm
[
eλx

d
dx
fW (1− x)

]
= π0λ

n xn−m−1

(n−m− 1)!
+
∫ x

0

λneλz
(x− z)n−m−1

(n−m− 1)!
fW (z) dz.

(3.20)
Note that the integral at the right hand side vanishes for x = 0. We shall need
this remark later in order to derive the initial conditions of the differential equation.
Now, by differentiating the equation corresponding to m = n− 1 we have

dn

dxn
[
eλx

d
dx
[
fW (1−x)

]]
= eλxfW (x)λn or

n∑
i=0

(
n

i

)
λ−i

di+1

dxi+1

[
fW (1−x)

]
= fW (x).

Up to this point we have differentiated with respect to x a total of n+ 1 times. In
order to derive a homogeneous linear differential equation we substitute x by 1− y
and repeat the same procedure. This means that we shall differentiate (with respect
to y now) a total of n+ 1 times more. We substitute x by 1− y in the last relation
to obtain

n∑
i=0

(
n

i

)
λ−i(−1)i+1 di+1

dyi+1
fW (y) = fW (1− y). (3.21)

The change of variables is practically equivalent to the substitution of s by −s that
we did in order to obtain equation (3.11). Differentiating once (3.21) with respect
to y and combining the result with (3.19) yields

n∑
i=0

(
n

i

)
λ−i(−1)i+1 di+2

dyi+2
fW (y) =

π0λ
ne−λy

yn−1

(n− 1)!
+
∫ y

0

λne−λ(y−z) (y − z)n−1

(n− 1)!
fW (z) dz.

As before, we multiply with eλy and we differentiate m more times with respect
to y, for m = 1, . . . , n − 1. Furthermore, the remark we made before is still valid.
Namely, all the intermediate steps have a right hand side of the same form as in
(3.20); thus, the right-hand side is equal to zero for x = 0. One more differentiation
gives us

n∑
i=0

(
n

i

)
λ−i(−1)i+1 dn

dyn
[
eλy

di+2

dyi+2
fW (y)

]
= eλyfW (y)λn,

which after rewriting the derivatives and arranging the terms becomes
n∑
i=0

(
n

i

)
λ−i(−1)i+1

n∑
j=0

(
n

j

)
λ−j

di+j+2

dxi+j+2
fW (y) = fW (y). (3.22)

Equation (3.22) is a homogeneous linear differential equation of order 2n + 2.
For the solution we need the roots of the characteristic function

n∑
i=0

(
n

i

)
λ−i(−1)i+1

n∑
j=0

(
n

j

)
λ−jri+j+2 = 1 or − r2

(
1− r

λ

)n(
1 +

r

λ

)n
= 1,
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which agrees with R(r) = 0. By Lemma 3.1 we know that the roots of this equation
are simple, which means that the general solution to (3.22) is given by

fW (x) =
2n+2∑
i=1

dierix, 0 6 x 6 1.

This proves Theorem 3.2; however, we still need to define the coefficients di, for
i = 1, . . . , 2n+ 2.

For the solution we need as many initial conditions as the order of the differential
equation. We are going to derive them from the intermediate steps of differentiation.
From (3.2) we have that fW (1) = 0 and this will be the first condition. We derive the
other 2n+ 1 conditions by evaluating at zero each equation that we obtained from
the intermediate steps of differentiation. We do not use the last differentiation with
respect to y, because this yields Equation (3.22), which is the differential equation.
We summarise the above in the following relations.

For m = 1, . . . , n− 2 we have

d
dx
fW (1− x)

∣∣∣∣
x=0

= 0,
dm

dxm
[
eλx

d
dx
fW (1− x)

]∣∣∣∣
x=0

= 0,

dn−1

dxn−1

[
eλx

d
dx
fW (1− x)

]∣∣∣∣
x=0

= π0λ
n,

dn

dxn
[
eλx

d
dx
fW (1− x)

]∣∣∣∣
x=0

= λnfW (0),

n∑
i=0

(
n

i

)
λ−i(−1)i+1 di+2

dyi+2
fW (y)

∣∣∣∣∣
y=0

= 0,

n∑
i=0

(
n

i

)
λ−i(−1)i+1 dm

dym
[
eλy

di+2

dyi+2
fW (y)

]∣∣∣∣∣
y=0

= 0,

and
n∑
i=0

(
n

i

)
λ−i(−1)i+1 dn−1

dyn−1

[
eλy

di+2

dyi+2
fW (y)

]∣∣∣∣∣
y=0

= π0λ
n.

Note that all these conditions define uniquely the coefficients di, but involve the
unknown parameter π0. We obtain this last parameter by using the normalisation
equation (3.3) and this concludes the proof of Theorem 3.2. One observation is that
by using this method, one needs to solve a system of linear equations twice as big
as the one that appears in Lemma 3.2. Furthermore, we know that the coefficients
di are equal to the coefficients ci that appear in (3.17), thus they satisfy (3.16).
However, these relations do not become immediately obvious from the analysis.
Using Laplace transforms we can derive explicit expressions for the coefficients that
appear in the solution, cf. (3.15).
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3.5 Phase-type service times

The case we have analysed so far, namely that the service times follow an Erlang
distribution with n stages, is a useful preparation for the case we are concerned with
in this section. The reason is that now we assume that the service times follow with
probability κn, n = 1, . . . , N an Erlang distribution of scale parameter λ and n
stages. In other words,

FA(x) =
N∑
n=1

κn

(
1− e−λx

n−1∑
i=0

(λx)i

i!

)
, x > 0. (3.23)

The class of the phase-type distributions of the above form is dense in the space of
distribution functions defined on [0,∞). This means that for any such distribution
function F , there is a sequence Fn of phase-type distributions of this class that
converges weakly to F as n goes to infinity; for details see Schassberger [149]. Below
we give the result for service time distributions of the form (3.23).

The analysis proceeds along the same lines as in Section 3.4. The formulae in
the intermediate steps are simply linear combinations of the ones that appear for
Erlang service times. For example, we have that Equation (3.10) now becomes

e−s ω(−s)− ω(s)
N∑
n=1

κn

( λn

s(λ+ s)n
)

=

π0

N∑
n=1

κn

(
λn

s(λ+ s)n
+ e−(λ+s)

n−1∑
i=0

i∑
j=0

λi

j! (λ+ s)i+1−j

)
+

+
N∑
n=1

κn

(
−e−s

s
+ e−(λ+s)

n−1∑
i=0

i∑
j=0

j∑
`=0

(
j

`

)
λi

j! (λ+ s)i+1−j ω
(`)(−λ)

)
. (3.24)

In order to obtain the transform ω we form once more a 2 × 2 system of linear
equations by replacing s by −s. This leads to the following result.

Theorem 3.4. For all s, the transform ω satisfies

ω(s)R̃(s) = −e−ss(λ+ s)N T̃ (−s)−
N∑
n=1

κnλ
n(λ− s)N−nT̃ (s), (3.25)
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where

R̃(s) = s2(λ2 − s2)N +
N∑
n=1

N∑
m=1

κnκmλ
nλm(λ− s)N−n(λ+ s)N−m,

T̃ (s) = π0

N∑
n=1

κn

(
λn(λ+ s)N−n + e−(λ+s)

n−1∑
i=0

i∑
j=0

sλi(λ+ s)N−i−1+j

j!

)
+

+
N∑
n=1

κn

(
e−(λ+s)

n−1∑
i=0

i∑
j=0

j∑
`=0

(
j

`

)
sλi(λ+ s)N−i−1+j

j!
ω(`)(−λ)−

− e−s(λ+ s)N
)
.

The unknowns π0 and ω(`)(−λ), ` = 0, . . . , n− 1 can be determined in the same
way as in Section 3.4. The polynomial R̃ has exactly 2N+2 zeros, with the property
that each zero s has a companion zero −s. We assume that all these zeros are simple
and label them r̃1, . . . , r̃2N+2 such that r̃2N+3−i = −r̃i for i = 1, . . . , N + 1. Then
the following lemma can be readily established.

Lemma 3.3. The probability π0 and the quantities ω(`)(−λ), ` = 0, . . . , n − 1 are
the unique solution to the N + 1 linear equations,

e−eri r̃i(λ+ r̃i)N T̃ (−r̃i) +
N∑
n=1

κnλ
n(λ− r̃i)N−nT̃ (r̃i) = 0, i = 1, . . . , N + 1. (3.26)

Given π0 and ω(`)(−λ), ` = 0, . . . , n − 1, the transform ω is completely known.
Partial fraction decomposition of the transform yields

ω(s) =
2N+2∑
i=1

c̃i
s− r̃i

(
1− eeri−s

)
,

from which we conclude that the density of the waiting time is a mixture of 2N + 2
exponentials. Hence, as was the case for Erlang service times, the density is given
by

fW (x) =
2N+2∑
i=1

c̃ieerix.

Remark 3.1. When R̃ has multiple zeros, the analysis proceeds in essentially the
same way. For example, if r̃1 = r̃2 (so r̃1 and, thus, r̃2N+2 are double zeros), then
(3.26) for i = 1 is identical to the one for i = 2. Nonetheless, an additional equation
can be obtained by requiring that the derivative of the right-hand side of (3.25)
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should vanish at s = r1. The partial fraction decomposition of ω then becomes

ω(s) =
c̃1

(s− r̃1)2
(
1− eer1−s − (s− r̃1)eer1−s

)
+

2N+1∑
i=2

c̃i
s− r̃i

(
1− eeri−s

)
+

+
c̃2N+2

(s− r̃2N+2)2
(
1− eer2N+2−s − (s− r̃2N+2)eer2N+2−s

)
,

the inverse of which is given by

fW (x) = c̃1xeer1x +
2N+1∑
i=2

c̃ieerix + c̃2N+2xeer2N+2x.

Remark 3.2. In case the pick times follow a phase-type distribution of the form
(3.23), we can still obtain the solution by similar methods as in the differential
equations approach of Section 3.4.2. If R̃(·) has only simple roots, then there are
no differences in the analysis. If there are roots with multiplicity greater than one,
the differential equation is solved in a similar but not identical manner, involving
exponentials multiplied with powers of x (cf. Remark 3.1). For each root r of
multiplicity k we need to have k linearly independent solutions, which in this case
will be of the form xi erx, for i = 0, . . . , k − 1.

3.6 Polynomial preparation times

In the previous two sections we have maintained the assumption that B is uni-
formly distributed on [0, 1]. In this section we extend the results in Park et al. [140]
in another direction. Namely, we consider the case where B has a polynomial dis-
tribution. This extension, although it does not have a direct application on the
two-carousel model, is mathematically interesting, since polynomial distributions
can approximate any continuous distribution on a bounded support. As in [140],
we assume that A is exponentially distributed with parameter λ. Without loss of
generality we can assume that FB has all its mass on [0, 1]. Therefore, let

FB(x) =

{∑n
i=0 cix

i, for 0 6 x 6 1,
1, for x > 1,

(3.27)

where
∑n
i=0 ci = 1. Substituting the distributions of A and B in (3.1), and differ-

entiating with respect to x, we obtain for 0 6 x 6 1 that,

fW (x) = λFW (x)− λπ0

n∑
i=0

cix
i − λ

∫ 1−x

0

n∑
i=0

ci(x+ y)ifW (y) dy−

− λ

∫ 1

1−x
fW (y) dy,
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or that

fW (x) = λFW (x)− λπ0

n∑
i=0

cix
i − λ

n∑
i=0

i∑
k=0

ci

(
i

k

)
xi−k

∫ 1−x

0

ykfW (y) dy−

− λ

∫ 1

1−x
fW (y) dy. (3.28)

We know from Section 2.2 that (3.28) has a unique solution fW and π0, provided
that they satisfy the normalisation equation (3.3). To determine fW and π0, we
shall transform the integral equation (3.28) into a (high order) differential equation
for fW . Differentiating (3.28) with respect to x yields

f
(1)
W (x) = λfW (x)− λπ0

n∑
i=1

icix
i−1−

− λ
n−1∑
i=0

i∑
j=0

ci+1(i+ 1)
(
i

j

)
xi−j

∫ 1−x

0

yjfW (y) dy+

+ λ

n∑
i=0

i∑
j=0

ci

(
i

j

)
xi−j(1− x)jfW (1− x)− λfW (1− x),

which can be simplified further to

f
(1)
W (x) = λfW (x)−λπ0

n∑
i=1

icix
i−1−λ

n−1∑
i=0

i∑
j=0

ci+1(i+1)
(
i

j

)
xi−j

∫ 1−x

0

yjfW (y) dy,

and in general, for ` = 1, 2, . . . , n,

f
(`)
W (x) = a`(x) +

`−1∑
i=0

νn−i(−1)`−1−if
(`−1−i)
W (1− x), (3.29)

where

νn−i = λ
n−i∑
j=0

(i+ j)!
j!

ci+j , (3.30)

a`(x) = λf
(`−1)
W (x)− λπ0

n−∑̀
i=0

(i+ `)!
i!

ci+` x
i − λ(−1)`−1f

(`−1)
W (1− x)−

− λ
n−∑̀
i=0

i∑
j=0

ci+`
(i+ `)!
i!

(
i

j

)
xi−j

∫ 1−x

0

yjfW (y) dy.

(3.31)
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From (3.29) we have that the n-th derivative of fW is given by

f
(n)
W (x) = λf

(n−1)
W (x)− λπ0n!cn − λ(−1)n−1f

(n−1)
W (1− x)−

− λn!cn
∫ 1−x

0

fW (y) dy +
n−1∑
i=0

νn−i(−1)n−1−if
(n−1−i)
W (1− x)

= λf
(n−1)
W (x)− λπ0n!cn−

− λn!cn
∫ 1−x

0

fW (y) dy +
n−1∑
i=1

νn−i(−1)n−1−if
(n−1−i)
W (1− x),

which implies that for 0 6 x 6 1,

f
(n+1)
W (x) = λf

(n)
W (x) + λn!cnfW (1− x) +

n−1∑
i=1

νi(−1)if (i)
W (1− x)

= λf
(n)
W (x) +

n−1∑
i=0

νi(−1)if (i)
W (1− x). (3.32)

Up to this point, we have differentiated Equation (3.28) a total of n + 1 times.
Therefore, we need a total of n+ 1 additional conditions in order to guarantee that
any solution to (3.32) is also a solution to (3.28). Since for every value of x in [0, 1],
Equations (3.28), (3.29), and (3.32) are satisfied, we can evaluate all these equations
for a specific x, say x = 0, which provides us with the n + 1 initial conditions, for
` = 1, 2, . . . , n,

f
(`)
W (0) = a`(0) +

`−1∑
i=0

νn−i(−1)`−1−if
(`−1−i)
W (1)

and f
(n+1)
W (0) = λf

(n)
W (0) +

n−1∑
i=0

νi(−1)if (i)
W (1).

(3.33)

So we now have that Equation (3.32) has a unique solution that satisfies these
conditions, along with the normalisation equation (3.3).

Equation (3.32) is a homogeneous linear differential equation, not of a standard
form because of the argument 1 − x that appears at the right-hand side. In the
Appendix, we present a differential equation, similar to Equation (3.32), that has
some surprising characteristics. Therefore, we need to proceed with caution.

Note that the unknown probability π0 is not involved in (3.32). We shall solve
this equation by transforming it into a differential equation we can handle. To this
end, substitute x for 1− x in (3.32), to obtain the equation

f
(n+1)
W (1− x) = λf

(n)
W (1− x) +

n−1∑
i=0

νi(−1)if (i)
W (x). (3.34)
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Equations (3.32) and (3.34) form a system of equations. Now let

fW (x) =
[

fW (x)
fW (1− x)

]
, An =

[
1 0
0 (−1)n

]
, and J =

[
0 1
1 0

]
.

Then the system of equations (3.32) and (3.34) can be rewritten as

f
(n+1)
W (x) = λAn+1Anf

(n)
W (x) + An+1J

n−1∑
i=0

νi(−1)iAif
(i)
W (x). (3.35)

In order to derive the characteristic equation of (3.35), we work as follows. We look

for solutions of the form ξerx, where ξ =
[
ζ
σ

]
. Substituting this solution into

(3.35) and dividing by erx, we derive the following linear system that determines ξ
and r, which is

ζrn+1 = λζrn +
n−1∑
i=0

νiσr
i,

σrn+1 = −λσrn +
n−1∑
i=0

νi(−1)n+1+iζri.

(3.36)

In order for a non-trivial solution to exist, the determinant of the coefficients of ζ
and σ should be equal to zero. This yields that

r2n(r2 − λ2) + (−1)n
(n−1∑
i=0

νir
i

)(n−1∑
j=0

νj(−r)j
)

= 0, (3.37)

which is the characteristic equation of (3.35).
Let us assume for the moment that the characteristic equation has only simple

roots, and label them r1, . . . , r2n+2. It is interesting to note here that since (3.37) is
a polynomial in r2, for every root r of this polynomial −r is also a root. Therefore,
we shall order the roots so that for every i, ri = −r2n+3−i. By substituting each root
into the system (3.36), we obtain the corresponding vectors ξi, i = 1, . . . , 2n + 2.
Then (3.35) has the 2n+ 2 linearly independent solutions ξierix. Thus, the general
solution of (3.35) is given by

fW (x) =
2n+2∑
i=1

diξierix, (3.38)

where di are arbitrary constants.
From (3.38) we can immediately conclude that the solution to Equation (3.32)

that we are interested in, is of the form

fW (x) =
2n+2∑
i=1

diζierix. (3.39)



64 Preparation times on a bounded support

However, this is not the general solution to (3.32). It does not follow from the
derivation of (3.38) that, for any choice of the coefficients di, the linear combination
(3.39) will satisfy (3.32), since ζierix is not a solution to (3.32). Therefore, we
substitute (3.39) into (3.32), and by keeping in mind that ri = −r2n+3−i, we have
that for every i = 1, . . . , 2n+ 2,

diζir
n
i (ri − λ) = e−rid2n+3−iζ2n+3−i

n−1∑
j=0

νjr
j
i . (3.40)

These are in fact only n+1 relations between the unknown coefficients, since it can
easily be shown by using the characteristic equation (3.37) that the equations for
every i and 2n+ 3− i are identical. Using the relations between the coefficients di,
one can rewrite (3.39) as the sum of n + 1 linearly independent solutions to (3.32)
as follows

fW (x) =
n+1∑
i=1

di
(
ζierix + qi ζ2n+3−ie−rix

)
, (3.41)

where qi follows from (3.40) if we solve for d2n+3−i. Thus, the general solution to
(3.32) is given by (3.41). The coefficients di, for i = 1, . . . , n+1, and the probability
π0 that we still need to determine, follow now from the initial conditions (3.33) and
the normalisation equation (3.3). Namely, by substituting (3.41) to (3.33) and (3.3)
we obtain a linear system of n+ 2 equations.

Note that it is not possible to use the same argument in order to determine the
coefficients di for any differential equation of the form (3.32), because of its non-
standard form. Here we heavily rely on the fact that we know beforehand that a
unique solution exists. We summarise the above in the following theorem.

Theorem 3.5. Let FB be a polynomial distribution of the form (3.27). Then the
waiting-time distribution FW has a mass π0 at the origin, which is given by

π0 = P[W = 0] = 1−
2n+2∑
i=1

diζi
ri

(eri − 1), (3.42)

and has a density fW on [0, 1], given by

fW (x) =
2n+2∑
i=1

diζierix.

Although the roots ri and coefficients di may be complex-valued, the density and
the probability π0 that appear in Theorem 3.5 will be non-negative. This follows
from the fact that for every distribution FB of the preparation time, (3.28) has a
unique solution which is a distribution. It is also clear that, since the differential
equation (3.32) has real coefficients, each root ri and coefficient di have a companion
conjugate root and conjugate coefficient, which implies that the imaginary parts
cancel.
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Remark 3.3. When (3.37) has roots with multiplicity greater than one, the analysis
proceeds essentially in the same way. For example assume that r1 = r2. Then we
first look for two solutions to (3.35) of the form ξer1x. If we find only one (that
always exists), then we look for a second solution of the form (xξ + η)er1x, where η
is again a vector. Substituting this solution into (3.35), we obtain a linear system
that determines ξ and η. Thus we can obtain the general solution to the differential
equation (3.35). From this point on, by following the same method, we can formulate
a linear system that determines the coefficients di and π0, and obtain the solution
to (3.32).

Remark 3.4. Another method to derive the solution to the integral equation (3.28)
is through Laplace transforms over a bounded interval. We have illustrated this
method in Section 3.4.1. However, the method presented here is interesting mainly
because of the form of the differential equation (3.32). In the Appendix, we shall
illustrate a very interesting and simple case, similar to (3.32), in order to point out
the difficulties that arise when treating differential equations of this type.

3.7 Numerical results

This section is devoted to some numerical results. In particular, we want to
examine numerically the effects of the squared coefficient of variation of the service
time to the throughput of the carousel (in the case in which the items are randomly
located on the carousel).

For various values of the mean service time E[A] we plot in Figure 3.1 the
throughput θ versus the squared coefficient of variation of the service time, c2A.
The mean service time is chosen to be comparable to the mean preparation time,
which is 1/2. For each case of E[A], we fit a mixed Erlang or hyperexponential dis-
tribution to E[A] and c2A, depending on whether the squared coefficient of variation
is less or greater than one; see, e.g., Tijms [161].

Hyperexponential distributions form another useful class of phase-type distribu-
tions. They can be used to model service times with squared coefficient of variation
greater than one. Furthermore, hyperexponential distributions are always unimodal,
which is not the case for mixed Erlang distributions. The analysis for hyperexpo-
nential service times is very similar to the one presented in the Section 3.4.

So, if 1/n 6 c2A 6 1/(n − 1) for some n = 2, 3, . . ., then the mean and squared
coefficient of variation of the mixed-Erlang distribution

G(x) = p

(
1− e−λx

n−2∑
j=0

(λx)j

j!

)
+ (1− p)

(
1− e−λx

n−1∑
j=0

(λx)j

j!

)
, x > 0,

matches with E[A] and c2A, provided the parameters p and λ are chosen as

p =
1

1 + c2A

(
nc2A −

√
n(1 + c2A)− n2c2A

)
, λ =

n− p

E[A]
.



66 Preparation times on a bounded support

On the other hand, if c2A > 1, then the mean and squared coefficient of variation of
the hyperexponential distribution

G(x) = p1(1− e−λ1x) + p2(1− e−λ2x), x > 0,

match with E[A] and c2A provided the parameters λ1, λ2, p1 and p2 are chosen as

p1 =
1
2

(
1 +

√
c2A − 1
c2A + 1

)
, p2 = 1− p1,

λ1 =
2p1

E[A]
and λ2 =

2p2

E[A]
.

For single-server queuing models it is well-known that the mean waiting time de-
pends (approximately linearly) on the squared coefficients of variation of the inter-
arrival (and service) times. The results in Figure 3.1, however, show that for the
carousel model, the mean waiting time is not very sensitive to the squared coeffi-
cient of variation of the service time and thus neither is the throughput θ; it indeed
decreases as c2A increases, but very slowly. This phenomenon may be explained by
the fact that the waiting time of the server is bounded by one, that is, the time
needed for a full rotation of the carousel.

1 2 3 4 5
cA2

1.5

1.75

2

2.25

2.5

2.75
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throughput

EA=0.5

EA=0.34

EA=0.18

EA=0.02

MeanService Time

Figure 3.1: The throughput is almost insensitive to c2A.

3.8 Concluding remarks

In this chapter, we have considered the PH/U and the M/P models. For Lindley’s
recursion, there exist results for the more general queues PH/G/1 and M/G/1.



3.8 Concluding remarks 67

However, the results for these cases are not as explicit as the ones we have derived
here.

For the PH/U model we have shown that the steady-state waiting-time distri-
bution has a mass at zero and a density that is a mixture of exponentials. The
parameters of these exponentials are the roots of a specific equation and come in
groups; for every complex root r, the companion root −r and their conjugates are
all roots of the same equation. Thus, the solution is fairly explicitly known.

However, the analogous results for Lindley’s equation are not so simple. Consider
the PH/G/1 queue. Recall that α and β are the Laplace-Stieltjes transforms of A
and B respectively. Since the interarrival times follow a phase-type distribution, α
can be written as the ratio α1/α2, where α1 is a polynomial of a degree lower than
the degree of the polynomial α2, which is taken to be equal to m. Without loss
of generality, we can assume that α1 and α2 have no common zeros, and that the
coefficient of sm in α2(s) is equal to one. Furthermore, assume that β and α2 have
no common zero. Then, for m > 2, it is shown in Cohen [46] that∫ ∞

0

e−sxdFW (x) =
−γ α2(0)s(1− ρ)

α2(−s)− β(s)α1(−s)

m−1∏
i=1

δi − s

δi

(recall that ρ = E[B]/E[A]), where δi, i = 1, . . . ,m− 1 are the roots of the equation

α2(−s)− β(s)α1(−s) = 0

in the right-half complex plane, and γ is the constant

γ =
α

(1)
2 (0)− α

(1)
1 (0)

α2(0)
.

Especially for B being uniformly distributed we have that β(s) = (1− e−s)/s.
The distribution of W for the M/P model is identical to the one we retrieved

for PH/U. Namely, we have again that fW is a mixture of exponentials. Of course
now the parameters of these exponentials are the roots to a different equation, but
they still present the same characteristics.

The M/P/1 queue is a special case of the M/G/1. For the latter, the distribution
of W is known, and it is given as an infinite sum of convolutions of the stationary
excess distribution. More specifically, let

F̂B(x) = E[B]−1

∫ x

0

(
1− FB(y)

)
dy.

Then FW is given by

FW (x) = (1− ρ)
∞∑
n=0

ρnF̂n ∗B (x).

Formally, this solution is simple to describe. However, it is not very practical for
numerical computations, even if B follows a polynomial distribution.
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There are various possible extensions to the results we have presented here.
For example, one can retrieve the steady-state distribution of the waiting time for
various similar models, such as P/U, PH/P, and Hk/U, where Hk stands for the hy-
perexponential distribution with k parallel channels. The methods that can be used
for these models are identical to the ones described in this chapter. For Lindley’s
recursion, some of the analogous cases can be explicitly solved. There seems to be
though no study of the P/U/1 queuing model.

We have seen that there is a close connection between the Laplace transforms
approach and the differential equations approach that we have presented in Sec-
tion 3.4. Furthermore, we have seen that, similarly, we can derive a solvable differ-
ential equation for the M/P case. However, the method becomes more involved as
the preparation-time distribution becomes more involved. As we have mentioned
in Section 1.4, the techniques used to derive the steady-state distribution of W are
classified according to the support of B. This will become more evident in the
following chapter, where we consider the case of preparation times that have an
unbounded support. More specifically, we shall consider the case that B follows a
phase-type distribution.



Chapter 4

The G/PH model

4.1 Introduction

In this chapter we are concerned with the G/PH model. In other words, the
service-time distribution FA is some general distribution on [0,∞) and the prepa-
ration-time distribution FB is phase-type. Moreover, we assume that for every n,
both the service times An and the preparation times Bn have finite means. To
keep expressions simple, in this chapter, we shall also use the function φ defined as
φ(s) = ω(s)α(s). As before, ω is the Laplace-Stieltjes transform of the waiting-time
distribution, and α is the Laplace-Stieltjes transform of the service-time distribution.
Since the preparation times have an unbounded support, this case is more relevant
to the first example mentioned in Section 1.2 than the motivating example of the
previous chapter. Namely, for the carousel application, the preparation times are
bounded by the time needed for a complete rotation of the carousel, while for the
medical application, the preparation times of a patient need not follow a distribution
on a bounded support.

As mentioned in Section 1.4, the server is not allowed to serve two consecutive
customers at the same service point and must alternate between the service points.
This condition is crucial. If we remove this condition, which means that the server
will choose to serve the first customer that has completed his preparation time, then
the problem turns out to be the classical machine repair problem. In that setting,
there is a number of machines working in parallel (two in our situation) and one
repairman. As soon as a machine fails, it joins the repair queue in order to be served.
The machine repair problem, also known as the computer terminal model (see, for
example, Bertsekas and Gallager [17]) or as the time sharing system (Kleinrock
[103, Section 4.11]), is a well-studied problem in the literature. It is one of the
key models to describe problems with a finite input population. A fairly extensive
analysis of the machine repair problem can be found in Takács [158, Chapter 5].

The issue that is usually investigated in the machine repair problem is the waiting
time of a machine until it becomes again operational. In our situation though we
are concerned with the waiting time of the repairman. This question has not been
treated in the classical literature, perhaps because in the machine repair problem
the operating time of the machine is usually more valuable than the utilisation of
the repairman.

Chapter 3 focused on deriving the steady-state distribution of W for two par-
ticular cases of Equation (1.2). This chapter, however, focuses both on the time-
dependent behaviour of the process {Wn} and on the derivation of the steady-state
distribution of W , both for the model described by (1.1) and for the machine repair
model. As we have seen in Section 1.6, the time-dependent waiting-time distribu-
tion is determined by the solution of a generalised Wiener-Hopf equation. A simi-
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lar observation is valid for the steady-state distribution. Both the time-dependent
and the steady-state waiting-time distribution are the fixed point of two distinct
contraction mappings, and therefore they can be evaluated numerically. For the
time-dependent behaviour, we are particularly interested in the distribution of Wn

for any n, in the covariance between Wn and Wn+k, and in the distribution of the
length of C = inf{n > 1 : Wn+1 = 0 |W1 = 0}.

An overview of this chapter is as follows. Section 4.2 focuses on the alternating
case, namely on Recursion (1.1). In particular, using probabilistic arguments we
analyse the time-dependent distribution for exponential preparation times in Sec-
tion 4.2.1 and for phase-type preparation times in Section 4.2.2. The expressions
we obtain are remarkably explicit. Thus, Recursion (1.1) is a rare example of a
stochastic model which allows for an explicit time-dependent analysis. The reason
is that if Bn has a mixed-Erlang distribution, we can completely describe (1.1) in
terms of the evolution of a finite-state Markov chain; for details, see to Section 4.2.2.

We obtain similar explicit results for the distribution of the cycle length C.
What is more, we do not need to resort to the usage of generating functions, as is
necessary when analysing the corresponding quantity in Lindley’s recursion. Note
that the interpretation of C for our model is completely different from the one for
the corresponding quantity for Lindley’s recursion. There, C represents the number
of customers that arrived during a busy period. In our setting, C represents the
number of pauses a server has until he needs to serve two consecutive customers
without any pause. In this sense C can be seen as a “non-busy period”.

In Section 4.2.3 we shall derive the steady-state distribution of the waiting time
of the server, provided that the preparation time of a customer follows an Erlang
distribution, while phase-type distributions are treated in Section 4.2.4.

Continuing with Section 4.3, we shall introduce the machine repair model and
analyse the waiting time of the repairman, or in other words we shall remove the
restriction that the server alternates between the service points. We compare the
two models in Section 4.4. Namely, we compare the steady-state waiting times of
the repairman in the classical machine repair problem and our model. We show that
the random variables for the waiting time in the two situations are not stochastically
ordered. However, on average, the alternating strategy leads to longer waiting times
for the server. Furthermore we show that the probability that the server does not
have to wait is larger in the alternating service system than in the non-alternating
one. This result is perhaps counterintuitive, since the inequality for the mean waiting
times of the server in the two situations is reversed. Numerical results related to
this comparison are presented in Section 4.5.

Section 4.6 discusses the difference in complexity between the G/M alternating
service model and the G/M/1 queue. As it is illustrated in Section 4.2.1, the analysis
of the G/M alternating service model is particularly tractable and leads to explicit
and fairly simple expressions for the distribution of Wn, the distribution of C, and
the covariance between Wn and Wn+k. In Section 4.6, however, we see that the
G/M/1 queue is rather more complex to analyse. This section also gives a represen-
tation for the time-dependent M/M/1 waiting-time distribution, which seems to be
a new result. The contents of this chapter are mainly based upon [170] (steady-state
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analysis and machine repair problem) and [174] (time-dependent analysis).

4.2 The alternating case

In this section we analyse the alternating service queue under the assumption
that the preparation times Bn, n > 1, have a phase-type distribution. In the first
part, we derive an explicit expression for the time-dependent distribution of Wn, the
distribution of the cycle length C, and the covariance between Wn and Wn+k in case
Bn is exponentially distributed with rate µ. The phase-type distributions that we
will consider are mixtures of Erlang distributions with the same scale parameters.
Therefore, in Section 4.2.2 we analyse the time-dependent behaviour of the G/E
model, while in Section 4.2.3 we derive the steady-state distribution of the waiting
times for this model. In Section 4.2.4 we extend the results derived in Section 4.2.3
to phase-type distributions.

4.2.1 Time-dependent analysis for G/M

The time-dependent waiting-time distribution

Although in the alternating service example it is natural to assume that W1 = B1,
we would like to allow for a more general initial condition. Therefore, we assume
that W1 = w1. Throughout this section, all probabilities are conditioned on this
event. We first analyse the distribution of W2. Write for x > 0,

P[W2 > x] = P[B2 > A1 + w1 + x] =
∫ ∞

0

e−µ(y+w1+x) dFA(y)

= e−µ(x+w1) α(µ). (4.1)

We see that P[W2 > x |W2 > 0] = e−µx, that is, the distribution of W2 is a mixture
of a mass at zero and the exponential distribution with rate µ. This is actually the
case for the distribution of every Wn. More precisely, the following theorem holds.

Theorem 4.1. If W1 = w1, then for every n > 1 the time-dependent distribution
of the waiting times is given by

P[Wn+1 6 x] =

1− e−µx
[

2α(µ)
2 + α(µ)

+
(
−α(µ)

2

)n−1(
e−µw1α(µ)− 2α(µ)

2 + α(µ)

)]
. (4.2)

Note that (4.2) is indeed also valid for n = 1, since in this case (4.2) simplifies
to P[W2 6 x] = 1 − P[W2 > 0]e−µx, which is consistent with (4.1). Naturally, the
term in the brackets at the right-hand side of (4.2) is the probability P[Wn+1 > 0].

Proof of Theorem 4.1. In order to compute the distribution of Wn+1 for n > 2
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observe that

P[Wn+1 > x] = P[Wn+1 > x |Wn = 0] P[Wn = 0]+
+ P[Wn+1 > x |Wn > 0] P[Wn > 0]. (4.3)

We shall calculate the first three terms that appear in the right-hand side of (4.3)
(as the term P[Wn > 0] follows immediately from the term P[Wn = 0]). Thus, we
need to compute the distribution of Wn+1 conditioned on the length of the previous
waiting time.

Computation of P[Wn+1 > x |Wn = 0]:

We have that, for n > 2,

P[Wn+1 > x |Wn = w] = P[Bn+1 −An − w > x |Wn = w]

=
∫ ∞

0

P[Bn+1 > x+ y + w |Wn = w] dFA(y)

=
∫ ∞

0

e−µ(x+w)e−µy dFA(y) = e−µ(x+w) α(µ). (4.4)

For w = 0 we readily have the first term at the right-hand side of (4.3), i.e.,

P[Wn+1 > x |Wn = 0] = e−µx α(µ), n > 2. (4.5)

Another implication of Equation (4.4) is that, for n > 2,

P[Wn+1 > x |Wn+1 > 0,Wn = w] =
P[Wn+1 > x |Wn = w]
P[Wn+1 > 0 |Wn = w]

= e−µx. (4.6)

A straightforward conclusion is that

P[Wn+1 > x |Wn+1 > 0] = e−µx. (4.7)

Thus, the distribution of Wn+1, provided that Wn+1 is strictly positive, is exponen-
tial and independent of the length of the previous waiting time.

We can extend (4.6) to the following more general property. For any event E of
the form E = {W2 ∈ S2, . . . ,Wn ∈ Sn}, with Sk ⊆ [0,∞), 2 6 k 6 n, we have that

P[Wn+1 > x | E,Wn+1 > 0] = e−µx. (4.8)

To see this, write

P[Wn+1 > x | E,Wn+1 > 0] =
P[Wn+1 > x ;E,Wn+1 > 0]

P[E,Wn+1 > 0]

=
P[Wn+1 > x ;E]
P[Wn+1 > 0 ;E]

=
P[Wn+1 > x | E]
P[Wn+1 > 0 | E]

.
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Furthermore, for x > 0,

P[Wn+1 > x | E] =
∫ ∞

0

P[Wn+1 > x |Wn = w] dP[Wn 6 w | E]

=
∫ ∞

0

∫ ∞

0

e−µ(x+w+y) dFA(y)dP[Wn 6 w | E]

= e−µx α(µ)E[e−µWn | E],

which directly proves (4.8), if we divide by the expression resulting for x = 0. Thus,
the distribution of Wn is a mixture of a mass at zero and the exponential distribu-
tion with rate µ. This property is valid for all n > 2; for n = 2 it was shown below
(4.1). We now return to the proof of Equation (4.3).

Computation of P[Wn+1 > x |Wn > 0]:

For n > 2 we have that

P[Wn+1 > x |Wn > 0] = P[Wn+1 > x,Wn+1 > 0 |Wn > 0]
= P[Wn+1 > x |Wn+1 > 0,Wn > 0]P[Wn+1 > 0 |Wn > 0]

= e−µx(1− P[Wn+1 = 0 |Wn > 0]), (4.9)

where we applied (4.8) with E = {Wn > 0} in the final step. We obtain the
probability that appears at the right-hand side of (4.9) as follows.

P[Wn+1 = 0 |Wn > 0] = P[Bn+1 6 An +Wn |Wn > 0]

=
∫ ∞

0

P[Bn+1 6 An + x |Wn > 0]µe−µx dx,

where we applied (4.7) to Wn in the last step. Since Bn+1 is independent of Wn,
we have that the previous equation becomes, for n > 2,

P[Wn+1 = 0 |Wn > 0] =
∫ ∞

0

∫ ∞

0

(1− e−µye−µx)µe−µx dxdFA(y)

= 1−
∫ ∞

0

e−µy
∫ ∞

0

µe−2µx dxdFA(y) = 1− 1
2
α(µ).

(4.10)

Combining (4.9) and (4.10) we have that, for n > 2, the third term at the right-hand
side of (4.3) is given by

P[Wn+1 > x |Wn > 0] =
1
2
α(µ) e−µx. (4.11)
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Computation of P[Wn = 0]:

The last term we need to compute in order to obtain the transient distribution of
the waiting times is the probability that the n-th waiting time is equal to zero, cf.
(4.3). From (4.1) we readily have that P[W2 = 0] = 1 − e−µw1 α(µ). Moreover, for
n > 2, we have that

P[Wn+1 = 0] = P[Wn+1 = 0 |Wn = 0] P[Wn = 0]+
+ P[Wn+1 = 0 |Wn > 0] P[Wn > 0],

which implies that (cf. (4.4) and (4.10))

P[Wn+1 = 0] =
(
1− α(µ)

)
P[Wn = 0] +

(
1− 1

2
α(µ)

)(
1− P[Wn = 0]

)
= 1− 1

2
α(µ)− 1

2
α(µ)P[Wn = 0].

This gives a first order recursion for P[Wn+1 = 0]. With simple manipulations it is
easy to show that the solution to this recursion for n > 2 is given by

P[Wn+1 = 0] =
2− α(µ)
2 + α(µ)

+
(
−α(µ)

2

)n−1(
P[W2 = 0]− 2− α(µ)

2 + α(µ)

)
. (4.12)

So, from Equations (4.3), (4.5), and (4.11) we obtain, for n > 2,

P[Wn+1 > x] = e−µx α(µ)P[Wn = 0] +
1
2

e−µx α(µ)
(
1− P[Wn = 0]

)
.

Summing up the results we obtained in Equations (4.3), (4.5), (4.11), (4.12), we
have that the distribution of Wn+1 is given by

P[Wn+1 6 x] = 1−e−µx
[

2α(µ)
2 + α(µ)

+
(
−α(µ)

2

)n−1(2− α(µ)
2 + α(µ)

−P[W2 = 0]
)]
, (4.13)

with P[W2 = 0] = 1 − e−µw1 α(µ). Substituting P[W2 = 0] in this expression gives
us Equation (4.2) and completes the proof of the theorem.

In the medical example given in Section 1.2, it is reasonable to assume that
the server has to wait for a full preparation time at the beginning, implying that
W1 = B1. In this case, it is easy to show that

P[W2 = 0] = P[B2 6 A1 +B1] = 1− 1
2
α(µ),

which yields the following corollary, cf. Equation (4.13).

Corollary 4.2. If W1 = B1, then for every n > 1 the time-dependent distribution
of the waiting times is given by

P[Wn+1 6 x] = 1− e−µx
[

2α(µ)
2 + α(µ)

+
(
−α(µ)

2

)n−1(α(µ)
2

− 2α(µ)
2 + α(µ)

)]
.
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Another result we can infer from Theorem 4.1 is the speed of convergence of
the time-dependent distribution P[Wn 6 x] towards the steady-state distribution
P[W 6 x]. It is clear from (4.2) that this speed of convergence is geometrically fast
at rate 1

2 α(µ). It is interesting to observe that this rate is twice as fast as predicted
by the upper bound in Section 2.3. In Lindley’s recursion this speed of converge
towards steady state is closely related to the tail behaviour of the cycle length C.
In the next part, we see that the same constant 1

2 α(µ) appears in a crucial way in
the distribution of C.

The distribution of the cycle length

As we have mentioned before, {Wn} is a regenerative process; regeneration occurs
at times when Wn = 0. Let C be the random variable describing the length of a
generic regeneration cycle, i.e.,

C = inf{k : Wn+k = 0 |Wn = 0} = inf{k : W1+k = 0 |W1 = 0}.

We are set to derive the distribution of C. By definition, we have that

P[C = n] = P[Wn+1 = 0,Wn > 0, . . . ,W2 > 0 |W1 = 0].

We can now prove the following theorem.

Theorem 4.3. Let C be the length of a regeneration cycle. Then the distribution
of C is given by

P[C = n] =

{
1− α(µ) n = 1(
1− 1

2 α(µ)
)(

1
2 α(µ)

)n−2
α(µ) n > 2.

(4.14)

Proof. For n = 1, we readily have from (4.4) that

P[C = 1] = P[W2 = 0 |W1 = 0] = 1− α(µ). (4.15)

For n > 2 we shall prove our assertion by induction. For n = 2 we have that

P[C = 2] = P[W3 = 0,W2 > 0 |W1 = 0]
= P[B3 6 A2 +W2 |W2 > 0,W1 = 0]P[W2 > 0 |W1 = 0].

Furthermore,

P[B3 6 A2 +W2 |W2 > 0,W1 = 0] =∫ ∞

0

P[B3 6 A2 + x |W2 > 0,W1 = 0]µe−µx dx,

since (4.6) implies that P[W2 6 x | W2 > 0,W1 = 0] = 1− e−µx. In addition, since
B3 and A2 are independent of W2 and W1, we have now that

P[C = 2] = P[W2 > 0 |W1 = 0]
∫ ∞

0

∫ ∞

0

(1− e−µye−µx)µe−µx dxdFA(y)

= α(µ)
(
1− 1

2
α(µ)

)
,
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which satisfies (4.14) for n = 2.
Next, assume that

P[C = k] =
(
1− 1

2
α(µ)

)(1
2
α(µ)

)k−2

α(µ) (4.16)

for all k 6 n, with n > 2. To complete the proof, we must show that

P[C = n+ 1] =
(
1− 1

2
α(µ)

)(1
2
α(µ)

)n−1

α(µ).

Since P[C > n+ 1] = 1− P[C 6 n], (4.15) and (4.16) imply that

P[C > n+ 1] =
(1

2
α(µ)

)n−1

α(µ).

Therefore, we have that

P[C = n+ 1] = P[Wn+2 = 0,Wn+1 > 0, . . . ,W2 > 0 |W1 = 0]
= P[Wn+2 = 0 |Wn+1 > 0, . . . ,W2 > 0,W1 = 0]×

× P[Wn+1 > 0, . . . ,W2 > 0 |W1 = 0]
= P[Wn+2 = 0 |Wn+1 > 0, . . . ,W2 > 0,W1 = 0] P[C > n+ 1]

= P[Wn+2 = 0 |Wn+1 > 0, . . . ,W2 > 0,W1 = 0]
(1

2
α(µ)

)n−1

α(µ).

It suffices to show that

P[Wn+2 = 0 |Wn+1 > 0, . . . ,W2 > 0,W1 = 0] = 1− 1
2
α(µ). (4.17)

Notice that since P[Wn+2 = 0 |Wn+1 > 0] = 1− 1
2 α(µ) (cf. (4.10)), Equation (4.17)

implies that

P[Wn+2 = 0 |Wn+1 > 0, . . . ,W2 > 0,W1 = 0] = P[Wn+2 = 0 |Wn+1 > 0],

which does not follow from the Markov property. For this model though, in order to
discard conditions regarding previous states, it suffices to know whether the previous
waiting time was equal to zero or not.

In order to prove (4.17), observe that

P[Wn+2 = 0 |Wn+1 > 0, . . . ,W2 > 0,W1 = 0]
= P[Bn+2 6 An+1 +Wn+1 |Wn+1 > 0, . . . ,W2 > 0,W1 = 0]

=
∫ ∞

0

P[Bn+2 6 An+1 + x |Wn+1 > 0, . . . ,W2 > 0,W1 = 0]µe−µx dx,

(4.18)

since
P[Wn+1 6 x |Wn+1 > 0, . . . ,W2 > 0,W1 = 0] = 1− e−µx,
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which follows from (4.8) with E = {Wn > 0, . . . ,W2 > 0} and w1 = 0. Equation
(4.18) yields

P[Wn+2 = 0 |Wn+1 > 0, . . . ,W2 > 0,W1 = 0]

=
∫ ∞

0

∫ ∞

0

(1− e−µye−µx)µe−µx dxdFA(y) = 1− 1
2
α(µ),

which is exactly Equation (4.17) that remained to be proven.

The covariance function

We are interested in the covariance between two waiting times. By definition, we
have that

cov[Wn,Wn+k] = E[WnWn+k]− E[Wn]E[Wn+k].

The terms E[Wn] and E[Wn+k] can be directly computed, for example, from The-
orem 4.1. For the expectation of the product of the two waiting times we have
that

E[WnWn+k] =
∫ ∞

0

wE[Wn+k |Wn = w] dP[Wn 6 w].

Write

E[Wn+k |Wn = w] = E[Wn+k |Wn+k > 0,Wn = w] P[Wn+k > 0 |Wn = w]

=
1
µ

P[W1+k > 0 |W1 = w],

where in the last step, we applied the Markov property as well as the fact that
Wn+k, given that Wn = w and Wn+k > 0, is exponentially distributed with rate
µ. The latter follows from (4.8). Thus, in order to compute the covariance between
Wn and Wn+k, we need the distribution of W1+k, conditioned on W1 = w. This
distribution has been derived in Theorem 4.1, from which it follows that

P[W1+k > 0 |W1 = w] =
2α(µ)

2 + α(µ)

[
1−

(
−α(µ)

2

)k−1
]

+
(
−α(µ)

2

)k−1

α(µ) e−µw.

Combining the last three equations, we obtain

E[WnWn+k] =
1
µ

∫ ∞

0

w
2α(µ)

2 + α(µ)

[
1−

(
−α(µ)

2

)k−1
]

dP[Wn 6 w]+

+
1
µ

(
−α(µ)

2

)k−1

α(µ)
∫ ∞

0

we−µw dP[Wn 6 w]

=
E[Wn]
µ

2α(µ)
2 + α(µ)

[
1−

(
−α(µ)

2

)k−1
]
+

+
(
−α(µ)

2

)k−1

α(µ)
∫ ∞

0

we−µwµe−µw
P[Wn > 0]

µ
dw

=
E[Wn]
µ

2α(µ)
2 + α(µ)

[
1−

(
−α(µ)

2

)k−1
]
− E[Wn]

2µ

(
−α(µ)

2

)k
.
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Note that the above expression is valid only for n > 2, since we have substituted
dP[Wn 6 w] by µe−µwP[Wn > 0] dw, cf. Theorem 4.1. However, if we further as-
sume that W1, given that W1 > 0, is (like all other Wn’s) exponentially distributed
with rate µ then the above expression is valid for n = 1 too.

All that is left in order to compute the covariance of Wn and Wn+k is to compute
E[Wn] and E[Wn+k]. To this end, note that for k > 1

E[Wn+k] = E[Wn+k |Wn+k > 0] P[Wn+k > 0] =
1
µ

P[Wn+k > 0]

=
1
µ

∫ ∞

0

P[Wn+k > 0 |Wn = w] dP[Wn 6 w]

=
1
µ

2α(µ)
2 + α(µ)

[
1−

(
−α(µ)

2

)k−1
]
+

+
α(µ)
µ

(
−α(µ)

2

)k−1
∫ ∞

0

e−µw dP[Wn 6 w]

=
1
µ

2α(µ)
2 + α(µ)

[
1−

(
−α(µ)

2

)k−1
]
+

+
α(µ)
µ

(
−α(µ)

2

)k−1(
P[Wn = 0] +

P[Wn > 0]
2

)
,

which implies that

E[Wn]E[Wn+k] =
E[Wn]
µ

2α(µ)
2 + α(µ)

[
1−

(
−α(µ)

2

)k−1
]
−

− E[Wn]
µ

(
−α(µ)

2

)k(
2P[Wn = 0] + P[Wn > 0]

)
.

Putting everything together we obtain

cov[Wn,Wn+k] = E[WnWn+k]− E[Wn]E[Wn+k]

=
E[Wn]
µ

(
2P[Wn = 0] + P[Wn > 0]

)(
−α(µ)

2

)k
−

− E[Wn]
2µ

(
−α(µ)

2

)k
. (4.19)

Simplifying this formula, using P[Wn = 0]+ P[Wn > 0] = 1, we obtain the following
theorem, which is the main result of this section.

Theorem 4.4. For n > 2, the covariance function between Wn and Wn+k, k > 1,
is given by

cov[Wn,Wn+k] =
E[Wn]
µ

(
P[Wn = 0] +

1
2

)(
−α(µ)

2

)k
. (4.20)

Furthermore, if W1, given that W1 > 0, has an exponential distribution with rate µ,
then the above expression is valid for n = 1 too.
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So the covariance function decays geometrically fast. Equation (4.20) is not valid
for k = 0. The proof fails, for example, when computing E[Wn+k]. For k = 0 we
proceed as follows. Since Wn conditioned on Wn > 0 has an exponential distribution
with rate µ, we have that

var[Wn] =
P[Wn > 0](2− P[Wn > 0])

µ2
.

A particularly tractable case arises when we assume that

P[W1 > 0] =
2α(µ)

2 + α(µ)
,

which makes {Wn} a stationary process. In this case, we obtain the following
expression for the covariance function.

Corollary 4.5. If {Wn} is stationary, then for k > 1, we have that

cov[W1,W1+k] =
2α(µ)

2 + α(µ)

(3
2
− 2α(µ)

2 + α(µ)

) 1
µ2

(
−α(µ)

2

)k
.

Theorem 4.4 can be applied to compute the covariance between waiting times
in the alternating service example, where W1 = B1. For this particular case, we
plot below the correlation coefficient between Wn and Wn+k. More specifically,
for the exponentially distributed preparation times µ is chosen equal to one, while
the service times An are assumed to follow the same Erlang distribution. The
parameters of this distribution are chosen so that for two different mean service
times, the squared coefficient of variation is equal to three specific values.
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Figure 4.1: The effect of the squared coefficient of variation of A on the waiting-time
correlation coefficient.

In Figure 4.1 we have chosen the parameters of the Erlang distribution that the
service times follow in such a way, so that for E[A] = 1 or E[A] = 2, the squared
coefficient of variation is equal to either 0.125 or 0.25 or 0.5. One can observe that as
E[B]/E[A] tends to 1, the effect of the squared coefficient of variation of A become
negligible. This becomes more apparent in the case where E[B]/E[A] = 2. There, the
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three points for the various cases we examine almost coincide. This is to be expected,
since the more dominant the preparation times Bn are, compared to the service times
An, the more limited is the effect of the distribution of An. Furthermore, one can
observe that Wn is barely correlated to Wn+4 or any subsequent waiting times.

However, in Figure 4.2 one can observe that the mean service time strongly
affects the correlation coefficient between successive waiting times. Again in this
setting, we choose E[B] = 1 and we plot the correlation coefficient between Wn

and Wn+k for successive values of k. Apparently, as E[B]/E[A] tends to 1, or as
E[A] decreases the correlation between waiting times is stronger. However, we have
again that waiting times that are four or more steps apart are almost uncorrelated.
Furthermore, the squared coefficient of variation of the service times seem to have
almost no impact.
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Figure 4.2: The effect of E[A] on the waiting-time correlation coefficient.

4.2.2 Time-dependent analysis for G/E

In this section we assume that, for all n, the i.i.d. random variables Bn follow an
Erlang distribution with N phases and parameter µ. Although the analysis is not as
straightforward as in Section 4.2.1, the idea we shall utilise in the following is very
simple. Namely, if the random variables Bn follow an Erlang distribution, then we
can completely describe the system in terms of a finite-state Markov chain. Thus,
it suffices to compute the one-step transition probabilities of this Markov chain.
This is done in the following, and is applied to show that Wn has a mixed-Erlang
distribution. Subsequently, we derive expressions for the distribution of the cycle
length and the covariance.

The time-dependent waiting-time distribution

Let A be a generic service time and Ei be a random variable that follows an Erlang
distribution with i phases and parameter µ, which we denote by Gi. Define Fi to be
the number of remaining preparation phases that the server sees after his (i− 1)-th
service completion, that is, at the moment he initiates his i-th waiting time. Observe
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that {Fn} is a Markov chain, and let

pij = P[Fn+1 = j | Fn = i].

Then, for i, j ∈ {1, . . . , N} we have that

pij = P[exactly N − j exponential phases expired during [0, A+ Ei)]

=
∫ ∞

0

(µx)N−j

(N − j)!
e−µx dP[A+ Ei ≤ x]

=
(−µ)N−j

(N − j)!
L(N−j)
A+Ei

(µ),

where L(N−j)
Y is the N − j-th derivative of the Laplace-Stieltjes transform of a

random variable Y ,

=
(−µ)N−j

(N − j)!

N−j∑
`=0

(
N − j

`

)
α(N−j−`)(µ)

(( µ

µ+ s

)i)(`)
∣∣∣∣∣
s=µ

=
(−µ)N−j

(N − j)!

N−j∑
`=0

(
N − j

`

)
α(N−j−`)(µ)

[(
− 1

2µ

)` (i+ `− 1)!
2i(i− 1)!

]

=
(−µ)N−j

2i

N−j∑
`=0

(
i+ `− 1
i− 1

)
α(N−j−`)(µ)
(N − j − `)!

(
− 1

2µ

)`
.

Furthermore, for j ∈ {1, . . . , N} we have that

p0j = P[exactly N − j exponential phases expired during [0, A)]

=
(−µ)N−j

(N − j)!
α(N−j)(µ).

The rest of the transition probabilities can be computed by the relations

p00 = 1−
N−1∑
i=0

(−µ)i

i!
α(i)(µ)

and pi0 = 1−
N−1∑
j=0

(−µ)j

2i

j∑
`=0

(
i+ `− 1
i− 1

)
α(j−`)(µ)
(j − `)!

(
− 1

2µ

)`
.

Let P = (pij) be the transition matrix and define G0(x) = 1. Then, the distribution
of Wn is given by

P[Wn 6 x] =
N∑
i=0

P[Wn 6 x | Fn = i]P[Fn = i]

=
N∑
i=0

Gi(x)P[Fn = i].
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Let $n,i = P[Fn = i | W1 = w] and $n be the column-vector ($n,0, . . . , $n,N )T.
Then

$n = P$n−1 = Pn−2$2. (4.21)

It remains to compute $2. In the same way we computed pij we get, for j > 1,

$2,j = P[exactly N − j exponential phases expired during [0, A+ w)]

=
(−µ)N−j

(N − j)!
L(N−j)
A+w (µ)

=
(−µ)N−j

(N − j)!

N−j∑
`=0

(
N − j

`

)
α(N−j−`)(µ)

(
e−sw

)(`)∣∣∣∣∣
s=µ

= (−µ)N−je−µw
N−j∑
`=0

(−w)`

`!
α(N−j−`)(µ)
(N − j − `)!

. (4.22)

This also characterises $2,0. Putting everything together, we obtain the main result
of this section.

Theorem 4.6. For every n > 2, Wn has a mixed-Erlang distribution with parame-
ters µ and $n,0, . . . , $n,N , i.e.,

P[Wn 6 x |W1 = w] =
N∑
i=0

$n,iGi(x),

with $n given by Equations (4.21) and (4.22).

It is interesting to note that Wn has a phase-type distribution with N+1 phases
for all n > 2. This is strikingly different from Lindley’s recursion. In Section 4.6, we
shall see that for the G/M/1 queue, the waiting time of the n-th customer follows
a mixed-Erlang distribution with at most n + 1 phases; that is, as n grows, the
number of phases grows linearly in n.

The distribution of the cycle length

As before, define the cycle length C to be given by

C = inf{k : W1+k = 0 |W1 = 0} = inf{k : F1+k = 0 | F1 = 0}.

We have that P[C = n] = P[C > n]− P[C > n+ 1] and

P[C > n] =
N∑
i0=1

P[Fn+1 = i0, F2 · . . . · Fn > 0 | F1 = 0]. (4.23)

Let t(n)
0,i0

be the probability that, conditioning on the fact that F1 = 0, we shall go
to state i0 in n steps without passing through state 0 while doing so. Then we have
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that

t
(n)
0,i0

= P[Fn+1 = i0, F2 · . . . · Fn > 0 | F1 = 0]

=
N∑
i1=1

P[Fn+1 = i0, Fn = i1, F2 · . . . · Fn−1 > 0 | F1 = 0]

=
N∑
i1=1

P[Fn+1 = i0 | Fn = i1, F2 · . . . · Fn−1 > 0, F1 = 0]×

× P[Fn = i1, F2 · . . . · Fn−1 > 0 | F1 = 0]

=
N∑
i1=1

pi1i0t
(n−1)
0,i0

=
N∑
i1=1

N∑
i2=1

· · ·
N∑

in−1=1

pi1i0 pi2i1 · . . . · pin−1in−2×

× P[F2 = in−1 | F1 = 0]

Then from (4.23) we have that

P[C > n] =
N∑
i0=1

N∑
i1=1

· · ·
N∑

in−1=1

pi1i0 · . . . · pin−1in−2 p0in−1 . (4.24)

So, if we define Q to be the matrix that we obtain if we omit the first line and the
first row of the matrix P, q to be the first row of P apart from the first element,
I to be the N × N identity matrix, and e to be the column vector with all its N
entries equal to one, then (4.24) can be rewritten in a more compact form, which is
done in the following theorem.

Theorem 4.7. For every n > 1 we have that the distribution of the cycle length is
given by

P[C = n] = qQn−1(I−Q)e.

The covariance function

It should be clear by now that extending the results of Section 4.2.1 to Erlang
distributed preparation times is feasible, although not as straightforward as before.
The results now are given implicitly, in terms of the transition matrix of a finite-state
Markov chain. When computing the covariance function between Wn and Wn+k the
calculations become more complex, and rather long and tedious. In this section we
shall only outline the procedure of computing cov[Wn,Wn+k] when, for all n, Bn
follows an Erlang distribution.

As before, it suffices to calculate the expectation E[WnWn+k], since E[Wn] and
E[Wn+k] can, in principle, be computed directly from the time-dependent distribu-
tion. Therefore, it suffices to compute E[Wn+k | Wn = w]. To this end, we have
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that for all k > 1

E[Wn+k |Wn = w] = E[W1+k |W1 = w]

=
N∑
i=0

E[W1+k | F1+k = i,W1 = w] P[F1+k = i |W1 = w]. (4.25)

Clearly, for any event E depending only on W1, . . . ,Wn−1, we have that for n > 2

P[Wn 6 x | Fn = i, E] = Gi(x).

This equation is analogous to Equation (4.8). So (4.25) now becomes

E[Wn+k |Wn = w] =
N∑
i=0

i

µ
P[F1+k = i |W1 = w].

We have shown that for all n > 3, $n = Pn−2$2, and the vector $2 is computed,
cf. (4.22). From this, we infer that, for all k > 1, P[F1+k = i | W1 = w] is a
polynomial of degree N − i multiplied by e−µw. Let c1+k, j , j = 0, . . . , N − i be the
constants of this polynomial. Then, for n > 2 and k > 1 we have that

E[WnWn+k] =
N∑
i=0

i

µ

N−i∑
j=0

c1+k, j

∫ ∞

0

wj+1e−µw dP[Wn 6 w].

A lengthy but straightforward computation, using Theorem 4.6, shows that∫ ∞

0

wj+1e−µw dP[Wn 6 w] =
(1

2

)j+1 N∑
`=0

$n,`
(`+ j)!

2`(`− 1)!
.

Using Theorem 4.6, we can also compute E[Wn] and E[Wn+k]. Unfortunately, the
resulting expression for the covariance is rather complicated and it is therefore omit-
ted.

Remark 4.1. If the preparation times do not have an Erlang distribution, but a
mixed-Erlang distribution, the analysis stays completely the same, except for the
computation of the transition probabilities pij and $2,j .

4.2.3 Steady-state distribution for G/E

In Section 4.2.2 we have derived the time-dependent distribution of the waiting
times in case the preparation times follow an Erlang distribution. The distribution
there is given in terms of the equilibrium distribution of a finite-state Markov chain.
In this section we study the steady-state distribution of the waiting times for the
same setting. Although the steady-state distribution can be seen as the limit for
n → ∞ of the expression in Theorem 4.6, the results presented in this section are
derived straightforwardly through simple manipulations of Laplace transforms. This
approach is simple, direct, and it does not involve the embedded Markov chain, or
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its equilibrium distribution. The use of Laplace transforms is a standard approach
for the analysis of Lindley’s equation. Hence it is natural to try this approach for
Equation (1.2).

In the following section, we derive the distribution of the waiting time of the
server, assuming that the generic service time A follows some general distribution
and the generic preparation time B follows a phase-type distribution. As mentioned
before, the phase-type distributions that we consider (cf. Section 4.2.4) are mixtures
of Erlang distributions with the same scale parameters. In Section 3.5 we have seen
that the study of Erlang service time facilitated the analysis for phase-type service
times. The same is valid here; namely, the analysis of phase-type preparation times
is a simple expansion of the results derived in this section.

To this end, let B be the sum of N independent random variables Y1, . . . , YN
that are exponentially distributed with parameter µ. Then we can readily prove the
following.

Theorem 4.8 (Alternating service system). The waiting-time distribution has a
mass π0 at the origin, which is given by

π0 = P[B < W +A] = 1−
N−1∑
i=0

(−µ)i

i!
φ(i)(µ)

and has a density fW on [0,∞) that is given by

fW (x) = µNe−µx
N−1∑
i=0

(−1)i

i!
φ(i)(µ)

xN−1−i

(N − 1− i)!
. (4.26)

In the above expression, we have that

φ(i)(µ) =
i∑

k=0

(
i

k

)
ω(k)(µ)α(i−k)(µ)

and that the parameters ω(i)(µ) for i = 0, . . . , N − 1 are the unique solution to the
system of equations

ω(µ) = 1−
N−1∑
i=0

(−µ)i
(
1− 1

2N−i
) i∑
k=0

ω(k)(µ)α(i−k)(µ)
k! (i− k)!

and for ` = 1, . . . , N − 1

ω(`)(µ) =
N−1∑
i=0

µi−`
(−1)i+`

2N−i+`
(N − i+ `− 1)!

(N − i− 1)!

i∑
k=0

ω(k)(µ)α(i−k)(µ)
k! (i− k)!

.

(4.27)

Proof. As before, for a random variable Q and an event E we use the following
notation: E[Q ;E] = E[Q · 1[E]]. Consider the Laplace transform of (1.2); then we
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have that

ω(s) = E[e−sW ] = P[B < W +A] + E[e−s(B−W−A) ;B > W +A]

= P[B < W +A] + E[e−s(B−W−A) ;Y1 > W +A]+ (4.28)

+
N−1∑
i=1

E[e−s(B−W−A) ;Y1 + · · ·+ Yi 6 W +A 6 Y1 + · · ·+ Yi+1].

Using standard techniques and the memoryless property of the exponential distri-
bution one can show that

E[e−s(B−W−A) ;Y1 > W +A]

= E[e−s(Y2+Y3+···+YN )e−s(Y1−W−A) ;Y1 > W +A]

=
( µ

µ+ s

)N−1

E[e−s(Y1−W−A) ;Y1 > W +A]

=
( µ

µ+ s

)N−1

E[e−s(Y1−W−A) | Y1 > W +A] P[Y1 > W +A]

=
( µ

µ+ s

)N
P[Y1 > W +A] (due to the memoryless property)

=
( µ

µ+ s

)N
ω(µ)α(µ). (4.29)

Additionally, for Zi = Y1 + · · ·+ Yi we have that

E[e−s(B−W−A) ;Zi 6 W +A 6 Zi+1]

=
( µ

µ+ s

)N−i−1

E[e−s(Zi+1−W−A) | Zi 6 W +A 6 Zi+1] P[Zi 6 W +A 6 Zi+1]

=
( µ

µ+ s

)N−i (−µ)iφ(i)(µ)
i!

. (4.30)

Finally, we calculate the probability P[B < W + A] by substituting s = 0 in
(4.28) and using equations (4.29) and (4.30). Straightforward calculations give us
now that

ω(s) = 1−
N−1∑
i=0

(−µ)i

i!
φ(i)(µ)

(
1−

( µ

µ+ s

)N−i)
. (4.31)

Inverting the transform yields the density (4.26).
Furthermore, the terms ω(i)(µ), i = 0, . . . , N − 1, that are included in φ(i)(µ)

still need to be determined. To obtain the values of ω(i)(µ), for i = 0, . . . , N − 1, we
differentiate (4.31) N−1 times and we evaluate ω(i)(s), i = 0, . . . , N−1 at the point
s = µ. This gives us the system of equations (4.27). The fact that the solution of
the system is unique follows from the general theory of Markov chains that implies
that there is a unique equilibrium distribution and thus also a unique solution to
(4.27).
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Corollary 4.9. The throughput θ satisfies

θ−1 = E[W ] + E[A] =
N−1∑
i=0

(−1)i

i!
φ(i)(µ)µi−1(N − i)− α′(0).

It is quite interesting to note that the density of the waiting time can be rewritten
as

fW (x) = µe−µx
N∑
i=1

πi
(µx)i−1

(i− 1)!
,

where

πi =
(−µ)N−iφ(N−i)(µ)

(N − i)!

is the probability that directly after a service completion exactly i exponential phases
of B remain. Thus, {πi}, i = 0, . . . , n, is the equilibrium distribution associated with
the matrix P in Section 4.2.2, i.e. πi is the limit of $n,i as n goes to infinity.

phases remaining

W + A

N N − 1 1i 0 preparation

Figure 4.3: The waiting time has a mixed-Erlang distribution.

As it is also clear from Figure 4.3, with probability πi the distribution of the
waiting time is Erlang with i phases, for i = 1, . . . , N . Furthermore, the probability
π0 that the server does not have to wait, or equivalently that at least N exponential
phases expired, is π0 = 1−

∑N
i=1 πi.

Remark 4.2. For N = 1 Theorem 4.8 gives the steady-state density of the waiting
time in case B is exponentially distributed. In this case, we obtain that

π0 = 1− 2α(µ)
2 + α(µ)

and

fW (x) = µe−µx
2α(µ)

2 + α(µ)
,

which implies that

FW (x) = 1− 2α(µ)
2 + α(µ)

e−µx.

This coincides with Theorem 4.1 (or Corollary 4.2 since the distribution of W1 no
longer plays a role in the steady-state distribution of the waiting times) for n→∞.
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Apparently, the same remark is not so straightforward when considering Erlang
preparation times, since in this case the time-dependent distribution is derived in
terms of the equilibrium distribution of a finite-state Markov chain. This justifies
the usage of Laplace transforms for the steady-state distribution, since the result in
this case is simple to describe.

So, practically, for the steady-state distribution of the waiting time, the problem
is reduced to obtaining the solution of an N×N linear system. Extending the above
result to mixtures of Erlang distributions is simple.

4.2.4 Steady-state distribution for G/PH

For n = 1, . . . , N , let the random variable Yn follow an Erlang distribution with
parameter µ and n phases, and let the random variable B of the preparation times
be equal to Yn with a probability κn. In other words the distribution function of B
is given by

FB(x) =
N∑
n=1

κn

(
1− e−µx

n−1∑
j=0

(µx)j

j!

)
, x > 0. (4.32)

So, if κn = 0 for all n = 1, . . . , N − 1, we retrieve the Erlang distribution of the
previous section. This class of phase-type distributions may be used to approximate
any given distribution on [0,∞) for the preparation times arbitrarily close; see
Schassberger [149]. Below we show that Theorem 4.8 can be extended to service
distributions of the form (4.32).

By conditioning on the number of phases of B, we find that

ω(s) = E[e−sW ] = P[B < W +A] +
N∑
n=1

κnE[e−s(Yn−W−A) ;Yn > W +A].

Since Yn follows now an Erlang distribution with n phases, the last equation is
practically a linear combination of Equation (4.28), summed over all probabilities
κn for n = 1, . . . , N . This means that we can directly use the analysis of Section 4.2.3
to calculate the Laplace transform of W in this situation (cf. Equation (4.31)). So
we have that

ω(s) = 1−
N∑
n=1

κn

n−1∑
i=0

(−µ)i

i!
φ(i)(µ)

(
1−

( µ

µ+ s

)n−i)
, (4.33)

where the terms φ(i)(µ) can be calculated in a similar fashion as previously. Inverting
(4.33) yields the density of the following theorem (cf. Theorem 4.8).

Theorem 4.10. Let (4.32) be the distribution of the preparation time B. Then the
distribution of the server’s waiting time has mass π0 at zero which is given by

π0 = P[B < W +A] = 1−
N∑
n=1

n−1∑
i=0

κn
(−µ)i

i!
φ(i)(µ)
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and has a density on [0,∞) that is given by

fW (x) =
N∑
n=1

κn

(
µne−µx

n−1∑
i=0

(−1)i

i!
φ(i)(µ)

xn−1−i

(n− 1− i)!

)
.

One can already see from the above theorem the effect of the different sign in
the Lindley-type equation that describes our model. The waiting-time distribution
for the GI/PH/1 queue is a mixture of exponentials with different scale parameters
(Adan and Zhao [2]) and it is shown to be phase type (Asumssen [5]). In our case
we have that the waiting-time distribution is a mixture of Erlang distributions with
the same scale parameter for all exponential phases.

As we have mentioned before, the practice of alternating between the service
points is inevitably followed in many situations. Still it seems reasonable to argue
that it would be more efficient to choose to serve the first customer that has com-
pleted his preparation time. If we drop the assumption that the server alternates
between the service points then we have the classical machine repair problem, which
is the subject of the following section.

4.3 The non-alternating case

There are several variations of the machine repair problem. In the classical
machine repair problem , there is a number of machines that are served by a unique
repairman when they fail. The machines are working independently and as soon as
a machine fails, it joins a queue formed in front of the repairman where it is served
in order of arrival. A machine that is repaired is assumed to be as good as new.
The model described in Section 1.4 is exactly the classical machine repair problem
with two machines after we drop the assumption that the server alternates between
the service points. Instead of alternating, the server will serve the first customer
that completes his preparation phase, irrespectively of the service point the previous
customer occupied. There are two machines that work in parallel (the two service
points), the preparation time of the customer is equivalent to the life time of the
machine until it fails and the service time of the customer is the time the repairman
needs to repair the machine.

What we are interested in is the waiting time of the repairman until a machine
breaks down or, in other words, the waiting time of the server until the preparation
phase of one of the customers is completed. It is quite surprising that although
the machine repair problem under general assumptions is thoroughly treated in the
literature, this question remains unanswered. We would like to compare steady-
state properties of the alternating service model described in Section 1.4 and the
machine repair problem with two machines. Therefore, for this specific machine
repair problem, we first need to derive the distribution of the waiting time of the
server, when the system is in steady state. The results in this section are limited
to the classical machine repair problem with two machines, and do not apply to a
greater number of machines. In the following we will refer to the server or customers
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instead of the repairman or machines in order to illustrate the analogies between
the two models.

Let B be the random variable of the time needed for the preparation phase and
R be the remaining preparation time just after a service has been completed. Then
obviously the waiting time of the server is W = min{B,R}. The random variables
B and R are independent, so in order to calculate the distribution of W we need
the distribution of R. In agreement to the alternating service model, B follows an
Erlang distribution with N phases. Note that we do not have a simple Lindley-type
recursion for W and therefore this system cannot be easily treated with Laplace
transforms. This means that we have to try an alternative approach.

This approach is analogous to the one presented in Section 4.2.2 for the time-
dependent analysis of the alternating model. Namely, the system can be fully de-
scribed by the number of remaining phases of preparation time that a customer has
to complete, immediately after a service completion. The state space is finite, since
there can be at most N phases remaining and the Markov chain is aperiodic and
irreducible, so there is a unique equilibrium distribution {$i}, i = 0, . . . , N . After
completing a service, the other customer may be already waiting for the server (so
the N exponential phases of the Erlang distribution of the preparation have expired)
or he is in one of the N phases of the preparation time. This means that the remain-
ing preparation time R that the server sees immediately after completing a service
follows the mixed-Erlang distribution FR(x) = $0 + $1G1(x) + · · · + $NGN (x)
(recall that Gi is the Erlang distribution with i phases).

So in order to derive the distribution of R (and consequently the distribution
of W ), we need to solve the equilibrium equations $i =

∑
k$k pki, i = 0, . . . , N ,

in conjunction with the normalising equation
∑
k$k = 1, where pki are the one-

step transition probabilities. Let us determine the probabilities pij , for all i, j ∈
{0, . . . , N}. This can be done in the same fashion as in Section 4.2.2.

A transition from state i to state j, for i, j ∈ {1, . . . , N}, can be achieved in
two ways: either the customer that has just been served or the other one will finish
the preparation phase first. Suppose that the customer that has just been served
finishes first. In this case we know that the last event just before the service starts
is that the N -th phase of that customer expired. The other customer was in state
k and during the service time the other customer reached state j, i.e. k − j phases
of that customer have expired. The probability of this event is given by

N∑
k=j

(1
2

)N+i−k
(
N + i− k − 1

N − 1

)
(−µ)k−j

(k − j)!
α(k−j)(µ),

where α is as before the Laplace transform of the service time. Note that in the
above expression we have that

P[exactly k − j exponential phases expired during [0, A)] =
(−µ)k−j

(k − j)!
α(k−j)(µ).

Similarly we can determine the probability of a transition from state i to state j in
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the second case. So in the end we have that for all i, j ∈ {1, . . . , N},

pij =
N∑
k=j

(1
2

)N+i−k
[(
N + i− k − 1

N − 1

)
+
(
N + i− k − 1

N − k

)]
(−µ)k−j

(k − j)!
α(k−j)(µ).

(4.34)
The transition probabilities from state zero to any state i = 1, . . . , N are

p0i =
(−µ)N−i

(N − i)!
α(N−i)(µ), (4.35)

since starting from state zero means that the other customer was already waiting
when the repairman finished a service and reaching state i means that during the
service time, exactly N− i exponential phases expired. For the transition from state
zero to state zero we have that during the service time at least N exponential phases
expired, so

p00 =
∞∑
i=N

(−µ)i

(i)!
α(i)(µ). (4.36)

Similarly, we have that for i = 1, . . . , N

pi0 =
N∑
k=1

(1
2

)N+i−k
[(
N + i− k − 1

N − 1

)
+
(
N + i− k − 1

N − k

)]( ∞∑
j=k

(−µ)j

(j)!
α(j)(µ)

)
,

(4.37)
where

(
a
b

)
= 0 for 0 6 a < b.

With the one-step transition probabilities one can determine the equilibrium
distribution and thus FR. Then we have that the distribution of the waiting time
of the server, if we drop the assumption that he is alternating between the service
points, is given by the following theorem.

Theorem 4.11 (Non-alternating service system). The waiting-time distribution is

FW (x) = FR(x) + FB(x)− FR(x)FB(x),

where FR is the distribution of the remaining preparation time of a customer and is
equal to

FR(x) = $0 +$1G1(x) + · · ·+$NGN (x).

In the above expression, {$i}, i = 0, . . . , N , is the unique solution to the system of
equations

$i =
N∑
k=0

$k pki and
N∑
k=0

$k = 1, for i = 0, . . . , N,

where pij are given by the equations (4.34)-(4.37).

Remark 4.3. The above results can be easily extended to phase-type preparation
times of the form (4.32). However, this extension does not contribute significantly
to the analysis, since it is along the same lines of the analysis in this section.
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Remark 4.4. The one-step transition probabilities derived in this section allow for a
similar analysis for this model as in Section 4.2.2. We can namely derive the time-
dependent distribution, the cycle-length distribution, and the covariance function
between two waiting times in the same fashion as before.

This method of defining a Markov chain through the remaining phases of the
preparation time after a service has been completed and using the equilibrium dis-
tribution in order to calculate the mixing probabilities of R can, of course, also be
used in the alternating service system. In that case, the waiting time W is exactly
the remaining preparation time R. Furthermore, as we have noted, the probabilities
πi, for i = 0, . . . , N as defined in Section 4.2.3 form the equilibrium distribution
of the underlying Markov chain associated with the transition matrix P introduced
in Section 4.2.2. Furthermore, the system of equations (4.27) can be rewritten as
follows:

ω(µ) = π0 +
N∑
i=1

πi
2i

ω(`)(µ) =
N∑
i=1

πi(−µ)−`

2i+`
(i+ `− 1)!

(i− 1)!
for ` = 1, . . . , N − 1.

4.4 Performance comparison

One may wonder if there is any connection between the waiting time of the
server in the two models that can help in understanding how the models perform.
From this point on in this chapter, we will use the superscript A (NA) for all
variables associated with the (non-)alternating service system when we specifically
want to distinguish between the two situations. Otherwise the superscript will be
suppressed. So, for example, the random variable WA will be the waiting time of
the server in the alternating service system.

4.4.1 Stochastic ordering

Suppose that the distributions of the two random variables X and Y have a
common support. Then the stochastic ordering X >st Y is defined as (cf. [109, 125,
157])

P[X > x] > P[Y > x], for all x in the support,

and we say that X dominates Y .
Intuitively one may argue thatWA >st W

NA since one expects that large waiting
times occur with higher probability in the alternating service system. However this
is not true. Let us imagine the situation where the service times are equal to
zero. Then in the alternating service system we will have that the waiting time of
the server is zero if Bi > Bi+1 for some i. So since P[Bi > Bi+1] > 0, we have
P[WA = 0] > 0. In the non-alternating system however, we will have zero waiting
time only if both preparation phases finish at exactly the same instant. Since the
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preparation times are continuous random variables we have that P[Bi = Bi+1] = 0
for every i and thus P[WNA = 0] = 0. In Figure 4.4 we have plotted the distribution
of the waiting time for both situations in the case where the service times are equal
to zero and the B follows an Erlang distribution with µ = 5 and five phases.

1 2 3 4 5
x
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0.4
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0.8

1
PHW£xL

non-alternating

alternating

Figure 4.4: WA and WNA are not stochastically ordered.

The situation that we have described above is not a rare example. In fact, the
following result holds.

Theorem 4.12. For any distribution of the preparation and the service time, we
have that P[WA = 0] > P[WNA = 0].

Proof. Both processes regenerate when a zero waiting time of the server occurs.
Therefore in a cycle there is precisely one customer for whom the server did not
have to wait. This means that the fraction of customers for whom the server does
not wait is

P[W = 0] =
1

E[C]
,

where E[C] is the average number of customers in a cycle, i.e. the mean cycle length.
So it suffices to show that E[CA] 6 E[CNA].

To prove this, we will couple the two systems and use sample path arguments.
We will show that for a given initial state and for any realisation of preparation
and service times the number of customers in a cycle is greater in the alternating
case than in the non-alternating case. To couple the systems we will use the same
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realisations for the preparation and the service times. To this end, let {Bi} be a
sequence of preparation times and {Ai} a sequence of service times. We need to
observe the system until the completion of the first cycle. For both systems assume
that the server starts servicing the first customer at time zero while at the other
service point a customer has just started his preparation phase B1. Additionally, let
Rn be the remaining preparation time for the n-th customer immediately after the
service of the (n−1)-st customer has finished. As long as Rn 6 Bn+1 both processes
are identical, since both servers will alternate between the two service points. In
addition, all waiting times until that point will be strictly positive. As soon as
Rn > Bn+1, the alternating service system will regenerate for the first time, since
we will have that WA

n = Rn and WA
n+1 = 0. The non-alternating system however

does not necessarily regenerate. For this system we have that WNA
n = Bn+1 and

RNA
n+1 = Rn−Bn+1−An. Therefore, if RNA

n+1 = 0 then WNA
n+1 = 0 and both processes

regenerate. Otherwise the non-alternating system will not regenerate. Hence, for
each realisation we have that CNA > CA which implies that the mean cycle length
E[CNA] of the non-alternating system is at least as long as the mean cycle length
E[CA] of the alternating system.

4.4.2 Mean waiting times

Although the waiting times in the two situations are not stochastically ordered,
we have however that the mean waiting time of the server of the alternating service
model E[WA] is larger than or equal to the mean waiting time of the server in
the non-alternating system E[WNA]. This is quite natural, since we expect the
non-alternating system to perform better in terms of throughput, regardless of the
distribution of the preparation phase.

To prove this result for the mean waiting times, we will again couple the two
systems. We will make use of the same realisations {Bi} and {Ai} for the preparation
and the service times respectively and we will continue with sample path arguments.
We assume that the initial conditions for both systems are the same, i.e. at time
zero the server starts servicing the first customer, while at the other service point a
customer has just started his preparation phase. Then, for the alternating service
system, define:
DA
i : the i−th departure time

HA
i : the time the server can start serving the other service point after time DA

i .
Also define in the same way DNA

i and HNA
i for the non-alternating system. We need

the following lemma.

Lemma 4.1. For all i, we have that DA
i > DNA

i and HA
i > HNA

i .

Proof. We will apply induction. For i = 1 we have that DA
1 > DNA

1 and HA
1 > HNA

1 ,
since

DA
1 = A1 > A1 = DNA

1

and thus
HA

1 = max{DA
1 , B1} > max{DNA

1 , B1} = HNA
1 .
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Suppose that for some i we have that DA
i−1 > DNA

i−1 and HA
i−1 > HNA

i−1. We will
prove that DA

i > DNA
i and HA

i > HNA
i and this will conclude the proof.

The first relation is obvious. From the induction hypothesis we have HA
i−1 >

HNA
i−1, so

DA
i = HA

i−1 +Ai > min{HNA
i−1, D

NA
i−1 +Bi}+Ai = DNA

i .

For the second inequality, first notice that

HA
i = max{DA

i , D
A
i−1 +Bi} and HNA

i = max{DNA
i ,max{HNA

i−1, D
NA
i−1 +Bi}},

because, for example, in the non-alternating case the other service point will either
be ready at time DNA

i when the previous customer departs, or it will be ready after
the preparation phase at this point is completed, at the time point equal to the
maximum of HNA

i−1 and DNA
i−1 +Bi.

To prove that

HA
i = max{DA

i , D
A
i−1 +Bi} > max{DNA

i ,max{HNA
i−1, D

NA
i−1 +Bi}} = HNA

i , (4.38)

we will show that the maximum term of the left-hand side of the inequality (4.38)
is greater than or equal to any term of the right-hand side, thus also greater than
or equal to the maximum of them.

Assume that HA
i = DA

i . Then DA
i > DNA

i as we have proven above, furthermore
DA
i = HA

i−1 + Ai > HNA
i−1 since HA

i−1 > HNA
i−1 and finally since HA

i = DA
i then

DA
i > DA

i−1 +Bi > DNA
i−1 +Bi. The case for HA

i = DA
i−1 +Bi follows similarly.

A corollary of the previous result is the following.

Corollary 4.13. For all i,
∑i
jW

A
j >st

∑i
jW

NA
j .

Proof. The proof is a direct consequence of the fact that for the coupled systems

WA
1 +A1 + · · ·+WA

i +Ai = DA
i > DNA

i = WNA
1 +A1 + · · ·+WNA

i +Ai.

So, although the random variables WA and WNA are not stochastically ordered,
the partial sums of the sequences WA

i and WNA
i are.

It is also interesting to note that Lemma 4.1 immediately implies that the
throughput is greater in the non-alternating system than in the alternating sys-
tem since

θA = lim
i→∞

i

DA
i

6 lim
i→∞

i

DNA
i

= θNA.

Moreover we have that θ =
(
E[W ]+E[A]

)−1, so we can readily establish the following
result:

Theorem 4.14. Given any distribution for the preparation and the service time,
we have that E[WA] > E[WNA].
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Figure 4.5: E[WA] is greater than or equal to E[WNA].

Figure 4.5 demonstrates a typical situation. For two values of the ratio

r =
E[A]
E[B]

we have plotted the normalised waiting time E[W ]/E[A] versus the squared coeffi-
cient of variation c2A of the service time A. We have chosen the mean service time to
be E[A] = 1 and the preparation time to be composed of five exponential phases. As
before, A stands for the alternating service system and NA for the non-alternating
system. One can see from these two examples that the average waiting time in the
alternating service system is larger than in the non-alternating system. As is the
case for the GI/G/1 queue, the waiting time depends almost linearly on c2A. As c2A
increases, the waiting time also increases and for the alternating case the rate of
change is bigger. The difference of the mean waiting time in the alternating and
the non-alternating case is eventually almost constant and this difference increases
as the value of r decreases.

Remark 4.5. From Theorem 4.12 and Theorem 4.14 we can conclude that there is
at least one point where the waiting time distributions of both systems intersect.
Figure 4.4 suggests though that this point is unique. So, since the mean waiting
times are both finite, this implies that WNA is smaller than WA with respect to the
increasing convex ordering ; namely

E[φ(WNA)] 6 E[φ(WA)]
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for all increasing convex functions φ, for which the mean exists. This follows as a
direct application of the Karlin-Novikoff cut-criterion (cf. Szekli [157]).

4.5 Numerical results

This section is devoted to some numerical results. In Figure 4.5 we have already
shown how the normalised waiting time changes when the squared coefficient of
variation of the service time is modified. Figure 4.6 shows the normalised waiting
time plotted against the squared coefficient of variation of the preparation time. The
preparation time is assumed to follow an Erlang distribution. We chose E[A] = 1
and c2A = 0.2 and we fitted a mixed Erlang distribution according to the procedure
described in Section 3.7.
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Figure 4.6: The normalised waiting time is almost insensitive to c2B in the non-
alternating system.

We have plotted the normalised waiting time for three different values of the ratio
r; namely for r = 0.4, which implies that the service time is 40% of the preparation
time, up to r = 1.2. The latter implies that for the alternating service model the
server in general does not have to wait much. One can see that the normalised
waiting time depends almost linearly on c2B for the alternating service system, but
for the non-alternating system it is almost insensitive to c2B , and thus to the number
of exponential phases of the preparation time. This can be explained by the fact
that Erlang loss models are insensitive to the service time distribution apart from
its first moment; see for example Kelly [99]. More specifically, one can view the
machine repair model that we have described as an E/G/2/2 loss system. Here
the repairman acts as the Poisson source of an Erlang loss model if B follows an
exponential distribution. However, the preparation times are a sum of exponentials
and that causes the slight fluctuation in the mean waiting time.

Figure 4.7 shows the normalised waiting time plotted against the mean prepara-
tion time. We have chosen c2A to be equal to 0.8 and we have fitted a mixed-Erlang
distribution to the mean service time and the squared coefficient of service. As ex-
pected, the normalised waiting time E[W ]/E[A] depends almost linearly on the mean
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Figure 4.7: The normalised waiting time vs. E[B].

preparation time. For larger values of the mean preparation time, the normalised
waiting time increases.

4.6 A comparison to Lindley’s recursion

In Section 4.2.1 we have seen that the distribution ofWn and other characteristics
of {Wn} are quite explicit if all Bn have an exponential distribution. Since our
recursion is, up to a sign, identical to Lindley’s recursion, it is interesting to compare
the complexity of both recursions. In this section, Wn will denote the waiting time
of the n-th customer in a G/G/1 queue with first-come-first-served discipline, unless
otherwise stated. To this end, let Wn, n > 1 be driven by Lindley’s recursion, i.e.,

Wn+1 = max{0, Xn+1 +Wn},

with Xn+1 = Bn+1 −An as defined before.
In this section we compare the results we have derived so far for the time-

dependent behaviour of Recursion (1.1) to the analogous cases for Lindley’s recur-
sion. In other words, for the G/M/1 queue we derive the time-dependent distribu-
tion of the waiting times in Section 4.6.1, and we review results on the length of the
busy cycle in Section 4.6.2. Furthermore, we mention some known results on the
covariance function for the G/G/1 queue in Section 4.6.3. For the steady-state dis-
tribution of the G/PH model we have already highlighted the differences it presents
compared to the steady-state distribution of the G/PH/1 queue in Section 4.2.4.

4.6.1 The time-dependent distribution

The literature on time-dependent properties of Lindley’s recursion and other
queueing systems usually involves general expressions for the double transform∑∞
n=0 r

nE[e−sWn+1 ], which are derived using Spitzer’s identity and the Wiener-Hopf
method; see e.g. Asmussen [6] and Cohen [46].

For the distribution of Wn, note that the following representation holds. Let
Qn be the number of customers in the system when the n-th customer arrives,
and let Q1 = q1 > 0. Then, since all service times (in particular the residual
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service times) are exponential with rate µ, Wn has a mixed-Erlang distribution,
with mixture probabilities P[Qn = k], k = 0, . . . , n + q1. This result is stated as
Equation (3.97) in [46, p. 229]. Although the one-step transition matrix P can be
derived straightforwardly, the probabilities P[Qn = k] are fairly complicated, see
[46, II.3.4]. However, it is possible to give an expression for the generating function∑∞
n=0 r

nP[Q1+n = j] if q1 = 0, see the equation below (3.72) in [46, p. 221]. The
probabilities P[Qn = k] can be computed explicitly for the M/M/1 queue if q1 = 0;
see, for example, Equation (2.26) in [46, p. 185]. Therefore, since the mixed-Erlang
representation of the distribution of Wn for the G/M/1 case is not very explicit, in
the following we give an alternative form of the distribution of Wn for the M/M/1
queue, which we could not find in the literature and which we derive by means of
some simple probabilistic arguments.

Let Z be a geometric random variable, independent of everything else, with
success probability r, that is, P[Z = n] = (1 − r)rn. Then, by conditioning on Z,
we have that P[WZ+1 > x] = (1− r)f(r, x), with

f(r, x) =
∞∑
n=0

rnP[Wn+1 > x]

the generating function of P[Wn+1 > x]. Thus, to get an expression for f(r, x), it
suffices to obtain the distribution of WZ+1.

For this, we use two more probabilistic ideas. Assume that W1 = 0. Then
we have that Wn+1

D= maxk=0,...,n Sk, with S0 = 0 and Sn = X1 + · · · + Xn; see
e.g. Asmussen [6, Chapter 8]. Finally, we reduce the problem to computing the
distribution of the all-time maximum of a related random walk. For this, we define
an i.i.d. sequence of random variables A′i, i > 1 as follows. For any i we let A′i = Ai
with probability r and A′i = ∞ with probability 1− r. We see that we can interpret
Z as the first value of i such that A′i = ∞. Define S′n = X ′

1 + · · · + X ′
n, with

X ′
i = Bi+1 −A′i. Since S′n = −∞ if n > Z and Sn = S′n if n < Z, it follows that

WZ+1
D= max
k=0,...,Z

Sk
D= max

k>1
S′k =: Mr.

We see that WZ+1 has the same distribution as the supremum Mr of a random walk
S′n, n > 1 with exponentially distributed upward jumps. For such random walks it
is well known (see Theorem 5.8 in [6, p. 238]) that

P[Mr > x] =
(
1− η(r)/µ

)
e−η(r)x,

with η(r) the unique positive solution of the equation

µ

µ− η(r)
E[e−η(r)A

′
1 ] = 1. (4.39)

We conclude that, for the G/M/1 queue,

(1− r)
∞∑
n=0

rnP[Wn+1 > x] =
(
1− η(r)/µ

)
e−η(r)x,
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and thus, in particular,

f(r, x) =
1

1− r

(
1− η(r)/µ

)
e−η(r)x. (4.40)

Obtaining an explicit expression for η(r) is quite complicated. However, if A is
exponentially distributed with rate λ, then η(r) is given by

η(r) =
1
2

(
µ− λ+

√
(λ− µ)2 + 4λµ(1− r)

)
. (4.41)

Thus, the tail distribution of Wn+1 for the M/M/1 queue can be derived by substi-
tuting (4.41) into the right-hand side of (4.40) and rewriting the resulting expression
as a power series in r. This is in general possible, although rather cumbersome. To
illustrate this, consider the case where ρ = λ/µ = 1. This case results to the
most simple expression for η(r), as η(r) reduces to µ

√
1− r. Using the power series

expansions

ey =
∞∑
i=0

yi

i!
, and (1− r)a =

∞∑
j=0

(
a

j

)
(−r)j ,

we then see that

f(r, x) =
1

1− r

(
1−

√
1− r

)
e−µ

√
1−r x

=
∞∑
k=0

(−µx)k

k!

∞∑
n=0

[(k
2 − 1
n

)
−
(k−1

2

n

)]
(−r)n

=
∞∑
n=0

rn(−1)n
∞∑
k=0

(−µx)k

k!

[(k
2 − 1
n

)
−
(k−1

2

n

)]
.

By identifying this expression as a power series in r we see that, for the M/M/1
queue with ρ = 1,

P[Wn+1 > x |W1 = 0] = (−1)n
∞∑
k=0

(−µx)k

k!

[(k
2 − 1
n

)
−
(k−1

2

n

)]
,

since we have assumed that W1 = 0 in order to express Wn+1 as the maximum of a
random walk. We compare this expression to the distribution of the waiting time in
the M/M case with W1 = 0 and λ = µ. By using that α(µ) = λ/(λ+µ) = 1/2, that
P[W2 = 0 | W1 = 0] = 1/2, and Theorem 4.1, we obtain for the (n + 1)-st waiting
time of the server in our model that

P[Wn+1 > x |W1 = 0] =
[
2
5
− 1

10

(
−1

4

)n]
e−µx.

We conclude that there is a considerable difference in complexity between the dis-
tributions of the waiting time in the two models. We have shown in Theorem 4.1
that the distribution of Wn in the alternating service model is a simple mixture
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of an atom at zero and an exponential distribution, while the distribution of Wn

in Lindley’s recursion can only be represented by its generating function, or by
a mixed-Erlang representation of which the mixture probabilities are given by a
generating function.

4.6.2 The busy cycle

For Lindley’s recursion, the generating function of the busy cycle C = inf{n >
1 : Wn+1 = 0 | W1 = 0} can be extracted from Equation (3.89) in Cohen [46, p.
226]. Translated to our notation, we have that

E[rC ] =
r − λ(r)
1− λ(r)

,

with λ(r) the smallest zero in absolute value of the function z − r α
(
µ(1 − z)

)
. It

can be shown that λ(r) = 1− η(r)/µ, with η(r) determined by (4.39). This implies
that

E[rC ] =
η(r)− µ(1− r)

η(r)
.

For the M/M/1 queue with load ρ, an explicit expression is available, see for example
Equation (2.43) in Cohen [46, p. 190], which states that

P[C = n] =
1

2n− 1

(
2n− 1
n

)
ρn−1

(1 + ρ)2n−1
.

Again the difference in complexity between Lindley’s recursion and our recursion is
clear, cf. Theorem 4.3.

4.6.3 The covariance function

For the GI/M/1 queue Pakes [139] studies the covariance function of the waiting
times. Theorem 1 of [139] gives the generating function of the correlation coefficients
of the waiting times in the stationary GI/M/1 queue in terms of the unique positive
solution of a specific functional equation. Furthermore, the correlation coefficients
themselves are also given, but now in terms of the probabilities that no other waiting
time than W0 is equal to zero, up to time n. These expressions involve the proba-
bility generating function of the distribution of the number of customers served in
a busy period, and are not very practical for numerical computations. Blanc [22] is
concerned with the numerical inversion of the generating functions of the autocor-
relations of the waiting times, as they are given in [139] and in Blomqvist [23], who
derives for the M/G/1 queue results analogous to those in [139]. Evidently, these
results are far more complicated and implicit than the simple expression for the co-
variance between Wn and Wn+k that is given in Theorem 4.4. Not only is the usage
of generating functions not required, but neither is the assumption of stationarity.

To summarise, the time-dependent analysis of (1.1) when A is generally dis-
tributed and B is exponential is far more easy, and leads to far more explicit results,
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than the analysis and the results obtained for the G/M/1 queue. In the next chap-
ter we study the M/G model. The M/G/1 queue is perhaps the easiest queue to
analyse. However, as we shall see in the sequel, the M/G model is the one presenting
the most difficulties for the alternating service model we are studying.



Chapter 5

The M/G model

5.1 Introduction

In the previous chapter we have examined various aspects of the G/PH model.
Namely, we have assumed that the distribution of the service time FA is some general
distribution on [0,∞) and the distribution of the preparation time FB is a mixture
of Erlang distributions, and under these assumptions we derived the time-dependent
and the steady-state distribution of the waiting times. The methods that we have
described there are surprisingly simple. The main idea we have utilised is based on
the observation that if the preparation times follow a phase-type distribution, then
the analysis of the G/PH model reduces to the analysis of a finite-state Markov
chain. Moreover, this observation is valid not only for the examples discussed in
Section 1.2, but also for examples where the server is not obliged to alternate be-
tween the two service stations. This has led us to the study of the waiting time of
the server in the machine repair model with two machines, and to the comparison
of these two models.

In this chapter we would like to study a more general model than the one anal-
ysed in the previous chapter. Specifically, we would like to remove the assumption
that the preparation times follow a phase-type distribution, and allow for more gen-
eral distributions. To keep the analysis simple, we shall first consider exponentially
distributed service times. In other words, in this chapter we would like to con-
sider the M/G model. We shall see however in Section 5.2, that the waiting-time
distribution for this model is the solution to a generalised Wiener-Hopf equation,
as was also the case for the generating function of the waiting times Wn; see Sec-
tion 1.6. Although this equation can be approximated iteratively, there seems to be
no straightforward way to solve it exactly.

Functional analysis has extensively studied various classes of convolution equa-
tions. Wiener-Hopf equations are well understood and various methods have been
developed to study generalised Wiener-Hopf equations. A standard procedure lead-
ing to the solution of generalised Wiener-Hopf equations is to factorise the kernel of
the equation (whenever the kernel admits factorisation). Inspired by this technique,
in Section 5.3 we shall introduce a class of distributions that possess this property.
As we shall see there, this class is strictly bigger than the class of phase-type distri-
butions. Thus, by considering preparation-time distributions belonging to this class
we generalise the results obtained in the previous chapter.

For exponential service times, we derive the steady-state waiting-time distribu-
tion in Section 5.4, while in Section 5.5 we briefly discuss the procedure for generally
distributed service times. In Section 5.6 we work out in detail two examples in order
to illustrate how the methods we apply in this chapter evolve, and how they compare
to the procedure developed in the previous chapter. We conclude in Section 5.7 with
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some remarks and a comparison of this model to the M/G/1 single-server queue.
This chapter is based on parts of [169].

5.2 Derivation of the integral equation

In this section we derive the equation that we shall work with later on and
we compare this equation with the analogous equation for the M/G/1 single-server
queue. Furthermore, we examine various methods that are traditionally used for
the single-server queue, but do not seem to be very helpful in our case.

To begin with, consider Equation (1.2)

W
D= max{0, B −A−W},

where A is the service time and B is the preparation time of a customer, and W is
the waiting time of the server in the model described in Section 1.4. As before, we
denote by π0 the mass of the waiting-time distribution at zero. From this equation,
we have for the distribution of W that

FW (x) = P[W 6 x] = P[B −W −A 6 x]

=
∫ ∞

0

∫ ∞

0

P[B 6 x+ z + y] dFA(z)dFW (y)

= π0

∫ ∞

0

P[B 6 x+ z] dFA(z) +
∫ ∞

0+

∫ ∞

0

P[B 6 x+ y + z] dFA(z)dFW (y).

(5.1)

Assume now that the service time A is exponentially distributed with parameter λ;
that is, fA(x) = λe−λx. One can show that W has a density when A has one in the
following way. From Equation (1.2) we readily have that

P[W 6 x] =
∫ ∞

−∞
P[A > y − x] dFB−W (y).

Since A has a density, the integral

∫ ∞

−∞
fA(y − x) dFB−W (y)

exists and is the density of FW . Moreover, since fA is continuous, it can be shown
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that fW is continuous. Then (5.1) becomes

FW (x) = π0

∫ ∞

0

FB(x+ z)λe−λz dz +
∫ ∞

0

fW (y)
∫ ∞

0

FB(x+ y + z)λe−λz dzdy

= λπ0eλx
∫ ∞

0

FB(x+ z)e−λ(x+z) dz+

+
∫ ∞

0

λeλ(x+y)fW (y)
∫ ∞

0

FB(x+ z + y)e−λ(x+z+y) dzdy

= λπ0eλx
∫ ∞

x

FB(u)e−λu du+
∫ ∞

0

λeλ(x+y)fW (y)
∫ ∞

x+y

FB(u)e−λu dudy.

For the remainder of this chapter we shall also need to assume that FB is a contin-
uous function. Therefore, we can differentiate with respect to x using Leibniz’s rule
to obtain

fW (x) = λ2π0eλx
∫ ∞

x

FB(u)e−λu du− λπ0FB(x)+

+ λ2

∫ ∞

0

eλ(x+y)fW (y)
∫ ∞

x+y

FB(u)e−λu dudy − λ

∫ ∞

0

FB(x+ y)fW (y) dy

or
fW (x) = λFW (x)− λπ0FB(x)− λ

∫ ∞

0

FB(x+ y)fW (y) dy. (5.2)

What makes this equation troublesome to solve is the plus sign that appears
in the integral at the right-hand side. If we were dealing with the classic M/G/1
single-server queue, then the equation for the M/G/1 queue that is analogous to
(5.2) would be identical apart from this sign. This difference, nonetheless, is of
great importance when we try to derive the waiting-time distribution.

It is not possible to derive a linear differential equation for fW by differentiating
(5.2) as we have done in Chapter 3, since we will not be able to avoid having some
integral at the right-hand side.

Taking Laplace transforms, as we did in Section 4.2.3, is also not useful since the
integral at (5.2) is not a convolution (as it would be, if only the sign in the argument
of FB were different). In Section 4.2.3 we were able to exploit the memoryless prop-
erty of the exponential distribution in order to directly derive the Laplace transform
of FW . Unfortunately, if the situation is reversed and we assume that A, instead
of B, is exponentially distributed, then this simple calculation fails at its very first
step due to the lack of structure of FB ; see Equation (4.28). Therefore, we are not
able to directly obtain an expression for the Laplace transform of W .

Additionally, since we no longer consider phase-type distributions FB , we can
no longer define a convenient Markov chain from the equilibrium distribution of
which we would be able to deduce FW . We have used this approach extensively in
Chapter 4, both for the alternating service system and the non-alternating service
system we considered there. The Markov chain we define there is based on the num-
ber of exponential phases that the customer has to complete during his preparation
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time when the server returns to that service point. Also this approach is heavily
relying on the fact that FB has some structure, and the memoryless property comes
in handy again. Nonetheless, if B follows some general distribution, this method
is not applicable either. We would have to incorporate in the Markov chain the
– unknown – remaining preparation time, which includes too little information to
make any calculations possible.

Moreover, it does not seem possible to factorise the transformed equation into
terms that are analytic either in the right half complex plane or in the left half
plane (this would allow us to use the Wiener-Hopf technique in order to derive the
Laplace transform of W ; we shall use this method in Chapter 8). Therefore, the
case that we are considering here needs special attention.

One should note here that Equation (5.2) can be reduced to a generalised Wiener-
Hopf equation. It is known that the following equation∫ ∞

0

(
K(x− y) + FB(x+ y)

)
fW (y) dy = −π0FB(x) (x > 0) (5.3)

is equivalent to a generalised Wiener-Hopf equation (see Noble [135, p. 233]). Equa-
tion (5.2) reduces to Equation (5.3), if we let the kernel K(x) be the function

K(x) =
δ(x)
λ

− 1{x>0} −
FW (0)

1− FW (0)
,

where δ(x) is the Dirac δ-function and 1{x>0} is the indicator function of the set
{x > 0}. This is indeed the case, since we have that∫ ∞

0

(δ(x− y)
λ

− 1{x>y} −
FW (0)

1− FW (0)

)
fW (y) dy =

fW (x)
λ

−
[
FW (x)− FW (0)

]
− FW (0),

which is exactly in the form of Equation (5.2). We were unable though to solve this
generalised Wiener-Hopf equation.

Although regular Wiener-Hopf equations can be solved rather straightforwardly,
generalised Wiener-Hopf equations cannot be solved by a single technique. For
example, Noble [135, Section 5.2] mentions some problems (that lead to special cases
of Equation (1.6)) that cannot be solved exactly by the Wiener-Hopf technique (cf.
Section 1.6). He then proceeds by giving exact solutions for various special cases of
Equation (1.6).

Some generalised Wiener-Hopf equations, however, can be reduced to Fredholm
equations of the second type, which are equations of the form

f(x)− λ

∫ b

a

f(ξ)K(x, ξ) dξ = g(x),

where f is the unknown function and all other terms are given – compare this also
to Equation (1.3). It is interesting to note at this point that Equation (5.2) is
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a Fredholm integral equation with infinite domain. As is the case for generalised
Wiener-Hopf equations, Fredholm equations have been studied also through examin-
ing properties of their kernel; textbook references on this domain are Masujima [126],
Mikhlin [129], and Tricomi [163].

Under various assumptions, it is well-known that such equations can be solved
by the method of successive iterations. We have already observed this in Section 2.3,
where it was shown that Equation (5.2) satisfies a contraction mapping. Therefore,
successive iterations provide us with a series of functions that converge (geometri-
cally fast) to the unique solution of (5.2).

A particularly tractable case occurs for Fredholm equations with a multiplicative
(also called degenerate [129]) kernel. Such a kernel K(x, ξ) consists of the sum of
a finite number of terms, each of which is in its turn the product of two factors,
one of which depends only on x, and the other only on ξ. Integral equations with
a multiplicative kernel can be simply solved by reduction to a system of algebraic
equations.

Since the derivation of a solution to Equation (5.2) for FB being a general dis-
tribution remains challenging, we will limit ourselves to studying under which con-
ditions we can derive an explicit formula for FW . As discussed in [135], generalised
Wiener-Hopf equations can be solved in special cases. In the following section we
shall study a class of distribution functions FB for which such a solution is possible.

5.3 The M class

First we observe that the kernel of Equation (5.2) is the function FB(x + y).
Motivated by standard techniques regarding the invertibility of generalised Wiener-
Hopf operators, we would like to have some multiplicative property of this kernel,
in order for us to be able to factorise it. Therefore, before deriving the waiting-time
distribution, we first define the class M as the collection of distribution functions
F on [0,∞) that have the following property. For every x, y > 0, we can decompose
the tail of the distribution as follows

F (x+ y) = 1− F (x+ y) =
n∑
i=1

gi(x)hi(y),

where for every i, gi and hi are arbitrary measurable functions (that can even be
constants). Of course, by demanding that F is a distribution we have implicitly
made some assumptions on the functions gi and hi, but these assumptions are, for
the time being, of no real importance.

We have constructed this class of distributions only because of the specific form
of the kernel of Equation (5.2), since if FB belongs to this class, the integral ap-
pearing at the right-hand side of (5.2) can be easily computed. A natural question
is to investigate how big this class actually is. We shall show that the class M is
particularly rich.

To begin with, one can see that all phase-type distributions are included in M.
Moreover, for phase-type distributions all the individual functions gi and hi have
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a nice interpretation. For the proof, let F be a phase-type distribution. Such a
distribution F is defined in terms of a Markov jump proces J(x), x > 0, with finite
state space E∪∆, such that ∆ is the set of absorbing states and E the set of transient
states. Then F is the distribution of the time until absorption. It is usually assumed
that the process starts in E; see Asmussen [6, Chapter 3]. For our purpose, suppose
that we have an n + 1-state Markov chain, where state 0 is absorbing and states
{1, . . . , n} are not. Then

F (x) = P[J(x) is not absorbed].

So we have that

F (x+ y) = P[J(x+ y) ∈ {1, . . . , n}]

=
n∑
i=1

P[J(x+ y) ∈ {1, . . . , n} | J(x) = i]P[J(x) = i]

=
n∑
i=1

P[J(y) ∈ {1, . . . , n} | J(0) = i]P[J(x) = i]

=
n∑
i=1

hi(y)gi(x),

with

hi(y) = P[J(y) ∈ {1, . . . , n} | J(0) = i]
gi(x) = P[J(x) = i].

So F belongs to M, and the functions hi and gi express the probability that the
process is in one of the transient states given that it started in state i and the
probability that the process is in state i respectively.

However, M includes more distribution functions apart from the phase-types. A
well-known distribution that is not phase-type but has a rational Laplace transform
(see, for example, Asmussen [6, p. 87]) is the distribution with a density proportional
to (1 + sinx) e−x. So, let the density be f(x) = c (1 + sinx) e−x, where

c−1 =
∫ ∞

0

(1 + sinx) e−x dx =
3
2
.

Then the distribution is given by

F (x) = 1− e−x(2 + sinx+ cosx)
3

and one can easily check now that F (x+ y) can be decomposed into a finite sum of
products of functions of x and of functions of y. In fact, all functions with rational
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Laplace transforms are included in this class. To see this, let the function f(x) have
the Laplace transform

f̂(s) =
P (s)
Q(s)

,

where P (s) and Q(s) are polynomials in s with deg[P ]<deg[Q]. Let now the roots
of Q(s) be q1, . . . , qn with multiplicities m1, . . . ,mn respectively. Then f̂(s) can be
decomposed as follows:

f̂(s) =
c11

(s− q1)
+

c12
(s− q1)2

+ · · ·+
c1m1

(s− q1)m1
+

c21
(s− q2)

+ · · ·+
cnmn

(s− qn)mn
,

where the constants cij are given by

cij =
1

(mi − j)!
dmi−j

dsmi−j

[
(s− qi)mi

P (s)
Q(s)

]∣∣∣∣
s=qi

.

Then f(x) is simply the function

f(x) =
n∑
i=1

mi∑
j=1

cij x
j−1

(j − 1)!
eqix.

Therefore, the corresponding distribution is given by

F (x) =
n∑
i=1

mi∑
j=1

cij
(−qi)j

(
1− eqix

j−1∑
k=0

(−qix)k

k!

)
,

which clearly belongs to M. Our conjecture is that M is exactly the class of
distributions with rational Laplace transform.

5.4 Steady-state distribution for M/M

Having defined a class of distributions in which the kernel of Equation (5.2) can
be factorised, we now proceed with the derivation of the waiting-time distribution.
Denote by β̂ and γi, i = 1, . . . , n, the Laplace transforms of the functions FB and
gi respectively, that is,

β̂(s) =
∫ ∞

0

e−sxFB(x) dx and γi(s) =
∫ ∞

0

e−sxgi(x) dx.

Then the following theorem holds.

Theorem 5.1. Assume that FB ∈M, is continuous, and that for every i = 1, . . . , n
the functions hi(y) are bounded on (0,∞) and∫ ∞

0

|gi(x)|dx <∞.
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Then the distribution of W is given by

FW (x) = 1− eλx
∫ ∞

x

e−λs
(
λπ0FB(s) + λ

n∑
i=1

cigi(s)
)

ds, (5.4)

where the constants π0 and ci, i = 1, . . . , n, are a solution to the linear system of
equations

π0 + λπ0 β̂(λ) + λ
n∑
i=1

ci γi(λ) = 1

and for i = 1, . . . , n,

ci = λπ0

∫ ∞

0

hi(x)
(
FB(x)− λ

∫ ∞

x

e−λ(s−x)FB(s) ds
)

dx+

+ λ
n∑
j=1

cj

∫ ∞

0

hi(x)
(
gj(x)− λ

∫ ∞

x

e−λ(s−x)gj(s) ds
)

dx. (5.5)

Proof. Since FB ∈M, (5.2) becomes

fW (x) = λFW (x) + λπ0FB(x)− λπ0 + λ

∫ ∞

0

FB(x+ y)fW (y) dy − λ

∫ ∞

0

fW (y) dy

= λFW (x) + λπ0FB(x)− λπ0 + λ
n∑
i=1

gi(x)
∫ ∞

0

hi(y)fW (y) dy − λ(1− π0),

or

fW (x) = λFW (x) + λπ0FB(x) + λ

n∑
i=1

cigi(x)− λ, (5.6)

where we have defined
ci =

∫ ∞

0

hi(y)fW (y) dy. (5.7)

Equation (5.6) is a linear differential equation of first order that satisfies the
initial condition FW (0) = π0. Its solution is given by

FW (x) = eλx
∫ x

0

e−λs
(
λπ0FB(s) + λ

n∑
i=1

cigi(s)− λ

)
ds+ π0eλx. (5.8)

We can rewrite the previous equation as follows.

FW (x) = eλx
∫ x

0

e−λs
(
λπ0FB(s) + λ

n∑
i=1

cigi(s)
)

ds+ (π0 − 1)eλx + 1

= eλx
(
π0 + λπ0 β̂(λ) + λ

n∑
i=1

ci γi(λ)− 1
)
−

− eλx
∫ ∞

x

e−λs
(
λπ0FB(s) + λ

n∑
i=1

cigi(s)
)

ds+ 1. (5.9)
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There are n + 1 unknown terms in the above equation, the probability π0 and
the constants ci for i = 1, . . . , n. These constants are a solution to a linear system
of n+ 1 equations which is formed as follows. The first equation is given by

lim
x→∞

FW (x) = 1, (5.10)

or equivalently,

π0 + λπ0 β̂(λ) + λ
n∑
i=1

ci γi(λ) = 1. (5.11)

For i = 1, . . . , n, we form n additional equations using Equation (5.7) as follows.
We substitute fW by using (5.6). For the distribution FW that appears in the latter
equation we use Equation (5.9), after simplifying this one by using (5.11). With
this straightforward calculation we derive linear system for the constants ci in the
form that it appears in (5.5).

For the fact that Equation (5.11) is both necessary and sufficient for (5.10) to
hold, one only needs to note that

lim
x→∞

∫ ∞

x

e−λ(s−x)
(
λπ0FB(s) + λ

n∑
i=1

cigi(s)
)

ds = 0,

since we have that
∫∞
0
|gi(x)|dx <∞.

Denote by Σ the system formed by Equations (5.11) and (5.5). We can show that
Σ has at least one solution by constructing one as follows. From Section 2.2.1 we
know that there exists at least one invariant distribution for W . This distribution,
by definition, satisfies the condition that its limit at infinity equals one and it also
satisfies Equation (5.8). Then it is clear that it also satisfies Σ; therefore, Σ has at
least one solution.

In Corollary 2.3 we have already seen that if one finds a continuous and bounded
solution to (1.2), then this solution is necessarily the limiting distribution. To
complete the proof, it remains to show that these conditions apply to (5.8). First
of all, (5.8) is clearly a continuous function and since limx→∞ FW (x) = 1 and 0 6
FW (0) = π0 < ∞, it is also bounded. Therefore, (5.8) is the limiting distribution.

Remark 5.1. The conditions that appear in Theorem 5.1 guarantee that all the
integrals that appear in the intermediate calculations and in Σ are well defined. In
particular, one should note that demanding that∫ ∞

0

|gi(x)|dx <∞

implies that the random variable B has a finite mean, γi(λ) and β̂(λ) exist and are
finite numbers, and that∫ ∞

0

hi(x)FB(x) dx and
∫ ∞

0

hi(x)gj(x) dx
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exist and are finite; cf. Equation (5.5).
Remark 5.2. We have explained in the proof why Σ has at least one solution, but we
have not excluded the possibility that Σ has multiple solutions. In fact, if we choose
a decomposition of FW such that at least one of the functions, say the function h1,
depends linearly on all other functions – in this case the functions hi –, then we
know beforehand that Σ will have multiple solutions. However, the fact that (5.8) is
necessarily the unique invariant distribution guarantees that the multiple solutions
of Σ will make the term

∑n
i=1 cigi(s) unique, since for each of the solutions of Σ

the function FW appearing in Theorem 5.1 will still be continuous and in L([0,∞)).
Thus, by Corollary 2.3 it will be the unique limiting waiting-time distribution.
Remark 5.3. Equation (5.11) simply states that P[W = 0] + P[W > 0] = 1. To see
that, observe that

λπ0

∫ ∞

0

e−λxFB(x) dx = π0P[B > A],

and that

λ
n∑
i=1

ci γi(λ) =
n∑
i=1

∫ ∞

0

hi(y)fW (y) dy
∫ ∞

0

λe−λxgi(x) dx

=
∫ ∞

0

∫ ∞

0

λe−λxfW (y)FB(x+ y) dxdy = P[B −A−W+ > 0],

where W+ is the waiting time, given that it is strictly positive.

5.5 The G/M model

As one may observe from the proof of Theorem 5.1, the fact that A is expo-
nentially distributed did not have a significant impact on the analysis (apart from
keeping expressions simple). One can assume that A follows a mixed-Erlang distri-
bution of the form of Equation (3.23) and the proof remains effectively the same.
In fact, the form of the service time distribution is not essential. In the following
we shall highlight the basic conclusions one can draw if A follows a general distri-
bution, without being concerned about making rigorous mathematical statements.
We simply assume that all functions occurring satisfy conditions which permit us
to carry out our operations.

Assume that FB ∈M and rewrite Equation (5.1) as follows:

FW (x) = π0

∫ ∞

0

FB(x+y) dFA(y)+
n∑
i=1

gi(x)
∫ ∞

0+

∫ ∞

0

hi(y+z) dFA(z)dFW (y).

(5.12)

Define now the constants

ci =
∫ ∞

0+

∫ ∞

0

hi(y + z) dFA(z)dFW (y),
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which we need to express only in terms of the distributions FA and FB . To this
end, differentiate (5.12) once to obtain

fW (x) = π0

n∑
k=1

g′k(x)
∫ ∞

0

hk(y) dFA(y) +
n∑
k=1

g′k(x)ck.

We shall substitute this expression into the definition of the constants ci in order to
form an n× n linear system for the unknown constants ci. We have that

ci =
∫ ∞

0+

∫ ∞

0

hi(y + z) dFA(z)dFW (y)

=
∫ ∞

0

∫ ∞

0

hi(y + z)fW (y) dFA(z)dy

=
∫ ∞

0

∫ ∞

0

hi(y + z)
(
π0

n∑
k=1

g′k(y)
∫ ∞

0

hk(u) dFA(u) +
n∑
k=1

g′k(y)ck

)
dFA(z)dy

= π0

n∑
k=1

∫ ∞

0

∫ ∞

0

∫ ∞

0

hi(y + z)g′k(y)hk(u) dFA(u)dFA(z)dy+

+
n∑
k=1

ck

∫ ∞

0

∫ ∞

0

hi(y + z)g′k(y) dFA(z)dy.

The probability π0 will be determined as usual by the normalisation equation

π0 +
∫ ∞

0

fW (x) dx = 1.

As before, one can argue that the linear system determining the constants ci and
the probability π0 has at least one solution which leads to the unique waiting-time
distribution

FW (x) = π0

∫ ∞

0

FB(x+ y) dFA(y) +
n∑
i=1

cigi(x).

This technique is formalised and described in detail in [129, Section I.4].

5.6 Explicit examples

The waiting-time distribution, as it is given by Theorem 5.1, may seem perplex-
ing. It is certainly not straightforward to show even the most basic properties, such
as that limx→∞ FW (x) = 1, since the expression involves an exponential term that
is unbounded and an integral term that tends to zero as x→∞. In this section, we
shall give the details of the computations for two simple examples.

The first example we shall present is the M/M model. One can derive the steady-
state waiting-time distribution for this model either by applying the corresponding
theorem in Chapter 4 or by applying the technique developed in this chapter. We
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have already seen in Remark 4.2 that the waiting-time distribution for this case is
given by

FW (x) = 1− 2α(µ)
2 + α(µ)

e−µx,

and the mass of the distribution at the origin is given by

π0 = 1− 2α(µ)
2 + α(µ)

.

In the expressions above we have that α(µ) = λ/(λ + µ). If one wishes to apply
Theorem 5.1 however, then the first step is to find a decomposition of the function
FB(x + y) into a sum of products of functions either of x or of y. In our case, a
decomposition is quite apparent, since FB(x+ y) = e−µ(x+y); thus, one can simply
choose the functions

h1(x) = g1(x) = e−µx.

Obviously, the way to decompose the kernel is not unique, though any decomposition
may be used. The next step is to obtain the unique solution of the linear system

π0 + λπ0 β̂(λ) + λc1 γ1(λ) = 1,

c1 = λπ0

∫ ∞

0

h1(x)
(
FB(x)− λ

∫ ∞

x

e−λ(s−x)FB(s) ds
)

dx+

+ λc1

∫ ∞

0

h1(x)
(
g1(x)− λ

∫ ∞

x

e−λ(s−x)g1(s) ds
)

dx.

Recall that

β̂(s) =
∫ ∞

0

e−sxFB(x) dx and γ1(s) =
∫ ∞

0

e−sxg1(x) dx.

Then the above linear system can be rewritten as

π0 + λπ0
1

λ+ µ
+ λc1

1
λ+ µ

= 1,

c1 = λπ0
1

2(λ+ µ)
+ λc1

1
2(λ+ µ)

,

the solution of which is given by

π0 =
2µ+ λ

2µ+ 3λ
and c1 =

λ

2µ+ 3λ
.

Thus, by Theorem 5.1 we have that the steady-state waiting-time distribution is
given by

FW (x) = 1− eλx
∫ ∞

x

e−λs
(
λπ0e−µs + λ

λ

2µ+ 3λ
e−µs

)
ds,
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which reduces to the expression we have obtained in Remark 4.2; namely,

FW (x) = 1− 2λ
2µ+ 3λ

e−µx.

It is quite apparent that if FB is a phase-type distribution, then the computational
effort is greater when applying Theorem 5.1 than Theorem 4.8. In both cases we
are called to solve a linear system; however, in order to apply the method devel-
oped in this chapter, we also need to find a decomposition of the kernel FB(x+ y)
and compute the distribution from Equation (5.4). However, if FB is not phase
type, then this method is the most straightforward one (compared to the option of
approximating the given distribution for the preparation times with a phase-type
distribution and then applying Theorem 4.8). This leads us to our second example.

The second example we shall present relates to the case where FB has a rational
Laplace transform, but is not phase type. To this end, let the preparation-time
distribution be given by

FB(x) = 1− e−x(2 + sinx+ cosx)
3

.

Since

FB(x+ y) =
1
3

e−(x+y)
(
2 + sinx cos y + cosx sin y + cosx cos y − sinx sin y

)
,

we can pick the following functions for the decomposition:

g1(x) =
2
3

e−x, h1(x) = e−x, g2(x) = h3(x) = g5(x) = e−x sinx,

g4(x) = e−x cosx, h5(x) = −1
3

e−x sinx, h2(x) = g3(x) = h4(x) =
1
3

e−x cosx.

Thus, we have that

β̂(s) =
6 + 7s+ 3s2

3(1 + s)(2 + 2s+ s2)
, γ1(s) =

2
3(1 + s)

,

γ2(s) = γ5(s) =
1

2 + 2s+ s2
, 3γ3(s) = γ4(s) =

1 + s

2 + 2s+ s2
,

and the system for the probability π0 and the constants c1, . . . , c5 now becomes

π0 + λπ0
6 + 7λ+ 3λ2

3(1 + λ)(2 + 2λ+ λ2)
+

+ λ
( 2c1

3(1 + λ)
+

c2 + c5
2 + 2λ+ λ2

+
(1 + λ)(c3 + 3c4)
3(2 + 2λ+ λ2)

)
= 1,

c1 = λπ0

( 1
3 + 3λ

+
6 + 2λ

15(2 + 2λ+ λ2)

)
+

+
1
15
λ
( 5c1

1 + λ
+

6c2 + 4c3 + 12c4 + 6c5 − 3λ(c2 − c3 − 3c4 + c5)
2 + 2λ+ λ2

)
,
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c2 = λπ0

( 4
45(1 + λ)

+
4 + λ

36(2 + 2λ+ λ2)

)
+

+ λ
( 4c1

45(1 + λ)
+

3(c2 + c3 + 3c4 + c5)− λ(3c2 − 2c3 − 6c4 + 3c5)
36(2 + 2λ+ λ2)

)
,

c3 =
λπ0(26 + 31λ+ 13λ2)
60(2 + 4λ+ 3λ2 + λ3)

+

+
λ

60

( 8c1
1 + λ

+
5(3c2 + c3 + λc3 + 3λc4 + 3c4 + 3c5)

2 + 2λ+ λ2

)
,

c4 = λπ0

( 4
45(1 + λ)

+
4 + λ

36(2 + 2λ+ λ2)

)
+

+ λ
( 4c1

45(1 + λ)
+

3(c2 + c3 + 3c4 + c5)− λ(3c2 − 2c3 − 6c4 + 3c5)
36(2 + 2λ+ λ2)

)
,

c5 =
−λπ0(26 + 31λ+ 13λ2)
180(2 + 4λ+ 3λ2 + λ3)

−

− λ
( 2c1

45(1 + λ)
+

3c2 + c3 + λc3 + 3c4 + 3λc4 + 3c5
36(2 + 2λ+ λ2)

)
.

The solution to this system is given by

π0 =
10800 + 16200λ+ 9753λ2 + 2542λ3

10800 + 27000λ+ 22353λ2 + 7940λ3
,

c1 =
5760λ+ 6612λ2 + 2663λ3

10800 + 27000λ+ 22353λ2 + 7940λ3
,

c2 = c4 =
4680λ+ 5301λ2 + 2066λ3

3 (10800 + 27000λ+ 22353λ2 + 7940λ3)
,

c3 = −3c5 =
2340λ+ 2778λ2 + 1176λ3

10800 + 27000λ+ 22353λ2 + 7940λ3
,

from which we can compute the waiting-time distribution. For our example, the
distribution is given by

FW (x) = 1− 2λe−x

10800 + 27000λ+ 22353λ2 + 7940λ3
×

×
(
5(720 + 744λ+ 347λ2) + 4(450 + 645λ+ 241λ2) cosx+

+ 2λ(255 + 286λ) sinx
)
.

As an example, in Figure 5.1 we have plotted the waiting-time distribution for λ = 2.



5.7 Concluding remarks 117

0.5 1 1.5 2
x

0.2

0.4
Π0

0.6

0.8

1

FWHxL

Figure 5.1: The waiting-time distribution for λ = 2.

A few observations are necessary. As we can see from the above examples,
the size of the system cannot be determined before choosing a decomposition of
the kernel (for example, even for phase-type distributions it is not necessarily a
function of the number of phases of FB). The technique is, however, simple and can
be implemented without any numerical difficulties. Therefore, for preparation-time
distributions that are not of the phase-type form considered in Chapter 4 but have
a rational Laplace transform, it is more advantageous to apply Theorem 5.1 than
approximate the given distribution with a phase-type distribution of the form of
Equation (4.32) and then employ Theorem 4.10.

5.7 Concluding remarks

In this chapter, we have reduced the analysis of the M/G model to the solution
of a set of linear equations. The technique we have used is a well-known method,
frequently used for the solution of Fredholm equations, whenever the kernel of the
equation admits factorisation.

A quick comparison of this model to the M/G/1 queue reveals that there is an
abundance of differences between them. Consider the M/G/1 queue with occupation
rate ρ < 1. In steady state we have that the distribution of the waiting time W is
given by an infinite sum of convolutions of the residual service time; namely,

FW (x) = (1− ρ)
∞∑
0

ρn
(

1
E[B]

∫ x

0

(
1− FB(y)

)
dy
)n∗

.

It does not seem possible to derive the steady-state waiting-time distribution for
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every distribution FB for our model, while for the single-server queue we have in
this case a variety of methods to choose from. The collection of distributions that
do not fall under the framework of this chapter includes distributions with discon-
tinuities, distributions without a rational Laplace transform, and distributions on
a bounded support. For such distributions, one may approximate FB by an ap-
propriate distribution, for which we can obtain an exact result for the steady-state
waiting-time distribution. We shall consider such approximation schemes in the
following chapter.

Since the steady-state distribution of the M/G model is so troublesome, it does
not seem surprising that the time-dependent distribution for this model also presents
difficulties. Naturally, as we have noted before, the methods developed in the previ-
ous chapter cannot be applied here. Due to the lack of structure of the preparation-
time distribution, we cannot define a suitable Markov chain without incorporating
the – unknown – distribution of the residual preparation time (for example, after a
service completion). Again, the difference between this model and the single-server
queue is apparent. For the M/G/1 queue the generating function of the Laplace-
Stieltjes transform of Wn is explicitly known (see Cohen [46, Section II.4.5]), while
even this result seems difficult to derive for our model.



Chapter 6

Approximations

6.1 Introduction

So far we have mainly derived exact formulas for the waiting-time distribu-
tion of the server for the alternating-service model described in Section 1.4. These
formulas, however, cannot be applied for every possible setting. In particular, if
the preparation-time distribution FB does not belong to the class of distributions
described in Section 5.3, then we do not have a closed-form expression for the
steady-state waiting-time distribution FW . In such a case, one has to resort to
approximations or simulation.

In Chapter 2 we have derived several results that can be used for various approx-
imation schemes. For example, the covariance function in Section 2.6 can be used to
give an approximation of the standard deviation of a series of waiting times obtained
by simulation. From the results in Section 2.5 regarding the tail behaviour of the
model we can obtain an estimation of the probability that the waiting time exceeds
a large value, while from Theorem 2.2 we see that the waiting-time distribution can
be approximated by consecutive iterations of a functional equation.

Another possible approach for approximating FW is to approximate FB and
compute the exact waiting-time distribution for this approximation by applying
results derived in the previous chapters. For example, if FB is approximated by
a phase-type distribution, then the resulting steady-state waiting time is given by
Theorem 4.10. In this chapter, we discuss such approximation schemes.

An innate question is about the approximation error involved. We treat this
subject by giving bounds for the error made in the computation of the waiting-time
distribution in case either FA or FB are approximated. In order to provide these
bounds in Section 6.2, we utilise the fact that the mapping T given in Equation (2.2)
is a contraction mapping. Moreover, in Section 6.3 we discuss how one can approx-
imate a given distribution with a phase-type or a polynomial distribution (in case
the given distribution has a bounded support) and we derive a system of differen-
tial equations defining fW for various cases where FB is a mixed distribution with
a continuous and a discrete part. We close the chapter in Section 6.4 with some
numerical results and final remarks.

In this chapter, which is partially based on results derived in [171], we use the
following notational convention: for a function f we denote by f̂ its approximation
both for the case that f is directly approximated and for the case that f̂ is the exact
expression derived for some other approximated function.
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6.2 Error bounds

Error bounds for queueing models have been studied widely. The main question
is to define an upper bound of the distance between the distribution in question
and its approximation, that depends on the distance between the governing distri-
butions. These bounds are obtained both in terms of weighted metrics (see, e.g.,
[96]) and non-weighted metrics (see, e.g., [26, 28] and references therein). An im-
portant assumption which is often made in these studies is that the recursion under
discussion should be non-decreasing in its main argument. Since this assumption
does not hold for the model we discuss, in this section we derive error bounds for the
approximated waiting-time distribution in case we approximate either the prepara-
tion-time distribution or the service-time distribution. Because of Theorem 2.2, we
shall limit ourselves to the uniform norm.

Let F̂B be an approximation of FB and F̂W the exact solution that we obtain in
that case for the distribution of W . Let B̂ be a random variable that is distributed
according to F̂B , and let X̂ = B̂ −A. Define now the mapping (cf. (2.2))

(T̂ F )(x) = 1−
∫ ∞

x

F (y − x) dF bX(y),

which yields that F̂W is the solution to F = T̂ F that can be rewritten in the form
(cf. (2.2))

(T̂ F )(x) =
∫ ∞

0

∫ ∞

0

F̂B(x+ z + y) dFA(z)dF (y).

Then we can prove the following theorem.

Theorem 6.1. Let ‖FB − F̂B‖ = ε. Then ‖FW − F̂W ‖ 6 ε/(1− P[B > A]).

Proof. We have that

‖FW − F̂W ‖ = ‖T FW − T̂ F̂W ‖ = ‖T FW − T F̂W + T F̂W − T̂ F̂W ‖

6 ‖T FW − T F̂W ‖+ ‖T F̂W − T̂ F̂W ‖

6 P[B > A]‖FW − F̂W ‖+ ‖T F̂W − T̂ F̂W ‖,

since T is a contraction mapping with contraction constant P[B > A]. Furthermore,

‖T F̂W − T̂ F̂W ‖ = sup
x>0

∣∣∣∣∫ ∞

0

∫ ∞

0

FB(x+ z + y) dFA(z)dF̂W (y)−

−
∫ ∞

0

∫ ∞

0

F̂B(x+ z + y) dFA(z)dF̂W (y)
∣∣∣∣

6 sup
x>0

∫ ∞

0

∫ ∞

0

∣∣∣FB(x+ z + y)− F̂B(x+ z + y)
∣∣∣ dFA(z)dF̂W (y)

6 sup
x>0

∫ ∞

0

∫ ∞

0

sup
x+y+z>0

∣∣∣FB(x+ z + y)− F̂B(x+ z + y)
∣∣∣ dFA(z)dF̂W (y)

= ε

∫ ∞

0

∫ ∞

0

dFA(z)dF̂W (y) = ε.
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So ‖FW − F̂W ‖ 6 P[B > A]‖FW − F̂W ‖+ ε, which is what we wanted to prove.

An important feature of Equation (1.2) that made the calculation of an error
bound straightforward is that the distribution of the waiting time is the fixed point
of a contraction mapping. Note that this is not a property of Lindley’s recursion.

In case we want to approximate the service-time distribution instead of FB , then
the statement of Theorem 6.1 and its proof remain identical, if we interchange FA
and FB . Therefore, we omit this proof, and we simply state the following theorem.

Theorem 6.2. Let ‖FA − F̂A‖ = ε. Then ‖FW − F̂W ‖ 6 ε/(1− P[B > A]).

6.3 Approximations of the waiting-time distribution

The result we have obtained in the previous section comes in handy in some cases
where it is necessary to resort to approximations of the waiting-time distribution.
We have already proven in Chapter 2 that for any distribution of A and B there
exists a unique limiting distribution FW for (1.2), although we may not be able to
compute it. As we have seen in the previous chapter, we can compute the waiting-
time distribution for FA being some general distribution and FB belonging to class
M. Futhermore, Chapter 3 covers the case of FB being a polynomial distribution.
Such distributions with bounded support are excluded from class M.

In the present section we propose two approaches to approximating FW . In
Section 6.3.1 we approximate FB by a phase-type distribution. An important reason
is that the class of phase-type distributions is dense; any distribution on [0,∞)
can, in principle, be approximated arbitrarily well by a phase-type distribution (see
[149]). In Section 6.3.2 we approximate FB by a polynomial distribution, which is a
more natural choice if FB has a bounded support. Thus, we can subsequently apply
the results of Chapters 5 and 3 respectively.

6.3.1 Fitting phase-type distributions

The fitting techniques available for phase-type distributions are either based on
moment matching or on maximum likelihood estimators (MLEs). Moment match-
ing techniques are computationally efficient, but usually apply to somewhat more
restrictive models; see Johnson & Taaffe [93, 95, 94], Tijms [160], and recent devel-
opments in Osogami [137]. There are various techniques that are based on MLEs.
Some examples are:

a) a numerical optimisation method to fit long-tailed distributions into Coxian dis-
tributions (Horváth & Telek [84]),

b) a divide-and-conquer technique to fit data sets with non-monotone densities
into a mixture of Erlang and hyperexponential distributions and also data sets
with completely monotone densities into hyperexponential distributions (Riska
et al. [143]),
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c) the Feldmann-Whitt algorithm [62] which is a heuristic-based approach used for
fitting heavy-tailed distributions, such as Weibull or Pareto, into hyperexponen-
tial distributions,

d) and the Expectation-Maximisation (EM) algorithm for fitting both data and
distributions into general phase-type distributions (Asmussen et al. [8]).

Approximation of another distribution by a phase-type distribution, in the sense
of minimising the information divergence, can be regarded as an infinite analogue
of fitting a phase-type distribution to a sample. Lang & Arthur [107] compared two
moment matching techniques and two techniques that are based on MLEs only to
conclude that there does not yet exist a single superior parameter approximation
method for phase-type distributions.

Regardless of which approximation technique one may choose, the main charac-
teristic that F̂B should possess, is that it should minimise the distance from FB . In
other words, one should choose F̂B in such a way that supx>0 |FB(x)− F̂B(x)| is as
small as possible. Therefore, it may be more reasonable to opt for techniques that
match the graph of FB to a phase-type distribution, since moment matching tech-
niques cannot guarantee that the distance between the two graphs will be minimal.
Nonetheless, even if one chooses moment matching techniques (for instance, because
they are computationally efficient), then one should compute ‖FB − F̂B‖ = ε and
decide if the bound of the approximation error of FW is acceptable. After having
chosen an appropriate F̂B the computation of F̂W is a direct application of the
method described in Section 5.5. In the special case where F̂B is a mixture of Er-
lang distributions with the same scale parameter for all exponential phases, then
Theorem 4.10 provides us with a simple expression for the density f̂W . The approx-
imated waiting-time distribution will be in that case a different mixture of Erlang
distributions, that will still have the same scale parameter.

6.3.2 Fitting polynomial distributions

If FB is a continuous distribution on a bounded support, it is reasonable to choose
F̂B to be a polynomial distribution. The famous Weierstrass approximation theorem
asserts the possibility of uniform approximation of a continuous, real-valued function
on a closed and bounded support by some polynomial. The following theorem is a
more precise version of Weierstrass’ theorem. It is a special case of the theorem by
S. Bernstein that is stated in [63, Section VII.2].

Theorem 6.3. If F is a continuous distribution on the closed interval [0, 1], then
as n→∞

F̂n(x) =
n∑
k=0

F (k/n)
(
n

k

)
xk(1− x)n−k → F (x)

uniformly for x ∈ [0, 1]. Furthermore, F̂n is also a distribution.

Proof. Bernstein’s theorem states that if F is a continuous function, then it can be
approximated uniformly in x with the polynomial F̂n. In other words, for any given
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ε > 0, there is an N independent from x, such that for all n > N , |F̂n(x)−F (x)| < ε,
for all x.

It is easy to show that if the function F is a distribution on [0, 1], then the
approximation F̂n(x) is also a distribution, since it is continuous, 0 6 F̂n(x) 6 1,
and, by checking its derivative, we shall show that it is non-decreasing in x. It
suffices to note that

F̂ ′n(x) =
n∑
k=1

F (k/n)
(
n

k

)
kxk−1(1− x)n−k −

n−1∑
k=0

F (k/n)
(
n

k

)
xk(n− k)(1− x)n−k−1

=
n−1∑
k=0

xk(1− x)n−k−1

[
F ((k + 1)/n)

(
n

k + 1

)
(k + 1)− F (k/n)

(
n

k

)
(n− k)

]

=
n−1∑
k=0

xk(1− x)n−k−1 n!
k!(n− k − 1)!

[F ((k + 1)/n)− F (k/n)] .

The expression in the square brackets at the right hand side is positive since F is a
distribution. Therefore, F̂ ′n(x) > 0, for x ∈ [0, 1].

So, given a continuous distribution FB that has all its mass concentrated on [0, 1],
one can compute a polynomial distribution F̂B that approximates FB arbitrarily well
by using Theorem 6.3. In this sense, the class of polynomial distributions is dense.
Then F̂W can be computed by using Theorem 3.5, and an error bound for this
approximation will be given by Theorem 6.1

6.3.3 Fitting distributions that have one discontinuity

So far, we were concerned with the case where FB is a continuous distribution
that is approximated arbitrarily well by a polynomial or a phase-type distribution
F̂B . However, if FB is discontinuous, then one may not be able to choose an ap-
propriate approximation that instigates an acceptable error. Nonetheless, one can
explicitly compute F̂W in the special case that FB is discontinuous at a single point
x0 of its support as follows. Since FB is a distribution of a mixed type, it can be de-
composed into two parts: a discrete distribution FD and a continuous one FC . Now,
FC can be approximated arbitrarily well with either a phase-type or a polynomial
distribution, and we obtain that F̂B(x) = pDFD(x) + pC F̂C(x).

Whether one should choose to approximate FC with a phase-type or a polynomial
distribution depends on the computational efficiency of each method, in combination
with the approximation error that occurs. Here, we shall give two specific examples.
We assume that FA is the exponential distribution with parameter λ and we study
the case where FC is (approximated by) either a polynomial distribution on [0, 1]
or the exponential distribution with parameter µ. In the following, we shall write
FC for the approximation of the continuous part of FB , as it is not necessary to
distinguish between the actual funtion and its approximation.
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The exponential case

Since FA is exponentially distributed, the density of the waiting-time distribution
is the unique solution of Equation (5.2). Let now FB be given by

FB(x) = pCFC(x) + pDFD(x),

where pC + pD = 1, FC(x) = 1 − e−µx, x > 0, and FD(x) = c for 0 6 x < x0 and
FD(x) = 1 for x > x0. Then from (5.2) we readily have after differentiating that for
0 < x < x0

f ′W (x) = λfW (x)− λµpC
(
π0 + ω(µ)

)
+ λ(pCc− pD)fW (x0 − x)

and for x > x0 we have that

fW (x) = λFW (x)− λ+ λpC
(
π0 + ω(µ)

)
.

The latter of these two equations is a simple first-order linear differential equation,
while the former equation can be solved for example by using Laplace transforms
and tracing back the steps we have followed in Section 3.4.1. These results can
be extended to the case where FC is a usual mixed-Erlang distribution, i.e. FC is
given by the right hand side of Equation (4.32). We shall again have two differential
equations as above. For 0 < x < x0 the waiting time density will be the sum of two
exponentials plus two other terms, each of which is an exponential multiplied by a
polynomial; for x > x0, the waiting-time distribution again involves the term e−µx

multiplied with a polynomial of degree equal to the number of phases of FC .

The polynomial case

We now assume that the continuous part of FB is (or can be approximated by)
a polynomial distribution on [0, 1]; that is, FC(x) =

∑n
i=0 cix

i, 0 6 x 6 1, and∑
ci = 1. Then, by differentiating (5.2) a total of n+1 times we derive the following

two differential equations for the waiting-time density. For the first equation we have
that for 0 < x < x0

f
(n+1)
W (x) = λf

(n)
W (x) + pC

n−1∑
i=0

νi(−1)if (i)
W (1− x)− λpD(1− c)(−1)nf (n)

W (x0 − x),

(6.1)
where the constants νi are given by Equation (3.30). The second equation is almost
identical to Equation (3.32); namely, for x0 < x < 1 we have that

f
(n+1)
W (x) = λf

(n)
W (x) + pC

n−1∑
i=0

νi(−1)if (i)
W (1− x), (6.2)

where the constants νi are defined as above. Notice that (6.1) has one extra term
compared to (6.2). Although there exists a unique solution to this system, deriving
an exact formula from the above equations seems challenging. For example, a source
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of inconvenience is the term fW (1 − x) and all its derivatives that appear in (6.1)
and (6.2). One can observe that for x ∈ (0, x0) this function is either the solution
of Equation (6.2) if x ∈ (0, 1 − x0) or it is simply the solution of Equation (6.1),
in which case the three different arguments appearing in (6.1) make this equation
non-standard. A similar observation is valid for Equation (6.2).

However, if we choose x0 = 0.5, i.e. if we limit ourselves to the lattice case for FD,
then both equations given above simplify. The terms involving the argument 1− x
are now in terms of the solutions of Equations (6.1) and (6.2), since for x ∈ (0, 0.5),
fW (1−x) is given by the solution of (6.2), and similarly for x ∈ (0.5, 1). Thus, if FC
has a bounded support, we need to make the extra assumption that the discontinuity
occurs exactly in the middle of the support. Then these two differential equations
form a system, since each of them involves the density on the other interval, that
can be solved explicitly. For the computation of various constants that appear in
the solution, apart from all obvious conditions, such as the normalisation equation
and the conditions arising by each differentiation, one needs to keep in mind that
although FB is discontinuous, FW is a continuous distribution.
Remark 6.1. In case that FD is on a lattice (with more than one discontinuity)
one can again derive a system of differential equations that gives the density of
the waiting time in each interval. Hence, it seems possible to obtain an explicit
solution to this system by following the same method as in Section 3.6. The system
of differential equations that arises in the case of multiple discontinuities has an
intriguing form. As an example, we shall give this system for a specific case. As
before, let FA and FC be exponentially distributed with rates λ and µ respectively,
and FD(x) be equal to c1 if x ∈ [0, x1), to c2 if x ∈ [x1, x2), and to 1 if x > x2.
Then we have that:

For 0 < x < x1,

f ′W (x) = λfW (x)− λµpC(ω(µ) + π0)e−µx − λ(1− c2)fW (x2 − x)−
− λpD(c2 − c1)fW (x1 − x),

for x1 < x < x2,

f ′W (x) = λfW (x)− λµpC(ω(µ) + π0)e−µx − λ(1− c2)fW (x2 − x),

and for x > x2,

fW (x) = λFW (x)− λ+ λpC(ω(µ) + π0)e−µx.

As we see, each differential equation is identical to the previous one if we remove
the last term. The equation in the last interval can always be solved explicitly (up
to the normalisation constant), and on a lattice the rest of the equations will involve
the density on at least one other interval, thus forming a system that can also be
solved explicitly. The usual initial conditions (such as the normalisation equation
and the continuity of FW ) will provide enough equations to determine all constants
appearing in the computations.
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6.4 Numerical results

This section is devoted to some numerical results. For the service-time distribu-
tion FA, we have chosen the exponential distribution with parameter λ = 1. For a
given distribution FB we calculate from Theorem 6.3 three polynomial distributions
(of first, fifth, and tenth order) that approximate FB , and we plot the resulting
densities and distributions of the waiting time. The distribution FB considered is
the piecewise polynomial distribution

FB(x) = (2x2)1[06x61/2] + (−2x2 + 4x− 1)1[1/26x61] + 1[x>1],

where 1[S] is the indicator function of the set S. This distribution is simply the well-
known symmetric triangular distribution on [0, 1]. In Figure 6.1 we plot fB and the
three corresponding densities of the polynomial distributions we have chosen for
the approximation of FB next to the waiting-time densities and its approximations,
while in Figure 6.2 we plot the analogous graphs for the distributions. Note that
the last plot uses two different scales.
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Figure 6.1: The density fB and its approximations, and the resulting waiting-time
densities.
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Figure 6.2: The distribution FB and its approximations, and the resulting waiting-
time distributions.

For the above approximations we have computed the distance between FB and
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F̂B , fW and f̂W , FW and F̂W , as well as the error bound for FW and F̂W as
it is predicted by Theorem 6.1. Evidently, the error bound that is predicted by
Theorem 6.1 is rather crude. Furthermore, the resulting error between FW and F̂W
in this case is approximately 3 times smaller than the error incurred between the
densities (which is an expected consequence of the mass π0 of the distribution at
the origin), and 4.5 times smaller than the initial approximation error between FB
and F̂B . Evidently, the service-time distribution smoothes out the resulting error
for FW when approximating FB . The above are summarised in Table 6.1.

‖fB − f̂B‖ ‖FB − F̂B‖ ‖fW − f̂W ‖ ‖FW − F̂W ‖ bound
n = 1 1 0.1250 0.0841 0.0274 0.3283
n = 5 0.6750 0.0664 0.0449 0.0147 0.1744
n = 10 0.4922 0.0385 0.0264 0.0086 0.1013

Table 6.1: The distances between the real distributions or densities and their ap-
proximations, and the error bound given in Theorem 6.1.





Chapter 7

Dependencies

7.1 Introduction

In the previous chapters we have studied Recursion (1.1) under the assumption
that {An} and {Bn} are two i.i.d. sequences of random variables that are mutually
independent. The assumption that all random variables involved are independent
of one another arises naturally in various cases due to the model specifications,
and usually simplifies the analysis. However, in many applications there exist de-
pendence structures between the preparation times and the service times, which
means that this assumption is simply not correct. In the present chapter we remove
the assumption that all random variables involved are independent of one another,
and we study two specific dependence structures between {An} and {Bn} that are
described below.

In the first example we study, the distributions of the preparation and service
times are regulated by an irreducible discrete-time Markov chain. Specifically, we
assume that each transition of the Markov chain generates a new preparation time
and its corresponding service time. Given the state of the Markov chain at times n
and n+1, the distributions of An and Bn+1 are independent of one another for all n.
However, the distributions of An and Bn depend on the state of the Markov chain.
Such a dependence structure occurs naturally in many applications. For example,
in the application involving two carousels that is described in Section 1.2, one can
intuitively see that if an order consists of multiple items on one carousel that need
to be picked, then there are strategies for the preparation of the carousel, where a
long preparation time Bn implies that the service time An (i.e. the time necessary
to pick all items on that carousel) will be relatively short, while being independent
of all other past or future preparation and service times.

The second dependence structure we study assumes that the random variables
An and Bn+1 have a joint distribution. In particular, given the length of the ser-
vice time An, the following preparation time has a Laplace-Stieltjes transform of a
specific form. The form we choose is rather general and allows for various specific
dependence structures and preparation time distributions. Later on, we shall give
a few specific examples. Dependencies between a service time and the following
preparation time are also possible in applications. Again for the carousel model
described in Section 1.2 with orders consisting of multiple items, one can have that
a “smart” preparation strategy is followed, which anticipates the expected delay of
the server for the previous order. Thus, knowing that the previous service time is
relatively long, the other carousel rotates at a starting point that may be further
away, but reduces the service time of the following order.

Both examples studied are also motivated by analogous cases studied for Lind-
ley’s recursion. In Section 7.2 we derive the steady-state waiting-time distribution
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for the first case studied. We assume that the service times follow some general
distribution that depends on the state of the Markov chain. For the preparation
times, in Section 7.2.1 we assume that they are exponentially distributed (with a
rate depending on the state of the Markov chain), while in Section 7.2.2 we extend
the analysis to mixed-Erlang distributions. In Section 7.3 we derive FW for the
second case studied. We assume that FA is the exponential distribution with rate
λ, although, as we remark later on, the analysis can be extended to mixed-Erlang
distributions. We conclude in Section 7.4, where we compare our results to the
analogous results for Lindley’s recursion and where we make some final remarks.

7.2 Markov-modulated dependencies

In this section we study the case where the preparation times and the service
times depend on a common discrete-time Markov chain. This model allows de-
pendencies between preparation and service times. The waiting time in this case is
directly derived by using Laplace transforms. For Lindley’s recursion, the analogous
model has been analysed in Adan and Kulkarni [1], which we closely follow. In the
next section, we analyse this model for exponentially distributed preparation times,
and in Section 7.2.2 we generalise this result to phase-type preparation times of the
form of Equation (4.32). Recall that for a random variable Y and an event E we
have that P[Y 6 x ;E] = E[1[Y6x] · 1[E]], and likewise for expectations.

We assume that the sequences {An} and {Bn} are both autocorrelated and
cross-correlated. The distributions of the preparation and service times are regu-
lated by an irreducible discrete-time Markov chain {Zn}, n > 1, with state space
{1, 2, . . . ,M} and transition probability matrix P = (pi,j). More precisely, we have
that

P[An 6 x ;Bn+1 6 y ;Zn+1 = j | Zn = i ;Bn ; (A`, B`, Z`), 1 6 ` 6 n− 1]
= P[A1 6 x ;B2 6 y ;Z2 = j | Z1 = i]
= pi,jP[A1 6 x ;B2 6 y | Z1 = i ;Z2 = j]
= pi,jFA,i(x)FB,j(y), (7.1)

where x, y > 0 and where i, j = 1, 2, . . . ,M . Thus, given Zn and Zn+1, the dis-
tributions of An and Bn+1 are independent of one another for all n. The random
variables An follow an arbitrary distribution that is independent of the past, given
Zn, while Bn follows in general a phase-type distribution that is depending on the
state of Zn.

Observe that (Wn, Zn) is a Markov chain. Since for all n, we have assumed
that P[Xn < 0] > 0, this Markov chain is stable. To see that, notice that since
P[Xn < 0] > 0, there is an i such that P[Xn < 0, Zn = i] > 0, and without loss of
generality we can take i = 1. A regeneration point occurs if Wn = 0 and Zn = 1;
thus if Xn < 0 and Zn = 1 the process regenerates and the event Wn = 0 is included
in the event Xn < 0. Since the Markov chain {Zn} reaches state 1 infinitely often,
the time between two occurrences of state 1 is finite in expectation, and for each
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time this state is reached there is a positive probability that Xn < 0, we will have
that in a geometric number of steps both events Xn < 0 and Zn = 1 will happen
at the same step. In other words, we will have a regeneration point. Since the
Markov chain (Wn, Zn) is stable, define for Re(s) > 0, n > 1, and j = 1, 2, . . . ,M
the transforms

ωnj (s) = E[e−sWn ;Zn = j],

and
ωj(s) = lim

n→∞
ωn+1
j (s).

Let λ−1
i be the mean and si be the second moment of the service time distri-

bution FA,i. Analogously, define µ−1
i as the mean of FB,i and σi as its second

moment. Moreover, denote by $ = ($1, $2, . . . , $M ) the stationary distribution
of the Markov chain {Zn}. Then, in steady state, the autocorrelation between Am
and Am+n is given by

ρ[Am, Am+n] = ρ[A1, An+1] =

∑M
i=1

∑M
j=1$i

(
p
(n)
i,j −$j

)
λ−1
i λ−1

j∑M
i=1$isi −

(∑M
i=1$iλ

−1
i

)2 ,

where
p
(n)
i,j = P[Zn+1 = j | Z1 = i], n > 0, 1 6 i, j 6 M.

A similar expression holds for the autocorrelation between preparation times. Pro-
vided P is aperiodic, p(n)

i,j converges to$j geometrically as n tends to infinity. Hence,
the autocorrelation function approaches zero geometrically fast as the lag goes to
infinity. For the cross-correlation between An and Bn we have that

ρ[An, Bn] = ρ[A1, B1] =
∑M
i=1$iλ

−1
i µ−1

i − µ̂ λ̂(∑M
i=1$isi − λ̂2

)1/2(∑M
j=1$jσi − µ̂2

)1/2
,

where λ̂ =
∑M
i=1$iλ

−1
i and µ̂ =

∑M
i=1$iµ

−1
i .

When the {Zn} is in state j, we denote by fW,j the steady-state waiting-time
density, and by αj the Laplace-Stieltjes transform of FA. Moreover, recall that the
derivative of order i of a function f is denoted by f (i) and by definition f (0) = f .

7.2.1 Exponential preparation times

In this section we assume that FB,j(x) = 1 − e−µjx. We are interested in the
steady-state waiting-time distribution. For the derivation, we shall use Laplace
transforms and follow arguments similar to the ones appearing in Section 4.2.3.
The next theorem gives the equations satisfied by the waiting-time densities

fW (x) =
(
fW,1(x), fW,2(x), . . . , fW,M (x)

)
.
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Theorem 7.1. Let the preparation-time and service-time distributions be governed
by a common discrete-time Markov chain according to Equation (7.1), where pi,j is
the one-step transition probability of the Markov chain from state i to state j and
FB,j(x) = 1− e−µjx. Given that the Markov chain is in state j, in equilibrium the
waiting-time distribution has mass π0,j = $j − cj at the origin, where $j is the
stationary probability that the Markov chain is in state j and where the constant cj
is given by cj =

∑M
i=1 pi,j ωi(µj)αi(µj). Moreover, the waiting-time density given

by
fW,j(x) = µjcj e−µjx.

The M2 unknown constants ωi(µj) that are needed in order to determine the un-
known constants cj are the unique solution to the system of linear equations given
by the expression

ωj(µ`) = $j −
µ`

µj + µ`

M∑
i=1

pi,j ωi(µj)αi(µj), j, ` = 1, . . . ,M.

Proof. From Recursion (1.1) we obtain the following equation for the transforms
ωn+1
j , j = 1, . . . ,M .

ωn+1
j (s) = E[e−sWn+1 ;Zn+1 = j]

=
M∑
i=1

P[Zn = i]E[e−smax{0,Bn+1−An−Wn} ;Zn+1 = j | Zn = i]

=
M∑
i=1

P[Zn = i]pi,j

(
E[
∫ An+Wn

0

fBn+1
(x) dx | Zn = i ;Zn+1 = j]+

+ E[
∫ ∞

An+Wn

e−s(x−An−Wn)fBn+1
(x) dx | Zn = i ;Zn+1 = j]

)
. (7.2)

Since Zn+1 = j, we have that Bn+1 is now exponentially distributed with rate µj .
Thus, the above equation becomes

ωn+1
j (s) =

M∑
i=1

P[Zn = i]pi,j

(
E[
∫ An+Wn

0

µje−µjx dx | Zn = i]+

+ E[
∫ ∞

An+Wn

e−s(x−An−Wn)µje−µjx dx | Zn = i]
)

=
M∑
i=1

P[Zn = i]pi,jE[1− e−µj(An+Wn) +
µj

µj + s
e−µj(An+Wn) | Zn = i]

=
M∑
i=1

P[Zn = i]pi,j
(
1− s

µj + s
E[e−µj(An+Wn) | Zn = i]

)
=

M∑
i=1

pi,j

(
P[Zn = i]− s

µj + s
ωni (µj)αi(µj)

)
.
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So for n→∞ we have that ωj(s) is given by

ωj(s) = $j −
M∑
i=1

pi,j ωi(µj)αi(µj) +
µj

µj + s

M∑
i=1

pi,j ωi(µj)αi(µj). (7.3)

Define the constants

cj =
M∑
i=1

pi,j ωi(µj)αi(µj).

Inverting the Laplace transform ωj yields that the density of the waiting time is
given by

fW,j(x) = µjcj e−µjx,

and the corresponding distribution has mass π0,j = $j − cj at the origin. For
i, j = 1, . . . ,M , the M2 unknown constants ωi(µj) that are needed in order to
determine the unknown constants cj are the unique solution to the system of linear
equations given by the expression

ωj(µ`) = $j −
µ`

µj + µ`

M∑
i=1

pi,j ωi(µj)αi(µj), j, ` = 1, . . . ,M ; (7.4)

see Equation (7.3). The uniqueness of the solution follows from the general theory of
Markov chains that there is a unique stationary distribution and thus also a unique
solution to the system of equations formed by (7.4) for all j, ` = 1, . . . ,M .

The result given in Theorem 7.1 is expected. Evidently, since Bn is exponentially
distributed (with a rate depending on the state of the Markov chain) and Wn is the
residual preparation time, we have that for every state j of the Markov chain,
the waiting-time distribution has mass at zero and the conditional waiting time is
exponentially distributed with rate µj .

Observe that Theorem 7.1 reduces to the statement of Theorem 4.8 which gives
the steady-state waiting-time density in case {An} and {Bn} are mutually inde-
pendent sequences of i.i.d. random variables and B follows an Erlang distribution.
Specifically, if the Markov chain in Theorem 7.1 has only one state (and thus there
is a unique service-time distribution and a unique rate µ for the exponentially dis-
tributed preparation times) and the Erlang distribution FB in Theorem 4.8 has only
one phase (thus N = 1, which implies that FB is exponentially distributed with rate
µ) then the statements of these two theorems are identical. Observe, for example,
that (7.4) reduces to (4.27) as now $j = 1, pi,j = 1, and µj = µ` = µ.

Moreover, we see that the proofs of both theorems are quite similar. For the
Markov-modulated case, the only additional effort we need to make is to keep track
of the state of the Markov chain.
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7.2.2 Phase-type preparation times

Since for exponentially distributed preparation times, the case where the distri-
butions of An and Bn depend on the state of a Markov chain is so similar to the
independent case, it is not surprising that, as before, we can extend the analysis of
the Markov-modulated dependencies to phase-type distributions for the preparation
times.

Assume now that if the Markov chain is in state j, the preparation time is
with probability κn equal to a random variable Yn, n = 1, . . . , N , that follows an
Erlang distribution with parameter µj and n phases. In other words the distribution
function of B is given by (cf. (4.32))

FB,j(x) =
N∑
n=1

κn

(
1− e−µjx

n−1∑
`=0

(µjx)`

`!

)
, x > 0. (7.5)

As remarked before, this class of phase-type distributions may be used to approxi-
mate any given distribution on [0,∞) for the preparation times arbitrarily close; see
Schassberger [149]. The waiting-time density for this case is given by the following
theorem.

Theorem 7.2. Under the conditions of Theorem 7.1, with the modification that
FB,j is now given by (7.5) we have that, in equilibrium, the waiting time has mass

$j −
M∑
i=1

N∑
n=1

n−1∑
`=0

∑̀
m=0

κnpi,j
µ`j
`!

(
`

m

)
(−1)`

(
αi(µj)

)(`−m)(
ωi(µj)

)(m)

at the origin, and density given by

fW,j(x) =
M∑
i=1

N∑
n=1

n−1∑
`=0

∑̀
m=0

κnpi,j
(−1)`

`!

(
`

m

)(
αi(µj)

)(`−m)×

×
(
ωi(µj)

)(m)
µnj e

−µjx
xn−`−1

(n− `− 1)!
.

Proof. For the proof, we shall refrain from presenting detailed computations, as the
analysis is straightforward and similar to the one for the exponential case. We give,
however, a few intermediate formulas. From (7.2) and for the preparation time
distributions we are considering we have that

ωn+1
j (s) =

M∑
i=1

P[Zn = i]pi,j

(
1−

−
N∑
n=1

κnE[e−µj(An+Wn)
n−1∑
`=0

µ`j(An +Wn)`

`!
| Zn = i]+

+
N∑
n=1

κn

( µj
µj + s

)n
E[e−µj(An+Wn)

n−1∑
`=0

(µj + s)`(An +Wn)`

`!
| Zn = i]

)
.
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So for n→∞ we have that ωj(s) is given by (cf. (7.3))

ωj(s) = uj +
M∑
i=1

N∑
n=1

n−1∑
`=0

∑̀
m=0

κnpi,j
(−µj)`

`!

(
`

m

)(
αi(µj)

)(`−m)×

×
(
ωi(µj)

)(m)
( µj
µj + s

)n−`
, (7.6)

where

uj = $j −
M∑
i=1

N∑
n=1

n−1∑
`=0

∑̀
m=0

κnpi,j
µ`j
`!

(
`

m

)
(−1)`

(
αi(µj)

)(`−m)(
ωi(µj)

)(m)
.

Inverting the Laplace transform ωj yields that the density of the waiting time is given
by the expression presented in the theorem and the corresponding distribution has
mass uj at the origin. For i, j = 1, . . . ,M , the M2 unknown constants ωi(µj) are
the unique solution to the system of linear equations resulting from substituting s
for µk, k = 1, . . . ,M , in (7.6).

Naturally, the expression for the density appearing in Theorem 7.2 reduces for
N = 1 to the expression given in Theorem 7.1, and for M = 1 it reduces to the
expression in Theorem 4.10, which gives the waiting-time density for the independent
case.

7.3 Services depending on the previous preparation time

In this section, we study the second dependence structure mentioned in the
introduction. We assume that for all n, the service times An are distributed as
A, which in turn is exponentially distributed with rate λ. Moreover, the Laplace-
Stieltjes transform of the preparation time Bn+1, given that the previous service
time An equals t, is of the form

E[e−sBn+1 | An = t] = E[e−sB | A = t] = χ(s)e−ψ(s)t. (7.7)

Observe that now the preparation time Bn+1 depends only on the previous service
time, while in the Markov-modulated case we have examined previously all prepa-
ration and service times are correlated between and among one another, since their
distributions depend on a common Markov chain.

For the above dependence structure, we further assume that χ and ψ are rational
functions; i.e.,

χ(s) =
P1(s)
Q1(s)

and ψ(s) =
P2(s)
Q2(s)

, (7.8)

where Q1 and Q2 are polynomials of degrees M and N respectively, and P1 and P2

are polynomials of degrees less than M and less than N respectively. From the form
of Equation (7.7) we see that a number of other assumptions have been implicitly
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made. For example, since for s = 0 the expectation E[e−sB | A = t] should be equal
to one, we have implicitly assumed that ψ(0) = 0 and χ(0) = 1. We shall mention
other implications of such type only when necessary.

The preparation time Bn+1 consists of two parts: a component which depends
on the previous service time, represented by e−ψ(s)t, and an ‘ordinary’ preparation
time with Laplace-Stieltjes transform χ(s), which does not depend on the interarrival
time. From (7.7) we have that the bivariate Laplace-Stieltjes transform of the generic
preparation and service time is given by

E[e−sB−zA] =
∫ ∞

0

λe−λte−ztχ(s)e−ψ(s)t dt =
λχ(s)

λ+ ψ(s) + z
, (7.9)

for Re(λ+ ψ(s) + z) > 0. This expression leads to

E[B] =
ψ′(0)
λ

− χ′(0), and E[AB] =
2ψ′(0)− λχ′(0)

λ2
,

from which we have that the covariance function between a preparation time and a
service time is given by

cov[A,B] =
ψ′(0)
λ2

.

The correlation between these two variables can be also computed, see Boxma and
Combé [33]. Thus, given the covariance (or correlation) between A and B, one can
construct a distribution function FB that has the desired effect.

In order to derive the steady-state waiting-time distribution, we shall first derive
the Laplace-Stieltjes transform of FW . We follow a method based on Wiener-Hopf
decomposition. A straightforward calculation, starting from (1.2), yields that

ω(s) = E[e−sW ]

= P[B 6 W +A] + E[e−s(B−W−A)]− E[e−s(B−W−A) ;B 6 W +A]

= P[B 6 W +A] + E[esW ] E[e−s(B−A)]− E[e−s(B−W−A) ;B 6 W +A],

since B − A and W are independent. Therefore, from (7.9) we have for Re(s) = 0
that

ω(s) = P[B 6 W +A] + ω(−s) λχ(s)
λ− s+ ψ(s)

−

− E[e−s(B−W−A) | B 6 W +A]P[B 6 W +A] (7.10)

= ω(−s) P1(s)
Q1(s)

λQ2(s)
(λ− s)Q2(s) + P2(s)

+

+ P[B 6 W +A]
(
1− E[e−s(B−W−A) | B 6 W +A]

)
,

which can be rewritten as

ω(s)Q1(s)
(
(λ− s)Q2(s) + P2(s)

)
=

λω(−s)P1(s)Q2(s) +Q1(s)
(
(λ− s)Q2(s) + P2(s)

)
×

× P[B 6 W +A]
(
1− E[e−s(B−W−A) | B 6 W +A]

)
. (7.11)
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We can observe that Q1(s)
(
(λ−s)Q2(s)+P2(s)

)
is a polynomial of degree M+N+1

and also that the left-hand side of (7.11) is analytic for Re(s) > 0 and continuous for
Re(s) > 0, and the right-hand side of (7.11) is analytic for Re(s) < 0 and continuous
for Re(s) 6 0. Liouville’s theorem [162] states that:

If a function f(z) is analytic for all finite values of z, and as |z| → ∞ we
have that f(z) = O(|z|k), then f(z) is a polynomial of degree less than
or equal to k.

Therefore, from Liouville’s theorem we conclude that both sides of (7.11) are the
same M +N + 1-st degree polynomial, say,

∑M+N+1
i=0 qis

i. Hence,

ω(s) =
∑M+N+1
i=0 qis

i

Q1(s)
(
(λ− s)Q2(s) + P2(s)

) . (7.12)

In the expression above, the constants qi are not determined so far. In order to
obtain the transform, observe that ω is a fraction of two polynomials both of degree
M + N + 1. Let ri, i = 1, . . . ,M + N + 1, be the zeros of the denominator.
Ignoring the special case of zeros with multiplicity greater than one, partial fraction
decomposition yields that (7.12) can be rewritten as

ω(s) = c0 +
M+N+1∑
i=1

ci
s− ri

, (7.13)

which implies that the waiting-time distribution has a mass at the origin that is
given by

P[W = 0] = lim
s→∞

E[e−sW ] = c0

and has a density that is given by

fW (x) =
M+N+1∑
i=1

cierix. (7.14)

All that remains is to determine the M +N + 2 constants ci. To do so, we work
as follows. We express the terms P[B 6 W + A] and E[e−s(B−W−A) | B 6 W + A]
that appear at the right-hand side of (7.11) in terms of the constants ci by using
(7.13) and (7.14). Then, we substitute these expressions and (7.13) in the left-hand
side of (7.11). Thus we obtain a new equation in terms of the constants ci that
we shall differentiate a total of M + N + 1 times. We shall evaluate each of these
derivatives for s = 0 and thus we obtain a linear system of M + N + 1 equations
for the constants ci, i = 0, . . . ,M + N + 1. The last equation that is necessary to
uniquely determine the constants ci is the normalisation equation

c0 +
∫ ∞

0

fW (x) dx = 1.

We summarise the above in the following theorem.
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Theorem 7.3. Let the service time A be exponentially distributed with rate λ.
Under the assumptions described by Equations (7.7) and (7.8), we have that the
limiting distribution of the waiting time has mass c0 at the origin and a density on
[0,∞) that is given by

fW (x) =
M+N+1∑
i=1

cierix.

in the expression above, the constants ri are the M +N + 1 zeros of the equation

Q1(s)
(
(λ− s)Q2(s) + P2(s)

)
= 0

and the coefficients ci are derived as described above.

Remark 7.1. Although the roots ri and coefficients ci may be complex, the density
and the mass c0 at zero will be positive. This follows from the fact that there is
a unique equilibrium distribution and thus a unique solution to the linear system
for the coefficients ci. Of course, it is also clear that each root ri and coefficient ci
have a companion conjugate root and conjugate coefficient, which implies that the
imaginary parts appearing in the density cancel.
Remark 7.2. When Q1(s)

(
(λ − s)Q2(s) + P2(s)

)
has multiple zeros, the analysis

proceeds in essentially the same way. For example, if r1 = r2, then the partial
fraction decomposition of ω becomes

ω(s) = c0 +
c1

(s− r1)2
+
M+N+1∑
i=2

ci
s− ri

,

the inverse of which is given by

fW (x) = c1xer1x +
M+N+1∑
i=2

cierix.

Remark 7.3. For the service time A we have considered only the exponential distri-
bution, mainly because we can illustrate the technique we use without complicating
the analysis. However, we can extend this class by considering distributions with
a mixed-Erlang distribution of the form of Equation (3.23) and the proof remains
essentially the same. The resulting density of the waiting time is again of the form

fW (x) =
K∑
i=1

cierix.

In the expression above, we have that K = M +n(N +1), where n is the number of
phases of the Erlang distribution with the most phases that A follows with a certain
probability. The constants ri are the zeros to the equation

Q1(s)
(
(λ− s)Q2(s) + P2(s)

)n = 0,

and the coefficients ci are determined in a similar fashion as before. Naturally, if any
of the zeros ri has multiplicity greater than one, the form the the density changes
analogously; see also the previous remark.
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We now present a few examples where we show how some classic dependence
structures fit into this class. In the examples below, we only discuss how to derive
the function ψ.

The independent case

The dependence structure described by Equation (7.7) includes a great variety
of dependence structures, including the independent case. If for all s we have that
ψ(s) = 0, then the Laplace-Stieltjes transform of B is independent of the length of
the service time, and thus the function χ appearing in (7.7) is in fact the Laplace-
Stieltjes transform of B, i.e. the function β . Observe that we have assumed that B
has a rational Laplace-Stieltjes transform, which is necessary in order to decompose
Equation (7.10) into functions that are analytic either at the left-half plane or at
the right-half plane; see also Equation (1.5).

Linear Dependence

Assume that the service time A and the preparation time B are linearly depen-
dent; that is, B = cA. Then,

E[e−sB | A = t] = E[e−scA | A = t] = e−sct.

Thus we have that χ(s) = 1, and ψ(s) = cs, and both functions satisfy our assump-
tions.

The Compound Poisson Process

In this case we assume that given that A = t, the preparation time B is equal
to
∑N(t)
i=1 Ci, where N(t) is a Poisson process with rate γ, and {Ci} is a sequence of

i.i.d. random variables, where each of them is distributed like C, and where C has
a rational Laplace-Stieltjes transform. Under this assumption, we have that

E[e−sB | A = t] = E[e−s
PN(t)

i=1 Ci | A = t] =
∞∑
k=0

E[e−s
Pk

i=1 Ci | A = t] e−γt
(γt)k

k!

=
∞∑
k=0

(
E[e−sC ]

)k e−γt
(γt)k

k!
= e−ψ(s)t,

where ψ(s) = γ
(
1− E[e−sC ]

)
. As before, in this case we have that χ(s) = 1.

Brownian Motion

In this case we assume that given that A = t, the random variable B is normally
distributed with mean µt and variance σ2t. Then we have that

E[e−sB | A = t] =
∫ ∞

−∞
e−sx

e−(x−µt)2/(2σ2t)

σ
√

2πt
dx = e−ψ(s)t,
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where ψ(s) = µs−s2σ2/2, and χ(s) = 1. Naturally, if B is interpreted as the prepa-
ration time of a customer in the models described in Section 1.2, then assuming that
B is normally distributed is not a natural assumption, since the preparation time of
a customer is non-negative. However, in the analysis we do not need the condition of
B being non-negative; therefore, it is mathematically possible to consider this case.
For further examples of distributions satisfying the condition described by (7.7), see
Boxma and Combé [33].

7.4 A comparison to Lindley’s recursion

Models with dependencies between interarrival and service time have been stud-
ied by several authors. A review of the early literature can be found in Bhat [18].
Such dependencies arise naturally in various applications. For example, the phe-
nomenon of dependence among the interarrival times in the packet streams of voice
and data traffic is well known; see, e.g., [82, 83, 154]. However, in [64] the authors
argue that in packet communication networks one should also expect two additional
forms of dependence: between successive service times and among interarrival times
and service times. These forms of dependence occur because of the presence of
bursty arrivals and multiple sources with different mean service times (due to dif-
ferent packet lengths), and they may have a dominant effect on waiting times and
queue lengths. In the following, we give an overview of some results derived for
Lindley’s equation that are related to the results presented in this chapter.

Markov-modulated dependencies for Lindley’s recursion

Dependence structures of the form of Equation (7.1), and several generalisations,
have been studied extensively for Lindley’s recursion. The basic model is described
in Adan and Kulkarni [1]. The authors study a single-server queue where the in-
terarrival times and the service times depend on a common discrete-time Markov
chain in a similar way as the one described by Equation (7.1). This model generalises
the well-known MAP/G/1 queue by allowing dependencies between interarrival and
service times. The waiting-time process is directly analysed in a similar method
to the one described in this chapter, thus deriving the Laplace-Stieltjes transform
of the steady-state waiting-time distribution. By exploiting a well-known relation
between the waiting time of a customer and the number of customers left behind by
a departing customer, they also derive the Laplace-Stieltjes transform of the queue
length distribution at departure epochs and at arbitrary time points. The process
analysed in [1] is a special case of the class of processes considered in Asmussen and
Kella [7], where the results for the Markov-modulated M/G/1 queue have already
been sketched. In [1], however, all results are given explicitly and the analysis
extends to the study of the queue length distribution.

Although the analysis for Lindley’s case in [1] is quite similar to the one followed
in Section 7.2, the resulting Laplace transform for the waiting-time density is rather
more complicated and it does not seem straightforward to invert it directly. More-
over, in order to determine the quantities analogous to the coefficients ci appearing
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in Theorem 7.1, one needs to study the solutions of a certain equation –a step which
is not required for this model.

In the literature much attention has been devoted to single-server queues with
Markovian Arrival Processes (MAP), see, e.g., [123, and the references therein]. The
MAP/G/1 queue provides a powerful framework to model dependencies between
successive interarrival times, but typically the service times are assumed to be i.i.d.
and independent of the arrival process. The model considered [1] is a generalisation
of the MAP/G/1 queue, by also allowing dependencies between successive service
times and between interarrival times and service times.

In [123] the MAP construction is generalised to the Batch Markovian Arrival
Process (BMAP) to allow batch arrivals. The framework of the BMAP/G/1 queue
can also be used to model dependence between interarrival times and service times.
This is described in [49]. The important observation is that the arrival of a batch
(the size of which depends on the state of the underlying Markov chain) can be
viewed as the arrival of a super customer, whose service time is distributed as the
sum of the service requests of the customers in the batch.

A special case of Markov-dependent interarrival and service times is the model
with strictly periodic arrivals. These models arise, for example, in the modelling
of inventory systems using periodic ordering policies; see [152] and [175]. Queueing
models with periodic arrival processes have also been studied extensively; see for
example [47, 110, 144, 145].

Markov-modulated dependencies of this form have also been considered in in-
surance mathematics. For example, Albrecher and Boxma [3] consider the same
semi-Markovian dependence structure for Wn, Xn and Zn, where now Wi denotes
the interarrival time between two claims, Xn is the size of the n-th claim and {Zn} is
the regulating Markov chain. This work unifies and generalises various other models
considered in insurance mathematics, see [11, 68, 112, 113].

Dependencies of the form of (7.7) for Lindley’s recursion

The dependence structure (7.7) that we have presented occurs in simple queuing
models. Consider the following situation. Work arrives at a single server queue
according to a process with stationary, non-negative independent increments. This
work, however, does not enter immediately the queue of the server facility; instead it
is accumulated behind a gate. At exponential interarivals the gate is opened and –
after the addition of an independent component – the work is collected and delivered
as a single customer at the queue of the service facility. The additional component
may be viewed as a set-up time.

Due to the exponentially distributed interarrival times of customers, we can
view the service facility as an M/G/1 queue in which the interarrival and service
time for each customer are positively correlated. Indeed, if the interval between two
consecutive openings of the gate is relatively long (short), it is likely that a relatively
large (small) amount of work has accumulated during that interval. This model is
a unification and generalisation of the M/G/1 queue with a positive correlation
between interarrival and service times [30, 31, 44, 51] and has been analysed in
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Boxma and Combé [33], which we closely followed in Section 7.3. In Combé and
Boxma [49] it is shown that the collect system can also be modelled by using the
BMAP framework.

Models with a linear dependence between the service time and the preceding
interarrival time have been studied in [44, 50, 52]; see also [35]. Other papers
[51, 75, 76, 131] analyse the M/M/1 queue where the service time and the preceding
interarrival time have a bivariate exponential density with a positive correlation.
The linear and bivariate exponential cases are both contained in the correlated
M/G/1 queue studied by [30, 31, 33].

In particular, in our notation, the goal in [33] is to extend the analysis of [30, 31,
44, 51] to M/G/1 queues with arrival rate λ in which the Laplace-Stieltjes transform
of the service time Bn+1, given that the interarrival time An equals t is of the form
of (7.7). The authors give a few examples and show how previously analysed models
for the M/G/1 queues with dependence fit into this structure. They analyse the
joint distribution of the waiting and service time of an arbitrary customer in steady
state, and they also present a vacation-type workload decomposition for the M/G/1
queue with the exponential gating mechanism described above.

One additional assumption made in [33] is that the function ψ appearing in
(7.7) has a completely monotone increasing derivative. This implies that the func-
tion e−ψ(s) is the Laplace-Stieltjes transform of an infinitely divisible probability
distribution, which in its turn is a distribution of increments in processes with sta-
tionary independent increments, i.e. Lévy processes. Although the monotonicity of
the derivative of ψ was not required for our case, most of the examples presented in
Section 7.3 are examples of Lévy processes.

As a final remark we should add that various other types of dependencies can
be analysed numerically, if not analytically. As an example of a dependence struc-
ture arising from a specific application, consider the carousel model described in
Section 1.2 with the modification that each pick order requires now more than one
item. Under the service time A of an order, we understand both the actual time
to pick all items and the time the carousel spends in rotating from the moment we
complete the first pick until the moment we are about to start the last pick of an
order. The preparation time B in this case is the time needed until the carousel ro-
tates to a specified point before the first pick takes place. For example, we can take
as preparation strategy the following: upon arrival of a new order to a carousel, the
carousel rotates to the nearest item to the origin (and waits there, should the server
still be occupied with the previous order). We see that a relatively long preparation
time implies that all items of the order are placed in a relatively short interval.
Thus, for every n, the random variables An and Bn depend on one another and
are negatively correlated. For a given strategy, one can compute the distribution
of B given the length of A. However, the exact computation of the waiting-time
distribution is usually cumbersome. Naturally, if the waiting-time distribution is
the fixed point of a contraction mapping, one can numerically approximate FW by
successive iterations.



Chapter 8

A more general

Lindley-type recursion

8.1 Introduction

In the previous chapters we have studied various aspects of the stochastic re-
cursion (1.1), mainly focusing on the derivation of the steady-state waiting-time
distribution. In this chapter, we generalise some of the results derived so far by
considering the Lindley-type recursion

Wn+1 = max{0, Bn −An + YnWn}, (8.1)

where for every n, the random variable Yn is equal to plus or minus one according
to the probabilities P[Yn = 1] = p and P[Yn = −1] = 1 − p, 0 6 p 6 1. Recursion
(8.1) reduces to the classical Lindley recursion [115] when P[Yn = 1] = 1 for every n;
see Section 1.5. Furthermore, if P[Yn = −1] = 1, then (8.1) reduces to the recursion
studied in Chapters 2–7. Evidently, this recursion, like Recursion (1.1), is also not
monotone increasing, while this is usually assumed for generalisations of Lindley’s
recursion; see again Section 1.5. The material presented in this chapter is based on
work already carried out in [36].

Recursion (8.1) is a special case of more general recursions that have been stud-
ied in the literature, see for example Diaconis and Freedman [56], Goldie [71],
Borovkov [27], and references cited in these studies. Studying a recursion that con-
tains both Lindley’s classical recursion and Recursion (1.1) as special cases seems
of interest in its own right. Additional motivation for studying this recursion is
supplied by the fact that, for 0 < p < 1, the resulting model can be interpreted as
a special case of a queuing model in which service and interarrival times depend on
waiting times. We shall now discuss the latter model.

Consider an extension of the standard G/G/1 queue in which the service times
and the interarrival times depend linearly and randomly on the waiting times.
Namely, the model is specified by a stationary and ergodic sequence of four-tuples
of non-negative random variables {(An, Bn, Ân, B̂n)}, n > 0. The sequence {Wn}
is defined recursively by

Wn+1 = max{0, Bn −An +Wn},

where

An = An + ÂnWn,

Bn = Bn + B̂nWn.

We interpret Wn as the waiting time and Bn as the service time of customer n.
Furthermore, we take An to be the interarrival time between customers n and n+1.

143
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We call Bn the nominal service time of customer n and An the nominal interarrival
time between customers n and n + 1, because these would be the actual times if
the additional shift were omitted, that is, if P[Ân = B̂n = 0] = 1. Evidently, the
waiting times satisfy the generalised Lindley recursion (8.1), where we have written
Yn = 1 + B̂n − Ân.

Queues with state-dependent service and arrival processes have been studied ex-
tensively; see for example Brill [41], Callahan [43], Harris [78, 79], Laslett et al. [108],
Mudrov [133], Posner [141], Rosenshine [146], and Sugawara and Takahashi [156].
Such queues arise, for example, whenever the first customer in a busy period requires
a setup time from the server. This situation may arise among bank tellers, machine
repairmen, hospital emergency teams, copying systems, computer terminals, iron
and steel processing [156], etc. For various other applications and further results
see also Brill and Posner [42], and references therein.

This model – for generally distributed random variables Yn – has been intro-
duced in Whitt [181], where the focus is on conditions for the process to converge to
a proper steady-state limit, and on approximations for this limit. Whitt [181] builds
upon previous results by Vervaat [167] and Brandt [37] for the unrestricted recursion
Wn+1 = YnWn +Xn, where Xn = Bn − An. There has been considerable previous
work on this unrestricted recursion, due to its close connection to the problem of the
ruin of an insurer who is exposed to a stochastic economic environment. Such an
environment has two kinds of risk, which were called by Norberg [136] insurance risk
and financial risk. Indicatively, we mention the work by Tang and Tsitsiashvili [159],
and by Kalashnikov and Norberg [97]. In the more general framework, Wn may rep-
resent an inventory in time period n (e.g. cash), Yn may represent a multiplicative,
possibly random, decay or growth factor between times n and n + 1 (e.g. interest
rate) and Bn − An may represent a quantity that is added or subtracted between
times n and n + 1 (e.g. deposit minus withdrawal). Obviously, the positive-part
operator is appropriate for many applications [181].

In this chapter, we present an exact analysis of the steady-state distribution of
{Wn}, n = 1, 2, . . . , as given by (8.1) with P[Yn = 1] = p and P[Yn = −1] = 1 − p.
For 0 < p < 1, this amounts to analysing the above-described G/G/1 extension
where Ân = B̂n with probability p, and Ân = 2 + B̂n with probability 1 − p. This
problem, and state-dependent queuing processes in general, is connected to LaPalice
queuing models, introduced by Jacquet [92], where customers are scheduled in such
a way that the period between two consecutively scheduled customers is greater
than or equal to the service time of the first customer.

This chapter is organised in the following way. In Section 8.2 we comment
on the stability of the process {Wn}, as it is defined by Recursion (8.1). In the
remainder of the chapter it is assumed that the steady-state distribution of {Wn}
exists. Section 8.3 is devoted to the determination of the distribution of W when
A is generally distributed and B has a phase-type distribution. In Section 8.4
we determine the distribution of W when A is exponentially distributed and B is
deterministic. At the end of each section we compare the results that we derive to
the already known results for Lindley’s recursion (i.e. for p = 1) and to the equivalent
results for the Lindley-type recursion arising for p = 0, that is, for Recursion (1.1).
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The notation used here is identical to the conventions made so far. As before,
for a random variable X we denote its distribution by FX and its density by fX .
Furthermore, we denote by f (i) the i-th derivative of the function f . The Laplace-
Stieltjes transforms of FA and FW are respectively denoted by α and ω . Moreover,
we also use the function φ defined as φ(s) = ω(s)α(s). Finally, in order to distin-
guish between the various special cases of this model, we shall use Kendall’s adapted
terminology that we have already established in Section 1.5. Thus, e.g., M/G refers
now to the model described by Recursion (8.1), unless otherwise stated.

8.2 Stability

The following result on the convergence of the process {Wn} to a proper limit
W is shown in Whitt [181]. It is included here only for completeness.

From Recursion (8.1), it is obvious that if we replace Yn by max{0, Yn} and
Bn − An by max{0, Bn − An}, then the resulting waiting times will be at least
as large as the ones given by (8.1). Moreover, when we make this change, the
positive-part operator is not necessary anymore.

Lemma 8.1 (Whitt [181, Lemma 1]). If Wn satisfies (8.1), then with probability
1, Wn 6 Zn for all n, where

Zn+1 = max{0, Yn}Zn + max{0, Bn −An}, n > 0, (8.2)

and Z0 = W0 > 0.

So if Wn satisfies (8.1), Zn satisfies (8.2), and Zn converges to the proper limit
Z, then {Wn} is tight and P[W > x] 6 P[Z > x] for all x, where W is the limit in
distribution of any convergent subsequence of {Wn}. This observation, combined
with Theorem 1 of Brandt [37], which implies that Zn satisfying (8.2) converges to
a proper limit if P[max{0, Yn} = 0] = P[Yn 6 0] > 0, leads to the following theorem.

Theorem 8.1 (Whitt [181, Theorem 1]). The series {Wn} is tight for all values
of ρ = E[B0]/E[A0] and W0. If, in addition, 0 6 p < 1 and {(Yn, Bn − An)} is a
sequence of independent vectors with

P[Y0 6 0, B0 −A0 6 0] > 0,

then the events {Wn = 0} are regeneration points with finite mean time and {Wn}
converges in distribution to a proper limit W as n→∞ for all ρ and W0.

Naturally, for p = 1, i.e. for the classical Lindley recursion, we need the additional
condition that ρ < 1.

Therefore, assume that the sequences B̂n − Ân and Bn − An are independent
stationary sequences, that are also independent of one another, and that for all n,
An and Bn are non-negative. Then the conditions of Theorem 8.1 hold, so there
exists a proper limit W , and for the system in steady-state we write

W
D= max{0, B −A+ YW}, (8.3)
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where “D=” denotes equality in distribution, where A, B are generic random variables
distributed like An, Bn, and where P[Y = 1] = p and P[Y = −1] = 1− p.

The sequences {An} and {Bn} are assumed to be independent sequences of
i.i.d. non-negative random variables. In the next two sections, our main goal is to
determine the distribution of W for the two cases when A is generally distributed
and B follows a phase-type distribution, and when A is exponentially distributed
and B deterministic.

Since this model behaves like an ordinary G/G/1 queue when p = 1, and like
an alternating service model when p = 0, it is reasonable to assume that a way
to proceed with the analysis is by choosing a method that works well for both
special cases. For the G/PH case, the method we follow is based on a Wiener-Hopf
decomposition. Namely, we derive an expression for the Laplace-Stieltjes transform
of the distribution FW and we manipulate this expression accordingly until we can
determine two expressions for the same function involving the transform, that are
both defined on the imaginary axis of the complex plane and approach their values
there continuously. Then, by using standard theorems from calculus, we shall be
able to determine ω . For the M/D case, the analysis combines elements from the
analysis we have seen in Section 3.6 and from the analysis of the M/D/1 queue.

8.3 The G/PH model

In this section we assume that A is generally distributed, while B follows the
mixed-Erlang distribution we have encountered before; see for example Section 3.5
and Section 4.2.4. Specifically, we assume that with probability κn the nominal
service time B follows an Erlang distribution with parameter µ and n phases, i.e.,

FB(x) =
N∑
n=1

κn

(
1− e−µx

n−1∑
j=0

(µx)j

j!

)
=

N∑
n=1

κn

∞∑
j=n

e−µx
(µx)j

j!
, x > 0, (8.4)

with Laplace-Stieltjes transform
∑N
n=1 κn

(
µ/(µ + s)

)n. These distributions, i.e.
mixtures of Erlang distributions, are special cases of Coxian or phase-type distribu-
tions. It is sufficient to consider only this class, since it may be used to approximate
any given continuous distribution on [0,∞) arbitrarily close; see Schassberger [149].
We are interested in the distribution of W .

Derivation of the waiting-time distribution

In order to derive the distribution of W , we shall first derive the Laplace-Stieltjes
transform of FW . A straightforward calculation yields for values of s such that
Re(s) = 0:

ω(s) = E[e−sW ] = pE[e−smax{0,B−A+W}] + (1− p) E[e−smax{0,B−A−W}]

= pP[W +B 6 A] + pE[e−s(B−A+W )]− pE[e−s(B−A+W ) ;W +B 6 A]+

+ (1− p) P[B 6 W +A] + (1− p) E[e−s(B−A−W ) ;B > W +A]; (8.5)
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here A, B andW are independent random variables. The G/PH case for the Lindley-
type equation W

D= max{0, B − A −W} has already been analysed in Chapter 4,
and the Laplace-Stieltjes transform of the corresponding W is given there. From
Equation (4.33) we can readily copy an expression for the last two terms appearing
in (8.5), so ω can now be written as

ω(s) = pP[W +B 6 A] + pα(−s)ω(s)
N∑
n=1

κn

( µ

µ+ s

)n
−

− pE[e−s(B−A+W ) ;W +B 6 A]+

+ (1− p)

[
1−

N∑
n=1

n−1∑
i=0

κn
(−µ)i

i!
φ(i)(µ)

(
1−

( µ

µ+ s

)n−i)]
.

So, for Re(s) = 0 we have that

ω(s)
[
1− pα(−s)

N∑
n=1

κn

( µ

µ+ s

)n]
=

pP[W +B 6 A]− pE[e−s(B−A+W ) ;W +B 6 A]+

+ (1− p)

[
1−

N∑
n=1

n−1∑
i=0

κn
(−µ)i

i!
φ(i)(µ)

(
1−

( µ

µ+ s

)n−i)]
. (8.6)

Cohen [46, p. 322–323] shows by applying Rouché’s theorem that the function

1− pα(−s)
N∑
n=1

κn

( µ

µ+ s

)n
≡ 1

(µ+ s)N

[
(µ+ s)N − pα(−s)

N∑
n=1

κnµ
n(µ+ s)N−n

]
has exactly N zeros ξi(p) in the left-half plane if 0 < p < 1 (it is assumed that
α(µ) 6= 0, which is not an essential restriction) or if p = 1 and E[B] < E[A].
Naturally, this statement is not valid if p = 0; therefore, this case needs to be
excluded from this point on. So we rewrite (8.6) as follows

ω(s)
N∏
i=1

(
s− ξi(p)

)
=

∏N
i=1

(
s− ξi(p)

)
(µ+ s)N − pα(−s)

∑N
n=1 κnµ

n(µ+ s)N−n
×

×

[
p (µ+ s)NP[W +B 6 A]− p (µ+ s)NE[e−s(B−A+W ) ;W +B 6 A]+

+ (1− p)
[
(µ+ s)N −

N∑
n=1

n−1∑
i=0

κn
(−µ)i

i!
φ(i)(µ)

(
(µ+ s)N − µn−i(µ+ s)N−n+i

)]]
.

(8.7)

Thus, we have conveniently eliminated all poles from the right-hand side of the
equation, since the ones remaining in the denominator of the fraction are removed
by the zeros of the numerator of this fraction.
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We can observe that the left-hand side of (8.7) is analytic for Re(s) > 0 and
continuous for Re(s) > 0, and the right-hand side of (8.7) is analytic for Re(s) < 0
and continuous for Re(s) 6 0. So from Liouville’s theorem [162] (see also Section 7.3)
we have that both sides of (8.7) are the sameN -th degree polynomial, say,

∑N
i=0 qis

i.
Hence,

ω(s) =
∑N
i=0 qis

i∏N
i=1

(
s− ξi(p)

) . (8.8)

In the expression above, the constants qi are not determined so far, while the roots
ξi(p) are known. In order to obtain the transform, observe that ω is a fraction of
two polynomials of degree N . So, ignoring the special case of multiple zeros ξi(p),
partial fraction decomposition yields that (8.8) can be rewritten as

ω(s) = c0 +
N∑
i=1

ci
s− ξi(p)

, (8.9)

which implies that the waiting-time distribution has a mass at the origin that is
given by

P[W = 0] = lim
s→∞

E[e−sW ] = c0

and has a density that is given by

fW (x) =
N∑
i=1

cieξi(p)x.

All that remains is to determine the N + 1 constants ci. To do so, we work
as follows. We shall substitute (8.9) in the left-hand side of (8.7), and express the
terms P[W +B 6 A] and E[e−s(B−A+W ) ;W +B 6 A] that appear at the right-hand
side of (8.7) in terms of the constants ci. Note that the terms φ(i)(µ) that appear at
the right-hand side of (8.7) can also be expressed in terms of the constants ci. Thus
we obtain a new equation that we shall differentiate a total of N times. We shall
evaluate each of these derivatives for s = 0 and thus we obtain a linear system of N
equations for the constants ci, i = 0, . . . , N . The last equation that is necessary to
uniquely determine the constants ci is the normalisation equation

c0 +
∫ ∞

0

fW (x) dx = 1. (8.10)

To begin with, note that

P[W +B 6 A] = P[W = 0]P[B 6 A] +
∫ ∞

0

P[B 6 A− x]
N∑
i=1

cieξi(p)x dx, (8.11)
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with

P[B 6 A] =
∫ ∞

0

N∑
n=1

κn

(
e−µx

∞∑
j=n

(µx)j

j!

)
dFA(x)

=
N∑
n=1

∞∑
i=n

κn
(−µ)i

i!
α(i)(µ), (8.12)

and

∫ ∞

0

P[B 6 A− x]
N∑
i=1

cieξi(p)x dx

=
∫ ∞

0

∫ ∞

0

P[B 6 y − x]
N∑
i=1

cieξi(p)x dxdFA(y)

=
∫ ∞

0

∫ y

0

e−µ(y−x)
N∑
n=1

∞∑
j=n

κn

(
µ(y − x)

)j
j!

N∑
i=1

cieξi(p)x dxdFA(y)

=
N∑
n=1

∞∑
j=n

N∑
i=1

∞∑
k=j+1

κnci
µj
(
µ+ ξi(p)

)k−j−1

k!(−1)k
α(k)(µ). (8.13)

Likewise, we have that

E[e−s(B−A+W ) ;W +B 6 A] = P[W = 0] E[e−s(B−A) ;B 6 A]+

+
∫ ∞

0

E[e−s(B−A+x) ;x+B 6 A]
N∑
i=1

cieξi(p)x dx, (8.14)

with

E[e−s(B−A) ;B 6 A] =
∫ ∞

0

∫ x

0

e−s(y−x)
N∑
n=1

κnµe−µy
(µy)n−1

(n− 1)!
dydFA(x)

=
∫ ∞

0

exs
N∑
n=1

κn

( µ

µ+ s

)n ∞∑
i=n

e−x(µ+s)x
i(µ+ s)i

i!
dFA(x)

=
N∑
n=1

∞∑
i=n

κn µ
n (−1)i

i!
(µ+ s)i−n α(i)(µ), (8.15)
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and∫ ∞

0

E[e−s(B−A+x) ;x+B 6 A]
N∑
i=1

cieξi(p)x dx

=
∫ ∞

0

∫ y

0

∫ y−x

0

e−s(z−y+x)
N∑
n=1

κnµe−µz
(µz)n−1

(n− 1)!

N∑
i=1

cieξi(p)x dzdxdFA(y)

=
∫ ∞

0

∫ y

0

N∑
n=1

κn

( µ

µ+ s

)n
e−s(x−y)

∞∑
j=n

e−(µ+s)(y−x) (µ+ s)j(y − x)j

j!
×

×
N∑
i=1

cieξi(p)x dxdFA(y)

=
N∑
n=1

∞∑
j=n

N∑
i=1

∞∑
k=j+1

κnci

( µ

µ+ s

)n (µ+ s)j
(
µ+ ξi(p)

)k−j−1

k!(−1)k
α(k)(µ). (8.16)

So, using (8.12) and (8.13), substitute (8.11) in the right-hand side of (8.7), and
likewise for (8.14). Furthermore, as mentioned before, substitute (8.9) into the left-
hand side of (8.7) to obtain an expression, where both sides can be reduced to an
N -th degree polynomial in s. By evaluating this polynomial and all its derivatives
for s = 0 we obtain N equations binding the constants ci. These equations, and
the normalisation equation (8.10), form a linear system for the constants ci, i =
0, . . . , N , that uniquely determines them (see also Remark 8.1 below). For example,
the first equation, evaluated at s = 0, yields that

c0 −
N∑
i=1

ci
ξi(p)

=
1− p

1− pα(0)
= 1,

since α(0) = 1. We summarise the above in the following theorem.

Theorem 8.2. Consider the recursion given by (8.1), and assume that 0 < p < 1.
Let (8.4) be the distribution of the random variable B. Then the limiting distribution
of the waiting time has mass c0 at the origin and a density on [0,∞) that is given
by

fW (x) =
N∑
i=1

cieξi(p)x.

In the above equation, the constants ξi(p), with Re(ξi(p)) < 0, are the N roots of

(µ+ s)N − pα(−s)
N∑
n=1

κnµ
n(µ+ s)N−n = 0,

and the N + 1 constants ci are the unique solution to the linear system described
above.
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Remark 8.1. Although the roots ξi(p) and coefficients ci may be complex, the density
and the mass c0 at zero will be positive. This follows from the fact that there is a
unique equilibrium distribution and thus a unique solution to the linear system for
the coefficients ci. Of course, it is also clear that each root ξi(p) and coefficient ci
have a companion conjugate root and conjugate coefficient, which implies that the
imaginary parts appearing in the density cancel.

Remark 8.2. In case that ξi(p) has multiplicity greater than one for one or more
values of i, the analysis proceeds in essentially the same way. For example, if
ξ1(p) = ξ2(p), then the partial fraction decomposition of ω becomes

ω(s) = c0 +
c1(

s− ξ1(p)
)2 +

N∑
i=2

ci
s− ξi(p)

,

the inverse of which is given by

fW (x) = c1xeξ1(p)x +
N∑
i=2

cieξi(p)x.

Remark 8.3. For the nominal service time B we have considered only mixtures of
Erlang distributions, mainly because this class approximates well any continuous
distribution on [0,∞) and because we can illustrate the techniques we use without
complicating the analysis. However, we can extend this class by considering distri-
butions with a rational Laplace transform. The analysis in [170] can be extended to
such distributions, and the analysis in Cohen [46, Section II.5.10] is already given
for such distributions, so the results given there can be implemented directly.

Remark 8.4. The analysis we have presented so far can be directly extended to the
case where Y takes any finite number of negative values. In other words, let the
distribution of Y be given by P[Y = 1] = p, and for i = 1, . . . , n, P[Y = −ui] = pi,
where ui > 0 and

∑
i pi = 1− p. Then, for example, Equation (8.6) becomes

ω(s)
[
1− pα(−s)

N∑
n=1

κn

( µ

µ+ s

)n]
=

pP[W +B 6 A]− pE[e−s(B−A+W ) ;W +B 6 A] +
n∑
i=1

pi P[B 6 uiW +A]+

+
n∑
i=1

pi

( N∑
n=1

κn

( µ

µ+ s

)n
α(−s)ω(−uis)− E[e−s(B−A−uiW ) ;B 6 uiW +A]

)
.

Following the same steps as below (8.6), we can conclude that the waiting time
density is again given by a mixture of exponentials of the form

fW (x) =
N∑
i=1

ĉieξi(p)x,
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where the new constants ĉi (and the mass of the distribution at zero, given by ĉ0) are
to be determined as the unique solution to a linear system of equations. The only
additional remark necessary when forming this linear system is to observe that both
the probability P[B 6 uiW+A] and the expectation E[e−s(B−A−uiW ) ;B 6 uiW+A]
can be expressed linearly in terms of the constants ĉi.

The case p = 0

We have seen that the case where Yn = −1 for all n, or in other words the
case p = 0, had to be excluded from the analysis. Equation (8.7) is still valid if
we take the constants ξi(0) to be defined as in Theorem 8.2. However, one cannot
apply Liouville’s theorem to the resulting equation. The transform can be inverted
directly. As it is shown in Chapter 4, the terms φ(i)(µ) that remain to be determined
follow by differentiating Equation (8.7) a total of N − 1 times and evaluating ωi(s)
at s = µ for i = 0, . . . , N − 1. The density in this case is a mixture of Erlang
distributions with the same scale parameter µ for all exponential phases. As we can
see, for p = 0 the resulting density is intrinsically different from the one described
in Theorem 8.2.

The case p = 1

If p = 1 and E[B] < E[A], then we are analysing the steady-state waiting-time
distribution of a G/PH/1 queue. Equation (8.7) now reduces to

ω(s)
N∏
i=1

(
s− ξi(1)

)
=

∏N
i=1

(
s− ξi(1)

)
(µ+ s)N − α(−s)

∑N
n=1 κnµ

n(µ+ s)N−n
×

×
[
(µ+ s)NP[W +B 6 A]− (µ+ s)NE[e−s(B−A+W ) ;W +B 6 A]

]
. (8.17)

Earlier we have already observed that the right-hand side of (8.17) is equal to an N -
th degree polynomial

∑N
i=0 qis

i. Inspection of the right-hand side of (8.17) reveals
that it has an N -fold zero in s = −µ. Indeed, all zeros of the numerator of the
quotient in the right-hand side cancel against zeros of the denominator, and the
term

P[W +B 6 A]− E[e−s(B−A+W ) ;W +B 6 A]

is finite for s = −µ. Hence,

N∑
i=0

qis
i = qN (µ+ s)N . (8.18)

Combining (8.17) and (8.18), we conclude that

ω(s)
N∏
i=1

(
s− ξi(1)

)
= qN (µ+ s)N ,
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and since ω(0) = 1, the last equation gives us that

qN =
∏N
i=1

(
−ξi(1)

)
µN

.

Thus, we have that

ω(s) =
(µ+ s

µ

)N N∏
i=1

ξi(1)
ξi(1)− s

,

which is in agreement with Equation II.5.190 in [46, p. 324].

8.4 The M/D model

We have examined so far the case where the nominal interarrival time A is gener-
ally distributed and the nominal service time B follows a phase-type distribution. In
other words, we have studied the case which is in a sense analogous to the ordinary
G/PH/1 queue. We now would like to study the reversed situation; namely, the case
analogous to the M/G/1 queue. As before, a reasonable assumption is to utilise a
method that can be used to derive the steady-state waiting-time distribution both
for the M/G/1 queue and for the M/D case of the alternating service model given
by Recursion (1.1).

The M/G/1 queue has been studied in much detail. However, the analogous
alternating service model – i.e., take P(Y = −1) = 1 in (8.1), so p = 0 – seems to
be more complicated to analyse, see Chapter 5. As shown in Section 1.6, if p = 0,
the density of W satisfies a generalised Wiener-Hopf equation, for which no solution
is known in general. The presently available results for the distribution of W with
p = 0 are developed in Chapter 5, where B is assumed to belong to the class M,
which strictly bigger than the class of functions with rational Laplace transforms,
but not completely general. Moreover, the method developed in Chapter 5 breaks
down when applied to (8.3) with Y not identically equal to −1. One cannot exploit
in this case the special form of the distributions belonging to M, since the “Lindley-
part” of the recursion does not allow for a convenient definition of constants ci, as
they were defined in Chapter 5. Everything considered, it seems that there is no
method available so far that can be used both for the M/G/1 queue and for the
M/D case of the alternating service model.

We shall refrain from trying to develop an alternative approach for the M/G case
with a more general distribution for B than the one treated in Section 8.3. Instead,
we give a detailed analysis of the M/D case: A is exponentially distributed and B
is deterministic. This case is neither contained in the G/PH case of the previous
section nor has it been treated (for the special choice of p = 0) in Chapter 3. Its
analysis is of interest for various reasons. To start with, the model generalises
the classical M/D/1 queue; additionally, the analysis illustrates the difficulties that
arise when studying (8.3) in case A is exponentially distributed and B is generally
distributed; finally, the different effects of Lindley’s classical recursion and of the
Lindley-type recursion (1.1) are clearly exposed. As we shall see in the following, the
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analysis can be practically split into two parts, where each part follows the analysis
of the corresponding model with Y ≡ 1, or Y ≡ −1.

Derivation of the waiting-time distribution

As before, consider Equation (8.3), and assume that Y = 1 with probability p
and Y = −1 with probability 1− p. Let A be exponentially distributed with rate λ
and B be equal to b, where b > 0. Furthermore, we shall denote by π0 the mass of
the distribution of W at zero; that is, π0 = P[W = 0].

For this setting, we have from (8.3) that for x > 0,

FW (x) = P[max{0, b−A+ YW} 6 x] = P[b−A+ YW 6 x]
= pP[b−A+W 6 x] + (1− p) P[b−A−W 6 x]

= p π0P[b−A 6 x] + p

∫ ∞

0

P[b−A 6 x− y]fW (y) dy+

+ (1− p)π0P[b−A 6 x] + (1− p)
∫ ∞

0

P[b−A 6 x+ y]fW (y) dy

= π0P[A > b− x] + p

∫ ∞

0

P[A > b− x+ y]fW (y) dy+

+ (1− p)
∫ ∞

0

P[A > b− x− y]fW (y) dy. (8.19)

Evidently, in order to rewrite the probabilities appearing in the above expression, we
need to consider two separate cases. So, for 0 6 x < b the above equation reduces
to

FW (x) = π0 e−λ(b−x) + p

∫ ∞

0

e−λ(b−x+y)fW (y) dy+

+ (1− p)
∫ b−x

0

e−λ(b−x−y)fW (y) dy + (1− p)
∫ ∞

b−x
fW (y) dy, (8.20)

and for x > b, Equation (8.19) reduces to

FW (x) = π0 + p

∫ x−b

0

fW (y) dy + p

∫ ∞

x−b
e−λ(b−x+y)fW (y) dy + (1− p)(1− π0),

(8.21)

where we have utilised the normalisation equation

π0 +
∫ ∞

0

fW (y) dy = 1. (8.22)

In the following, we shall derive the distribution on the interval [0, b) and on
the interval [b,∞) separately. At this point though, one should note that from
Equation (8.3) it is apparent that for A exponentially distributed and B = b, the
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distribution of W is continuous on (0,∞). Also, one can verify that Equation (8.20)
for x = b reduces to Equation (8.21) for x = b. The fact that FW is continuous on
(0,∞) will be used extensively in the sequel. Notice also that from Equations (8.20)
and (8.21) we can immediately see that we can differentiate FW (x) for x ∈ (0, b)
and x ∈ (b,∞); see, for example, Titchmarsh [162, p. 59].

The distribution on [0, b):

In all subsequent equations it is assumed that x ∈ (0, b). In order to derive the
distribution of W on [0, b], we differentiate (8.20) once to obtain

fW (x) = λπ0 e−λ(b−x) + λp

∫ ∞

0

e−λ(b−x+y)fW (y) dy+

+ λ(1− p)
∫ b−x

0

e−λ(b−x−y)fW (y) dy−

− (1− p)e−λ(b−x)eλ(b−x)fW (b− x) + (1− p)fW (b− x).

We rewrite this equation after noticing that the third line is equal to zero, while the
sum of the integrals in the first two lines can be rewritten by using (8.20). Thus,
we have that

fW (x) = λπ0 e−λ(b−x) + λ

(
FW (x)− π0e−λ(b−x) − (1− p)

∫ ∞

b−x
fW (y) dy

)
= λFW (x)− λ(1− p)

∫ ∞

b−x
fW (y) dy. (8.23)

In order to obtain a linear differential equation, differentiate (8.23) once more, which
leads to

f
′

W (x) = λfW (x)− λ(1− p)fW (b− x). (8.24)

Equation (8.24) is a homogeneous linear differential equation, not of a standard
form because of the argument b − x that appears at the right-hand side. We have
already encountered a similar differential equation of this type in Section 3.6. For
the solution, one could follow exactly the same steps. However, Equation (8.24) is
significantly less complicated, as it is only of first order, so here we shall present a
simpler approach. To solve it, we substitute x for b− x in (8.24) to obtain

f
′

W (b− x) = λfW (b− x)− λ(1− p)fW (x). (8.25)

Then, we differentiate (8.24) once more to obtain

f
′′

W (x) = λf
′

W (x) + λ(1− p)f
′

W (b− x),

and we eliminate the term f
′

W (b− x) by using (8.25). Thus, we conclude that

f
′′

W (x) = λ2p (2− p)fW (x). (8.26)
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For p 6= 0, the solution to this differential equation is given by

fW (x) = d1er1x + d2er2x, (8.27)

where r1 and r2 are given by

r1,2 = ±λ
√
p (2− p), (8.28)

and the constants d1 and d2 will be determined by the initial conditions. Namely,
the solution needs to satisfy (8.24) and the condition FW (0) = π0. Thus, for the
first equation, substitute the general solution we have derived into (8.24) and for
the second equation, rewrite (8.23) as follows:

fW (x) = λFW (x)− λ(1− p)
(

1− π0 −
∫ b−x

0

fW (y) dy
)
,

substitute fW (x) from (8.27), and evaluate the resulting equation for x = 0. So the
first equation we derive is

r1d1er1x + r2d2er2x = λ(d1er1x + d2er2x)− λ(1− p)(d1er1(b−x) + d2er2(b−x)),

from which we conclude that

r1d1 = λd1 − λ(1− p)d2er2b,

and the second equation we derive is

d1 + d2 = λπ0 − λ(1− p)
(

1− π0 −
(d1

r1

(
er1b − 1

)
+
d2

r2

(
er2b − 1

)))
.

This system uniquely determines d1 and d2. Specifically, we have that

d1 =
λ2(1− p)

(
1− p (1− π0)− 2π0

)
r1

(ebr1 − 1)λ2(2− p)(1− p) + ebr1r1
(
r1 − λ(2− p)

) ,
d2 =

ebr1λ(1− p (1− π0)− 2π0)r1 (λ− r1)
(ebr1 − 1)λ2(2− p)(1− p) + ebr1r1

(
r1 − λ(2− p)

) ,
where in the process we have assumed that p 6= 1. Up to this point we have that
the waiting-time distribution on [0, b] is given by

FW (x) =
d1

r1
(er1x − 1) +

d2

r2
(er2x − 1) + π0, (8.29)

where d1 and d2 are known up to the probability π0. The cases for p = 0 and p = 1
follow directly from Equation (8.26) and will be handled separately in the sequel.
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The distribution on [b,∞):

As before, we obtain a differential equation by differentiating (8.21) once, and
substituting the resulting integrals by using (8.21) once more. Thus, we obtain the
equation

fW (x) = λ

(
FW (x)− π0 − (1− p)(1− π0)− p

∫ x−b

0

fW (y) dy
)
,

which can be reduced to

fW (x) = λ
(
FW (x)− 1 + p− pFW (x− b)

)
. (8.30)

Equation (8.30) is a delay differential equation that can be solved recursively. Ob-
serve that for x ∈ (b, 2b), the term FW (x− b) has been derived in the previous step,
so for x ∈ (b, 2b), Equation (8.30) reduces to an ordinary linear differential equation
from which we can easily derive the distribution of W in the interval (b, 2b).

For simplicity, denote by Fi(x) the distribution of W when x ∈ [ib, (i+1)b], and
analogously denote by fi(x) the density of W , when x ∈ (ib, (i+ 1)b). Then (8.30)
states that

fi(x) = λ
(
Fi(x)− 1 + p− pFi−1(x− b)

)
,

which leads to an expression for Fi that is given in terms of an indefinite integral
that is a function of x, that is,

Fi(x) = eλx
(∫

λ
(
−1 + p− pFi−1(x− b)

)
e−λx dx+ γi

)
, i > 1. (8.31)

The constants γi can be determined by exploiting the fact that the waiting-time
distribution is continuous. In particular, every γi is determined by the equation

Fi(ib) = Fi−1(ib). (8.32)

Solving Equation (8.31) recursively, we obtain that

Fi(x) = 1− pi(1− π0)− pi
(d1

r1
+
d2

r2

)
+

2∑
j=1

( λp

λ− rj

)i dj
rj

erj(x−ib)+

+ x
i−1∑
j=0

(−λp)jγi−j
(x− jb)j−1

j!
eλ(x−jb). (8.33)

Observe that for i = 0, if we define the empty sum at the right-hand side to be equal
to zero, then the above expression is satisfied. Notice that, since we have made use
of the distribution on [0, b) as it is given by (8.29), Equation (8.33) is not valid for
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p = 0 or p = 1. From Equation (8.32) we now have that for every i > 1,

γi = γi−1 + e−λib(1− p)pi−1
(
π0 − 1− d1 − d2

r1

)
−

−
2∑
j=1

e−λibdj
rj

( λp

λ− rj

)i(
1− (λ− rj) ebrj

λp

)
+

+ i
i−1∑
j=1

e−λjb(i− j)j−1(−λpb)j (γi−1−j − γi−j)
j!

, (8.34)

where we have assumed that γ0 = 0, and that for i = 1, the second sum is equal to
zero. These expressions can be simplified further by observing that

1− pi(1− π0)− pi
(d1

r1
+
d2

r2

)
= 1− pi

2− p
.

Recall that d1 and d2, and thus also all constants γi, are known in terms of π0.
The probability π0 that still remains to be determined will be given by the nor-
malisation equation (8.22). Notice though, that since the waiting-time distribution
is determined recursively for every interval [ib, (i + 1)b], Equation (8.22) yields an
infinite sum. The sum is well defined, since a unique density exists. The above
findings are summarised in the following theorem.

Theorem 8.3. Consider the recursion given by (8.1), and assume that 0 < p < 1.
Let A be exponentially distributed with rate λ and B be equal to b, where b > 0.
Then for x ∈ [ib, (i+ 1)b], i = 0, 1, . . ., the limiting distribution of the waiting time
is given by

FW (x) = 1− pi

2− p
+

2∑
j=1

( λp

λ− rj

)i dj
rj

erj(x−ib)+

+ x
i−1∑
j=0

(−λp)jγi−j
(x− jb)j−1

j!
eλ(x−jb),

where the constants γi are given by Equation (8.34) and the probability π0 is given
by the normalisation equation (8.22).

One might expect though that Equation (8.22) may not be suitable for numer-
ically determining π0. However, if the probability p is not too close to one, or in
other words, if the system does not almost behave like an M/D/1 queue, then one
can numerically approximate π0 from the normalisation equation. As an example,
in Figure 8.1 we display a typical plot of the waiting-time distribution. We have
chosen b = 1, λ = 2, and p = 1/3.

For p close to one, we can see from the expressions for d1 and d2 that both the nu-
merators and the denominators of these two constants approach zero. Furthermore,
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Figure 8.1: The waiting-time distribution for b = 1, λ = 2, and p = 1/3.

the denominators λ− rj , j = 1, 2, that appear in the waiting-time distribution also
approach zero, which makes Theorem 8.3 unsuitable for numerical computations for
values of p close to one. Moreover, we also see that very large values of the param-
eter λ may also lead to numerical problems, since λ is involved in the exponent of
almost all exponential terms that appear in the waiting-time distribution.

As one can observe from Figure 8.1, and show from Theorem 8.3, FW is not
differentiable for x = b. This is not surprising, as the waiting-time distribution is
defined by two different equations; namely Equation (8.20) for x < b and Equa-
tion (8.21) for x > b. Furthermore, from Equation (8.23) we have that

fW (b−) = λFW (b)− λ(1− p)(1− π0),

and from Equation (8.30) we have that

fW (b+) = λ(FW (b)− 1 + p− p π0).

That is, fW (b−)− fW (b+) = λπ0.

The case p = 0

Observe that if p = 0 then the support of W is the interval [0, b]. To determine
the density of the waiting time, we insert p = 0 into Equation (8.26). Thus, we
obtain that

f
′′

W (x) = 0,

from which we immediately have that

fW (x) = ν1x+ ν2,
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for some constants ν1 and ν2 such that (8.24) is satisfied. The latter condition
implies that for every x ∈ (0, b) the following equation must hold:

ν1 = λ(ν1x+ ν2)− λ(ν1(b− x) + ν2).

From this we conclude that ν1 is equal to zero, i.e. the waiting time has a mass
at zero and is uniformly distributed on (0, b). To determine the mass π0 and the
constant ν2 we evaluate (8.23) at x = 0 and we use the normalisation equation
(8.22), keeping in mind that fW (x) = 0 for x ∈ [b,∞). These two equations give
the system

ν2 = λπ0 − λ(1− π0 − bν2)
π0 + bν2 = 1,

which yields that if p = 0, then

fW (x) =
λ

1 + λb
, 0 < x < b, and π0 =

1
1 + λb

. (8.35)

Evidently, the density in this case is quite different from the density for p 6= 0,
which is on (0, b) a mixture of two exponentials; see (8.27). However, our numerical
experiments verify that for 0 < p = ε << 1, the waiting-time distribution, which
is given by (8.33), is close to the uniform distribution on (0, b] with a mass at zero
close to the value of π0 as it is given by Equation (8.35). This is to be expected,
since p = 0 is just a special case of Equation (8.26), and thus its solution can be
seen as the limiting case of (8.27) for p approaching zero.

Another way to see that fW (x) = λπ0, 0 < x < b, is as follows. Recall that for
p = 0 and x > b we have that fW (x) = 0. Equation (8.23) can now be written as

fW (x) = λπ0 + λP[W ∈ (0, x)]− λP[W ∈ (b− x, b)].

Replacing x by b − x shows that fW (x) = fW (b − x), from which we derive that
P[W ∈ (0, x)] = P[W ∈ (b − x, b)] and finally that fW (x) = λπ0, 0 < x < b. It
seems less straightforward to explain probabilistically that W , given that W > 0, is
uniformly distributed. With a view towards the recursion W D= max{0, b−A−W},
we believe that this property is related to the fact that, if n Poisson arrivals occur
in some interval, then they are distributed like the n order statistics of the uniform
distribution on that interval [147, Section 2.3].

The case p = 1

For the M/D/1 queue, Erlang [61] derived the following expression for the
waiting-time distribution:

P[W 6 x] = (1− ρ)
i∑

j=0

(
−λ(x− jb)

)j
j!

eλ(x−jb), ib 6 x < (i+ 1)b,

where ρ is the traffic intensity. Recall that for the M/D/1 queue we have that
FW (0) = 1− ρ. We see that for p = 1 Equation (8.23) indeed leads to the waiting-
time distribution (1−ρ) eλx, as it is given by Erlang’s expression for the first interval
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[0, b). For x > b, one needs to recursively solve Equation (8.31) in order to obtain
Erlang’s expression. However, since the recursive solution we have obtained for our
model makes use of FW (x) as it is given by (8.29), which is not valid for p = 1, the
waiting-time distribution we have obtained in Theorem 8.3 cannot be extended to
the case for p = 1.

The terms both in Erlang’s expression for the waiting-time distribution of an
M/D/1 queue and in Theorem 8.3 alternate in sign and in general are much larger
than their sum. Thus, the numerical evaluation of the sum may be hampered
by roundoff errors due to the loss of significant digits, in particular under heavy
traffic. For the M/D/1 queue, however, a satisfactory solution has been given by
Franx [66]. The author uses a probabilistic approach leading to a simple formula
for the waiting-time distribution that involves only a finite sum of positive terms;
thus, this expression presents no numerical complications, not even for high traffic
intensities. For our model, extending Franx’s approach is a challenging problem as
the representation of various quantities appearing in [66] which are related to the
queue length at service initiations is not straightforward.

As we see, the waiting-time distribution in Theorem 8.3 is quite similar to Er-
lang’s expression, so we expect that eventually the solution will suffer from roundoff
errors. Furthermore, a significant difference in the numerical computation between
the M/D/1 queue and the model described by Recursion (8.1) arises when comput-
ing π0. For any single server queue we know a priori that P[W = 0] = 1− ρ. In our
model, π0 has to be computed from the normalisation equation, where the numerical
complications when calculating the waiting-time distribution become apparent. In
particular, as p tends to 1, i.e. as the system behaves almost like an M/D/1 queue,
the computation of π0 becomes more problematic.

As an additional observation, we note that the effects of Lindley’s classical re-
cursion and of the Lindley-type recursion (1.1) are quite apparent. The analysis for
our model is in a sense separated into two parts: the derivation of the waiting-time
distribution in [0, b) and in [b,∞). In the first part, we see that Equation (8.24) is
quite similar to the differential equation (3.32) for the derivation of the waiting-time
distribution in case p = 0 and B follows a polynomial distribution. Moreover, one
could use the same technique to derive a solution, but Equation (8.24) is too simple
to call for such means. In the second part, we see the effects of the M/D/1 queue,
as we eventually derive FW in a recursive manner. Furthermore, this model inher-
its all the numerical difficulties appearing in the classical solution for the M/D/1
queue, plus the additional difficulties of computing π0. For Lindley’s recursion, π0

is known beforehand, while for the Lindley-type recursion (1.1) π0 is derived by
the normalisation equation. However, for values of p not too close to 1, one can
numerically approximate the waiting-time distribution fairly easily, and the results
have also been verified by means of simulation. Finally, one could argue that the
challenges arising in the analysis of (8.1) are demonstrated also by the fact that the
approach for the G/PH case differs significantly from the one followed for the M/D
case. The method used in each case does not seem to be successful in handling the
other case.
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Minor extensions and observations

In this dissertation, we have mainly studied various aspects of the Lindley-type
recursion (1.1) and a generalisation of it given by Recursion (8.1). The basic charac-
teristic of both of these recursions is that they do not satisfy the usual assumption
made when studying general stochastic recursions. Namely, they are not stochas-
tically monotone increasing in their main argument, which does not allow us to
exploit the known duality results between Markov processes and monotone increas-
ing continuous processes (see Asmussen [6, Section IX.4] and Loynes [122]). From
the analysis presented in the previous chapters, however, one can draw a few simple
conclusions.

As we have observed in various points before (cf. Sections 5.2 and 5.7), the
structure of the preparation time distribution FB (or the lack thereof) is significant
in the analysis of this model. If FA is generally distributed and FB has some known
structure, then we can analyse exactly both the time-dependent and the steady-
state behaviour of the system; see Chapter 4. Moreover, we observe that in this
case, the methods that can be applied are quite similar to the methods applicable
to the standard M/G/1 queuing system. Thus, we observe that we can often learn
from the results derived for the M/G/1 queue, since frequently these results can also
be derived for the G/M case of our model. In other words, although there seems to
be no directly established duality between Lindley’s recursion and the Lindley-type
recursion (1.1), the experience gathered from Lindley’s recursion gives insight on
the possibilities arising for (1.1).

Apart from the general observation that Lindley’s recursion is potentially didac-
tic when studying this model or trying to extend the results presented in this thesis,
there are minor extensions that can be made in almost all chapters we have seen so
far. For sake of completeness, in the following we give a non-exhaustive list of such
minor extensions. It should be stressed though that most of these minor points are
interesting only to the extent that they satisfy one’s mathematical curiosity and do
not constitute a significant advance of the theory. Key extensions will be presented
in the following section.

In Chapter 2, we have studied the stability of the system under the assumption
that {Xn} is an i.i.d. sequence. If one wishes, however, to introduce any kind of
dependencies between preparation and service times, then one should first study the
stability of the system under the more general assumption that {Xn} is a stationary
sequence. For a particular case in Chapter 7 we have seen that the proof is quite
straightforward. Moreover, from Foss and Konstantopoulos [65] we know that for
any sequence {Xn} there exists an equilibrium distribution; see also Section 2.2.2.
However, the uniqueness of this distribution and the convergence to it remain to be
studied.

The results of Section 3.6 can be extended to mixed-Erlang service times, and
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those of Section 4.2.2 regarding the time-dependent waiting-time distribution can be
extended to preparation time distributions that belong to class M (cf. Section 5.3).
Another interesting point is the conjecture made in Remark 4.5. Namely, after
comparing the performance of the alternating-service system to the one of the non-
alternating model, we have observed that the waiting times are not stochastically
ordered, but numerical examples suggest that they are ordered with respect to the
increasing convex ordering.

In Section 6.2, we have obtained error bounds for the waiting-time distribution
in case we approximate either the service-time or the preparation-time distribution.
These bounds though, as is observed also in Section 3.3, are not tight, and are limited
to the uniform norm. For numerical applications though, one might be interested
in deriving tighter bounds and extending these results to weighted norms. This will
allow for a greater variety of methods when fitting a distribution to either FA or
FB . For example many techniques that are used for fitting phase-type distributions
to given distributions are based on moment matching. The distance between the
two distributions with respect to the uniform norm is not necessarily reduced as the
number of moments that are matched increases. However, if we derive error bounds
with respect to a norm that involves only the distance between the moments of
two distributions, then moment matching techniques are a reasonable choice when
fitting distributions.

An obvious extension of the results presented in Chapter 7 is to consider a wide
range of other dependence structures than the ones described there. Various kinds
of dependencies are application-specific (see, for example, page 142) while others
are mathematically interesting, see Nelsen [134]. What is also of interest is to study
numerically the effects of the auto- and cross-correlation between the sequences
{An} and {Bn} to the waiting-time distribution.

In Chapter 8, we have studied a more general non-increasing Lindley-type recur-
sion, which generalises Recursion (1.1). For this recursion, one could consider the
case where the additional sequence {Yn} is i.i.d. and generally distributed. However,
the analysis in this case is far from trivial.

For Recursion (1.1), one could also consider applying the moment iteration
method for approximating the waiting-time distribution described in De Kok [55].
Some advantages of this method are that it is easy to implement and that it is
quite accurate for the G/G/1 queue when the initial distributions have all moments
finite. This method eventually matches the two distributions, i.e. the real waiting-
time distribution and its approximation, by matching the first two or three moments
(although, in principle, the algorithm can be modified to yield better results through
iteration of higher moments and fitting distributions to all these moments). This
does not guarantee, however, that the approximated waiting-time distribution will
be as close as desired (for example, with respect to the uniform norm) to the real
waiting-time distribution. Since for our model we know that the waiting-time dis-
tribution satisfies a contraction mapping, it seems more advantageous to derive an
approximation of FW by successive iterations of the functional equation (2.1). How-
ever, a possible disadvantage of this technique may be that every iteration might
increase the complexity of the computation for certain service-time or preparation-
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time distributions. The solution to this problem is to approximate one of the two
distributions with a distribution that allows for explicit computations. As we have
seen in Chapter 6, the approximation error in this case can be controlled.

More interesting extensions usually involve a modification of the model, and will
be presented in the following section.

Further research

As we have seen in Section 1.2, the model we have considered in this dissertation
applies to a two-carousel system that is operated by a single picker. Two-carousel
systems have received some attention in the literature (cf. Section 1.3.5) but many
questions remain open. A line of research is directed towards studying the per-
formance of two-carousel systems under various storage-assignment policies (ran-
domised or not), for various pick/travel time strategies and heuristics (sequential
picking, nearest-item heuristic, m-step strategies, etc.), for single- or dual-command
cycles, and for open- and closed-loop strategies. As explained in Section 1.3.5, two-
carousel systems differ in nature and in analysis from the corresponding one-carousel
problems even when studied under the same assumptions on the various storage,
pick, cycle, and starting-point strategies that are followed. Since two-carousel sys-
tems perform in broad terms better than single-carousel systems [87], studying the
expected increase of the throughput of the system can help answer questions of fi-
nancial nature, such as whether the benefits from the increased throughput justify
the increased cost of building and operating a two-carousel system.

Another question that arises naturally when considering the two-carousel system,
is: “why limit the study to two carousels and not extend the model to multiple
carousels?” Consider the situation where a single server (picker) operates three
stations (carousels). Apart from the number of stations, all other characteristics
of the model remain the same. That is, we again consider an infinite queue of
customers (orders) that need to be served, we have again a preparation phase and
a service phase in the same station for each customer, and as before, the server is
needed only in the service phase and serves all stations cyclically. For three stations,
this leads to the recursion

Wn+2 = max{0, Bn+2 −Wn+1 −An+1 −Wn −An},

where now the variables appearing at the right-hand side are not independent of
one another, as was the case for all variables appearing at the right-hand side of
Recursion (1.1). Although we may assume for convenience that the sequences {An}
and {Bn} are independent among them and between them, the waiting times Wn

and Wn+1 are not independent. The state of the system can also be modelled as a
two-dimensional Markov chain, where apart from the waiting time of the server for
the n-th customer we also need to incorporate the remaining preparation time of the
next carousel to be served. Evidently, if the preparation times are assumed to be
exponentially distributed, the system (for three or more stations) can be analysed
explicitly by similar techniques as the ones applied in Chapter 4.
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Naturally, if one considers a system with multiple carousels or stations, one can
think about optimisation questions. Namely, as the number of carousels increases,
the waiting time of the picker is expected to decrease. After serving a long series
of carousels cyclically, when you return to the beginning of the cycle, with high
probability the item to be picked will have reached the origin. This implies that
an item will have to wait for the picker at the origin more frequently than in the
two-carousel system, which means that the throughput of the system decreases.
Intuitively, as the number of carousels increases to infinity, the utilisation of the
server increases to one, while the throughput of each individual carousel decreases
to zero. Given a setting, one might wonder how many carousels a single picker can
operate so that we maximise both the throughput of the carousels and the utilisation
of the server simultaneously.

It is also interesting to study if the model can be analysed in case there is an
arrival process according to which the customers (orders) arrive. For example, if
customers arrive according to a Poisson process in front of the service station, where
they form an infinite-buffer queue, then undergo a preparation phase as before, and
only then receive service from the server, then what can be said for the waiting time
of the server? This question can also be combined with the non-alternating system,
where the server serves the first customer that has completed the preparation phase,
or with Bernoulli-type requests, where the server has to serve with a certain proba-
bility at the “first” station and with the complementary probability at the “other”
station (potentially waiting for a customer if none is present at the designated sta-
tion). For each case, one should also consider the stability of the system in case
the arrival rate of the customers is less than the throughput of the system with an
infinite queue of customers.

In the literature on polling systems, the polling system with two queues where
at each queue the server serves exactly one customer before switching to the other
queue is often referred to as the 1-limited alternating-service model. Extending
the model of Section 1.4 by introducing an arrival process of the customers as sug-
gested above, is equivalent to studying an 1-limited alternating-service model with
switch-over times between the stations (which can be seen as being equivalent to
the preparation phase of a customer). The model with two queues, Poisson arrivals,
and no switch-over times has first been studied by Eisenberg [58], where the main
question studied (as is often the case in the literature on polling systems) is the
queue-length distribution. Eisenberg [58] gives the generating function for the sta-
tionary joint distribution of the two queue sizes. Cohen and Boxma [48] study the
single server queue with two Poissonian arrival streams and no switch-over times.
The server handles alternatingly a customer of each queue if the queues are not
empty and it is assumed that customers of the same arrival stream have the same
service time distribution. It is shown that the determination of the joint queue-
length distribution at the departure epoch can be formulated as a Riemann-Hilbert
boundary problem that can be completely solved for general service time distribu-
tions. Introducing switch-over times increases the complexity of the problem. In
Boxma [32] the analysis is extended to include switch-over times of the server be-
tween queues, under the restriction that both queues have identical characteristics.
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This work is further extended in Boxma and Groenendijk [34], where the authors
no longer request that both queues have identical characteristics. It is assumed that
service times and switch-over times are generally distributed.

The literature on polling systems with alternating service is not limited to the
references above but is rather extensive; see [72, 89, 138] for some references. It seems
though, that the question regarding the waiting time of the server for the 1-limited
alternating-service polling system with two stations has not been considered outside
the scope of this thesis. Thus, introducing an arrival process for the customers
in our model complements the existing literature on polling systems and forms
a challenging problem. The interesting feature then is that the switch-over time
between two queues depends on the current service time.

An extension considered in polling systems is the k-limited service policy, where
the server switches queues after having served at most k customers in one queue.
For an extensive list of references on k-limited polling systems see Van Vuuren and
Winands [166]. The main focus of the existing literature is again on the queue-
length distribution of all stations. As the authors note in [166], “to this very day,
not only hardly any exact results for polling systems with the k-limited service
policy have been obtained, but also their derivations give little hope for extensions
to more realistic systems”. It is worth considering the k-limited service discipline
under the exact setting we have established in Section 1.4, where now the focus is
on the distribution of the waiting time of the server.

A final open question, not connected directly to applications in carousel systems,
has to do with the study of class M introduced in Section 5.3. We have shown
there that this class is at least as big as the class of distributions with rational
Laplace transforms. Due to the multiplicative decomposition structure of M, one
can easily solve various types of generalised Wiener-Hopf equations within this class.
Such equations arise in various areas of research. As an example, we mention the
work by Bansal [13] concerning processor sharing queues with bulk arrivals. The
processor-sharing queueing system, first introduced by Kleinrock [102], has been of
considerable interest and is used extensively to study computer and communication
systems. Under this policy, each job receives an equal share of the processor, i.e. if
there are n jobs at some time, then each job gets serviced at 1/n times the speed of
the processor. The remarkable features of processor sharing are its simplicity, the
fact that there is no requirement of knowledge of job sizes and its fairness properties
(in particular, the expected response time of a job is directly proportional to its
size). Bulk arrivals are often used to model the burstiness in the arrival process.
Bursty arrivals often occur in modern systems, for example in a web server, usually
multiple embedded objects within a web page are requested simultaneously. In [13]
the author extends the work of Kleinrock et al. [104] on processor sharing queues
with bulk arrivals by solving the generalised Wiener-Hopf equation describing the
dynamics of the system for distributions with rational Laplace transforms. Should
class M be strictly greater than the class of distributions with rational Laplace
transforms, then this work, and many other studies where generalised Wiener-Hopf
equations arise, can be directly extended.





Appendix

A remark on Equation (3.32)

. Let P and Q be two arbitrary functions on the real numbers. We know that if
the linear differential equation of first order

d
dx
f(x) + P (x)f(x) = Q(x)

has a solution, then there is a unique solution that satisfies the initial condition
f(x0) = y0, provided that x0 belongs to the domain of f . However, the above
statement is not necessarily true when dealing with differential equations where the
argument varies. We have encountered such an equation in Section 3.6; also see
Remark 3.4. Here we shall present a simple, yet illustrative, example.

Consider the differential equation

f ′(x) =
π

2
f(1− x), x ∈ R, (A.1)

with the initial condition f(0) = 0. Substitute x with 1− x to obtain

f ′(1− x) =
π

2
f(x),

so we readily have that

f ′′(x) = −π
2
f ′(1− x) = −

(
π

2

)2

f(x).

The characteristic equation of this linear differential equation of second order is

x2 +
(
π

2

)2

= 0,

and it has the roots x = ±iπ/2. Therefore, the general solution to the equation is
given by

f(x) = c1 cos(
πx

2
) + c2 sin(

πx

2
).

So, from (A.1) we have that

−c1 sin(
πx

2
) + c2 cos(

πx

2
) = c1 cos(

π(1− x)
2

) + c2 sin(
π(1− x)

2
),

or c1 = 0 since the coefficient of c2 is

cos(
πx

2
)− sin(

π(1− x)
2

) = 0.
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Therefore, we have that
f(x) = c2 sin(

πx

2
),

and the initial condition given does not lead towards a unique solution for this equa-
tion. The conclusion is that with such particular differential equations, a “sufficient”
amount of initial conditions does not necessarily guarantee that a unique solution
can be obtained. The additional knowledge we had in Section 3.6 that helped over-
come such difficulties was that we knew beforehand that a unique solution (i.e. the
waiting-time density) does exist, and the conditions we derive do not disturb this
fact, but arise naturally from the intermediate steps of differentiation.



Samenvatting

In dit proefschrift staat de volgende Lindley-achtige recursie centraal:

Wn+1 = max{0, Bn+1 −An −Wn}. (1)

Deze “niet-stijgende” recursie is belangrijk in de analyse van systemen waarbij
een bediende alterneert tussen twee bedieningsstations. Een station biedt ruimte
voor één klant. De bediende alterneert tussen beide stations en bediend één klant
per keer. Aangenomen wordt dat voortdurend bij beide stations klanten staan te
wachten. Zodra een wachtende klant een station betreed, begint de eerste fase van
zijn bediening, die bestaat uit een voorbereidende fase. De bediende is hier niet
bij betrokken: pas nadat de voorbereidende fase is afgerond kan een klant aan de
tweede fase van zijn bediening beginnen, welke wordt uitgevoerd door de bediende.
Dus de eigenlijke bediening bestaat alleen uit de tweede fase. Het kan voorkomen
dat de bediende moet wachten totdat de voorbereiding van de volgende klant is
afgelopen. We zijn dan ook gëınteresseerd in de wachttijd van de bediende. Als Bn
de voorbereidingstijd is voor de n-de klant en An de bedieningstijd is van de n-de
klant, dan kan de wachttijd van de bediende voor de (n + 1)-ste klant beschreven
worden door middel van Recursie (1). Een belangrijke observatie is dat deze recursie
vrijwel identiek is aan Lindley’s recursie. Het enige verschil is het min-teken voor
Wn.

Dit model is gemotiveerd door diverse toepassingen waarvan er twee worden
besproken in Hoofdstuk 1. De eerste toepassing betreft oog-operaties. De tweede
toepassing is gerelateerd aan carousel systemen. Dit soort systemen zijn uitgebreid
bestudeerd; Sectie 1.3 geeft een literatuuroverzicht. Verderop in dit hoofdstuk geven
we een gedetailleerde modelbeschrijving en noemen we enkele verschillen tussen de
analyse van dit model en het standaard wachtrijmodel.

Hoofdstuk 2 bestudeert enkele algemene eigenschappen van Recursie (1), zoals
de stabiliteit van het systeem, existentie van een evenwichtsverdeling, convergentie
naar deze verdeling als n naar oneindig gaat en het staartgedrag en de covariantie
functie van de verdeling van de wachttijd van de bediende.

Een rode draad in dit proefschrift is de afleiding van de evenwichtsverdeling van
de wachttijd van de bediende. In de volgende drie hoofdstukken leiden we deze
verdeling af onder diverse aannames over de verdeling van de voorbereidingstijd en
bedieningstijd van een generieke klant. We bestuderen gevallen die analoog zijn
aan de klassieke M/G/1, G/PH/1 en PH/P/1 wachtrijmodellen, waarbij “P” staat
voor polynomiale verdelingen. Gëınspireerd door de toepassingen van ons model,
bekijken we enkele prestatiematen voor dit systeem, zoals de doorzet. Dit maakt
een vergelijk met de prestatie van niet-alternerende systemen mogelijk.

In Hoofdstuk 6 onderzoeken we methoden om de wachttijdverdeling te benaderen
door de verdeling van de voorbereidingstijd of bedieningstijd te benaderen met een
verdeling die exacte berekeningen mogelijk maakt. We beschrijven hoe zo’n verdel-
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ing kan worden gevonden en we geven een bovengrens voor de fout tussen de werke-
lijke wachttijdverdeling en zijn benadering.

In alle voorgaande hoofdstukken hebben we aangenomen dat alle voorbereid-
ingstijden en bedieningstijden onafhankelijk van elkaar zijn. In Hoofdstuk 7 laten
we deze aanname vallen. We onderzoeken twee specifieke vormen van afhankelijkheid
tussen deze variabelen. Voor beide vormen leiden we opnieuw de limietverdeling af
van de wachttijd van de bediende.

Hoofdstuk 8 analyseert een recursie welke een uitbreiding is van zowel Lindley’s
recursie als (1). We bekijken, namelijk, de recursie

Wn+1 = max{0, Bn+1 −An + YnWn},

met Yn een stochastische variabele die zowel de waarde 1 als −1 kan aannemen.
Voor deze recursie onderzoeken we stabiliteit, en we berekenen de limietverdeling in
twee specifieke gevallen, waarmee we de bestaande theorie voor Lindley’s recursie
en Recursie (1) generaliseren. De analyse maakt duidelijk dat de technieken voor
het analyseren van (1) en voor het analyseren Lindley’s recursie moeten worden
gecombineerd.

Diverse methoden om Lindley’s recursie te analyseren zijn ook nuttig voor de
analyse van (1). Wanneer we aannemen dat de voorbereidingstijd een fase-type
verdeling heeft, dan reduceert de analyse van (1) tot de analyse van een Markov-
keten met eindige toestandsruimte. Ook kunnen Laplace-transformaties of Wiener-
Hopf technieken in diverse gevallen worden toegepast (cf. Sectie 1.6). In andere
gevallen moet een niet-standaard differentiaalvergelijking worden opgelost, of moet
uitgeweken worden naar een iteratieve benadering van de wachttijdverdeling. In
Hoofdstuk 5 dient ook een speciale klasse van verdelingen gëıntroduceerd te worden
die het mogelijk maakt om een Fredholm vergelijking op te lossen. In de meeste
gevallen zijn de resultaten expliciet of kunnen worden weergegeven in termen van
de oplossing van een lineair stelsel vergelijkingen, zie bijvoorbeeld Stelling 4.8.

Het proefschrift wordt afgesloten met enkele afsluitende opmerkingen en diverse
suggesties voor verder onderzoek.
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