63 research outputs found

    Deadlock Prevention Policy with Behavioral Optimality or Suboptimality Achieved by the Redundancy Identification of Constraints and the Rearrangement of Monitors

    Get PDF
    This work develops an iterative deadlock prevention method for a special class of Petri nets that can well model a variety of flexible manufacturing systems. A deadlock detection technique, called mixed integer programming (MIP), is used to find a strict minimal siphon (SMS) in a plant model without a complete enumeration of siphons. The policy consists of two phases. At the first phase, SMSs are obtained by MIP technique iteratively and monitors are added to the complementary sets of the SMSs. For the possible existence of new siphons generated after the first phase, we add monitors with their output arcs first pointed to source transitions at the second phase to avoid new siphons generating and then rearrange the output arcs step by step on condition that liveness is preserved. In addition, an algorithm is proposed to remove the redundant constraints of the MIP problem in this paper. The policy improves the behavioral permissiveness of the resulting net and greatly enhances the structural simplicity of the supervisor. Theoretical analysis and experimental results verify the effectiveness of the proposed method

    Synthesis of Liveness-Enforcing Petri Net Supervisors Based on a Think-Globally-Act-Locally Approach and a Structurally Minimal Method for Flexible Manufacturing Systems

    Get PDF
    This paper proposes a deadlock prevention policy for flexible manufacturing systems (FMSs) based on a think-globally-act-locally approach and a structurally minimal method. First, by using the think-globally-act-locally approach, a global idle place is temporarily added to a Petri net model with deadlocks. Then, at each iteration, an integer linear programming problem is formulated to design a minimal number of maximally permissive control places. Therefore, a supervisor with a low structural complexity is obtained since the number of control places is greatly compressed. Finally, by adding the designed supervisor, the resulting net model is optimally or near-optimally controlled. Three examples from the literature are used to illustrate the proposed method

    Computationally Improved Optimal Control Methodology for Linear Programming Problems of Flexible Manufacturing Systems

    Get PDF
    Deadlock prevention policies are used to solve the deadlock problems of FMSs. It is well known that the theory of regions is the efficient method for obtaining optimal (i.e., maximally permissive) controllers. All legal and live maximal behaviors of Petri net models can be preserved by using marking/transition-separation instances (MTSIs) or event-state-separation-problem (ESSP) methods. However, they encountered great difficulties in solving all sets of inequalities that is an extremely time consuming problem. Moreover, the number of linear programming problems (LPPs) of legal markings is also exponential with net size when a plant net grows exponentially. This paper proposes a novel methodology to reduce the number of MTSIs/ESSPs and LPPs. In this paper, we used the well-known reduction approach Murata (1989) to simply the construct of system such that the problem of LPPs can then be reduced. Additionally, critical ones of crucial marking/transition-separation instances (COCMTSI) are developed and used in our deadlock prevention policy that allows designers to employ few MTSIs to deal with deadlocks. Experimental results indicate that the computational cost can be reduced. To our knowledge, this deadlock prevention policy is the most efficient policy to obtain maximal permissive behavior of Petri net models than past approaches

    A Forward On-The-Fly Approach for Safety and Reachability Controller Synthesis of Timed Systems

    Get PDF
    RÉSUMÉ Cette thèse s’intéresse à la synthèse de contrôleurs pour des systèmes temps réel (systèmes temporisés). Partant d’un système temps réel modélisé par un réseau de Petri temporel composé de transitions contrôlables et non contrôlables (TPN), le contrôle vise à forcer, en restreignant les intervalles de franchissement des transitions contrôlables, le système à satisfaire les propriétés souhaitées. Nous proposons, dans cette thèse, un algorithme pour synthétiser de tels contrôleurs pour des propriétés de sûreté et d’accessibilité. Cet algorithme, basé sur la méthode de graphe de classes d’états, calcule à la volée les classes d’états atteignables du TPN tout en collectant progressivement les sous-intervalles de tir à éviter, afin de satisfaire les propriétés souhaitées. Avec cet algorithme, il n’est plus nécessaire de calculer les prédécesseurs contrôlables et de partitionner récursivement les classes d’états jusqu’à atteindre un point fixe, comme c’est le cas dans les autres approches basées sur l’exploration, en avant et en arrière, de l’espace des états du système. Nous prouvons formellement la correction de l’algorithme, puis nous montrons que dans la catégorie des contrôleurs basés sur la restriction des intervalles de tir, l’algorithme, proposé dans cette thèse, synthétise un contrôleur optimal (le plus permissif possible). Afin d’atténuer davantage le problème d’explosion combinatoire, nous montrons comment combiner cette approche avec une abstraction par l’inclusion, par union-convexe ou par enveloppe-convexe. Nous montrons également comment exploiter cet algorithme pour générer des contrôleurs décentralisés. Enfin, nous proposons d’appliquer cet algorithme pour contrôler des TPN par des chronomètres. Notre algorithme permet de partitionner les intervalles des transitions en “bons” et “mauvais” sous-intervalles (à éviter). L’idée est d’utiliser des chronomètres pour suspendre les tâches (transitions) durant leurs mauvais sous-intervalles et les activer dans leurs “bons sous-intervalles”. Il s’agit donc de contrôler les réseaux de Petri temporels en associant des chronomètres aux transitions contrôlables, pour obtenir ainsi des réseaux de Petri temporels contrôlés.----------ABSTRACT This thesis deals with controller synthesis for real time systems (timed systems). Given a real time system modeled as a Time Petri Net (TPN) with controllable and uncontrollable transitions, the control aims at forcing the system to satisfy properties of interest, by limiting the firing intervals of controllable transitions. We propose, in this thesis, an algorithm to synthesize such controllers for safety / reachability properties. This algorithm, based on the state class graph method, computes on-the-fly the reachable state classes of the TPN while collecting progressively firing subintervals to be avoided so that the property is satisfied. It does not need to compute controllable predecessors and then split state classes until reaching a fixpoint, as it is the case for other approaches based on backward and forward exploration of state space of the system. We prove formally the correctness of the algorithm and show that, in the category of state dependent controllers based on the restriction of firing intervals, the algorithm proposed in this thesis, synthesizes maximally permissive controllers. In order to attenuate the state explosion problem, we show how to combine efficiently this approach with an abstraction by inclusion, convex union or convex hull. Afterwards, we discuss the compatibility of this method with distributed systems and decentralized controllers. Finally, we apply this algorithm to control TPN with controllable and uncontrollable transitions by stopwatch. In this approach, we find the subintervals violating the given properties and our objective is to suspend the tasks (transitions) during their bad subintervals and to resume them later. The controller is synthesized through the same algorithm already introduced. In this approach, we suggest to control time Petri nets by associating stopwatches to controllable transitions and to achieve a controlled time Petri nets

    An Efficient Siphon-Based Deadlock Prevention Policy for a Class of Generalized Petri Nets

    Get PDF
    We propose a new deadlock prevention policy for an important class of resource allocation systems (RASs) that appear in the modeling of flexible manufacturing systems (FMSs). The model of this class in terms of generalized Petri nets is, namely, S 4 PR. On the basis of recent structural analysis results related to the elementary siphons in generalized Petri nets on one hand and an efficient deadlock avoidance policy proposed for the class of conjunctive/disjunctive (C/D) RASs on the other hand, we show how one can generate monitors to be added to a net system such that all its strict minimal siphons are max -controlled and no insufficiently marked siphon is generated. Thereby, a new, simple, and more permissive liveness-enforcing supervisor synthesis method for S 4 PR is established

    Petri-net-based supervisory control of discrete event systems and their ladder logic diagram implementations

    Get PDF
    The last decade has witnessed rapid developments in computer technology, which inreturn, has found widespread applications in manufacturing systems, communicationnetworks, robots etc. Such systems are called Discrete Event Systems (DESs), in whichproperties such as non-determinism, conflict and parallelism are exhibited. As DESsbecome more complex, the need for an effective design tool and its implementationbecomes more important. Supervisory control theory, based on finite state machines(FSM) and formal languages, is a well established framework for the study of DESs. Insupervisory control, given a model of the system and the desired system behaviourspecifications, the objective is to find a supervisor (controller) such that the controlledbehaviour of the system does not contradict the specifications given and does notunnecessarily constrain the behaviour of the system. In general, the classes ofspecifications that have been considered within the supervisory control fall into twocategories: the forbidden state problem, in which the control specifications are expressedas forbidden conditions that must be avoided, and the desired string problem, in whichthe control specifications are expressed as sequence of activities that must be provided.In supervisory control, there are some problems when using FSMs as an underlyingmodelling tool. Firstly, the number of states grows exponentially as the system becomesbigger. Secondly, FMSs lack from graphical visivalisation. To overcome these problemsPetri nets have been considered as an alternative modelling tool for the analysis, designand implementation of such DESs, because of their easily understood graphicalrepresentation in addition to their well formed mathematical formalism.The thesis investigates the use of Petri nets in supervisory control. Both the forbiddenstate problem and the desired string problem are solved. In other words, this workpresents systematic approaches to the synthesis of Petri-nets-based supervisors(controllers) for both the forbidden state problem and the desired string problem andintroduces the details of supervisory design procedures. The supervisors obtained are the form of a net structure as oppose to supervisors given as a feedback fiinction. Thismeans that a controlled model of the system can be constructed and analysed using thetechniques regarding to Petri net models.In particular the thesis considers discrete manufacturing systems. The results obtainedcan be applied to high level control of manufacturing systems, where the role of thesupervisor is to coordinate the control of machines, robots, etc. and to low-level controlof manufacturing systems, where the role of the supervisor is to arrange low-levelinteractions between the control devices, such as motors, actuators, etc.An approach to the conversion from the supervisors to ladder logic diagrams (LLDs)for implementation on a programmable logic controller (PLC) is proposed. A discretemanufacturing system example is then considered. The aim of this is to illustrate theapplicability, strengths and drawbacks of the design techniques proposed

    On the decidability of problems in liveness of controlled Discrete Event Systems modeled by Petri Nets

    Get PDF
    A Discrete Event System (DES) is a discrete-state system, where the state changes at discrete-time instants due to the occurrence of events. Informally, a liveness property stipulates that a 'good thing' happens during the evolution of a system. Some examples of liveness properties include starvation freedom -- where the 'good thing' is the process making progress; termination -- in which the good thing is for an evolution to not run forever; and guaranteed service -- such as in resource allocation systems, when every request for resource is satisfied eventually. In this thesis, we consider supervisory policies for DESs that, when they exist, enforce a liveness property by appropriately disabling a subset of preventable events at certain states in the evolution of DES. One of the main contributions of this thesis is the development of a system-theoretic framework for the analysis of Liveness Enforcing Supervisory Policies (LESPs) for DESs. We model uncertainties in the forward- and feedback-path, and present necessary and sufficient conditions for the existence of Liveness Enforcing Supervisory Policies (LESPs) for a general model of DESs in this framework. The existence of an LESP reduces to the membership of the initial state to an appropriately defined set. The membership problem is undecidable. For characterizing decidable instances of this membership problem, we consider a modeling paradigm of DESs known as Petri Nets, which have applications in modeling concurrent systems, software design, manufacturing systems, etc. Petri Net (PN) models are inherently monotonic in the sense that if a transition (which loosely represents an event of the DES) can fire from a marking (a non-negative integer-valued vector that represents the state of the DES being modeled), then it can also fire from any larger marking. The monotonicity creates a possibility of representing an infinite-state system using what can be called a "finite basis" that can lead to decidability. However, we prove that several problems of our interest are still undecidable for arbitrary PN models. That is, informally, a general PN model is still too powerful for the analysis that we are interested in. Much of the thesis is devoted to the characterization of decidable instances of the existence of LESPs for arbitrary PN models within the system-theoretic framework introduced in the thesis. The philosophical implication of the results in this thesis is the existence of what can be called a "finite basis" of an infinite state system under supervision, on which the membership tests can be performed in finite time; hence resulting in the decidability of problems and finite-time termination of algorithms. The thesis discusses various scenarios where such a finite basis exists and how to find them
    • …
    corecore