
UNIVERSITÉ DE MONTRÉAL

A FORWARD ON-THE-FLY APPROACH FOR SAFETY AND REACHABILITY

CONTROLLER SYNTHESIS OF TIMED SYSTEMS

PARISA HEIDARI

DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION

DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(GÉNIE INFORMATIQUE)

NOVEMBRE 2012

c© Parisa Heidari, 2012.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by PolyPublie

https://core.ac.uk/display/213617799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

A FORWARD ON-THE-FLY APPROACH FOR SAFETY AND REACHABILITY

CONTROLLER SYNTHESIS OF TIMED SYSTEMS

présentée par : HEIDARI Parisa

en vue de l’obtention du diplôme de : Philosophiæ Doctor

a été dûment acceptée par le jury d’examen constitué de :

M. QUINTERO Alejandro, Doct., président.

Mme BOUCHENEB Hanifa, Doctorat, membre et directrice de recherche.

M. BELTRAME Giovanni, Ph.D., membre.

M. BENTAHAR Jamal, Ph.D., membre.

iii

To Mom and Dad,

for their unfailing love. . .

To Fariba and Keivan

for being there!

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Hanifa Boucheneb, for having led me in this

research. I appreciate her valuable directives and continuous moral support. She came with

me step by step along the way. I’m honored to have worked with her and had the chance to

profit from her experiences.

I would also like to thank Dr. Rachid Hadjidj for his collaboration in this research.

v

RÉSUMÉ

Cette thèse s’intéresse à la synthèse de contrôleurs pour des systèmes temps réel (sys-

tèmes temporisés). Partant d’un système temps réel modélisé par un réseau de Petri temporel

composé de transitions contrôlables et non contrôlables (TPN), le contrôle vise à forcer, en

restreignant les intervalles de franchissement des transitions contrôlables, le système à satis-

faire les propriétés souhaitées.

Nous proposons, dans cette thèse, un algorithme pour synthétiser de tels contrôleurs pour

des propriétés de sûreté et d’accessibilité. Cet algorithme, basé sur la méthode de graphe de

classes d’états, calcule à la volée les classes d’états atteignables du TPN tout en collectant

progressivement les sous-intervalles de tir à éviter, afin de satisfaire les propriétés souhaitées.

Avec cet algorithme, il n’est plus nécessaire de calculer les prédécesseurs contrôlables et de

partitionner récursivement les classes d’états jusqu’à atteindre un point fixe, comme c’est

le cas dans les autres approches basées sur l’exploration, en avant et en arrière, de l’espace

des états du système. Nous prouvons formellement la correction de l’algorithme, puis nous

montrons que dans la catégorie des contrôleurs basés sur la restriction des intervalles de tir,

l’algorithme, proposé dans cette thèse, synthétise un contrôleur optimal (le plus permissif

possible).

Afin d’atténuer davantage le problème d’explosion combinatoire, nous montrons com-

ment combiner cette approche avec une abstraction par l’inclusion, par union-convexe ou

par enveloppe-convexe. Nous montrons également comment exploiter cet algorithme pour

générer des contrôleurs décentralisés.

Enfin, nous proposons d’appliquer cet algorithme pour contrôler des TPN par des chrono-

mètres. Notre algorithme permet de partitionner les intervalles des transitions en “bons” et

“mauvais” sous-intervalles (à éviter). L’idée est d’utiliser des chronomètres pour suspendre

les tâches (transitions) durant leurs mauvais sous-intervalles et les activer dans leurs “bons

sous-intervalles”. Il s’agit donc de contrôler les réseaux de Petri temporels en associant des

chronomètres aux transitions contrôlables, pour obtenir ainsi des réseaux de Petri temporels

contrôlés.

vi

ABSTRACT

This thesis deals with controller synthesis for real time systems (timed systems). Given

a real time system modeled as a Time Petri Net (TPN) with controllable and uncontrollable

transitions, the control aims at forcing the system to satisfy properties of interest, by limiting

the firing intervals of controllable transitions. We propose, in this thesis, an algorithm to

synthesize such controllers for safety / reachability properties.

This algorithm, based on the state class graph method, computes on-the-fly the reachable

state classes of the TPN while collecting progressively firing subintervals to be avoided so

that the property is satisfied. It does not need to compute controllable predecessors and

then split state classes until reaching a fixpoint, as it is the case for other approaches based

on backward and forward exploration of state space of the system. We prove formally the

correctness of the algorithm and show that, in the category of state dependent controllers

based on the restriction of firing intervals, the algorithm proposed in this thesis, synthesizes

maximally permissive controllers.

In order to attenuate the state explosion problem, we show how to combine efficiently this

approach with an abstraction by inclusion, convex union or convex hull. Afterwards, we dis-

cuss the compatibility of this method with distributed systems and decentralized controllers.

Finally, we apply this algorithm to control TPN with controllable and uncontrollable tran-

sitions by stopwatch. In this approach, we find the subintervals violating the given properties

and our objective is to suspend the tasks (transitions) during their bad subintervals and to

resume them later. The controller is synthesized through the same algorithm already intro-

duced. In this approach, we suggest to control time Petri nets by associating stopwatches to

controllable transitions and to achieve a controlled time Petri nets.

vii

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vi

TABLE OF CONTENTS . vii

LIST OF TABLES . x

LIST OF FIGURES . xii

GLOSSARY AND ABBREVIATIONS . xiv

CHAPTER 1 INTRODUCTION . 1

1.1 Motivation and problem statement . 1

1.2 Thesis Contributions . 4

1.3 Impact and potentials of the thesis . 6

1.4 Thesis organization . 7

CHAPTER 2 Preliminaries and Basic Concepts . 8

2.1 Property-specification Languages . 11

2.2 Timed Automata . 13

2.3 Time Petri Nets . 14

2.3.1 Definition and behavior . 14

2.3.2 Zone Based Graph . 18

2.3.3 The state class graph method . 19

CHAPTER 3 Controller Synthesis in Real Time Systems 22

3.1 Introduction to controller synthesis . 22

3.2 Literature review . 24

3.3 A forward method for computing predecessors of state classes 29

3.4 On-the-fly algorithm for safety controller synthesis 32

3.4.1 Operations over real intervals . 33

viii

3.4.2 Our algorithm . 37

3.4.3 Definitions: Bad sequences, bad/winning intervals, losing/winning sub-

classes . 38

3.4.4 Formalization and proof of the correctness Algorithm1 for safety con-

troller synthesis . 40

3.4.5 Independent controllable state classes 41

3.4.6 Legal safety controllers . 43

3.4.7 Maximally permissive controllers . 44

3.4.8 Illustrative examples . 46

3.5 Controller for reachability properties . 51

3.5.1 Formalization and proof of the correctness of Algorithm3 for reachabil-

ity controller synthesis . 54

3.5.2 State dependent controller . 54

3.5.3 Legal reachability controllers . 54

3.5.4 Maximally permissive reachability controllers 55

3.5.5 An example of reachability controller synthesis 56

3.6 Conclusion . 58

CHAPTER 4 Abstraction . 59

4.1 Introduction to the state space abstraction . 59

4.2 Abstraction by inclusion, convex union or convex hull 59

4.2.1 Inclusion test, convex union test and convex hull of two state classes . . 60

4.2.2 How to use an abstraction by inclusion? 60

4.2.3 Can we use an abstraction by convex union? 62

4.2.4 Can we use an abstraction by convex hull? 63

4.3 Experiments . 64

4.3.1 Production cell . 65

4.3.2 Producer/consumer model . 67

4.4 Conclusion . 70

CHAPTER 5 Decentralized Controller for Modular Systems 72

5.1 Introduction to decentralized controller . 72

5.2 Literature review . 74

5.2.1 Case of uniform modules and uniform local controllers 74

5.2.2 Case of various local properties . 75

5.2.3 Case of an identical global property . 76

5.3 A decentralized controller for TPN models . 79

ix

5.3.1 Case of static local controllers . 81

5.3.2 Case of marking dependent local controllers 81

5.3.3 Case of state dependent local controllers 86

5.3.4 Decentralized implementation with the possibility of intercommunication 87

5.3.5 Illustrative examples . 91

5.4 Conclusion . 101

CHAPTER 6 Controller Synthesis with Stopwatch . 102

6.1 Introduction to timed models associated with stopwatch 102

6.2 Literature review . 105

6.3 Controller synthesis and stopwatch . 108

6.3.1 Why inhibitor hyperarcs? . 111

6.4 Illustrative example . 112

6.5 Conclusion . 116

CHAPTER 7 CONCLUSION . 118

7.1 Analysis of the achievements . 118

7.2 Limitations of the approach . 119

7.3 Future work . 120

REFERENCES . 122

x

LIST OF TABLES

Table 2.1 State zones of the TPN presented at Fig.2.5. 21

Table 2.2 The state classes of the TPN presented at Fig.2.5. 21

Table 3.1 A marking dependent controller for the TPN of Fig.2.4. 48

Table 3.2 State classes of the TPN at Fig.3.8. 48

Table 3.3 Tracing Algorithm 1 on the example of Fig.3.8. 50

Table 4.1 State classes of the SCG at Fig.4.2.a. 65

Table 4.2 State classes of the TPN presented at Fig.4.3. 67

Table 4.3 Results for different abstraction implementations and different number

of available plates of the system of Fig.4.3. The first category aa is for

non-abstracted state class graph, bb is for abstraction by inclusion, cc

is for abstraction by convex union. The second line of each row is the

reduction percentage over SCG construction. 68

Table 4.4 Results for different number of available plates of the system of Fig.4.3.

The first category aa is for non-abstracted state class graph, dd is for

abstraction by convex hull. The second line of each row is the reduction

percentage over SCG construction. 69

Table 4.5 Results for different abstraction implementations and different config-

urations of the system of Fig.4.5. The first category aa is for non-

abstracted state class graph, bb is for abstraction by inclusion, cc is

for abstraction by convex union. The second line of each row is the

reduction percentage over SCG construction. 70

Table 4.6 Results for different abstraction implementations and different config-

urations of the system of Fig.4.5. The first category aa is for non-

abstracted state class graph, dd is for abstraction by convex hull. The

second line of each row is the reduction percentage over SCG construc-

tion. 71

Table 5.1 A marking dependent controller for the TPN of Fig.3.8. The chosen

scenario forces t1 to fire before t2. 82

Table 5.2 Trace of Algorithm 5 on Fig.5.5 (Module L). 92

Table 5.3 Trace of Algorithm 5 on Fig.5.5 (Module R). 92

Table 5.4 State classes of Fig.5.7 for t3 = [2, 4]. 96

Table 5.5 State classes of Fig.5.7 for t3 = [2, 3]. 97

Table 5.6 Trace of Algorithm 5 on Fig.5.8 (block a). 99

xi

Table 5.7 Trace of Algorithm 5 on Fig.5.8 (block b). 100

Table 5.8 Trace of Algorithm 5 on Fig.5.8 (block c). 100

Table 6.1 State classes of the TPN presented at Fig.6.14. 117

xii

LIST OF FIGURES

Figure 1.1 Model-checking. 2

Figure 2.1 A simple example of timed automata from (Alur, 1999). 13

Figure 2.2 Three levels of abstraction (Boucheneb et Hadjidj, 2008). 18

Figure 2.3 A bounded TPN with an infinite ZBG reported from (Boucheneb et al.,

2009). 19

Figure 2.4 A simple Petri net with Tc = {t1}. 21

Figure 2.5 The state graph of the TPN presented at Fig.2.4. 21

Figure 3.1 Controller of a system. 23

Figure 3.2 Controllable predecessors. 26

Figure 3.3 On-the-fly algorithm for timed game automata proposed in (Cassez

et al., 2005). 29

Figure 3.4 Paths satisfying or not a safety property. Black state is to be avoided. . 34

Figure 3.5 The winning and losing subclasses of α0 in TPN of Fig.2.4 forAG not p1+

p3 = 0. 40

Figure 3.6 Applying Algorithm 1 on the TPN of Fig.2.4 for AG not p1 + p3 = 0. . 47

Figure 3.7 The controlled TPN obtained for the TPN of Fig.2.4 for AG not p1 +

p3 = 0. 48

Figure 3.8 The TPN model of the assembling section in a manufacturing line. . . . 49

Figure 3.9 The state graph of the TPN presented at Fig.3.8. 49

Figure 3.10 The winning and bad subclasses of α0 in the TPN of Fig.3.8, w.r.t.

AG Convoyer < 2. 49

Figure 3.11 Paths satisfying or not a reachability property. Black states are to be

avoided. 51

Figure 3.12 A box painting production system. 56

Figure 3.13 The state class graph of the TPN presented at Fig.3.12. 57

Figure 3.14 The state class information of the TPN presented at Fig.3.12. 57

Figure 3.15 Applying Algorithm 3 on the TPN of Fig.3.12 for AF picked. 57

Figure 4.1 A TPN with finite SCG and infinite convex hull abstraction. 63

Figure 4.2 SCG and abstraction by convex hull of the TPN at Fig.4.1. 64

Figure 4.3 A production cell system. 66

Figure 4.4 The state class graph of the production cell system of Fig.4.3. 66

Figure 4.5 Producer/consumer model. 70

xiii

Figure 5.1 An example of the overlapped Petri nets taken from (Aydin et Altug,

2009). 77

Figure 5.2 Expanded Petri nets of Fig.5.1. 77

Figure 5.3 A controllable transition, considering synchronization delay. 85

Figure 5.4 An uncontrollable transition, considering synchronization delay. 85

Figure 5.5 The example of Fig.2.4 in modules. 91

Figure 5.6 The TPN model of the assembly section of a manufacturing line con-

sidering intercommunication delay among the modules. 93

Figure 5.7 The state class graph of the model depicted in Fig.5.6. 95

Figure 5.8 The modular TPN model of the system depicted in Fig.5.6. 99

Figure 6.1 A simple example of time Petri nets with inhibitor hyperarc. t1 is active

if p2 is not marked, otherwise it is suspended. 105

Figure 6.2 An interruptible task modeled by SWPN, reported from (Allahham et

Alla, 2008). 106

Figure 6.3 Time elapses, ti is an interruptible transition. 107

Figure 6.4 Time elapses, ti is a non-interruptible transition. 107

Figure 6.5 Clock evaluation of t1 in the controlled TPN of Fig.6.6. 109

Figure 6.6 Time Petri net of Fig.2.4, controlled by inhibitor hyperarcs (Tc = {t1}). 110

Figure 6.7 A simple time Petri net (Tc = {t1}). 110

Figure 6.8 The controlled TPN of Fig.6.7 using inhibitor hyperarcs (Tc = {t1}).

Forbidden interval is]α1, b] where a ≤ α1 < b. 111

Figure 6.9 Clock evaluation of t1 in the controlled TPN of Fig.6.7. Forbidden

interval is]α1, b] where a ≤ α1 < b. 112

Figure 6.10 A simple time Petri net controlled by inhibitor hyperarcs (Tc = {t1});

bad subinterval is [α1, α2[where a < α1 < α2 ≤ b. 113

Figure 6.11 Clock evaluation of t1 in a controlled TPN of Fig.6.7. Forbidden inter-

val is]α1, α2] where a < α1 < α2 < b. 114

Figure 6.12 Controlling the example of Fig.2.4 using stopwatch of (Allahham et

Alla, 2008). The controller fails. 114

Figure 6.13 Controlled model of Fig.2.4 using stopwatch of (Allahham et Alla, 2008).115

Figure 6.14 A Periodic system with Tc = {t1, t2}. 115

Figure 6.15 The state class graph of the TPN presented at Fig.6.14. 116

Figure 6.16 Controlled model of Fig.6.14 using inhibitor hyperarcs. 116

xiv

GLOSSARY AND ABBREVIATIONS

BCFCF Backward Conflict and Forward Concurrent Free

BCS Backward Concurrent Structure

CTL Computational Tree Logic

DBM Difference Bound Matrix

DES Discrete Event System

GMEC Generalized Mutual Exclusion Constraints

IHTPN Time Petri Nets with Inhibitor Hyperarcs

LTL Linear Temporal Logic

SWA Stopwatch Automata

SCG State Class Graph

SWPN Post and Pre-initialized Stopwatch Petri Nets

TA Timed Automata

TCTL Timed Computational Tree Logic

TL Temporal Logic

TPN Time Petri Nets

TS Transition System

TTS Timed Transition System

ZBG Zone Based Graph

1

CHAPTER 1

INTRODUCTION

1.1 Motivation and problem statement

Real time systems are systems with specific timing requirements. In real time systems,

well functionality is a two-sided concept where correctness is as important as respecting tim-

ing requirements. A request cannot be answered later than a given delay. These systems

are widely used in our daily life from little electronic devices like a digital camera, to traffic

lights, avionic systems and missile firing.

In the real time field, critical systems refer to the systems where a failure in functionality

is too costly, critical or harmful. Considering the cost of a failure in such systems, their well

functionality should be guaranteed at the design level, before implementation. In fact, a de-

sign needs to be verified formally before being implemented. What we mean by verification

is to prove that a system is safe or to find a counterexample (i.e. an error or a failure).

Verification is different from simulation. Simulation gives an idea about how a system works,

it may show an error but it does not prove the absence of errors.

With this objective, the system is first modeled based on the mathematical expression of

its behaviors and then, some techniques such as model-checkers are applied on the model to

verify its correctness or give a counterexample (Fig.1.1). What we mean by correctness is

satisfaction of the given properties and meeting the given timing requirements. Some known

models are modeling languages, (timed) automata and (time or timed) Petri nets. Albeit

having a mathematical nature, the two last ones are represented graphically, making them

more user friendly and understandable. Automata and Petri nets are bi-similar most of the

time. However, in some contexts one is more suitable than the other. For example, Petri nets

are more convenient for modeling parallelism. An infinite system can be modeled by finite

Petri nets. In general, the semantics of the models are defined by a transition system. Prop-

erties are formulas to declare requirements and desired specifications. Formulas are based on

Temporal Logics (TL).

Model-checking is effective in locating bottlenecks. In the case a system does not guar-

antee to satisfy the properties of interest, a complementary object, a controller, is needed to

2

True/Counter example

Property ϕ

Behavioral Model

Model Checker

Figure 1.1 Model-checking.

fix the failures and guarantee the satisfaction of the given properties. Finding a controller

for a system to force a given property is the subject of the controller synthesis. A model is

analyzed to design the suitable controller using some algorithms. Many researches and case

studies have been done to find an appropriate controller to guarantee the satisfaction of the

property of interest. The objective is to have a controller running in parallel with the system

under study and preventing any violation of given properties. In other words, another agent

is added to the system such that the model-checker proves that the new compound system

is safe and correct.

Model-checking detects the issues of an existing model and controller synthesis provides a

solution to resolve them. In fact, a controller will make an open-loop system to be closed-loop.

In an open-loop system, environment can affect the system in such a way that it violates the

desired specifications. A closed-loop system adapts its reactions against the environmental

undesired behaviors and keeps the requirements satisfied. Controller synthesis or supervisory

controller, as in model checking, categorizes the properties and finds an algorithm to synthe-

size them.

In the concept of controller synthesis, two questions, Control Problem and Controller

Synthesis Problem need to be addressed. The first question, Control Problem, investigates

if for a given system S and a property ϕ, a controller C exists for the system S such that

when S is running in parallel with C, the property ϕ is satisfied. The Controller Synthesis

Problem, answers the question of if such controller exists, whether or not there is a solution

to implement it.

The concept of controller synthesis is also described by game theory (Altisen et al., 2005).

Game theory considers a problem as a game with some players and a game strategy. A strat-

egy is simply the actions to be played in each situation. Hence, game theory describes the

3

controller synthesis for a timed system, as a timed game with two players, the system under

study against the environment. The control problem is then declared as: “Is there a strategy

to make the controller the winner of the game?”. In such a game, actions are partitioned into

two disjoint sets, controllable and uncontrollable. Controllable actions are those that can be

managed by the controller (forced to happen or prevented from happening). Uncontrollable

actions are those that the controller has no control on. Players have equal chances to win.

The control problem consists in searching a strategy such that the environment never wins

the game against the controller. A strategy consists of the sequence of actions leading to the

winning game outcome where the controller always wins against the environment.

In the controller synthesis, actions are observable or unobservable (Bouyer et al., 2005).

While an unobservable action is uncontrollable by default, an observable action is either

controllable or uncontrollable. As an example, suppose a multitasking system with different

processes, each of them having an execution time and period; and they access some possibly

shared resources. Process arrival depends on its period and its termination depends on the

execution time. Then, both process arrival and termination of execution are uncontrollable,

whereas access to the shared resources and starting the execution are controllable. Unob-

servable actions are most internal actions with no available output event. An example of

unobservable action is an internal counter in a digital system. With each clock cycle, the

counter is modified, but it is unobservable, unless it is captured by a predefined value; at this

time, an observable action happens and the external observer is aware.

There are various approaches in the literature to control different properties. Most of the

available solutions do not take into account timing properties. In order to control these kinds

of properties in timed models (Timed Automata and Time Petri Nets), several approaches

have been proposed in the literature (Cassez et al., 2005; Gardey et al., 2006b; Tripakis,

1998). Two known methods are the backward fixpoint method and the backward-forward

on-the-fly method. The first one is proposed for time Petri nets but it cannot guarantee to

give a controller when it exists (Gardey et al., 2006b). The second one is proposed for timed

automata and guarantees to give the controller when it exists (Cassez et al., 2005).

However, both above-mentioned approaches require some expensive operations such as

calculating the difference between states. The difference between two states is not necessar-

ily one state and then may result in several states which need to be handled separately. It

would be interesting to investigate if there is an approach which does not need to split states.

4

In the context of controller synthesis, a scheduler is a kind of controller that manages

shared resources and timing specifications of the system. In a multitasking system, a newly

arrived task waits for accessing resources. After accessing the required resources, each task

uses those resources for its execution time and then releases them. If the task is periodic,

it stays in a passive state before its next arrival. A scheduler cannot modify timing speci-

fications of the system such as period and execution time. In order to manage the shared

resources among different periodic tasks with different levels of priority, the solution is to

suspend a task with lower priority and let the other tasks with higher priorities to use the

resources. Then, the suspended task is retrieved until it finishes its execution. When a task is

suspended, the execution time is not progressing. It is interesting to see if controller synthesis

can be used to synthesize a scheduler.

1.2 Thesis Contributions

This thesis consists of a number of contributions. We are interested in modeling the

behavior of the real time systems by time Petri nets. Our main objective is to investigate

controller synthesis of a real time system modeled by time Petri nets for safety and reachability

properties.

Contribution 1: Safety controller synthesis

Our first contribution is an algorithm for controller synthesis of safety properties in time

Petri nets. The goal is to have some general algorithms achieving suitable controllers and

replacing case based solutions where the approach works for a particular case study. Our

proposed algorithm is a forward on-the-fly semantic approach and is based on processing of

the state class graph of the model. Our approach answers both control problem and controller

synthesis problem mentioned above. It gives a controller if it exists. If the algorithm fails

to give the controller, the controller does not exist. We prove that our approach gives a

maximally permissive controller and apply the solution on some case studies.

Contribution 2: Reachability controller synthesis

In our next contribution, we study reachability controller synthesis. In our first contribu-

tion, we have suggested a forward on-the-fly algorithm for controller synthesis of real time

systems modeled by time Petri nets. In the second contribution, we extend the algorithm

to reachability properties. We prove the correctness of our algorithm and show that it is

maximally permissive. We test it on some case studies.

5

Contribution 3: Optimization of the suggested approach by abstraction

In semantic approach, the algorithm processes the state space of the model and then, state

space explosion is a common issue. In this thesis, we optimize the devised algorithm and

investigate how to combine our approach with different methods of abstraction. Abstraction

consists in agglomeration of some similar states and helps to have a more compact state space

while decreasing the risk of state space explosion. During the construction of an abstraction,

each newly computed abstract state is compared with the previously computed ones. We

discuss the possibility of abstraction by inclusion and convex union. We also investigate

if it is possible to use abstraction by convex hull. In the literature it was never proven if

abstraction by convex hull preserve boundedness property. In this thesis, we present a new

result. We give a counterexample to show that in our context, abstraction by convex hull is

less appropriate as it does not preserve the boundedness property of TPN. Some case studies

are also presented to show the scalability and effectiveness of each of the above-mentioned

abstraction methods.

Contribution 4: Decentralized implementation on modular systems

Being optimized by abstraction, our algorithm is a good candidate for controller synthesis

of large-scale systems. Large-scale systems are usually modular by their nature. In the other

contribution, implementation of our centrally synthesized controllers on modular system is

studied. We discuss how to implement the controller computed by the devised algorithm

on modular systems and achieve a set of decentralized controllers. We answer the controller

synthesis problem and investigate if our approach is implementable on modular, large-scale

systems. Note that, we investigate how to implement a centralized computed controller on a

decentralized system rather than synthesizing a “decentralized controller”.

Contribution 5: Preemptive controller and scheduling

Our next contribution is to investigate if our controller synthesis approach can be used

to synthesize a scheduler for managing shared resources and timing specifications. A sched-

uler needs to suspend and retrieve some tasks. Clocks are stopped during suspension. Our

approach in its original form can initialize a clock but it cannot stop it. In this contribution,

we synthesize the controller (scheduler) using the stopwatch which provides the possibility of

suspending and retrieving the clocks. The solution we suggest in this thesis, is to synthesize

the time Petri net model and to carry out the controller (scheduler). Then, the scheduler

equips the appropriate transitions with stopwatch and controls the model by suspending the

transitions. In other terms, we assume that every controllable action can be suspended (be

6

associated with stopwatch). This way considering, first, we calculate some subintervals in

which the system violates the given properties and then the controller suspends the corre-

sponding transition during those subintervals. This approach is very useful and interesting

for preemptive scheduling purposes and managing shared resources.

The contributions of this thesis can be summarized as follows:

– Proposal of a forward on-the-fly algorithm for controller synthesis in time Petri nets.

Formalization, proof of correctness and calculation of the complexity for the proposed

algorithm. Providing some case studies.

– Extending the devised algorithm to reachability controllers. Formalization and proof

of correctness. Providing some examples.

– Optimization of the proposed algorithm by state space abstraction. Investigating how

to combine some known abstraction methods with the proposed approach. Providing

some scalability analysis through some case studies.

– Investigation of the implementation of the proposed algorithms on large-scale modular

systems. Discussing independent local controllers and local controllers with intercom-

munication among them.

– Extending the suggested controller synthesis approach to Petri nets equipped with

stopwatch in order to support preemptive scheduling.

1.3 Impact and potentials of the thesis

In this thesis, we suggest an algorithm for controller synthesis of real time systems, mod-

eled by time Petri nets. We propose a semantic approach which is not dependent on the

specifications of a particular system. The available solutions in the literature for controller

synthesis of real time systems are often case based and are dependent on the specifications of

the system under study (Buy et al., 2005; Iordache et Antsaklis, 2010; Wu et al., 2008). Our

approach is a completely forward method (not backward and forward), based on time Petri

nets which restricts time intervals. Unlike previously existing general semantic approaches,

our algorithm does not need to compute controllable predecessors, then split state classes

and handle them separately (which is very costly). Therefore, our approach is less expen-

sive and more efficient in comparison with the other general semantic approaches available

in the literature. In the category of state dependent controllers based on the restriction of

firing intervals, our algorithm synthesizes maximally permissive controllers. We prove the

correctness of this algorithm and discuss its decentralized implementation. In addition, this

7

algorithm is extended to be used for preemptive scheduling purposes.

Considering the fact that controller synthesis of real time systems are widely used in differ-

ent areas like web service applications, robotic manipulators, cooperative robotic, networked

control systems, work flow applications, manufacturing, production chain, wireless sensing

and actuators, a software tool for automatically controller synthesis can facilitate system

design and verification. A generic solution is required to be implemented in a software tool

then, case based solutions of (Buy et al., 2005; Iordache et Antsaklis, 2010; Wu et al., 2008)

are less appropriate. The backward approaches (Cassez et al., 2005; Gardey et al., 2006b) are

general but expensive. They require to calculate controllable predecessors and consequently

need to compute the difference between states. This in turn may split states that should be

handled separately. The approach suggested in this thesis does not split the states and is

a good alternative to be implemented in a software tool with a graphical environment for

automatically controller synthesis of time Petri net models. Such a tool is suitable for both

professional and less professional users as it hides the complicated mathematical computa-

tions in the background.

1.4 Thesis organization

This document is organized as follows: in Chapter 2, we introduce some basic concepts

and preliminaries. In Chapter 3, we focus on controller synthesis, and available approaches

in the literature. We suggest our algorithm for safety properties and prove its correctness.

We also discuss how to extend the devised approach to reachability controllers. In Chapter

4, we discuss different methods of state space abstraction and investigate the compatibility

of our algorithm with those methods. Chapter 5 is dedicated to distributed systems and

decentralized controllers; it includes a survey on the literature and shows that our algorithm

is implementable on modular systems. Chapter 6 is devoted to controller synthesis using

stopwatch for preemptive scheduling purposes. It includes a literature review on different

Petri nets associated with stopwatch. Then, it suggests that the controller adds stopwatch

to some appropriate controllable transitions to achieve a controlled system. Finally, we finish

this document with the conclusion and future work in Chapter 7.

8

CHAPTER 2

Preliminaries and Basic Concepts

This chapter explains some preliminary concepts and definitions which will be used later

in this document:

– Transition system: A Transition System(TS) is defined by (Q,→, q0) tuple where Q

is the set of states, q0 ∈ Q is the initial state and → is the transition relation between

the states. The notion q → q′ denotes that q is in relation with q′ and (q, q′) ∈→. A

transition system is called finite (infinite) if → is finite (infinite), respectively.

– Run: A run is an execution path denoted by ρ. The notion ρq stands for an execution

path starting from q:

ρq = q0 → q1 → q2... (2.1)

where q = q0.

q = ρ(i) is the ith state of ρ, while ρi is a suffix of ρ starting from the state number i.

Note that counting the states of an execution path starts from 1 (not 0).

– Labeled Transition System: A labeled transition system is defined byQ = (Q, q0, Σ,

→) where Σ is the set of labels and →⊆ (Q × Σ × Q). Labeled transition system is

either discrete or dense; dense system is also called continuous (e.g. timed systems).

– Discrete Transition System: A discrete transition system is a labeled transition

system where Σ is the set of actions also denoted by A. In these systems, q
α
→ q′

denotes that (q, α, q′) ∈→. And q
α
→ q′ with α ∈ A is called a discrete transition. In a

discrete transition system a run is defined by:

ρq = q0
α0→ q1

α1→ ...qi
αi→ ... (2.2)

where the action αi ∈ A and q = q0. If q is not determined, the corresponding run

is denoted by ρ and the initial state of the model is considered as the starting state.

Finally, q = ρ(i) refers to the ith state of a run and ρi stands for a suffix of ρ starting

from the state number i.

9

– Timed Transition System: Let A be the set of actions. A timed transition system

(TTS) is a labeled transition system, labeled by Σ = A∪R+, such that A∩R+ = ∅. A

transition q
θ
→ q′ where θ ∈ R+ is called a timed transition.

In a timed system, a transition is either a discrete action α, or time elapsing θ denoted

by q
θ
→ q′. Consequently, in a timed system a run contains both discrete and timed

transitions:

ρq = q0
α0→ q1

θ0→ ...qi
αi→ qi+1

θi→ ... (2.3)

A timed transition q1
θ
→ q2 means q2 = q1+θ. A timed transition system is an example

of dense or continuous transition system.

Runs(q) signifies all runs starting from the state q.

– Reachability: For a given timed transition system (Q, q0,Σ,→), state qn is reachable

from q0 if ρq exists, where q = q0 such that, q0
ρq
→ qn. Let Reach(q0) be the set of all

reachable states from q0 then:

q′ ∈ Reach(q0) if ∃ t, ∃ θ q
θ t
−→ q′. (2.4)

– Formula: Let Y be the set of real variables. A linear inequality over Y or every logic

conjunction of linear inequalities are called Formula.

– Atomic constraint: An atomic constraint on Y is a linear inequality; it can come

under two forms: (x ≺ c) or (x− y ≺ c) , called simple and triangular respectively. In

these inequalities x, y ∈ Y , c ∈ Q ∪ {∞,−∞} and ≺∈ {<,≤,≥,=, >} where Q is the

set of rational numbers. The set of all atomic constraints on Y is denoted by C(Y).

– Hyperplane: A hyperplane H on Y (a set of real variables), is a set of valuations

satisfying an atomic constraint.

– Polyhedron: A Polyhedron P is the set of union or intersection of a finite number of

hyperplanes.

– Region: A Region is represented by a set of constraints of the form k < x < k + 1 or

x = k, where k is a constant on each dimension. Each variable can be equal with an inte-

ger or limited by two consecutive integers. For a two dimensional region represented by

x and y, (x = 2, y = 2), (x = 1, 2 < y < 3), (2 < x = y < 3) and (1 < x < 2, 2 < y < 3)

are all regions whereas, (1 < x ≤ 2, y = 2) and (1 < x < 3, 1 < y < 2) are not regions.

10

– Zone: A zone is a convex polyhedron. A polyhedron P is called convex if:

∀v1, v2 ∈ P and λ ∈ R, 0 < λ < 1, λv1 + (1− λ)v2 ∈ P .

Informally, each two points of a zone can make a line; if all points of such a line are

in the zone, this zone is convex. If a polyhedron is non-convex, it can be broken into

finite number of zones.

– Bound: Considering c ∈ Q and ≺ in{<,≤}, the couple (c,≺) is called a bound. Some

operations are defined on bounds:

– (c,≺) = (c′,≺′) ⇐⇒ c = c′and ≺=≺′.

– (c,≺) < (c′,≺′) ⇐⇒ (c < c′) or (c = c′ and ≺<≺′).

– (c,≺) ≤ (c′,≺′) ⇐⇒ (c,≺) = (c′,≺′) or (c,≺) < (c′,≺′).

– (c,≺) + (c′,≺′) = (c+ c′, min(≺,≺′)).

– Difference Bound Matrix (DBM): Let Y be a set of real variables and F a set of

atomic constraints (conjunction of atomic constraints) over Y . Consider xi, xj ∈ Y .

Add an element 0 (denoted by x0 or 0) to Y . Every atomic constraint from F on Y , is

written as:

xi − xj ≺i,j ci,j where ci,j ∈ Q ∪ {∞,−∞},≺i,j∈ {<,≤}. Thus, a matrix can repre-

sent all atomic constraints of F where each element of the matrix (bi,j) is the bound

of xi−xj ≺i,j ci,j. This matrix is called Difference Bound matrix of F (Bengtsson, 2002).

– Reflexive, symmetrical and transitive relation: A binary relation ≈ on the set

Q is a subset of (Q×Q). The relation ≈ is reflexive if and only if q ≈ q, ∀q ∈ Q. The

relation ≈ is symmetrical if and only if q ≈ q′ ⇒ q′ ≈ q, ∀q, q′ ∈ Q. The relation ≈ is

transitive if and only if

∀q, q′, q′′ ∈ Q, q ≈ q′ ∧ q′ ≈ q′′ ⇒ q ≈ q′′.

– Simulation: Let (Q, q0,Σ,→) and (Q′, q
′

0,Σ,→) be two labeled transition systems,

labeled by the set of labels Σ. Let ≈⊆ (Q×Q′) be a binary relation on the set of states

of these two systems. The relation ≈ is a simulation if and only if ∀(q, q′) ∈ (Q×Q′)

such that q ≈ q′, the following condition holds:

q
a
→ q1 ⇒ ∃ q

′

1 s.t. q
′ a
→ q

′

1 ∧ q1 ≈ q
′

1.

– Bi-simulation: The relation ≈ is bi-simulation if and only if ≈ and its inverse are both

11

simulation. Consider two labeled transition systems (Q, q0,Σ,→) and (Q′, q
′

0,Σ,→),

labeled by the set of labels Σ. The systems Q and Q′ are bi-similar if and only if there

exists a bi-similar relation ≈ such that (q0, q
′
0) ∈≈.

2.1 Property-specification Languages

In this section, we present a brief survey on the languages declaring the properties and

the behavior of the system. In general, temporal logics are used to express the properties

and specifications of the system consist of three types of elements:

– a propositional variable from PV , the set of propositional variables.

– boolean logic operators (¬,∨,∧); ¬ stands for not (e.g. ¬ϕ).

– some operators (A,E, U,X,R).

Let ϕ and ψ be two properties, the operators are defined as follows:

– A: signifies that the given property holds for all paths and is also denoted by ∀ (e.g.

Aϕ means that ϕ is held in all paths).

– E: signifies that the given property holds at least in a path and is also denoted by ∃

(e.g. Eϕ means that ϕ is held at least in one path).

– U: stands for until (e.g. ϕ ∪ ψ denotes that ϕ is true until ψ happens).

– X: stands for next and means that the given property is true at the immediate next

state of the computation.

– R: stands for release (e.g. ϕRψ is read as ϕ releases ψ, and it denotes that ψ is true

forever or it is true until ϕ happens for the first time).

Not, And, Until and Next are the basic operators. Others are defined using these three ones.

A and E quantify the path while U and X are operators on the state.

Two major types of formalism exist: linear time and branching time. In linear time, prop-

erties are considered on runs as the set of executions, whereas in branching time properties

are observed on the execution trees.

The following languages and their semantics are defined (Penczek et Polrola, 2004):

– CTL*: CTL* is the most generalized language which contains all the operators named

above. Other languages are subclasses of CTL* eliminating some operators. The words

respect the grammar below where ϕs and ϕp represent the formula on the state and

execution path respectively and ℘ ∈ PV is a propositional variable.

12

ϕs := ℘| ¬ϕs | ϕs ∧ ϕs | ϕs ∨ ϕs | ∀ϕp | ∃ϕp.

ϕp := ϕs | ϕp ∧ ϕp | ϕp ∨ ϕp | Xϕp | ϕp ∪ ϕp | ϕpRϕp.

Two operators F (also denoted by ♦) and G (also denoted by �) are defined as follows:

– ∃ ♦ϕ = ∃(true ∪ ϕ).

– ∀ ♦ϕ = ∀(true ∪ ϕ).

– ∃ �ϕ = ¬∀♦¬ϕ.

– ∀ �ϕ = ¬∃♦¬ϕ.

The semantics of CTL* is defined on a structure of Kripke MD = (Q,V), where:

– Q = (Q,→, q0) is a transition system,

– V : Q → 2PV is a function that assigns to each state the set of atomic propositions

it satisfies.

Let MD be a model of the system, ϕ and ψ two CTL* formulas, q a state, Runs(q)

the set of all runs starting from q and ℘ a propositional variable. In the following, the

formal semantics of CTL∗ is defined inductively, using the notation of satisfaction(|=)

(Hadjidj, 2006). The expression MD, x |= ϕ is read: in the model MD , x satisfies the

property ϕ.

– MD, q |= ℘ iff ℘ ∈ V(q).

– MD, x |= ¬ϕ iff MD, x 2 ϕ, for x ∈ {q, ρ}.

– MD, x |= ϕ ∨ ψ iff MD, x |= ϕ or MD, x |= ψ, for x ∈ {q, ρ}.

– MD, x |= ϕ ∧ ψ iff MD, x |= ϕ and MD, x |= ψ, for x ∈ {q, ρ}.

– MD, q |= ∀ϕ iff ∀ρ ∈ Runs(q),MD, ρ |= ϕ.

– MD, q |= ∃ϕ iff ∃ρ ∈ Runs(q),MD, ρ |= ϕ.

– MD, ρ |= ϕ iff MD, ρ(1) |= ϕ, ϕ is a state formula.

– MD, ρ |= Xϕ iff MD, ρ2 |= ϕ.

– MD, ρ |= ψUϕ iff (∃j ≥ 1)(MD, ρj |= ϕ and(∀1 ≤ i < j),MD, ρi |= ψ).

– LTL(Linear Temporal Logic): Words can be in the form of ∀ϕ where ϕ does not include

A and E. There is no quantifier.

– CTL(Computation Tree Logic): The words are positive subset of CTL* words. There

is no ¬ operator in CTL. In CTL timed operators are combined with quantifiers e.g.

13

AF,EF,AG,EG,AU,EU,AX,EX or their boolean combinations.

– L−X :There is no operator X in this language.

When we add the concept of time to the temporal logic, the above-mentioned languages

change to TCTL* and TCTL. In such models, formulas are associated with time intervals or

clocks.

Two known timed models widely used for modeling various systems are timed automata

and timed Petri nets.

2.2 Timed Automata

A timed automaton (Alur, 1999) is an automaton extended with clocks and constraints

on clocks. These constraints specify the stay time in each location and the timing condition

of transitions.

Let Y be a finite set of real-valued variables called clocks. The notion ≺ stands for a

binary relation and C(Y) denotes the set of constraints ϕ and it follows this grammar:

ϕ ::= x ≺ k | x− y ≺ k | ϕ ∧ ϕ, where k ∈ Z and x, y ∈ Y.

The set B(Y) is a subset of C(Y) with only rectangular constraints (x ≺ k).

Then, timed automata are defined formally by a tuple (L, l0, Y, A, E, I), where L is the

set of locations, l0 ∈ L is the initial location, Y is the set of clocks, A is the set of actions,

E ⊆ L × A × B(Y) × 2Y × L is the set of edges between locations with an action, a guard

(a condition serving as a label) and a set of clocks to be reset, and I : L → B(Y) assigns

invariants to locations.

l l′

x ≤ 2

α, x := 0

x ≥ 1, α′

Figure 2.1 A simple example of timed automata from (Alur, 1999).

14

A clock valuation is a function v : Y → R+ from the set of clocks to the non-negative

reals. RY is the set of all clock valuations and ∀x ∈ Y, v0(x) = 0. Let x ∈ Y and θ ∈ R+,

(v+ θ)(x) = v(x)+ θ. We consider invariants and constraints as sets of clock valuations. For

g ∈ C(Y) and v ∈ (R+)Y , if v satisfies g we denote v |= g.

In timed automata, we define state q = (l, v). Fig.2.1 taken from (Alur, 1999) shows a

simple example of timed automata with the initial location l and the clock x. The system

may remain in l infinitely as there is no invariant to restrict that. Once the action α happens

and the system goes to l′, x is reset. It may remain in l′ until 2 time units and action α′ may

happen only after at least one time unit.

The semantics of timed automata is defined by a timed transition system (Q, q0,Σ,→)

where Q is the set of locations Q = L× (R+)Y and q0 = (l0, v0):

– (l, v)
θ
→ (l, v + θ) if ∀θ′ : 0 ≤ θ′ ≤ θ ⇒ v + θ′ ∈ I(l).

– (l, v)
α
→ (l′, v′) if there exists a transition l

g,α,Y

−→ l′∈ E s.t. v |= g, v′ = v[Y] and,

v′ |= I(l′).

Kronos (Bozga et al., 1998) and UPPAAL (Behrmann et al., 2006b) are two known tools

for formal verification of timed automata. UPPAAL-TIGA (Behrmann et al., 2007) is an

extension to UPPAAL that can be used for controller synthesis in timed automata.

2.3 Time Petri Nets

2.3.1 Definition and behavior

A time Petri net (TPN in short) is a Petri net augmented with time intervals associated

with transitions (Merlin, 1974).

Formally, a time Petri net (TPN) is a tuple (P, T, Pre, Post,M0, Is) where:

– P and T are finite sets of places and transitions such that (P ∩ T = ∅),

– Pre and Post are the backward and the forward incidence functions (Pre, Post : P ×

T → N,N is the set of nonnegative integers),

– M0 is the initial marking (M0 : P → N), and

– Is is the static interval function (Is : T → Q+× (Q+∪{∞})). Q+ is the set of nonneg-

ative rational numbers. Is associates with each transition t an interval called the static

firing interval of t. Bounds ↓ Is(t) and ↑ Is(t) of the interval Is(t) are the minimum

and maximum firing delays of t respectively.

15

In a controllable time Petri net, transitions are partitioned into controllable and uncon-

trollable transitions, denoted by Tc and Tu(with Tc ∩ Tu = ∅ and T = Tc ∪ Tu), respectively.

For the sake of simplicity and clarification, in this manuscript the controllable transitions are

depicted as white bars, while the uncontrollable ones as black bars.

In TPN, marking is a function of P → N. Let M be a marking and t be a transition.

Transition t is enabled for M if and only if all the required tokens for firing t are present

in M , i.e., ∀p ∈ P,M(p) ≥ Pre(p, t). In this case, the firing of t leads to the marking M ′

defined by: ∀p ∈ P,M ′(p) = M(p)− Pre(p, t) + Post(p, t). We denote by En(M) the set of

transitions enabled for M , i.e., En(M) = {t ∈ T | ∀p ∈ P, Pre(p, t) ≤ M(p)}. A TPN, is

called bounded if:

∀p ∈ P,M(p) ≤ b.

For t ∈ En(M), we denote CF (M, t) to be the set of transitions enabled in M but in

conflict with t, i.e., CF (M, t) = {t′ ∈ En(M) | t′ = t ∨ ∃p ∈ P,M(p) < Pre(p, t′)+Pre(p, t)}.

Let t ∈ En(M) and M ′ be the successor marking of M by t, a transition t′ is said to be

newly enabled in M ′ iff t′ is not enabled in the intermediate marking (i.e., M − Pre(., t)) or

t′ = t. We denote New(M ′, t) the set of transitions newly enabled M ′, by firing t from M ,

i.e., New(M ′, t) = {t′ ∈ En(M ′)|t = t′ ∨ ∃p ∈ P,M ′(p)− Post(p, t) < Pre(p, t′)}.

Among the different semantics proposed for time Petri nets (Roux et al., 2005), the re-

search presented in this thesis focuses on the classical one, called intermediate semantics in

(Roux et al., 2005), in the context of mono-server and strong-semantics (Boyer et Vernadat,

2000).

There are two known characterizations for the TPN state. The first one, based on clocks,

associates with each transition ti of the model a clock to measure the time elapsed since

ti became enabled most recently. The TPN clock state is the pair (M, ν), where M is the

marking and ν is the clock valuation function, ν : En(M) → R+. For a clock state (M, ν)

and ti ∈ En(M), ν(ti) is the value of the clock associated with transition ti. The initial clock

state is q0 = (M0, ν0) where ν0(ti) = 0, for all ti ∈ En(M0). The TPN clock state evolves

either by time progression or by firing transitions. When a transition ti becomes enabled, its

clock is initialized to zero. The value of this clock increases synchronously with time until ti

is fired or disabled by the firing of another transition. ti can fire, if the value of its clock is

inside its static firing interval Is(ti). It must be fired immediately, without any additional

16

delay, when the clock reaches ↑ Is(ti). The firing of a transition takes no time, but may lead

to another marking (required tokens disappear while produced ones appear).

Let q = (M, ν) and q0 = (M0, ν0) be two clock states of the TPN model, θ ∈ R+ and

tf ∈ T . We write q
θ
→ q′, also denoted by q + θ, if and only if state q′ is reachable from the

state q after a time progression of θ time units, i.e.:
∧

t′∈En(M)

ν(t) + θ ≤ ↑ Id(ti),M ′ =M , and ∀tj ∈ En(M ′), ν ′(tj) = ν(tj) + θ.

We write q
tf
→ q′ if and only if state q′ is immediately reachable from state q by firing transi-

tion tf , i.e.: tf ∈ En(M), ν(tf) ≥↓ Is(tf), ∀p ∈ P,M ′(p) = M(p)− Pre(p, tf) + Post(p, tf),

and ∀ti ∈ En(M ′), ν ′(ti) = 0, if ti ∈ New(M ′, tf), ν
′(ti) = ν(ti) otherwise.

The second characterization, based on intervals, defines the TPN state as a marking and

a function which associates with each enabled transition the time interval in which the tran-

sition can fire (Berthomieu et Vernadat, 2003).

The TPN state is defined as a pair (M, Id), where M is a marking and Id is a firing

interval function (Id : En(M) → Q+× (Q+ ∪{∞})). The initial state is (M0, Id0) where M0

is the initial marking and Id0(t) = Is(t), for t ∈ En(M0).

Let (M, Id) and (M ′, Id′) be two states of the TPN model, θ ∈ R+ and t ∈ T . The

transition relation −→ over states is defined as follows:

– (M, Id)
θ

−→ (M ′, Id′), also denoted by (M, Id) + θ, if and only if from state (M, Id),

we will reach the state (M ′, Id′) by a time progression of θ units, i.e.,
∧

t′∈En(M)

θ ≤

↑ Id(t′),M ′ =M , and ∀t′′ ∈ En(M ′), Id′(t′′) = [Max(↓ Id(t′′)− θ, 0), ↑ Id(t′′)− θ].

– (M, Id)
t

−→ (M ′, Id′) if and only if the state (M ′, Id′) is reachable from state (M, Id) by

immediately firing transition t , i.e., t ∈ En(M), ↓ Id(t) = 0, ∀p ∈ P,M ′(p) = M(p)−

Pre(p, t) + Post(p, t), and ∀t′ ∈ En(M ′), Id′(t′) = Is(t′), if t′ ∈ New(M ′, t), Id′(t′) =

Id(t′), otherwise.

The TPN state space is the labeled transition system (Q, q0,Σ,−→), where q0 = (M0, Id0)

is the initial state of the TPN, Σ = T ∪ R+ and Q = {q|q0
∗

−→ q}(
∗

−→ being the reflexive

and transitive closure of the relation −→ defined above) is the set of reachable states of the

model. A run in the TPN state space (Q, q0,Σ,−→) of a state q ∈ Q is a maximal sequence

ρ = q1
θ1−→ q1+ θ1

t1−→ q2
θ2−→ q2+ θ2

t2−→ q3..., such that q1 = q. By convention, for any state

qi, the relation qi
0
→ qi holds. The sequence θ1t1θ2t2... is called the timed trace of ρ. The

17

sequence t1t2... is called the firing sequence (untimed trace) of ρ. A marking M is reachable

if and only if ∃q ∈ Q s.t. its marking is M . Runs (resp. timed / untimed traces) of the TPN

are all runs (resp. timed / untimed traces) of the initial state q0.

To use enumerative analysis techniques with time Petri nets, an extra effort is required

to abstract their generally infinite state spaces. Abstraction techniques aim to construct a

finite contraction of the state space of the model by removing some irrelevant details. This

contraction of the state space preserves the properties of interest. For best performances,

the contraction should be the smallest possible and computed with the minimal resources

in terms of time and space. The preserved properties are usually verified using standard

analysis techniques on the abstractions (Penczek et Polrola, 2004).

Several state space abstraction methods have been proposed, in the literature, for time

Petri nets (e.g. the state class graph (SCG) (Berthomieu et Diaz, 1991), the zone based graph

(ZBG) (Boucheneb et al., 2009), etc). These abstractions may differ mainly in the character-

ization of the states (interval states or clock states), the agglomeration criteria of the states,

the representation of the agglomerated states (abstract states), the kind of properties they

preserve (markings, linear or branching properties) and their size.

Abstraction consists of agglomeration of some states with similar behaviors. Agglomer-

ation methods are different in the type of properties they preserve (LTL,CTL,...), the time

characterization they use (clock, interval or firing date), and also the agglomeration policy

they consider. There are three levels for abstraction criteria:

– At the first level, states being the result of time elapsing are agglomerated and only

states being the result of transitions are considered as distinct states.

– At the second level, all states being the result of a similar transition are regrouped.

– At the third level, all states being the result of the same transitions with different se-

quences are regrouped as equivalent nodes. For example, a state being the result of

t1, t2 is agglomerated with a state being the result of t2, t1.

Fig.2.2 from (Boucheneb et Hadjidj, 2008) shows the three levels of abstraction.

Expressing the state of a model by either intervals or clocks are completely bi-similar.

When time elapses in a model, its state is modified. The new state is declared by increas-

ing clock values in clock characterization or decreasing the corresponding bounds in interval

characterization. In some cases, using intervals instead of clocks helps to better abstract the

18

Figure 2.2 Three levels of abstraction (Boucheneb et Hadjidj, 2008).

state space, because bounds are positive values and whenever decreasing an interval yields

to a negative value, it will be considered zero. In some other cases like construction of the

state space graph, using clocks helps to better distinguish the states.

These abstractions are finite for all bounded time Petri nets. However, abstractions based

on clocks are less interesting than the interval based abstractions when only linear properties

are of interest. Indeed, abstractions based on intervals are finite for bounded TPN with

unbounded intervals, while this is not true for abstraction based on clocks. The finiteness

is enforced using an approximation operation, which may involve some overhead computation.

2.3.2 Zone Based Graph

In the Zone Based Graph (ZBG) (Boucheneb et al., 2009), all clock states reachable by

runs supporting the same firing sequence are agglomerated in the same node and considered

modulo some over-approximation operation (Behrmann et al., 2006a; Gardey et al., 2006a).

This operation is used to ensure the finiteness of the ZBG for the bounded TPNs with un-

bounded firing intervals. An abstract state, called state zone, is defined as a pair β = (M,FZ)

combining a marking M and a formula FZ which characterizes the clock domains of all the

states agglomerated in the state zone. In FZ, the clock of each enabled transition for M is

represented by a variable with the same name. The domain of FZ is convex and has a unique

canonical form represented by the pair (M,Z), where Z is a DBM of the order |En(M)∪{o}

defined by: ∀(x, y) ∈ (En(M)∪ {o})2, zxy = SupFZ(x− y). Here o represents the value of 0.

State zones of the ZBG are in the relaxed form.

19

The initial state zone is the pair β0 = (M0, FZ0), where M0 is the initial marking and

FZ0 =
∧

ti,tj∈En(M0)

0 ≤ ti = tj ≤ ↑
tu∈En(M0)

Is(tu). As an example, consider the TPN given in

(Gardey et al., 2006b) and reported at Fig.2.4. Its state zone graph is reported at Fig.2.5

and its state zone graphs are reported in Table 2.1. More information about computing ZBG

could be find in (Boucheneb et al., 2009).

The ZBG of a bounded TPN is not necessarily bounded. Fig. 2.3 given in (Boucheneb

et al., 2009) shows a bounded TPN with an infinite ZBG. For this reason, zone based graphs

require some over-approximation.

p1 p2

p3t1[0,∞[
t2[1, 1] t3[1, 1]

••

Figure 2.3 A bounded TPN with an infinite ZBG reported from (Boucheneb et al., 2009).

In this work, we consider the state class method and study the possibility of enforcing

the behavior of a given TPN in order to satisfy a safety / reachability property. The idea is

to construct on-the-fly the reachable state classes of the TPN and at the same time collect

progressively firing subintervals to be avoided so that the properties of interest are satisfied.

2.3.3 The state class graph method

In the state class graph method (Berthomieu et Diaz, 1991), all states reachable by the

same firing sequence from the initial state are agglomerated in the same node and considered

modulo the relation of the equivalence defined by: two sets of states are equivalent if and

only if they have the same marking and the same firing domain. The firing domain of a set

of states is the union of the firing domains of its states. All equivalent sets are agglomerated

in the same node called a state class defined as a pair α = (M,F), where M is a marking

and F is a formula which characterizes the firing domain of α. For each transition ti enabled

in M , there is a variable ti in F representing its firing delay. F can be rewritten as the set

of atomic constraints of the form 1: ti − tj ≤ c, ti ≤ c or −tj ≤ c, where ti, tj are transitions,

c ∈ Q ∪ {∞} and Q is the set of rational numbers.

1. For economy of notation, we use operator ≤ even if c = ∞.

20

Though the same domain can be expressed by different conjunctions of the atomic con-

straints (i.e., different formulas), all equivalent formulas have a unique form, called canonical

form, that is usually encoded by a difference bound matrix (DBM) (Bengtsson, 2002). The

canonical form of F is encoded by the DBM D (a square matrix) of the order |En(M)| + 1

defined by: ∀ti, tj ∈ En(M) ∪ {t0}, dij = (≤, SupF (ti − tj)). Here t0 (t0 /∈ T) represents a

fictitious transition whose delay is always equal to 0 and SupF (ti − tj) is the largest value of

ti−tj in the domain of F . The computation of canonical form is based on the Floyd-Warshall

shortest path algorithm and is considered as the most costly operation (cubic in the number

of variables in F). The canonical form of a DBM makes some operations over formulas like

the test of equivalence easier. Two formulas are equivalent if and only if the canonical forms

of their DBMs are identical.

The initial state class is α0 = (M0, F0), where F0 =
∧

ti∈En(M0)

↓ Is(ti) ≤ ti ≤↑ Is(ti). Let

α = (M,F) be a state class and tf a transition and succ(α, tf) the set of states defined by:

succ(α, tf) = {q′ ∈ Q | ∃q ∈ α, ∃θ ∈ R+ s.t. q
θ

−→ q + θ
tf
−→ q′}. The state class α has a

successor by tf (i.e. succ(α, tf) 6= ∅), if and only if tf is enabled in M and can be fired before

any other enabled transition, i.e., the following formula is consistent 2: F ∧ (
∧

ti∈En(M)

tf ≤ ti).

In this case, the firing of tf leads to the state class α′ = (M ′, F ′) = succ(α, tf) computed as

follows (Berthomieu et Diaz, 1991):

1. ∀p ∈ P,M ′(p) =M(p)− Pre(p, tf) + Post(p, tf).

2. F ′ = F ∧ (
∧

ti∈En(M)

tf − ti ≤ 0).

3. Replace in F ′ each ti 6= tf , by (ti + tf).

4. Eliminate by substitution tf and each ti of transition conflicting with tf in M .

5. Add constraint ↓ Is(tn) ≤ tn ≤↑ Is(tn), for each transition tn ∈ New(M ′, tf).

Formally, the SCG of a TPN model is a structure (CC,−→, α0), where α0 = (M0, F0) is

the initial state class, ∀ti ∈ T, α
ti−→ α′ iff α′ = succ(α, ti) 6= ∅ and CC = {α|α0

∗
−→ α}. The

complexity of computing each state class is O(n2), n being the number of transitions in the

model (Boucheneb et Mullins, 2003). Reachability and boundedness problems are known to

be undecidable for time Petri nets (Berthomieu et Menasche, 1983). However, there are some

useful sufficient conditions to ensure the boundedness (Berthomieu et Menasche, 1983). The

SCG is finite for all bounded TPNs and preserves linear properties (Berthomieu et Vernadat,

2. A formula F is consistent iff there is at least, one tuple of values that satisfies all constraints of F at
once.

21

2003).

p1 p2

p3 p4

t2[2, 3]

t4[0, 1]t3[2,∞[

t1[0, 4]

• •

Figure 2.4 A simple Petri net with
Tc = {t1}.

α0

α1 α2α3

α4 α5α6

t1

t2
t3t3

t2

t1

t2t4

t4

Figure 2.5 The state graph of the TPN pre-
sented at Fig.2.4.

As an example, Fig.2.4 shows a simple example of TPN with only one controllable tran-

sition t1. At the beginning two places p1 and p2 are marked. In the case that t3 fires, one

token is lost and the model is blocked. In order to have a live and safe model, t3 should be

prevented. Fig.2.5 shows the state class graph of the TPN presented at Fig.2.4. Its state

classes are reported in Table 2.2. For this example, state class graph and state zone based

graph of the system are identical while classes and zones are different.

Table 2.1 State zones of the TPN presented at Fig.2.5.

β0 : p1 + p2 0 ≤ t1 = t2 ≤ 3
β1 : p2 + p3 0 ≤ t2 ≤ 3 ∧ 0 ≤ t3 ≤ 3 ∧ 0 ≤ t2 − t3 ≤ 3
β2 : p1 + p4 2 ≤ t1 ≤ 4
β3 : p3 + p4 0 ≤ t3 ≤ 3 ∧ 0 ≤ t4 ≤ 1 ∧ 0 ≤ t3 − t4 ≤ 3
β4 : p2 2 ≤ t2 ≤ 3
β5 : p3 + p4 0 ≤ t3 = t4 ≤ 2
β6 : p4

Table 2.2 The state classes of the TPN presented at Fig.2.5.

α0 : p1 + p2 0 ≤ t1 ≤ 4 ∧ 2 ≤ t2 ≤ 3
α1 : p2 + p3 0 ≤ t2 ≤ 3 ∧ 2 ≤ t3
α2 : p1 + p4 0 ≤ t1 ≤ 2
α3 : p3 + p4 0 ≤ t3 ∧ 0 ≤ t4 ≤ 1
α4 : p2 0 ≤ t2 ≤ 1
α5 : p3 + p4 2 ≤ t3 <∞∧ 0 ≤ t4 ≤ 1
α6 : p4

22

CHAPTER 3

Controller Synthesis in Real Time Systems

3.1 Introduction to controller synthesis

In controller synthesis, the objective is to find a controller running in parallel with the sys-

tem under study to guarantee the satisfaction of some given properties, as discussed earlier in

Chapter 1. A controller makes an open-loop system to be closed-loop. In such a framework,

in general, the system consists of controllable and non controllable actions. The controller

can only act on controllable actions. The objective is to force to meet some properties by

selecting or delaying some controllable actions.

We mentioned earlier that two main questions arise for the controller: the existence and

the possibility of implementation. The first question, Control Problem says, given a system S

and a property ϕ, whether a controller C exists for the system S such that C running in par-

allel with S satisfies the property ϕ. This concept is formally represented as S||C |= ϕ where

|| signifies parallel execution and |= stands for satisfaction (Fig.3.1). The second question is

the Controller Synthesis Problem, which in case the mentioned controller exists, investigates

how to implement it. Another important aspect for the controller synthesis problem is the

controller permissiveness. A maximally permissive controller is a controller that limits as

little as possible the behavior of the system. The challenge is to find a controller ensuring a

good compromise between the permissiveness and the implementation complexity.

There are different types of controllers: path dependent controllers, state dependent con-

trollers, etc. In a path dependent controller, the controller keeps track of all the states traveled

in each path; whereas, a state dependent controller acts only upon the current state of the

system. In other terms, in contrary with a path dependent controller, a state dependent

controller is memoryless. Implementation of path dependent controllers are more costly. The

state dependent controllers are more interesting and are established as a good compromise

between the permissiveness and the implementation complexity.

Among various models used to describe the behavior of S, timed automata (TA in short)

and time Petri nets (TPN in short) are the well-knowns. The properties studied in both

models for control purposes are classified into two main categories:

23

1. Safety properties: Forbidden (bad) states will never be reached by the system.

2. Reachability properties: The system will eventually reach a state within a set of goal

states.

In order to control these kinds of properties in timed models (TA and TPN), several ap-

proaches of state dependent controller synthesis have been proposed in the literature (Cassez

et al., 2005; Gardey et al., 2006b; Tripakis, 1998). Two known methods are the backward

fixpoint method and the backward-forward on-the-fly method. Both methods are based

on computing controllable predecessors of abstract states (state zones). This computation

involves some expensive operations such as computing differences between abstract states

resulting split abstract states that are handled separately.

In this research, we propose an algorithm to synthesize on-the-fly a safety / reachability

controller for time Petri nets. Unlike other mentioned solutions, our algorithm does not need

to compute controllable predecessors and is based on the state class graph method. During

the exploration of the state class graph, all sequences leading to undesired states are ex-

tracted and firing subintervals to be avoided are determined. The control is state dependent

and consists of restricting the firing intervals of controllable transitions so as to avoid reaching

the bad state classes. We show that for this category of control, our algorithm synthesizes

maximally permissive controllers (Heidari et Boucheneb, 2012b,c; Heidari et al., 2011).

This chapter is organized as follows: In Section 3.2, after a short survey on the control

theory, previous algorithms and related work are discussed. Section 3.3 introduces a forward

method for computing predecessors of the state classes. The algorithm proposed here for

safety properties is developed in Section 3.4. The algorithm for reachability controller syn-

thesis is developed in Section 3.5. Finally, Section 3.6 is devoted to the conclusion of the

chapter.

Property ϕBehavioral Model Controller‖ |=

Figure 3.1 Controller of a system.

24

3.2 Literature review

The theory of control was initially introduced in (Ramadge et Wonham, 1987). In this ar-

ticle,the authors have formalized, in terms of formal languages, the notion of control and the

existence of a controller that enforces a discrete event system (DES) to behave as expected

(legal languages). The system to be controlled is described in terms of a formal language

which is generated by a finite automaton whose alphabet is a finite set of events. The con-

trol consists of enabling or disabling some controllable events so that to force or avoid some

specific sequences of events of the system.

The concept of control has been afterwards extended to various models such as timed au-

tomata (Wong-Toi et Hoffmann, 1991) and time Petri nets (Sathaye et Krogh, 1993), where

the control specification is expressed on the model states rather than the model language.

Thus, for every system modeled by a controllable language, timed automata or time Petri

nets, controller synthesis is used to restrict the behavior of the system making it to satisfy

the desired properties (safety or reachability properties).

The typical procedure can be described as follows: First, a system is modeled and its de-

sired properties are defined. Then, the existence (control problem as stated in Altisen et al.,

2005) and the implementation of the appropriate controller (controller synthesis problem as

stated in Altisen et al., 2005) are investigated. Several approaches of controller synthesis have

been proposed in the literature. They may differ in the model they are working on (various

types of Petri nets or automata), the approach they are based on (analytical (Wu et al.,

2008), structural (Buy et al., 2005; Iordache et Antsaklis, 2010), semantic (Abid et Zouari,

2010b; Cassez et al., 2005; Gardey et al., 2006b; Tripakis, 1998)), and finally the property to

be controlled.

In (Wu et al., 2008), the authors have considered a particular type of capacity time Petri

net, where timing constraints are associated with transitions and some places, and all tran-

sitions are controllable. This timed Petri net is used to model a cluster tool with wafer

residency time constraints. The wafers and their time constraints are represented by timed

places. Using analytical approaches of schedulability and the particular structure of their

model (model of the cluster tool), the authors have established an algorithm for finding, if it

exists, an optimal periodic schedule which respects the residency time constraints of wafers.

The control consists of limiting timing constraints of transitions and some places so as to

respect the residency time constraints of the wafers.

25

In (Buy et Darabi, 2003; Buy et al., 2005), the authors have considered safe and live

time Petri nets where deadlines can be associated with some transition firings. The control

consists of enforcing the model to meet deadlines of transition firings. The controller has the

possibility of disabling any transition t which prevents the deadline of a transition td to be

met. A transition t is allowed to fire only if its latency (the maximum delay between firing

t and the next firing of td) is not greater than the current deadline of td. The latencies of

transitions are computed by constructing an unfolding Petri net of the underlying untimed

Petri net. This approach does not need to explore the state space. However, in general, the

resulting controller is not maximally permissive, meaning that the controller may disable a

net behavior that does not violate the properties of interest.

In (Iordache et Antsaklis, 2010), the authors have considered a mono-processor system.

They have proposed an application of controller synthesis to automatically generate the part

of the programs that deals with the coordination of concurrent processes. The programs are

modeled by means of Petri nets in which places are labeled with instructions and transitions

with conditions. The requirements are specified by means of constraints over markings. The

control consists of enforcing the behavior so as to meet the requirements. In this application,

the authors have used Petri nets without dealing with time constraints and the supervisor

can disable a controllable transition.

Other controller synthesis approaches are based on the theory of regions and Petri nets

(Abid et Zouari, 2010b; Ghaffari et al., 2003). Basically, the theory of regions (Badouel et al.,

1995) is used to verify if an automaton (corresponding, for instance, to the expected behavior)

is isomorphic to the reachability graph of a Petri net. In (Ghaffari et al., 2003), the authors

have adapted this theory to controller synthesis in Petri nets. The idea is to compute a

convenient set of places and edges and add them to the original plant model. The completed

model will avoid all forbidden markings. Their method first generates the reachability graph

of the net. Then, the desired behavior of the net is derived from its reachability graph by

eliminating forbidden markings, dangerous markings (i.e., the markings leading to a forbid-

den marking through an uncontrollable event) and blocking markings (i.e., the markings not

leading to final states). Finally, the obtained graph is synthesized to calculate the control

places and their parameters to be added to the plant.

In (Abid et Zouari, 2010b), the authors have discussed controller synthesis in a special

type of colored Petri nets called well-formed nets (WF-nets) (Jensen et Rozenberg, 1991).

26

WF-nets are equivalent to the colored Petri nets in terms of expressiveness but, are enforcing

some structuring restriction on color classes and firing functions. The authors have applied

the theory of regions on an abstract version of the reachability graph of the plant called

symbolic reachability graph (SRG). Timing characteristics are not taken into account.

In (Cassez et al., 2005; Gardey et al., 2006b; Tripakis, 1998), the authors have considered

timed models (TA or TPN) with two kinds of transitions (controllable and uncontrollable)

and investigated the control problem for safety or reachability properties. In their model, in

order to prevent some undesired states, the controller can act on any firable and controllable

transition. The controller can delay or force firing of controllable transitions but it cannot

disable these transitions. The control problem is addressed by computing the winning states

of the model, i.e. the states which will not lead by an uncontrollable transition to an unde-

sired state. The computation of the winning states is based on the concept of controllable

predecessors of states. In the literature, the set of controllable predecessors is usually denoted

by π(X), where X is the set of states satisfying the desired property (safe/goal states). The

set π(X) is defined by (Gardey et al., 2006b):

π(X) = {q ∈ Q|(∃ δ ∈ R≥0, q
′ ∈ X s.t. (∃ t ∈ T q

δ t
−→ q′) ∨ (q

δ
−→ q′)) ∧

∀ δ ∈ R≥0, (∃ t ∈ Tu, q
′ /∈ X q

δ t
−→ q′) ⇒ (∃ δc < δ, tc ∈ Tc, qc ∈ X q

δc tc−→ qc)}.
(3.1)

Intuitively, π(X) is the set of predecessors of X which will not bring the system out of X .

Fig.3.2 clarifies this concept. If the environment can execute an uncontrollable transition

after δ time units, leading the system out of X (denoted by X̄), then the controller should

be able to execute a controllable action to keep the system in X before δ time units. In

addition, in the context of timed models with strong semantics, the controller should not be

forced to execute a controllable transition leading the system out of X . In strong semantics,

a transition must be fired, without any additional delay, when the upper bound of its firing

interval is reached.

Let AG φ be a safety property and let X0 = Sat(φ) be the set of states which satisfy the

property φ (safe states). The fixpoint of Xi+1 = h(Xi) = Xi ∩ π(Xi), i ≥ 0 gives the largest

set of safe states whose behaviors can be controlled so as to maintain the system inside this

set of states (i.e., winning states). If the largest fixpoint of h includes the initial state then,

it gives a controller which forces the system to stay in the safe states (i.e., a winning strategy).

Similarly, the fixpoint method is also used for reachability properties. Let AF ψ be

27

a reachability property and X0 = Sat(ψ) the set of goal states. The least fixpoint of

Xi+1 = h(Xi) = Xi ∪ π(Xi), i ≥ 0 is the set of states whose behaviors can be controlled

so as to reach one of the goal states (i.e., winning states) (Cassez et al., 2005; Tripakis, 1998).

In the context of a timed model, this technique is applied on a state space abstraction of

the timed model. In this case, Xi is a set of abstract states. If Xi is a finite set of abstract

states, then the set of controllable predecessors of Xi is also a finite set of abstract states.

The computation of the fixpoint of h will converge after a finite number of steps if the state

space abstraction is finite (Cassez et al., 2005; Gardey et al., 2006b; Tripakis, 1998).

Note that the state space abstractions used in (Cassez et al., 2005; Gardey et al., 2006b;

Tripakis, 1998) are based on clocks but the state space abstraction used in (Gardey et al.,

2006b) is not necessarily complete. A state space abstraction of a given model is sound if

and only if it captures all firing sequences of the model. It is complete if and only if each

firing sequence in the state space abstraction reflects a firing sequence of the model. The

fixpoint method cannot guarantee to give the safety controller when it exists, unless the state

space abstraction is both sound and complete. Indeed, a synthesis may fail because of some

unreachable states, while for the reachable state space the safety controller exists. However,

the cost of processing is increased because a sound and complete state space abstraction

should be entirely calculated before applying the fixpoint algorithm.

Let us explain how to compute the fixpoint of h for a safety property through an example.

Consider the TPN given in (Gardey et al., 2006b) and reported in Fig.2.4. The state class

graph (SCG) and the zone based graph (ZBG) of this TPN are equal, except that nodes are

defined differently (state classes or state zones). The state class graph is depicted in Fig.2.5.

Its state classes and state zones are reported in Table 2.1 and Table 2.2, respectively.

Suppose we are interested in forcing the following safety property: AG not p1 + p3 = 0,

q′ /∈ Xq

qc ∈ X

q + δq + δcδc δ − δc t

tc

Figure 3.2 Controllable predecessors.

28

which means that places p1 and p3 are never both empty. The transition t1 is the only con-

trollable transition and the forbidden markings are p2 and p4. As the state class graph shows,

if t2 happens before t1, the right path happens and does not lead to any bad markings. So,

in this case, the controller has nothing to do. On the other hand, if t1 happens before t2, two

state classes having forbidden markings may be reached (α4, α6).

To verify whether or not there is a controller for such a property, we compute the fixpoint

of Xi+1 = h(Xi) = Xi ∩ π(Xi), where X0 = {β0, β1, β2, β3, β5} is the set of state zones which

satisfy the property not p1 + p3 = 0. Such a controller exists if and only if the initial state of

the model is a winning state (i.e., belongs to the fixpoint of h). The fixpoint is computed, in

3 iterations, as follows:

1. Iteration 1: X1 = X0∩π(X0) = {β0, β ′
1, β2, β

′
3, β5}. In this iteration, all states of β1 and

β3, which are uncontrollable predecessors of bad state classes β4 and β6 are eliminated:

β ′
1 = (p2 + p3, 1 < t2 ≤ 3 ∧ 0 ≤ t3 < 2 ∧ 1 < t2 − t3 ≤ 3) and

β ′
3 = (p3 + p4, 1 ≤ t3 ≤ 3 ∧ 0 < t4 ≤ 1 ∧ 1 ≤ t3 − t4 ≤ 3).

2. Iteration 2: X2 = X1 ∩ π(X1) = {β0, β ′′
1 , β2, β

′
3, β5}. This iteration eliminates from β ′

1

all states, which are uncontrollable predecessors of bad states of β3 − β ′
3:

β ′′
1 = {p2 + p3, 2 < t2 ≤ 3 ∧ 0 ≤ t3 < 1 ∧ 2 ≤ t2 − t3 ≤ 3}.

3. Iteration 3: X2 = X2 ∩ π(X2) = {β0, β ′′
1 , β2, β

′
3, β5}. The fixpoint X2 is then the set

of winning states. Since the initial state zone belongs to X2, there is a controller for

forcing the property AG not p1 + p3 = 0. To keep the model in safe states (in states of

X2), the controller must delay, in β0, the firing of t1 until its clock overpasses the value

2. Doing so, the successor of β0 by t1 will be β ′′
1 .

This approach needs however to construct a state space abstraction before computing

the winning states. To overcome this limitation, in (Cassez et al., 2005; Tripakis, 1998), the

authors have investigated the use of on-the-fly algorithms besides the fixpoint to compute

the winning states for timed game automata 1. The on-the-fly algorithm of (Cassez et al.,

2005) for the case of reachability properties is reported, in Fig.3.3. This algorithm uses the

following three lists: Passed, containing all the state zones explored so far; Waiting, con-

taining the set of edges to be processed; and Depend, indicating for each state zone S, the

set of edges to be reevaluated in case the set of the winning states in S (Win[S]) is updated.

Using this method, in each step, a part of the state zone graph is constructed and an edge

e = (S, a, S ′) of the Waiting list is processed. If the state zone S ′ is not in Passed and there

1. A timed game automata is a timed automata with two kinds of transitions: controllable and uncon-
trollable transitions.

29

are some states in S ′, which satisfy the desired reachability property, then these states are

added to the winning states of S ′ (Win[S ′]). The winning states of S will be recomputed

later (the edge e is added to the list Waiting). If S ′ is in Passed, Win[S] and possibly those

of its predecessors are recomputed and so on. InWin[S], we get the controllable predecessors

of the winning states of its successors.

Figure 3.3 On-the-fly algorithm for timed game automata proposed in (Cassez et al., 2005).

This on-the-fly algorithm is based on computing controllable predecessors and requires

some expensive operations such as the difference between state zones. The difference between

two state zones is not necessarily a state zone and then may result in several state zones,

which need to be handled separately.

3.3 A forward method for computing predecessors of state classes

In this section, we discuss a forward method for computing predecessors of state classes.

This method will be used later in our suggested algorithm. Let α = (M,F) be a state class

30

and ω ∈ T+ be a sequence of transitions firable from α. We denote succ(α, ω) as the state

class reachable from α by firing successively transitions of ω. We define inductively this set

as follows: succ(α, ω) = α, if ω = ε and succ(α, ω) = succ(succ(α, ω′), ti), if ω = ω′.ti.

During the firing of a sequence of transitions ω from α, the same transition may be newly

enabled several times. To distinguish among different enablings of the same transition ti, we

denote tki for k > 0 the transition ti (newly) enabled by the kth transition of the sequence; t0i
denotes the transition ti enabled in M . Let ω = tk11t

km
m ∈ T+ with m > 0 be a sequence of

transitions firable from α (i.e., succ(α, ω) 6= ∅). We define Fire(α, ω) the largest subclass α′

of α (i.e., α′ ⊆ α) s.t. ω is firable from all its states, i.e.,

Fire(α, ω) = {q1 ∈ α | ∃θ1, ..., θm, q1
θ1−→ q1 + θ1

t
k1
1−→ q2...qm + θm

tkmm−→ qm+1}. (3.2)

Proposition 1 Fire(α, ω) is the state class (M ′, F ′) whereM ′ =M and F ′ can be computed

as follows 2: Let M1 =M and the marking reached from M by the subsequence tk11t
kf
f of ω

be denoted by Mf+1, where f ∈ [1, m].

1. Initialize F ′ with the formula obtained from F by renaming all variables ti in t
0
i .

2. Add the following constraints:

∧

f∈[1,m]

(
∧

ti∈(En(M1)−
⋃

j∈[1,f [

CF (Mj ,tj))

t
kf
f − t0i ≤ 0 ∧

∧

j∈[1,f [,tn∈(New(Mj+1,tj)−
⋃

k∈]j,f [

CF (Mk,tk))

t
kf
f − tjn ≤ 0

∧
∧

tn∈New(Mf+1,tf)

↓ Is(tn) ≤ tfn − t
kf
f ≤↑ Is(tn))

3. Put the resulting formula in the canonical form and eliminate all variables tji such that

j > 0. Rename all variables t0i in ti.

Note that Fire(α, ω) 6= ∅ (i.e., ω is firable from α) iff ω is feasible in the underlying

untimed model and the formula obtained at step 2) above is consistent.

2. We suppose that the truth value of an empty set of constraints is always true.

31

Proof 1 By first step all variables associated with the transitions of En(M) are renamed (ti

is renamed in t0i). This step allows us to distinguish delays of transitions enabled in M from

those that are newly enabled by the transitions of the firing sequence.

Second step adds the firing constraints of the transitions of the sequence (for f ∈ [1, m]).

For each transition t
kf
f of the sequence, three blocks of constraints are added. The two first

blocks mean that the delay of t
kf
f must be less than or equal to the delays of all transitions

enabled inMf (i.e., transitions of En(M) and those enabled by tj (New(Mj+1, tj), 1 ≤ j < f)

that are maintained continuously enabled at least until firing t
kf
f). Transitions of En(M) that

are maintained continuously enabled at least until firing t
kf
f are transitions of En(M) which

are not in conflict with tk11 in M1, and, ..., and not in conflict with t
kf−1

f−1 in Mf−1. Similarly,

transitions of New(Mj , tj) (with 1 ≤ j < f) that are maintained continuously enabled at least

until firing t
kf
f are transitions of New(Mj+1, tj) which are not in conflict with t

kj+1

j+1 in Mj+1,

and ..., and are not in conflict with t
kf−1

f−1 in Mf−1. The third block of constraints specifies the

firing delays of transitions that are newly enabled by t
kf
f .

Third step isolates the largest subclass of α such that ω is firable from all its states.

As an example, consider the TPN depicted in Fig.2.4 and its state class graph shown at

Fig.2.5. In the following, we show how to compute Fire(α0, t
0
1t

0
2t

1
3). We have En(M0) =

{t1, t2}, CF (M0, t1) = {t1}, CF (M1, t2) = {t2}, New(M0, t1) = {t3} and New(M1, t2) =

{t4}. The subclass (p1 + p2, F
′) = Fire(α0, t

0
1t

0
2t

1
3) is computed as follows:

1. Initialize F ′ with the formula obtained from 0 ≤ t1 ≤ 4 ∧ 2 ≤ t2 ≤ 3 by renaming all

variables ti in t
0
i :

0 ≤ t01 ≤ 4 ∧ 2 ≤ t02 ≤ 3.

2. Add the firing constraints of t1 before t2, t2 before t3 and constraints on the firing

intervals of transitions enabled by these firings (i.e., t3 and t4):

t01 − t02 ≤ 0 ∧ t02 − t13 ≤ 0 ∧ 2 ≤ t13 − t01 ∧ 0 ≤ t24 − t02 ≤ 1.

3. Put the resulting formula in the canonical form and eliminate all variables tji such that

j > 0. Rename all variables t0i in ti:

0 ≤ t1 ≤ 2 ∧ 2 ≤ t2 ≤ 3 ∧ 1 ≤ t2 − t1 ≤ 3.

The subclass Fire(α0, t
0
1t

0
2t

1
3) consists of all the states of α0 from which the sequence t1t2t3

32

is firable. If t1 is controllable, to avoid reaching the marking p4 by the sequence t1t2t3, it

suffices to choose the firing interval of t1 in α0 outside its firing interval in Fire(α0, t
0
1t

0
2t

1
3)

(i.e.,]2, 4]).

Note that this forward method of computing predecessors can also be adapted and applied

to the clock based abstractions. For instance, using the zone based graph, the initial state

zone of the TPN shown at Fig.2.4 is β0 = (p1 + p2, 0 ≤ t1 = t2 ≤ 3). The sub-zone β ′
0 of β0,

from which the sequence t1t2t3 is firable, can be computed in a similar way as the previous

procedure where delay constraints are replaced by clock constraints,

β ′
0 = (p1 + p2, 0 ≤ t1 = t2 ≤ 2).

To avoid reaching the marking p4 by the sequence t1t2t3, it suffices to delay the firing of t1

until when its clocks overpasses 2. This in turns means that its firing interval should be]2, 4].

3.4 On-the-fly algorithm for safety controller synthesis

In this section, we propose an efficient forward on-the-fly method to synthesize a safety

controller for time Petri nets. Our method differs from the previous ones, used for timed

automata and time Petri nets by the fact that it computes the bad intervals instead of com-

puting the winning states. Our proposed algorithm constructs a state class graph instead

of a state zone graph and is not based on computing controllable predecessors (expensive

operations). The state class graph is a good alternative for the on-the-fly algorithms as the

exploration converges fast and does not need any over-approximation operation to enforce

the convergence. In addition, the bad intervals are computed, using a forward approach, for

only state classes containing at least a controllable transition.

Let us introduce informally the principle of our approach through the example given in

the previous chapter. Consider the TPN of Fig.2.4, its state class graph depicted in Fig.2.5

and its state classes reported in Table 2.2. Our goal is to avoid to reach states where there

is no token in both places p1 and p3 (i.e., state classes α4 and α6), by choosing appropriately

the firing intervals of the controllable transition t1.

From the initial state class α0, there are two elementary paths α0t1α1t2α3t3α6 and α0t1α1t3

α4 that lead to bad states. In both paths, there is only one state class (α0) where t1 is en-

abled. To avoid these bad paths, we propose to compute all states of α0 from which t1t3 or

33

t1t2t3 is firable, and denote it by B. Therefore:

B(α0) = Fire(α0, t1t3) ∪ Fire(α0, t1t2t3), where:

Fire(α0, t1t3) = (p1 + p2, 0 ≤ t1 ≤ 1 ∧ 2 ≤ t2 ≤ 3 ∧ 2 ≤ t2 − t1 ≤ 3) and

Fire(α0, t1t2t3) = (p1 + p2, 0 ≤ t1 ≤ 2 ∧ 2 ≤ t2 ≤ 3 ∧ 1 ≤ t2 − t1 ≤ 3).

Then, we replace in α0, the firing interval of t1 with]2, 4]. This interval is the complement of

[0, 2]∪ [0, 1] in the firing interval of t1 in α0 ([0, 4]). The approach we propose in the following

is a combination of this principle with a forward on-the-fly method.

A controller for safety properties running in parallel with a system should force the system

to satisfy the property ’AG not bad’, where ’bad’ stands for the set of forbidden states. This

property means that ’bad’ states will never happen. In our context, such a system is described

by means of a TPN and bad is a set of forbidden markings. In our approach, the idea is to

explore, path by path, the state class graph of the TPN and look for sequences that lead the

system to any forbidden marking (bad sequences or bad paths). Then, Proposition 1 is used

to compute the subclasses that cause the bad states, happening later on through the found

bad sequences (bad subclasses). The control consists of restricting the firing domain of the

controllable transitions so as to avoid the bad subclasses. As we will show, our approach is

based on operations over real intervals whereas other approaches are based on operations over

time domains. Before presenting our algorithm, let us define some operations over intervals

that are used in our algorithm.

3.4.1 Operations over real intervals

Let I and I ′ be two nonempty (real) intervals. We denote I ⊕ I ′ and I 	 I ′ intervals

defined by: ∀a ∈ R,

a ∈ I ⊕ I ′ iff ∃b ∈ I, ∃c ∈ I ′, a = b+ c.

a ∈ I 	 I ′ iff ∃b ∈ I, ∃c ∈ I ′, a = b− c.

As an example, for I = [1, 4] and I ′ =]2, 5], I ⊕ I ′ =]3, 9] and I 	 I ′ = [−4, 2[.

The union of intervals is not necessarily an interval (intervals are not closed under union).

It is represented by a set of intervals. Let SI be a nonempty set of intervals. This set is in

reduced form if and only if ∀I, I ′ ∈ SI, I ∩ I ′ = ∅. In the rest of this document, we suppose

that all sets of intervals are in reduced form. This form makes the operations over sets of

intervals easier. For instance, a set of intervals is an interval if and only if its reduced form

is a singleton.

Let SI be a nonempty set of real intervals, in reduced form and I be an interval. We

34

define straightforwardly the following operations over intervals and sets of intervals:

– For op1 ∈ {⊕,	}, (I op1 SI) and (SI op1 I) are the reduced form of {I op1 I ′|I ′ ∈ SI}

and {I ′ op1 I|I ′ ∈ SI}, respectively.

– For op2 ∈ {⊂,⊆}, (SI op2 I) iff (∀I ′ ∈ SI, I ′ op2 I) and (I op2 SI) iff (∃I ′ ∈

SI, I op2 I
′).

– I − SI is the reduced form of {I ′ ⊆ I|∀I ′′ ∈ SI ∧ I ′ ∩ I ′′ = ∅}.

For example, for I = [1, 4], I ′ =]2, 5] and I ′′ = [9, 10], we have:

1. I ′ ∪ I ′′ = {]2, 5], [9, 10]},

2. I ⊕ (I ′ ∪ I ′′) = {]3, 9], [10, 14]},

3. I 	 (I ′ ∪ I ′′) = {[−4, 2[, [−9,−6]},

4. I 6⊆ (I ′ ∪ I ′′),

5. I ∪ I ′ ∪ I ′′ = {[1, 5], [9, 10]}

6. [0, 15]− (I ∪ I ′ ∪ I ′′) = {[0, 1[,]5, 9[,]10, 15]}.

��� ��� ��� ��� ��� ������ ��� ��� ��� ��� ������ ��� ��� ��� ��� ��� ������ ����� � 	�
� ������
� � ��� �
�
 �� ��
�� ����� �� ��
 ���
� � ��� �
�

Figure 3.4 Paths satisfying or not a safety property. Black state is to be avoided.

35

Algorithm 1 On-the-fly algorithm for the safety control of TPN - Part A.

Function main(TPN N , Markings bad)
Where N is a TPN
bad is a set of bad markings.
Let Tc be the set of controllable transitions of N and
α0 the initial state class of N .
Passed = ∅
if (explore(α0, ε, {α0}) 6= ∅) then
{Controller does not exist}
return

end if
for all ((α,Ω, LI) ∈ Passed) do
Ctrl[α] =

⋃
(tc,ts,BI)∈LI

{(tc, ts, INT (α, tc − ts)−BI)}

end for

(∗)

α = (M,F);

Enc(M) = En(M) ∩ Tc;

En0
c(M) = Enc(M) ∪ {t0};

Newc(M, t) = New(M, t) ∩ Tc;

New(M0, ε) = En(M0);

t0 is a fictitious transition whose time variable is fixed at 0.

Dep(α, t, LI) ≡ ∃(tc, ts, BI) ∈ LI, tc /∈ New(M, t) ∧ (ts /∈ New(M, t)∨

INT (α, tc − t0) 6⊆
⋂

I∈BI

(I ⊕ INT (α, ts − t0))).

36

Algorithm On-the-fly algorithm for the safety control of TPN - Part B.

Function Traces explore(Class α, Trans t, Classes C)
if (∃Ω, LI s.t. (α,Ω, LI) ∈ Passed) then
if (Ω 6= ∅ ∧Dep(α, t, LI)) then
return {t.ω|ω ∈ Ω}

end if
return ∅

end if
if (M ∈ bad) then
return {t}

end if
Traces Ω = ∅;
for all t′ ∈ En(M) s.t succ(α, t′) 6= ∅ ∧ succ(α, t′) /∈ C do
Ω = Ω ∪ explore(succ(α, t′), t′, C ∪ {succ(α, t′)})

end for{Ω contains all bad sequences of α.}
if (Ω = ∅) then
Passed = Passed ∪ {(α, ∅, ∅)}
return ∅

end if
LI = {(tc, ts, BI)|(tc, ts) ∈ Enc(M)× En0

c(M) ∧

BI =
⋃

ω∈Ω

INT (Fire(α, ω), tc − ts) ⊂ INT (α, tc − ts)}

Passed = Passed ∪ {(α,Ω, LI)}
if (Dep(α, t, LI)) then
return {t.ω|ω ∈ Ω}

end if
return ∅

37

3.4.2 Our algorithm

The method proposed here, is presented in Algorithm 1. The list Passed is used to re-

trieve the set of state classes processed so far, their bad sequences, and the bad intervals of

controllable transitions (their domains in bad subclasses). Function main consists of an ini-

tialization step and a calling to the recursive function explore. The call explore(α0, ∅, {α0})

returns the set of bad sequences from α0 that cannot be avoided by restricting firing domains

of controllable transitions. If this set is nonempty, it means that such a controller does not

exist. Otherwise, it exists and the algorithm guarantees that for each state class α with

some bad sequences, there is a possibility to choose appropriately the firing intervals of some

controllable transitions so as to avoid all bad subclasses of α. The control of α consists of

eliminating, from the firing intervals of such controllable transitions, all parts figuring in its

bad subclasses. The restriction of domains is also applied on firing delays between two con-

trollable transitions of α. We get in Ctrl, all possibilities of controlling each state class.

The function explore receives parameters α being the class under process, t the transition

leading to α and C the set of traveled classes in the current path. It uses functions succ(α, t)

and Fire(α, ω) already explained in sections 2.3.3 and 3.3, respectively. It distinguishes 3

cases:

1. The state class α has been already processed (i.e., α is in Passed): In this case, there

is no need to explore it again. However, its bad sequences have to be propagated to its

predecessor by t, in case the control needs to be started before reaching α in order to

avoid bad states of its predecessors. The control of α is independent of its predecessors

along the path if all possibilities of control in α are limited to the newly enabled tran-

sitions. In case there is, in α, a possibility of control, which limits the firing interval of

some controllable transition not newly enabled in α, it means that the predecessor of

α by t has some bad states that must be avoided. The condition Dep(α, t, LI), used in

Algorithm 1, is derived from the necessary and sufficient conditions, established in the

next section, to control α independently from its predecessor by t.

2. The state class α has a forbidden marking (i.e., α is a bad state class): In this case,

the transition t is returned, which means that this sequence needs to be avoided before

reaching α.

3. In other cases, the function explore is called for each successor of α, not already en-

38

countered in the current path (see Fig.3.4), to collect, in Ω, the bad sequences of its

successors. Once all successors are processed, Ω is checked:

– 3.1) If Ω = ∅, it means that α does not lead to any bad state class or its bad sequences

can be avoided later by controlling its successors. Then, (α, ∅, ∅) is added to Passed

and the function returns with ∅.

– 3.2) If Ω 6= ∅, the function explore determines intervals of controllable transitions

in bad subclasses, which do not cover their intervals in α. It gets such intervals,

identifying states to be avoided, in LI (bad intervals). It adds (α,Ω, LI) to Passed

and then verifies whether or not α is controllable independently from its predecessor

state class in the current path. In such a case, there is no need to start the control

before reaching α and then the empty set is returned by the function. Otherwise,

there is a need to propagate the control to its predecessor by t. The set of sequences,

obtained by prefixing with t sequences of Ω, is then returned by the function.

3.4.3 Definitions: Bad sequences, bad/winning intervals, losing/winning sub-

classes

Let α = (M,F) be a state class s.t. M /∈ bad. The sets Ω(α), LI(α) and Ctrl(α)

are recursively defined as follows. Note that our algorithm computes the bad and winning

intervals for only state classes with some bad sequences and controllable transitions. In the

following, we suppose that α has some bad sequences and some controllable transitions.

– Bad sequences of α:

Ω(α) =
⋃

α
t

−→α′=(M ′,F ′),α′ 6=α,M ′ /∈bad

{t.ω |ω ∈ Ω(α′) ∧Dep(α′, t)} ∪
⋃

α
t

−→α′=(M ′,F ′),M ′∈bad

{t}

(3.3)

where, Dep(α′, t) ≡ ∃(tc, ts, BI) ∈ LI(α),

tc /∈ New(M, t) ∧ (ts /∈ New(M, t) ∨ INT (α, tc − t0) 6⊆
⋂

I∈BI
(I ⊕ INT (α, ts − t0))).

This condition states that either the transition is not newly enabled or if it is newly enabled,

its interval is not completely included in the set of bad intervals. In other words, for an enabled

transition (which is not newly enabled), there exists a sub-interval to safely control the system.

As we will show later, ¬Dep(α′, t) is a necessary and sufficient condition for ensuring a control

of α, independently from its predecessor by t. In other words, if Dep(α′, t) holds then the

control must be started before reaching α′ by t.

39

– Bad intervals of α:

LI(α) = {(tc, ts, BI)|tc ∈ Enc(M), ts ∈ En0
c(M),

BI =
⋃

ω∈Ω(α)

INT (Fire(α, ω), tc − ts) 6= INT (α, tc − ts)}.
(3.4)

The set BI of each element (tc, ts, BI) of LI(α) is the union of intervals of tc − ts, in bad

subclasses, which does not cover the interval of tc− ts in α. The idea is to use the complement

of these intervals in α to characterize states outside the bad subclasses.

– Winning intervals of α:

Ctrl(α) = {(tc, ts,WI)|(tc, ts, BI) ∈ LI(α) ∧WI = INT (α, tc − ts)−BI}. (3.5)

In each element (tc, ts,WI) of Ctrl(α),WI is the set of all subintervals of INT (α, tc−ts)

that are outside the intervals of tc − ts in LI(α). The control of α consists of choosing

an interval I from an element (tc, ts,WI) of Ctrl(α) and then restricting the domain

of tc − ts in α to I.

– Winning states of α: According to our approach, if Ctrl(α) 6= ∅, the set of winning

states of α, denoted W (α), is defined by:

W (α) =
⋃

(tc,ts,WI)∈Ctrl(α),I∈WI

(M,F ∧ tc − ts ∈ I). (3.6)

– Losing states of α: Similarly, the set of the losing states, denoted L(α) is defined by:

L(α) =
⋃

(tc,ts,BI)∈LI(α),I∈BI

(M,F ∧ tc − ts ∈ I). (3.7)

Note that α = W (α) ∪ L(α) since intervals in Ctrl(α) are complements, in α of those

in LI(α). Let B(α) =
⋃

ω∈Ω(α)

Fire(α, ω) be the set of subclasses of α from which at least

one of the bad sequences of Ω(α) is firable. The following example shows that L(α) is not

necessarily equal to B(α). Consider the initial state class α0 of the previous example (see

Fig.3.5). We have:

– α0 = (p1 + p2, 0 ≤ t1 ≤ 4 ∧ 2 ≤ t2 ≤ 3),

– B(α0) = (p1 + p2, 0 ≤ t1 ≤ 2 ∧ 2 ≤ t2 ≤ 3 ∧ −3 ≤ t1 − t2 ≤ −1),

– BI = {(t1, t0, [0, 2])},

– WI = {(t1, t0,]2, 4])},

– W (α0) = (p1 + p2, 2 < t1 ≤ 4 ∧ 2 ≤ t2 ≤ 3 ∧ −1 < t1 − t2 ≤ 2),

– L(α0) = (p1 + p2, 0 ≤ t1 ≤ 2 ∧ 2 ≤ t2 ≤ 3 ∧ −3 ≤ t1 − t2 ≤ 0), and

40

– L(α0)− B(α0) = (p1 + p2, 1 < t1 ≤ 2 ∧ 2 ≤ t2 < 3 ∧ −1 < t1 − t2 ≤ 0).

t1

t2
t1 − t2 = −1

t1 − t2 = −3

t1 − t2 = 2

B(α0)

W (α0)

L(α0)

4
3
2
1

1 2 3 4
Figure 3.5 The winning and losing subclasses of α0 in TPN of Fig.2.4 for AG not p1+p3 = 0.

Note that we cannot limit the firing interval of t1 in the later subclasses so as to avoid

the bad markings, since INT (L(α0)− B(α0), t1 − t0) =]1, 2] ⊂ INT (B(α0), t1 − t0) = [0, 2].

Note also that our algorithm computes neither W (α) nor L(α). Instead, it computes the

bad and winning intervals of the state classes with bad sequences and controllable transitions.

3.4.4 Formalization and proof of the correctness Algorithm1 for safety controller

synthesis

Let N be a time Petri net and bad a set of forbidden markings. To synthesize a safety

controller for N , our algorithm explores, path by path, its state class graph looking for

bad paths. It tries to control the system behavior starting from the last to the first state

class of each bad path, so as to avoid reaching forbidden markings. If it fails to control a

state class of a path, independently from its previous state classes, the algorithm tries to

control its previous state classes and so on. If it succeeds, there is no need to propagate the

control to its predecessors in the path. The list Passed is used to store the explored state

classes with no bad markings. Each element of Passed is a triplet (α,Ω(α), LI(α)) where

α = (M,F) is a state class s.t. M /∈ bad, Ω(α) is the set of bad sequences of α, which

cannot be avoided, independently from α, from its successors, and LI(α) gives the intervals

of controllable transitions in bad subclasses of α (bad intervals). The set LI(α) allows to

retrieve the safe intervals of controllable transitions, by computing the complements, in α, of

the forbidden intervals (i.e., all possibilities of controlling α, Ctrl(α)).

41

3.4.5 Independent controllable state classes

In our algorithm, to delay the control as much as possible, the control is processed from

the last to the first state class of each bad path. The propagation of the control along the path

is stopped as soon as we reach a state class whose control has no effect on its predecessors.

The control of the path is then initiated at such a state class.

Definition 1 Let α be a state class reached by some transition t. Formally, α is controllable

independently from its predecessor by t if and only if all states of α are made safe by restricting

intervals of controllable and newly enabled transitions, i.e., ∀(tc, ts,WI) ∈ Ctrl(α), ∀I ∈ WI,

(M,F ∧ tc − ts ∈ I)|En(M)−Newc(M,t) = α|En(M)−Newc(M,t).

Intuitively, this condition means that all possibilities of controlling α affect only the

domains of transitions that are controllable and newly enabled. Theorem 1 establishes two

necessary and sufficient conditions to control α independently from its predecessor in the

path.

Theorem 1 Let α = (M,F) be a state class reached by some transition t.

1. α is controllable independently from its predecessor by t, if and only if ∀(tc, ts, BI) ∈

LI(α), ∀I ∈ BI,

(M,F ∧ tc − ts ∈ I)|En(M)−Newc(M,t) = α|En(M)−Newc(M,t). (3.8)

2. α is controllable independently from its predecessor by t, if and only if

∀(tc, ts, BI) ∈ LI(α) s.t. tc /∈ New(M, t),

(ts ∈ New(M, t) ∧ INT (α, tc − t0) ⊆
⋂

I∈BI

(I ⊕ INT (α, ts − t0)). (3.9)

Proof 2 By definition, α is controllable independently from its predecessor by t if and only

if ∀(tc, ts,WI) ∈ Ctrl(α), ∀I ∈ WI, (M,F ∧ tc − ts ∈ I)|En(M)−Newc(M,t) = α|En(M)−Newc(M,t).

This condition means that the effect of the different possibilities of control is limited to the

controllable transitions that are newly enabled. Then, the losing and winning state sets of α

are only distinguishable by the firing intervals of transitions that are controllable and newly

42

enabled.

1. By definition of Ctrl(α), intervals of WI are complements of those of the element

(tc, ts, BI) of LI(α). It follows that WI ∪ BI = INT (α, tc − ts) and WI ∩ BI = ∅. If

for some interval I of WI, F ∧ tc − ts ∈ I splits the domain of tc in α then there is

some interval I ′ of BI such that F ∧ tc − ts ∈ I ′ results in splitting the interval of tc

in α. The reverse is also true. Then, we can state that α is controllable independently

from its predecessor by t, if and only if

∀(tc, ts, BI) ∈ LI(α), ∀I ∈ BI,

(M,F ∧ tc − ts ∈ I)|En(M)−Newc(M,t) = α|En(M)−Newc(M,t). (3.10)

2. Let us now show that the condition 3.10 above, is equivalent to the condition 3.9. We

consider separately different cases:

(a) tc ∈ Newc(M, t) and ts ∈ New0
c (M, t): According to the firing rule of transitions

from state classes, F can be rewritten as a conjunction of two independent sets of

constraints: F1 ∧
∧

tn∈New(M,t)

↓ Is(tn) ≤ tn ≤↑ Is(tn), where F1 has no constraint

over transitions of New(M, t).

Then, α|En(M)−Newc(M,t) = (M,F ∧ tc − ts ∈ I)|En(M)−Newc(M,t).

(b) tc /∈ Newc(M, t) and ts /∈ Newc(M, t): Since both tc and ts are in En(M) −

Newc(M, t) and I ⊂ INT (α, tc − ts), it follows that α|En(M)−Newc(M,t) 6= (M,F ∧

tc − ts ∈ I)|En(M)−Newc(M,t).

(c) tc /∈ Newc(M, t) and ts ∈ Newc(M, t): In this case, F ∧ tc − ts ∈ I adds the

constraint tc ∈ I⊕INT (α, ts−t0) to the domain of tc. This domain is not affected

if and only if INT (α, tc − t0) ⊆ (I ⊕ INT (α, ts − t0)). Since tc /∈ New(M, t) and

ts ∈ New(M, t), if the domain of tc is affected then α|En(M)−Newc(M,t) 6= (M,F ∧

tc − ts ∈ I)|En(M)−Newc(M,t). Otherwise, the domains of all transitions, except

the one of ts, are consequently not affected by the added constraint. Therefore,

α|En(M)−Newc(M,t) = (M,F ∧ tc − ts ∈ I)|En(M)−Newc(M,t) if and only if INT (α, tc −

t0) ⊆ (I ⊕ INT (α, ts − t0)). This condition must be satisfied for all I in BI s.t.

43

(tc, ts, BI) ∈ LI(α). It is then equivalent to:

INT (α, tc − t0) ⊆ (
⋂

I∈BI

(I ⊕ INT (α, ts − t0))).

(d) tc ∈ Newc(M, t) and ts /∈ Newc(M, t): This case is covered by the previous one,

since F ∧ tc − ts ∈ I is equivalent to F ∧ ts − tc ∈ I ′, where I ′ = [0, 0]	 I belongs

to the set BI ′ of the tuple (ts, tc, BI
′) of LI(α). Following the same steps as the

previous case, we show that:

α|En(M)−Newc(M,t) = (M,F ∧ tc−ts ∈ I)|En(M)−Newc(M,t) if and only if INT (α, ts−

t0) ⊆ (
⋂

I′∈BI′
I ′ ⊕ INT (α, tc − t0)).

To sum up, α is controllable independently from its predecessor by t if and only if

∀(tc, ts, BI) ∈ LI(α) s.t. tc /∈ New(M, t), ts ∈ New(M, t) ∧ INT (α, tc − t0) ⊆⋂
I∈BI

I ⊕ INT (α, ts − t0).

The second necessary and sufficient condition established in Theorem 1 is very useful as

it does not need computing the losing subclasses of α and consists of simple operations over

intervals of controllable transitions.

3.4.6 Legal safety controllers

A safety controller is legal if it ensures that the system under control is maintained inside

safe states (i.e., states satisfying the safety property of interest).

Let α be a state class, Ω(α) the set of bad sequences of α to be avoided from α and

B(α) =
⋃

ω∈Ω(α)

Fire(α, ω). Lemma 1 establishes that W (α) ⊆ α−B(α), which means that all

bad sequences of Ω(α) are not firable fromW (α). Other bad sequences of α (not in Ω(α)) are

avoided from its successors independently from α. The restrictions made by its successors to

avoid these bad sequences have no effect on α. Therefore, our algorithm synthesizes safety

legal controllers of α.

Lemma 1 W (α) ⊆ α− B(α).

Proof 3 By definition, W (α) ⊆ α. Let s be a state of W (α). It means that:

∃(tc, ts,WI) ∈ Ctrl(α), ∃I ∈ WI s.t. Id(tc)	 Id(ts) ⊆ I.

Since I is outside all intervals of (tc − ts) in B(α), it follows that s /∈ B(α).

44

3.4.7 Maximally permissive controllers

In our context, to synthesize a maximally permissive controller, the winning states of each

state class must be as large as possible. In other terms, the set of bad sequences must be

reduced as much as possible (by delaying the control as much as possible) and the winning

states w.r.t. the reduced set of bad sequences must be the largest one.

Lemma 2 proves that, for a given set of bad sequences Ω(α), the firing intervals of con-

trollable transitions cannot be used to distinguish between B(α) and L(α) = α−W (α). For

each controllable transition of Enc(M) and a pair of controllable transitions, there are some

states in B(α), which share some firing delays with states of L(α). In other words, it means

that W (α) is the largest set of winning states in α w.r.t. Ω(α).

Let α = (M,F) be a state class and s = (M, Id) a state. Then s ∈ α iff ∀t ∈ En(M), ∀t′ ∈

En(M) ∪ {t0}, Id(t)	 Id(t′) ⊆ INT (α, t− t′). Recall that t0 is a fictitious transition which

it is never fired and whose delay is fixed at 0. By convention, Id(t0) = [0, 0]. This transition

is used for economy of notations.

Lemma 2 ∀s = (M, Id) ∈ L(α), ∀tc ∈ Enc(M), ∀ts ∈ Enc(M) ∪ {t0}, ∃ω ∈ Ω(α),

(Id(tc)	 Id(ts)) ∩ INT (Fire(α, ω), tc − ts) 6= ∅.

Proof 4 Let s = (M, Id) ∈ α − W (α) = L(α). Using the definition of W (α), we can

state that ∀(tc, ts,WI) ∈ Ctrl(α), ∀I ∈ WI, Id(tc) 	 Id(ts) 6⊆ I. The relationship between

LI and WI allows to rewrite the previous relation as follows: ∀(tc, ts, BI) ∈ LI(α), ∀I ∈

INT (α, tc − ts)−
⋃

ω∈Ω(α)

INT (Fire(α, ω), tc − ts), Id(tc)	 Id(ts) 6⊆ I.

Then, ∀(tc, ts, BI) ∈ LI(α), ∃ω ∈ Ω(α), INT (Fire(α, ω), tc − ts) ∩ Id(tc)	 Id(ts) 6= ∅.

For (tc, ts) ∈ Enc(M)×En0
c(M) which does not appear in LI(α), the following relation holds:

∃ω ∈ Ω(α), INT (Fire(α, ω), tc − ts) = INT (α, tc − ts).

In conclusion, we can state that:

∀s = (M, Id) ∈ α−W (α), ∀tc ∈ Enc(M), ∀ts ∈ Enc(M) ∪ {t0},

∃ ω ∈ Ω(α), (Id(tc)	 Id(ts)) ∩ INT (Fire(α, ω), tc − ts) 6= ∅.

Using Lemma 2 and Theorem 1, in the following, we prove that our algorithm gives, if

it exists, a maximally permissive state dependent controller for a given bounded TPN and a

safety property over markings.

45

Theorem 2 1. Algorithm 1 guarantees to find a maximally permissive controller, based

on the restriction of firing intervals of controllable transitions, if it exists.

2. Our approach is decidable for all bounded TPNs.

Proof 5 1. This approach explores the state class graph and collects bad paths. The state

class graph preserves markings and firing sequences. Therefore, all bad sequences and

bad markings of the state class graph are really bad sequences and reachable bad mark-

ings of the model. This approach concludes that the controller does not exist for the

considered property if and only if the function explore returns a nonempty set for the

initial state class α0. This in turn means that α0 has some bad sequences that can-

not be avoided by restricting intervals of controllable transitions (i.e., W (α0) = ∅). If

W (α0) 6= ∅ then we can avoid all bad paths by restricting firing intervals of controllable

transitions (such a controller exists). Otherwise, these restrictions are not sufficient to

avoid bad paths (such a controller does not exist). Lemma 1 shows that for a given set

of bad sequences Ω(α) of α, W (α) is the largest winning states. According to Definition

1, if α is controllable independently from its predecessor state class α′ by some t, then

α and W (α) have the same set of predecessor states by t in α′. Otherwise, there are in

α′ some losing states which must be avoided to maintain the system inside the winning

states. Indeed, by construction, each state of α has a predecessor by t in α. Therefore,

there is a subclass in the predecessor state class of α by t s.t. its successor by t is outside

W (α)|En(M)−Newc(M,t). It follows that Ω(α) is the smallest set of bad sequences which

cannot be avoided independently from α from its successors. Therefore, our algorithm

gives maximally permissive controllers.

2. This approach is decidable for any bounded TPN because its state class graph is finite

and the approach explores, path by path, the state class graph. The exploration of a

path is abandoned as soon as a loop is detected or a bad marking is reached.

Remark:

Let us investigate the hardness complexity of the solution step by step:

– The complexity of computing BI of a state class (in worst case) is O(K×L×nt
2) where

K is the number of paths starting from the state class and leading to bad markings, L

is the maximal length of such paths and nt is the number of transitions in the model.

– The complexity of relation 3.8 is O(|LI| × |BI|). The test of equality is O(1).

46

– The complexity for relation 3.9 is O(|LI| ×m×|BI|), where m is the number of places

in the model (complexity of testing New(M, t)).

In (Boucheneb et al., 2009), the authors have discussed the completeness complexity for

bounded TPNs. They have proven that model checking of TPN-TCTL formula on a bounded

TPN is PSPACE-complete.

3.4.8 Illustrative examples

Case of a TPN with one controllable transition

Let us first apply our approach on the TPN at Fig.2.4 for the safety property AG not p1+

p3 = 0. Its SCG and its state classes are reported in Fig.2.5 and Table 2.2, respectively. For

this example, we have Tc = {t1}, bad = {p2, p4}, Passed = ∅ and α0 = (p1 + p2, 0 ≤ t1 ≤

4 ∧ 2 ≤ t2 ≤ 3).

The process starts by calling explore(α0, ε, {α0}) (see Fig.3.6). Since α0 is not in Passed

and its marking is not forbidden, explore is successively called for the successors of α0:

explore(α1, t1, {α0, α1}) and explore(α2, t2, {α0, α2}). In explore of α1, function explore is

successively called for α3 and α4. In explore of α3, function explore is called for the successor

α6 of α3 by t3: explore(α6, t3, {α0, α1, α3, α6}). For the successor of α3 by t4 (i.e., α0), there

is no need to call explore as it belongs to the current path. Since α6 has a forbidden marking,

explore of α6 returns to explore of α3 with {t3}, which, in turn, adds (α3, {t2t3}, ∅) to Passed

and returns to explore of α1 with {t2t3}.

In explore of α1, function explore is called for α4 (explore(α4, t3, {α0, α1, α4})). This call

returns, to explore of α1, with {t3}, since α4 has a forbidden marking. In explore of α1, the

tuple (α1, {t2t3, t3}, ∅) is added to Passed and {t1t2t3, t1t3} is returned to explore of α0. Then,

explore of α0 calls explore(α2, t2, {α0, α2}), which in turn calls explore(α5, t1, {α0, α2, α5}).

Since α5 has only one successor (α0) and this successor belongs to the current path, the call

of explore for α5 adds (α5, ∅, ∅) to Passed and returns to explore of α2 with ∅, which, in

turn, returns to explore of α0.

After exploring both successors of α0, in explore of α0, we get in Ω = {t1t2t3, t1t3} the set

of bad paths of α0. As the state class α0 has a controllable transition t1, its bad subclasses

are computed: Fire(α0, t1t2t3) = {(p1 + p2, 0 ≤ t1 ≤ 2 ∧ 2 ≤ t2 ≤ 3 ∧ 1 ≤ t2 − t1 ≤ 3)

and Fire(α0, t1t3) = (p1 + p2, 0 ≤ t1 ≤ 1 ∧ 2 ≤ t2 ≤ 3 ∧ 2 ≤ t2 − t1 ≤ 3)}. The fir-

47

ing interval of t1 in α0 ([0, 4]) is not covered by the union of intervals of t1 in bad sub-

classes of α0 ([0, 2] ∪ [0, 1] 6= [0, 4]). Then, (α0, {t1t2t3, t1t3}, {(t1, t0, {[0, 2]})}) is added to

Passed. As t1 is newly enabled, the empty set is returned to the function main, which

concludes that a controller exists. According with the list Passed, α0 needs to be controlled

(Ctrl[α0] = {(t1, t0, {[0, 4]− [0, 2]})}). For all others, there is nothing to do.

Note that for this example, it is possible to carry out a static controller, which is in this

case, a mapping over controllable transitions. Indeed, it suffices to replace the static interval

of t1 with]2, 4]. Such a controller is in general less permissive than the state dependent

controller. However, its implementation is static and very simple as if the model is corrected

rather than controlled.

It is also possible to carry out a marking dependent controller (a mapping over markings).

Such a controller can be represented by duplicating t1, each of them being associated with

an interval and conditioned to a marking (see Table 3.1 and Fig.3.7).

explore(α0, ε, {α0})
Return ∅

explore(α1, t1, {α0, α1})
Return {t1t2t3, t1t3}

explore(α3, t2, {α0, α1, α3})
Return {t2t3}

explore(α4, t3, {α0, α1, α4})
Return {t3}

explore(α6, t3, {α0, α1, α3, α6})

Return {t3}

explore(α2, t2, {α0, α2})
Return ∅

explore(α5, t1, {α0, α2, α5})
Return ∅

t1
t2

t2
t3

t1

t3

α0α0

α1 α2

α3

α4

α5

α6

Figure 3.6 Applying Algorithm 1 on the TPN of Fig.2.4 for AG not p1 + p3 = 0.

Case of a TPN with two controllable transitions

As a second example, consider the model depicted in Fig.3.8, which describes the assem-

bly section of a manufacturing line, where two pieces from types A and B are assembled

and stored. The assembly section consists of two robotic arms, a conveyor and an assembly

tray. Each robotic arm is assigned to bring a part from corresponding type and put it on the

48

p1 p2

p4
p3

t2[2, 3]

t3[2,∞[

t4[0, 1]t11]2, 4] t12[0, 4]
p1 + p2 not p1 + p2

• •

Figure 3.7 The controlled TPN obtained for the TPN of Fig.2.4 for AG not p1 + p3 = 0.

Table 3.1 A marking dependent controller for the TPN of Fig.2.4.

Marking Constraint to be applied on t1
p1 + p2 2 < t1 ≤ 4
Others 0 ≤ t1 ≤ 4

conveyor (specified by transitions t1 and t2). The conveyor runs and places the parts on the

tray where they are assembled and stored in the boxes (specified by transitions t3 and t4).

The conveyor is always on and moves on non-stop. The assembling operation is done on the

tray and is uncontrollable. Storing an assembled part is also uncontrollable. The assembly

tray should receive two parts from two different types consecutively. It is not allowed to

accept more than one part on the conveyor. Then, a controller is needed for the robotic

arms to manage the system so as to meet the previous requirement (i.e., the safety property

AG Conveyor < 2).

Table 3.2 State classes of the TPN at Fig.3.8.

α0 : A+B + Conv.ON 1 ≤ t1 ≤ 7 ∧ 2 ≤ t2 ≤ 6
α1 : Conveyor +B + Conv.ON 1 ≤ t2 ≤ 5 ∧ 2 ≤ t3 ≤ 4
α2 : Conveyor + A+ Conv.ON 0 ≤ t1 ≤ 5 ∧ 2 ≤ t3 ≤ 4
α3 : Tray +B + Conv.ON 0 ≤ t2 ≤ 3
α4 : 2Conveyor + Conv.ON 0 ≤ t3 ≤ 4
α5 : Tray + A+ Conv.ON 0 ≤ t1 < 3
α6 : Tray + Conveyor + Conv.ON 2 ≤ t3 ≤ 4
α7 : 2Tray + Conv.ON 10 ≤ t4 ≤ 10

49

A B

Conveyor
Conv.ON

Tray

t3[2, 4]

t4[10, 10]

t1[1, 7] t2[2, 6]

2

• •

•

Figure 3.8 The TPN model of the as-
sembling section in a manufacturing
line.

α0 α2

α4

α1

α3

α7

α5

α6

t2

t2

t2

t1 t1

t1

t3 t3

t3

t3

t4

Figure 3.9 The state graph of the TPN pre-
sented at Fig.3.8.

The state class graph of the model and its state classes are given in Fig.3.9 and Table 3.2,

respectively. Only two transitions t1 and t2 are controllable. The transition t1 models the

operation, ’Bring A’ while t2 models ’Bring B’ respectively. As the state classes of Fig.3.9 and

Table 3.2 show, the state class α4 violates this property and then is a forbidden state class.

The controller should prevent the system entering this state class. We trace our algorithm

to find a controller. The sequences are reported in Table 3.3.

Our algorithm concludes that there is a controller. All possibilities of control of state

classes are given in Ctrl: Ctrl(α0) = {(t1, t2, {[−5,−4[,]4, 5]})}, Ctrl(α1) = {(t2, t0, {]4, 5]})},

t1

t2

L(α0)

6

5

4

3

2

1

1 2 3 4 5 6 7

L(α0)

t1 − t2 = 0t1 − t2 = −4
t1 − t2 = −5

t1 − t2 = 4

t1 − t2 = 5

Figure 3.10 The winning and bad subclasses of α0 in the TPN of Fig.3.8, w.r.t.
AG Convoyer < 2.

50

Table 3.3 Tracing Algorithm 1 on the example of Fig.3.8.

Class Condition / Decision
α0 call explore for α1

α1 call explore for α4

α4 M4 ∈ bad → return {t2}
α1 call explore for α3

α3 call explore for α6

α6 call explore for α7

α7 succ(α7, t4) = α0 ∈ C →
add (α7, ∅, ∅) to Passed, return ∅

α6 add (α6, ∅, ∅) to Passed,
return ∅

α3 add (α3, ∅, ∅) to Passed,
return ∅

α1 add (α1, {t2}, {(t2, t0, {[0, 4]}}) to Passed,
t2 /∈ New(M1, t1) → return {t1t2}

α0 call explore for α2

α2 call explore for α4

α4 M4 ∈ bad → return {t1}
α2 call explore for α5

α5 add (α5, ∅, ∅) to Passed,
succ(α6, t3) = α7 is in Passed→ return ∅

α2 add (α2, {t1}, {(t1, t0, {[0, 4]}}) to Passed,
t1 /∈ New(M2, t2) → return {t2.t1}

α0 LI = {(t1, t2, {[−4, 4]})},
add (α0, {t1t2, t2t1}, LI) to Passed, return ∅

main Ctrl(α0) = {(t1, t2, {[−5,−4[,]4, 5]})}
Ctrl(α1) = {(t2, t0, {]4, 5]})}
Ctrl(α2) = {(t1, t0, {]4, 5]})}

Ctrl(α2) = {(t1, t0, {]4, 5]})}, Ctrl(αi) = ∅, for i ∈ {3, 5, 6, 7}. Note that the control must

be started before reaching α1 (resp. α2) because the controllable transition of α1 (resp. α2)

is not newly enabled, which means that there are some bad states in α0 (see Fig.3.10).

For this example, a static controller exists and consists of replacing the static firing in-

tervals of t1 and t2 with [1, 2[and]5, 6] (or]6, 7] and [2, 3[), respectively (see Fig.3.10). The

marking dependent controller is identical to the state dependent controller because each state

class has its own marking.

51

3.5 Controller for reachability properties

The algorithm proposed here for the safety properties, is also adaptable to reachability

properties. A reachability controller running in parallel with the system should satisfy the

property AF goal, where goal is a set of goal markings. This property means that a marking

of goal will eventually be reached (see Fig.3.11). For reachability properties, the controller

should prevent all paths which terminate without reaching a goal marking, or contains a loop

on none goal markings (see Fig.3.11). Then, if we define state classes leading to such cases

as bad states, a safety controller is able to control this system in order to satisfy the given

reachability property. Thus, the algorithm proposed for safety properties is extensible to the

case of reachability properties with some minor modifications (see Algorithm 3). The main

function is the same for the both kinds of properties except that in this case, the set of bad

markings (bad) is replaced with the set of goal markings (goal). In the function explore, a

bad path is computed for two cases:

– a terminating node, not leading to a goal state. This condition is imposed by verifying

whether (En(M) = ∅).

– a loop, not including a goal state. This condition is imposed by verifying whether:

succ(α, t′) ∈ C.

By preventing these cases, the controller allows only the paths reaching to goal states.

��� ���� ��� ���� ��� ������� ���� ��� ���� ��� �������� ��� ���� ��� ���� ��� ������� ������ !�"# $%�&'() "* �)*�$ +"�"% ,� -�"#+ .#'/# &* (*" $%�& "* �)*�$ +"�"%
Figure 3.11 Paths satisfying or not a reachability property. Black states are to be avoided.

52

Algorithm 3 On-the-fly algorithm for the reachability control of TPN - Part A.

Function main(TPN N ,Markings goal)
Where N is a TPN and
goal is a set of goal markings.
Let Tc be the set of controllable transitions of N and
α0 the initial state class of N .

Passed = ∅
if (explore(α0, ε, {α0}) 6= ∅) then
{Controller does not exist}
return

end if

for all ((α,Ω, LI) ∈ Passed) do
Ctrl[α] =

⋃
(tc,ts,BI)∈LI

{(tc, ts, INT (α, tc − ts)−BI)}

end for
return

(∗)

α = (M,F);

Enc(M) = En(M) ∩ Tc;

En0
c(M) = Enc(M) ∪ {t0};

Newc(M, t) = New(M, t) ∩ Tc;

New(M0, ε) = En(M0); New0(M0, ε) = En(M0) ∪ {t0};

t0 is a fictitious transition whose time variable is fixed at 0.

Dep(α, t, LI) ≡ ∃(tc, ts, BI) ∈ LI, tc /∈ New(M, t) ∧ (ts /∈ New(M, t)∨

INT (α, tc − t0) 6⊆
⋂

I∈BI

(I ⊕ INT (α, ts − t0))).

53

Algorithm On-the-fly algorithm for the reachability control of TPN - Part B.

Function Traces explore(Class α, Trans t, Classes C)
if (∃Ω, LI s.t. (α,Ω, LI) ∈ Passed) then
if (Ω 6= ∅ ∧Dep(α, t, LI)) then
return {t.ω|ω ∈ Ω}

end if
return ∅

end if
if (M ∈ goal) then
return ∅

end if
if (En(M) = ∅) then
return {t}

end if
Traces Ω = ∅
for all t′ ∈ En(M) s.t succ(α, t′) 6= ∅ do
if succ(α, t′) ∈ C then
Ω = Ω ∪ {t′}

else
Ω = Ω ∪ explore(succ(α, t′), t′, C ∪ {succ(α, t′)})

end if
end for
if (Ω = ∅) then
Passed = Passed ∪ {(α,Ω, ∅)}
return ∅

end if
LI = {(tc, ts, BI)|(tc, ts) ∈ Enc(M)× En0

c(M) ∧

BI =
⋃

ω∈Ω

INT (Fire(α, ω), tc − ts) ⊂ INT (α, tc − ts)}

Passed = Passed ∪ {(α,Ω, LI)}
if (Dep(α, t, LI)) then
return {t.ω|ω ∈ Ω}

end if
return ∅

54

3.5.1 Formalization and proof of the correctness of Algorithm3 for reachability

controller synthesis

Let N be a time Petri net and goal a set of desired markings to be reached. To synthesize

a safety controller for N , our algorithm explores, path by path, its state class graph looking

for the nodes terminating a path without reaching a goal state and the states terminating a

loop on non goal states. Then, the controller has to avoid these states. Similar to a safety

controller, the reachability controller also tries to control the system behavior starting from

the last to the first state class of each bad path, so as to avoid reaching forbidden markings.

In this case forbidden markings are from the two categories mentioned above (the states

presented in black at Fig.3.11). If the algorithm fails to control a state class of a path, in-

dependently from its previous states, the algorithm tries to control its previous state classes

and so on. If it succeeds, there is no need to propagate the control to its predecessors in

the path. The list Passed is used to store the explored state classes leading to goal markings.

The same as for safety controllers, each element of Passed is a triplet (α,Ω(α), LI(α))

where:

– either α = (M,F) is a state class s.t. M ∈ goal,

– or ∃α′ ∈ Reach(α) where α′ = (M ′, F ′) s.t. M ′ ∈ goal.

The set Ω(α) is the set of bad sequences of α, which cannot be avoided from its suc-

cessors, independently from α. Here, LI(α) gives the intervals of controllable transitions in

bad subclasses of α (bad intervals). The set LI(α) allows to retrieve the safe intervals of

controllable transitions, by computing the complements, in α, of the forbidden intervals (i.e.,

all possibilities of controlling α, Ctrl(α)).

3.5.2 State dependent controller

Let α = (M,F) be a state class reached by some transition t and Ctrl(α) be the reacha-

bility controller in the state α computed by Algorithm 3. Remember the definition of inde-

pendent state classes given in Definition 1. The conditions of theorem 1 hold for reachability

controller synthesis. Consequently, α is controllable independently from its predecessors by

t.

3.5.3 Legal reachability controllers

A reachability controller is legal if it ensures that the system under control leads to the

goal states (i.e., states satisfying the reachability property of interest).

55

Lemma 3

∀s ∈ W (α); s ∈ goal ∨ ∃s′ ∈ Reach(s) s.t. s′ ∈ goal.

Proof 6 If Lemma 3 is not true and has a counterexample, we should have a state s′ such

that:

∃s′ ∈ W (α), s.t. s′ /∈ goal ∧ (Reach(s′) ∩ goal = ∅).

Look at Fig.3.11. The final states not leading to goal states are supposed to be avoided.

Based on the conditions imposed on Algorithm 3 (Part B) for the calculation of bad paths to

be avoided, the set bad is defined as:

bad = {s|s /∈ goal ∧Reach(s) ∩ goal = ∅}.

Then, s′ ∈ bad and is avoided by the controller. On the other hand, from Lemma 1 we have

W (α) ⊆ α− B(α). This is impossible to find a state s′ ∈ W (α) s.t. s′ ∈ bad.

3.5.4 Maximally permissive reachability controllers

In Section 3.4.7, we discussed maximally permissive controllers and using Theorem 2

proved that Algorithm 1 is maximally permissive and is decidable for bounded TPNs. Let us

see if the same result can be carried out for reachability controller synthesis of the Algorithm

3.

Theorem 3 1. Algorithm 3 guarantees to find a maximally permissive controller, based

on the restriction of firing intervals of controllable transitions, if it exists.

2. Our approach is decidable for all bounded TPNs.

Proof 7 1. We have considered the terminating states of none goal paths and states clos-

ing cycles of non goal states as forbidden states. We have forced the system to avoid

them and to allow only the paths reaching a state with goal markings. Then, the same

proof as that of Theorem 2 is applicable. This approach explores the state class graph

and collects bad paths. The state class graph preserves markings and firing sequences.

Therefore, all bad sequences and bad markings of the state class graph are really bad

sequences and reachable bad markings of the model. We have proven that the algorithm

for safety controllers is maximally permissive. If the controller is restricting the set of

forbidden states (i.e. terminating states) as little as possible, then the set of winning

states of the system leading to the goal states is as large as possible. The proof of The-

orem 2 applies here as well and we conclude that our algorithm gives the maximally

permissive controllers.

56

2. The proof is completely the same as that of Theorem 2. The proposed approach for

reachability controller is decidable for any bounded TPN because its state class graph is

finite and the approach explores, path by path, the state class graph. The exploration of

a path is abandoned as soon as a goal state is detected. The algorithm aims to collect

the paths leading to a terminating state or a state closing a cycle of non goal states.

Paths are abandoned as soon as such states are reached.

3.5.5 An example of reachability controller synthesis

In this section, we follow the solution on a simple example to illustrate further the proce-

dure. Inspired from the example of timed game with imperfect information of (Cassez et al.,

2007), we have chosen an application of box painting production system. In this system,

boxes are placed on a conveyor belt. The corresponding sensor needs between [1, 5] time

units to distinguish the presence of a new box. It takes 8 time units to have the box painted.

A robotic arm takes the box from the conveyor in [6, 10] time units. If the box is not picked

within an appropriate duration, it may fall down from the conveyor in [8, 10]. Dropped boxes

are damaged and considered as refurbished. Fig.3.12 models this system. The only control-

lable action is that of the robotic arm named pick. We need a reachability controller to push

the system towards the place picked.

P0

Damaged P ickedsensor

painted

enter[1, 5]

Paint[8, 8]

reset[0, 1] restart[0, 1]

drop[8, 10] pick[6, 10]

•

Figure 3.12 A box painting production system.

The state class graph of the system and class information are given in Fig.3.13 and

Fig.3.14. From Fig.3.13 and Fig.3.14, we conclude that goal = {α4}. On the other hand,

57

α0

α1α3

α4

α2

enter

paint

drop

reset

pick

restart

Figure 3.13 The state class graph of the TPN
presented at Fig.3.12.

α0 : P0 1 ≤ enter ≤ 5

α1 : sensor 8 ≤ paint ≤ 8

α2 : painted 8 ≤ drop ≤ 10∧
6 ≤ pick ≤ 10

α3 : damaged 0 ≤ reset ≤ 1

α4 : Picked 0 ≤ restart ≤ 1

Figure 3.14 The state class information
of the TPN presented at Fig.3.12.

the state class α3 is the last state in a loop that does not include a goal state. Remember

Fig.3.11. The controller should avoid α3. Now, let us trace Algorithm 3 on the state class

graph. The algorithm starts from α0 and continues recursively to α1, α2 and α3. At α3, the

condition succ(α, t′) ∈ C holds. Then, the algorithm returns back to α2 with Ω = {drop}.

The other successor available from α2 is α4 which is included in goal, then the controller

returns back to α2 with ∅. In α2, there is a newly enabled controllable transition, pick which

should be fired before firing of the transition drop. The condition pick < drop and conse-

quently, 6 ≤ pick < 8 is imposed. Finally, we obtain: Ctrl(α2) = {(pick, t0, {[6, 8[})}. Fig.

3.15 shows the trace of Algorithm 3 on the state class graph depicted in Fig. 3.14.

explore(α0, ε, {α0})
Return ∅

explore(α1, enter, {α0, α1})
Return {∅}

explore(α2, paint, {α0, α1, α2})
Return {∅}

explore(α3, drop, {α0, α1, α2, α3})
Return {drop}

explore(α4, pick, {α0, α1, α2, α4})
Return ∅

enter

paint

drop

pick

α0α0

α1

α2

α3α4

Figure 3.15 Applying Algorithm 3 on the TPN of Fig.3.12 for AF picked.

58

3.6 Conclusion

In this chapter, we have proposed a completely forward on-the-fly algorithm for synthe-

sizing safety and reachability controllers for time Petri nets. Our algorithm explores the

state class graph. Meanwhile, in order to make the system satisfy the given property, the

algorithm collects for each state class bad paths (i.e. the paths, which do not satisfy the prop-

erty of interest), and bad intervals (i.e. the intervals of controllable transitions to be avoided) .

The proposed algorithm guarantees to find a state dependent controller based on re-

striction of firing intervals of controllable transitions, if it exists. Moreover, the synthesized

controller is maximally permissive in the category of state dependent controllers based on

restriction of firing intervals.

Our algorithm does not need to compute any controllable predecessor as it is the case in

the other existing approaches. Computing controllable predecessors involves some expensive

operations such as the difference between time domains and then may result in several sub-

classes, which need to be handled separately. The nice feature of our algorithm is that it is

based on simple operations over intervals and classical operations used to compute successor

state classes.

The algorithm proposed here is decidable for a bounded TPN because the state class

graph is finite and the algorithm explores, path by path, the state class graph (the explo-

ration of a path is abandoned as soon as a loop is detected or a bad state class is reached).

However, one limitation of this approach is combinatorial state explosion. To attenuate

the state explosion problem, we will investigate in the next chapter if it is possible to combine

this approach with abstraction by inclusion, convex union or convex hull.

59

CHAPTER 4

Abstraction

4.1 Introduction to the state space abstraction

In order to verify a given property in a TPN model, its state space should be explored.

The state space is usually introduced by a transition system. The state space is often very

large and difficult to be explored. Working on an abstraction of the state space is a suitable

solution.

With the proliferation of large-scale systems, combinatory explosion and state space ex-

plosion are challenges that arise while modeling and verification of these systems. Using

different methods of abstraction reduces combinatory explosion and state space explosion.

4.2 Abstraction by inclusion, convex union or convex hull

To further attenuate the state explosion problem, the forward on-the-fly reachability al-

gorithm is usually combined with an abstraction by inclusion, convex union or convex hull.

During the construction of an abstraction, each newly computed abstract state is com-

pared with the previously computed ones. In an abstraction by inclusion, two abstract states,

with the same untimed information, that their time domains are such that one is included in

the other are grouped into one node.

In an abstraction by convex union, two abstract states, with the same untimed informa-

tion, that their time domains are such that their union is convex are grouped into one node.

The convex union abstractions are more compact than inclusion abstractions. However, the

convex union test is a very expensive operation relatively to the test of inclusion. The convex

union test of n (with n > 1) abstract states α1, α2, ..., αn involves computing the smallest

enclosing abstract state of their union α, the difference between α and α1, α2, ...αn−1, and

finally checking that this difference is included in αn.

In an abstraction by convex hull, all abstract states with the same untimed information,

are grouped into one node and represented by the smallest enclosing abstract state of their

union. The convex hull abstraction requires less costly operations relative to the convex

60

union abstraction. Unfortunately, the convex hull abstraction is not the most compact ab-

straction. We give here a simple example of TPN, which is bounded (i.e.: has a finite number

of reachable markings) and whose abstraction by convex hull is infinite. It means that this

abstraction does not preserve the boundedness property and then markings. Both abstrac-

tions by inclusion and convex union preserve markings and then boundedness property.

4.2.1 Inclusion test, convex union test and convex hull of two state classes

Let α = (M,F) and α′ = (M ′, F ′) be two state classes, D and D′ the canonical forms of

F and F ′, respectively. The state class α is included in the state class α′ (i.e., α ⊆ α′) if and

only if M =M ′ and ∀ti, tj ∈ En(M) ∪ {t0}, dij ≤ d′ij.

If M =M ′, the convex hull of state classes α and α′, denoted by αtα′, is defined here as

in (Daws et Tripakis, 1998), as the smallest state class α′′ = (M,F ′′) such that α ⊆ α′′ and

α′ ⊆ α′′. The canonical form of F ′′ can be obtained as follows:

∀ti, tj ∈ En(M) ∪ {t0}, d
′′
ij =Max(dij , d

′
ij).

The union of two state classes is not necessarily a state class. If M =M ′ then the union

of α and α′, denoted by α∪α′, is convex if and only if α∪α′ = αtα′. So, the test of whether

or not the union of α and α′ is convex can be obtained using inclusion test and subtract

operation as follows: ((α t α′)− α) ⊆ α′ .

This test can be generalized to n state classes α1,..., αn as:

((α1 t α2.... t αn)− α1 − α2....− αn−1) ⊆ αn.

4.2.2 How to use an abstraction by inclusion?

To further attenuate the state explosion problem, we investigate how to combine the

controller synthesis approach of Section 3.4 with an abstraction by inclusion. This combina-

tion has been successfully used in many verification tools. The aim of this abstraction is to

avoid to explore successors of a state class in the case we have already explored that state

class or a more larger state class. To use this abstraction, in the context of the controller

synthesis algorithm proposed in Section 3.4, we need to establish a relationship between the

bad sequences of state classes related by inclusion. We must be able to retrieve, using this

relationship, the bad sequences of a state class from those of any larger state class.

61

Let α and α′ be two state classes s.t. α ⊆ α′. The following lemma establishes that:

1. each bad sequence of α is also a bad sequence of α′.

2. the bad sequences of α can be computed from those of α′.

Lemma 4 Let α = (M,F) and α′ = (M,F ′) be two state classes s.t. α ⊆ α′, Ω(α) and

Ω(α′) their sets of bad sequences. Then:

1. Ω(α) ⊆ Ω(α′).

2. Ω(α) = {ω ∈ Ω(α′) | Fire(α, ω) 6= ∅}.

Proof 8 1. Ω(α) ⊆ Ω(α′) is trivial, since α ⊆ α′.

2. Ω(α) = {ω ∈ Ω(α′) | Fire(α, ω) 6= ∅} is also trivial, since α ⊆ α′ and Ω(α) ⊆ Ω(α′).

According to Lemma 4, if a state class α is included in another state class α′, we can

compute the bad sequences of α from those of α′. Therefore, when the function explore is

called for a state class α, it is not necessary to explore its successors in case there exists in

Passed a state class α′ which includes α (i.e., ∃(α′, A′, LI ′) ∈ Passed s.t. α ⊆ α′). Indeed,

if α ⊆ α′, then (according to Lemma 4), the bad sequences of α can be obtained from those

of α′ as follows: Ω(α) = {ω ∈ A′ | Fire(α, ω) 6= ∅}.

Moreover, for every state class reachable from α, there is a state class reachable from

α′ s.t. the former is included or is equal to the latter. The bad sequences of state classes

reachable from α can then be computed using those of state classes reachable from α′.

For the same reasons as above, the abstraction by inclusion can be applied, when we test

whether or not a state class has been previously encountered in the current path.

– In function explore, the set C contains the visited state classes of the current path. At

this level, if a successor α of the current state class of the path C is larger than a state

class α′ of C, there is no need to continue the exploration of α′. We can go back to α′,

replace in the path α′ by α and then explore α.

– Finally, before inserting a state class α in the list Passed, all state classes of Passed

included in α are removed from Passed.

With this abstraction, the on-the-fly algorithm explores, path by path, the state class

graph. During the exploration of a path, the current path is abandoned as soon as we reach

a state class α such that ∃(α′, A′, LI ′) ∈ Passed, α ⊆ α′.

62

When the exploration is completed, the list Passed contains the largest reachable state

classes of the model that are not forbidden. In case a controller exists, for each state class

of Passed with controllable transitions, Ctrl indicates how to restrict the firing intervals of

its controllable transitions so as to avoid the forbidden markings. The implementation of the

controller consists in following the evolution of the model and restricting the firing intervals

of the controllable transitions of the current state so as to avoid the forbidden markings. If

the current state s belongs to a state class α containing some losing states, the firing interval

of an arbitrary controllable transition tc of s is restricted so as to be included or equal to

a firing interval of AI(α, tc) where AI(α, tc) =
⋃

(tc,t0,GI)

GI s.t. (tc, t0, GI) ∈ Ctrl(α). As an

example, consider the TPN at Fig.2.4 studied previously, its initial state s0 = (p1 + p2, 0 ≤

t1 ≤ 4 ∧ 2 ≤ t2 ≤ 3) belongs to the initial state class. So, the firing interval of t1 has to be

restricted to the firing interval of t1 in AI(α0, t1) (i.e.,]2,4]).

Note that even if there is no state class α′ in Passed, which includes the current state

class α, it may be included in the union of some state classes of Passed. In this case, it

is not necessary to explore α since it is possible to determine the bad sequences of α using

bad sequences of state classes in the list Passed. More precisely, suppose that there exists n

elements (α1, A1, LI1), ..., (αn, An, LIn) in Passed s.t. α ⊆ α1 ∪ ∪ αn. The bad sequences

Ω(α) of α can be obtained as follows:

Ω = {ω ∈ A1 ∪ A2... ∪An | Fire(α, ω) 6= ∅}.

From a practical point of view, clock difference diagrams (CDDs) (Larsen et al., 1999)

can be used to represent the list Passed. CDDs allow to represent in a very concise way the

union of convex domains. The list Passed is handled using only two basic operations (union

and inclusion), which are well supported by CDDs.

4.2.3 Can we use an abstraction by convex union?

The convex union abstraction aims at grouping together all state classes such that their

union is a state class. This agglomeration principle can be applied to the list Passed. All

state classes in Passed such that their union is a state class are grouped and represented by

their convex hull. In this case, their convex hull is exactly their union. Therefore, the bad

sequences of their convex hull is the union of their bad sequences.

The test of convexity is a very expensive operation relative to the test of inclusion. More-

63

over, for a set of state classes, the convex test may fail when taken two by two, but succeed

if taken all together. To achieve a high degree of abstraction, we need to test all possible

combinations of state classes sharing the same marking and having states in common.

Another limitation of this abstraction is that state classes which share the same marking

but their union not being convex are not grouped together. To overcome this limitation, we

can use, as for the inclusion abstraction, CDDs to represent non convex unions of state classes.

4.2.4 Can we use an abstraction by convex hull?

With the convex hull abstraction, all state classes with the same marking are grouped

together and represented by the smallest enclosing state class (their convex hull). This ab-

straction might appear the best alternative to attenuate the state explosion problem. It was

never investigated in the literature whether abstraction by convex hull preserves the prop-

erties like boundedness, reachability and etc. In the following, we show that abstraction by

convex hull does not preserve the boundedness property. The TPN at Fig.4.1 is a simple

counterexample. The state class graph of this TPN, reported at Fig.4.2.a, is finite and con-

sists of seven states classes and five markings (see Table 4.1). Its abstraction by convex hull,

shown at Fig.4.2.b, is infinite. Indeed, the firing sequence t1t2t6t6.... is not feasible in the

SCG but feasible in the convex hull abstraction (see Fig.4.2.b and Table 4.1). It produces

an infinite number of markings. Therefore, the convex hull abstraction does not preserve

reachability, safety and boundedness properties of the TPN.

p1

p2 p3 p4

p5
p6

p7

t1[0,∞]

t2[2, 2] t3[3, 3] t4[3, 3]t5[1, 1]

t6[1, 1]

•

•

Figure 4.1 A TPN with finite SCG and infinite convex hull abstraction.

64

In the context of the controller synthesis approach proposed in this manuscript, in the

list Passed, replacing all the state classes that share the same marking by their convex hull

may add some extra bad sequences. The set of bad sequences of their convex hull cannot be

obtained from the bad sequences of the grouped state classes. It is then necessary to explore

their convex hull and then compute its bad sequences. However, this exploration may never

terminate, even if the model is bounded. The convex hull abstraction is then less appropriate

than inclusion and convex union abstractions in this context.

4.3 Experiments

We benchmark the above-mentioned abstraction methods through some case studies. We

investigate various behaviors involving parallelization and sequentiality. For each case, the

state class graphs with and without abstraction methods are constructed and the number

of computed state classes (vertices), the number of links and the time taken for state class

graph construction is measured. The results are presented in three categories:

1. First category named aa is for simple state class graph construction without any ab-

straction.

2. The category bb is for state class graph construction using abstraction by inclusion.

3. The third category cc corresponds to state class graph construction with abstraction

by convex union.

a) Finite SCG b) Infinite convex hull abstraction

t1

t2

t5

t4

t4
t5

t2 t5

α0

α1

α2

α3 α4

α5

α6

...

t1

t4

t3

t4
t6

t6
t2
t5

t2t5

α′

0

α′

1

α′

2

α′

3

α′

4

α′

5

α′

6

α′

7

Figure 4.2 SCG and abstraction by convex hull of the TPN at Fig.4.1.

65

Table 4.1 State classes of the SCG at Fig.4.2.a.

α0 α1 α2 α3

p1 + p2 p2 + p3 + p4 p3 + p4 + p5 p2 + p3 + p4
0 ≤ t1 t2 = 2 t3 = 3 t2 = t3 = 2

t3 = t4 = 3 t4 = t5 = 1 t4 = 0
α4 α5 α6

p3 + p5 p2 + p3 p3 + p5
t5 = 0 t2 = 2 t5 = 1

α′
0 α′

1 α′
2 α′

3

p1 + p2 p2 + p3 + p4 p3 + p4 + p5 p3 + p5
0 ≤ t1 t2 = 2 t3 = 3 0 ≤ t5 ≤ 1

2 ≤ t3 ≤ 3 0 ≤ t4 ≤ 1
0 ≤ t4 ≤ 3 t5 = 1

0 ≤ t3 − t4 ≤ 2

α′
4 α′

5 α′
6 α′

7

p2 + p3 p2 + p6 p2 + p6 + p7 p2 + p6 + 2p7
0 ≤ t2 ≤ 2 t6 = 1 t6 = 1 t6 = 1

Even though we have shown that abstraction by convex hull is less appropriate in our context,

we also give the results for this abstraction to give a better point of view (category dd). Timing

values are means of three iterations. The notion ′−′ shows that computation was impossible

because of state explosion. The experiments have been run on a Corei7, 2.2 GHz, equipped

with 4 GB of RAM.

4.3.1 Production cell

Inspired from the Production Cell of (Cassez et al., 2005; Lewerentz et Lindner, 1995;

Melcher et Winkelmann, 1998), we define the following specifications for our system under

study:

Unprocessed plates arrive through a conveyor. A robot with two arms A and B takes the

unprocessed plates to a press (by arm A) and places them after being processed on the de-

parture belt (by arm B). All actions of the robot are controllable. The robot should not put

more than one plate on the press. The behavior of the system is modeled in Fig.4.3. In our

first essay, just two plates exist on the arriving conveyor. The plates are available for the

robot within [0, 1] time units. Pressing process is instantly. The robot needs [2, 4] time units

66

P0 Available Press Leave

t0[0, 1] t4[2, 2]t1[2, 4] t2[2, 4]

••

Figure 4.3 A production cell system.

α0 α1 α2 α3 α5

α4 α9

α11 α10

α7

α8α6

t0 t0 t1 t2

t1

t2

t1

t2
t4

t2
t4

t2

t4

t4

Figure 4.4 The state class graph of the production cell system of Fig.4.3.

to move the plates to/from the press. The processed plates leave the system in [2, 2] time

units.

The state class graph of the system before abstraction is composed of 15 state classes

while the abstracted state space by inclusion or convex union is composed of only 12 states.

We process the abstracted state class graph by inclusion presented at Fig.4.4. Table 4.2 gives

the class information of the state class graph of Fig.4.4. The only forbidden state is α4 and

the controller should act at α3 to fire the transition t2 before the transition t1. The condition

2 ≤ t1 < 3 ∧ t2 = 2 is imposed at α3.

Now, suppose the number of unprocessed plates available on the arriving conveyor is in-

creased. The state class graph becomes larger and efficient application of the abstraction

methods reduces the number of states during the class graph construction. The obtained

67

Table 4.2 State classes of the TPN presented at Fig.4.3.

α0 : 2P0 0 ≤ t0 ≤ 1 ∧ 0 ≤ t0 ≤ 1

α1 : P0 +Available 0 ≤ t0 ≤ 1 ∧ 2 ≤ t1 ≤ 4

α2 : 2Available 1 ≤ t1 ≤ 4 ∧ 2 ≤ t1 ≤ 4

α3 : Available + Press 0 ≤ t1 ≤ 3 ∧ 2 ≤ t2 ≤ 4

α4 : 2Press 0 ≤ t2 ≤ 4 ∧ 2 ≤ t2 ≤ 4

α5 : Available + Leave 0 ≤ t1 ≤ 1 ∧ 2 ≤ t4 ≤ 2

α6 : Press+ Leave 0 ≤ t2 ≤ 4 ∧ 2 ≤ t4 ≤ 2

α7 : Press+ Leave 2 ≤ t2 ≤ 4 ∧ 1 ≤ t4 ≤ 2

α8 : 2Leave 0 ≤ t4 ≤ 2 ∧ 2 ≤ t4 ≤ 2

α9 : Press 0 ≤ t2 ≤ 3

α10 : Leave 0 ≤ t4 ≤ 2

α11 : − −

results for abstraction by inclusion and abstraction by convex union are presented in Table

4.3. Although the abstraction by convex hull is less appropriate in our context, we have

presented the results for this abstraction in Table 4.4 to give a better point of view. The

second line of each row contains the improvement (reduction) ratio over the state class graph

construction in percentage.

The results show that the above-mentioned abstraction methods significantly reduce the

number of computed states. State space explosion happens for 12 plates and more without

applying any abstraction during the construction of the state class graph. For abstraction

by inclusion, state space explosion is distinguished for 15 plates and more. Abstraction by

convex union is very efficient in these tests. For larger state spaces, the cost of calculations in

terms of the state space construction time, is increased but the state space explosion problem

is effectively attenuated.

Although using abstraction methods increases the complexity of computations, it highly

reduces the number of state classes. The complexity of controller synthesis approach has a

linear relationship with the number of the state classes to be processed. Therefore, the total

controller synthesis computations are reduced after applying abstraction methods.

4.3.2 Producer/consumer model

The next study is the example of producer/consumer depicted in Fig.4.5. We have con-

sidered pure parallel composition of n− 1 copies of the model presented in Fig.4.5.a and one

copy of the model presented in Fig.4.5.b. We denote this composition by P (n). All places

68

Table 4.3 Results for different abstraction implementations and different number of available
plates of the system of Fig.4.3. The first category aa is for non-abstracted state class graph,
bb is for abstraction by inclusion, cc is for abstraction by convex union. The second line of
each row is the reduction percentage over SCG construction.

Plates aa bb cc
Ratio V ertices Links time V ertices Links time V ertices Links time

1 5 4 0ms 5 4 0ms 5 4 0ms
%
2 15 17 0ms 12 14 0ms 12 14 0ms
% 20 17 20 17
3 42 56 0ms 25 35 0ms 22 29 0ms
% 40 37 48 48
4 115 171 0ms 50 78 0ms 35 50 0ms
% 56 54 69 71
5 304 483 0ms 99 165 0ms 51 77 0ms
% 67 66 83 84
6 765 1270 10ms 196 340 0ms 70 110 10ms
% 74 73 91 91
7 1844 3161 20ms 389 691 0ms 92 149 30ms
% 79 78 95 95
8 4286 7533 50ms 774 1394 0ms 117 194 60ms
% 82 81 97 97
9 9675 17350 180ms 1543 2801 80ms 145 245 130ms
% 84 84 98 98
10 21342 38903 390ms 3080 5616 270ms 176 302 210ms
% 85 85 99 99
11 46218 85380 851ms 6153 11247 941ms 210 365 360ms
% 86 87 99 99
12 - - - 12298 22510 3785ms 247 434 681ms
%
13 - - - 24587 450307 15762ms 287 509 1141ms
%
14 - - - 49164 90092 64683ms 330 590 1772ms
%
15 - - - - - - 376 677 2954ms
%

69

Table 4.4 Results for different number of available plates of the system of Fig.4.3. The first
category aa is for non-abstracted state class graph, dd is for abstraction by convex hull. The
second line of each row is the reduction percentage over SCG construction.

Plates aa dd
Ratio V ertices Links time V ertices Links time

1 5 4 0ms 5 4 0ms
%
2 15 17 0ms 11 12 0ms
% 27 29
3 42 56 0ms 19 24 0ms
% 47 57
4 115 171 0ms 29 40 0ms
% 75 77
5 304 483 0ms 41 60 0ms
% 86 87
6 765 1270 10ms 55 84 0ms
% 93 93
7 1844 3161 20ms 71 112 0ms
% 96 64
8 4286 7533 50ms 89 144 0ms
% 98 98
9 9675 17350 180ms 109 180 0ms
% 99 99
10 21342 38903 390ms 131 220 0ms
% 99 99
11 46218 85380 851ms 155 264 0ms
% 99.6 99.7
12 - - - 181 312 10ms
%
13 - - - 209 364 10ms
%
14 - - - 239 420 10ms
%
15 - - - 271 480 10ms
%

70

P0 P2 P3

P1

P4 P5 P6

P1

t0[1, 3] t2[2, 4] t2[1,∞[t3[1,∞[

5 5

• • • •

a) ProdCons1 b) ProdCons2

Figure 4.5 Producer/consumer model.

Table 4.5 Results for different abstraction implementations and different configurations of
the system of Fig.4.5. The first category aa is for non-abstracted state class graph, bb is for
abstraction by inclusion, cc is for abstraction by convex union. The second line of each row
is the reduction percentage over SCG construction.

P (n) aa bb cc
Ratio V ertices Links time V ertices Links time V ertices Links time
P(1) 11 19 0ms 8 14 0ms 8 14 0ms
% 27 26 27 26

P(2) 748 2460 10ms 41 138 0ms 36 123 0ms
% 94 94 95 95

P(3) 25135 116940 971ms 338 1853 20ms 252 1374 120ms
% 99 98 99 99

P(4) 309158 1744288 15181ms 2021 14884 470ms 1466 10687 5788ms
% 99 99 99.5 99

P(5) - - - 7735 69107 4206ms 5959 51751 116417ms
%

called P1 are merged in one single place. Table 4.5 represents the results obtained while

constructing the state class graph without any abstraction, with the abstraction by inclusion

and the abstraction by convex union. Table 4.6 represents the results without abstraction

and the results with the abstraction by convex hull. The second line of each row shows the

improvement (reduction) ratio over the state class construction in percentage. Based on the

experimental results presented here, these abstraction methods can considerably reduce the

number of computed states (up to 99% in this example).

4.4 Conclusion

In this chapter, we have investigated how to combine the approach presented in Section

3.4 with an abstraction by inclusion or convex union to attenuate the state explosion prob-

71

Table 4.6 Results for different abstraction implementations and different configurations of
the system of Fig.4.5. The first category aa is for non-abstracted state class graph, dd is
for abstraction by convex hull. The second line of each row is the reduction percentage over
SCG construction.

P (n) aa dd
Ratio V ertices Links time V ertices Links time
P(1) 11 19 0ms 6 14 10ms
% 45 26

P(2) 748 2460 10ms 21 60 0ms
% 97 97.5

P(3) 25135 116940 971ms 56 210 0ms
% 99.7 99.8

P(4) 309158 1744288 15181ms 126 560 10ms
% 99.9 99.9

P(5) - - - 252 1260 30ms
%

lem. We have shown that the abstraction by convex hull is less appropriate for this approach,

since it does not preserve the boundedness properties and then markings.

Experimental results show that abstraction methods can significantly reduce the number

of state classes. We have seen that the complexity of the controller synthesis approach sug-

gested in Section 3.4 has a linear relationship with the number of states in the state class

graph. Therefore, the application of abstraction methods can highly reduce the time needed

for controller synthesis.

In the next chapter, we will discuss how to implement our devised algorithm on large-scale

and modular systems.

72

CHAPTER 5

Decentralized Controller for Modular Systems

5.1 Introduction to decentralized controller

In controller synthesis two main questions should be investigated : existence and imple-

mentation of the controller. In chapter 3, we discussed in detail an algorithm to answer the

first question, existence of the controller. In this chapter, we answer the second question and

investigate the decentralized implementation of a controller on large-scale systems. With

the proliferation of large-scale systems, their controller synthesis is an important issue. A

large-scale system is often modular by its nature and consists of different modules with the

possibility of inter-communication among the modules.

Suppose a controller exists and is synthesized for a large-scale system. Implementing a

centralized controller on a modular system is not always easy. In such a case, a decentralized

controller is more feasible and preferable. Then, an important challenge in controller syn-

thesis of large-scale systems is how to implement a controller in modular systems. In other

words, how to adapt an already synthesized controller to a distributed system and achieve a

decentralized controller.

In the literature, we distinguish the following configurations for a controller running in

parallel with the system under study:

1. A centralized controller is controlling a plant model (Cassez et al., 2005; Gardey et al.,

2006b; Heidari et Boucheneb, 2010, 2012c).

2. A set of decentralized controllers are controlling a large system such that the system

is considered as a set of similar modules and is controlled by a set of similar local

controllers (Hillah, 2009).

3. A set of decentralized controllers are controlling a system such that the local property

in each module can be different from that of the other modules. There is no global

property in this case and every local controller controls its own local specification. A

local controllable action in one module can be an uncontrollable action in the others.

In other words, the set of controllable/uncontrollable actions and the property(ies) to

be controlled are all defined locally (Shengbing et al., 2010).

73

4. A system consists of different modules. However, the local controllers and the local

properties are the same. Thus, there is a global property (Abid et Zouari, 2010a).

The first configuration is the first option coming to mind and is the one considered in

Section 3.4. As explained earlier, large-scale systems are usually modular by their nature

and consequently, this configuration is not directly applicable.

The second option is suitable if all infrastructures are similar. For example in (Hillah,

2009), in order to control the road traffic, a route is divided into multiple similar sections.

Although this configuration simplifies both synthesis and implementation, it is not applicable

unless all of the modules are completely uniform.

In the third option, the system consists of some independent modules collaborating with

each other. Thus, the input of a module can be the output of another one; meaning that, a

controllable action in a module can be uncontrollable in another one. Consequently, desired

property(ies) of one module may differ from that of the others. An example of this config-

uration is when some already implemented and controlled modules are assembled together

and then, the global specification needs to be verified. Verification of global specifications

after implementation is discussed in (David et al., 2010).

Finally, the last configuration is applicable to a system which is modular by its nature

with a unique property. In such a system, the modular system is considered as a whole to

synthesize a controller. However, in order to implement the synthesized controller, we need

to take into account the challenges of a modular systems like intercommunications.

Our objective in this chapter is to investigate the use of the approach suggested in Sec-

tion 3.4 to derive a set of decentralized controllers to be used in large-scale systems. In other

words, our objective is to ”think globally, act locally” as stated in (Rudie et Wonham, 1992).

We have a unique property and a modular system, so the fourth configuration is convenient in

our case (Heidari et al., 2012). In addition, among the four above-mentioned configurations,

the last one is more appropriate for real system considerations. We discuss in the following

how to adapt a controller to a distributed system with a unique property.

This chapter is organized as follows: Section 5.2 is a survey on decentralized controllers

already existing in the literature, Section 5.3 explains how the algorithm introduced in Sec-

tion 3.4 is adapted to distributed systems as a decentralized controller. Finally, Section 5.4

74

presents the conclusion and future work.

5.2 Literature review

In Section 3.2, we have given a survey on controller synthesis with different models

(TA/TPN), different approaches (analytical, structural and semantic) and different prop-

erties (reachability/safety). All of the solutions discussed there match with the first configu-

ration where a plant model is controlled by a centralized controller. In the following, we have

a survey on the three other configurations and their available solutions in the literature.

5.2.1 Case of uniform modules and uniform local controllers

In (Hillah, 2009), the main objective is to integrate the formal methods with the dis-

tributed system modeling. A modular system and its appropriate controller is investigated

as a case study which is related to our objective. In that framework, the controller synthesis

is used to study an intelligent transportation system; the idea is to improve the safety and se-

curity of a transportation system and to prevent the accidents while increasing the traffic flow.

In (Hillah, 2009), a particular type of Petri nets, called Instantiable Petri Nets (IPN),

is introduced. IPN provides object oriented modeling capabilities (e.g. hierarchy, encapsula-

tion, etc.), a useful feature in expressing specifications of large-scale systems. IPN is a good

alternative for UML with the advantage that it allows automatic verification of properties.

However, we focus on their contribution in applying controller synthesis on a distributed

system.

The road is divided into sections and each section is composed of a number of cells. A

cell is referred to by a tuple (x, y) where y signifies the number of lanes and x corresponds to

the horizontal position in the yth lane. In this framework, a decentralized controller consists

of similar instances of a local controller, each of them controlling a section (infrastructure).

To preserve decidability of the suggested solution, there is up to one uncontrollable vehicle

in each section. In each section the minimum and maximum of permitted velocities and

accelerations are determined. Besides, two consecutive vehicles shall keep a minimum delay

predefined in each section. This delay depends on the least allowed velocity of the section.

A vehicle a is described by a tuple a =< a.x, a.y, a.v, a.c > where x and y show the

position of the vehicle in its section, v is its current velocity and c is a flag to indicate if

75

the vehicle is controllable. Let a and b be two vehicles in a road and assume the relative

position of b in horizontal axis relative to a is represented by b.∆x = 0. The relation a < b

holds if : [a.x < b.x ∨ (a.x = b.x ∧ a.y < b.y)]. For example, if a and b are two successive

controllable vehicles and b.∆x = 0, then the condition b.y > a.y shall be held in order to

prevent a collision. Note that in this model, the notion of time is considered implicitly by

the fact that it considers the velocity.

Forbidden states describe an accident. The set of forbidden states are defined as those

states for which the difference between the velocities of two consecutive vehicles are more

than the difference between their positions. Failing states are determined and the controller

should prevent them.

A local controller consists of two blocks: BlackSpotMonitor and ScenarioManager. The

former monitors risky states while the latter searches the solution. Scenario Manager repeats

as long as there is a risky event and stops if the risk is null. To prevent an infinite loop, once

BlackSpotMonitor detects a risky event, it first checks if a scenario is found for this case;

otherwise an object of scenario manager is created for investigation and finding a solution

(new scm). If a scenario already exists for the case, this step is bypassed and the event is

simply added to the list.

Note that research presented in (Hillah, 2009) is a case-based solution and is applicable

only if all the modules are completely the same. Instances of local controllers are also similar.

Although this configuration is very useful for the particular considered approach, it is not

a general solution and is less interesting in our case. However, controller synthesis in dis-

tributed systems is not their main objective. Our interest is to have a more generic solution

which does not require exactly similar modules.

5.2.2 Case of various local properties

In (Shengbing et al., 2010), the authors have discussed a decentralized controller in the

modular discrete-event systems where the given property is not global and the local property

of interest differs in each module. Solving the control problem in the global system requires

solving some other local control problems with multiple local properties. In addition, the

set of controllable/uncontrollable (observable/non-observable respectively) actions are not

global; meaning that, a controllable transition in the module k may be an uncontrollable

action in the module k′ (the same for the observability).

76

The set of events occurring in each module is a subset of events happening in the entire

system. In this approach, the authors have presented necessary and sufficient conditions for

the existence of such a controller. Meanwhile, they have shown that the satisfaction of a

global property is a necessary condition for the satisfaction of every local property (but, not

the sufficient condition).

As explained earlier, such configuration is suitable when the objective is to put together

already implemented modules which is different from our objective in this thesis.

5.2.3 Case of an identical global property

In (Luo, 2009), the modular synthesis is introduced as a solution to reduce the complex-

ity of the controller synthesis in the Petri nets. The author has suggested to decompose the

simple Petri nets into some modules while transforming the control problem into a series of

new generalized mutual exclusion constraints (GMEC)(Giua et al., 1992) each of them asso-

ciated with a module and then, solve the new control problems. In this paper, DES system

is modeled by simple Petri nets while the property of interest is formalized by GMECs. In

a GMEC formalization, a weighted sum of the markings needs to be less than a constant.

Markings satisfying the given constraint are safe; otherwise, they are forbidden.

As reported in (Luo, 2009) (from Lien, 1976), ordinary Petri nets are categorized by

limiting their input/output of place/transition to:

– forward conflict free: Petri nets with only one output for each place.

– backward conflict free: Petri nets with just one input for each place.

– forward concurrent free: Petri nets with only one input for each transition.

– backward concurrent free: Petri nets with exactly one output for each transition.

– backward conflict and forward concurrent free (BCFCF): Petri nets in which each node

has no more than one input.

Also, two places sharing a common output transition constitute (with their shared tran-

sition) a backward concurrent structure (BCS) (Luo, 2009).

The suggested algorithm, exists if the uncontrollable influence subnet is a BCFCF. A BCS

is decomposed if its shared transition is uncontrollable but is not connected to a forbidden

place. Then, in each module a place is added such that the model becomes closed-loop and

77

is called a ’monitor’ place (see Moody et Antsaklis, 2000). The local controllers work in the

”or” logic manner meaning that at least one of the local controllers should be able to control

the system.

p1 p2p6

p3 p4

t5 t6

t2t4

t3

t7t1

• ••

Figure 5.1 An example of the over-
lapped Petri nets taken from (Aydin
et Altug, 2009).

p1 p2p6a p6b

p3 p4

t5 t6

tx

ty

t2t4

t3

t7t1

• ••

Figure 5.2 Expanded Petri nets of Fig.5.1.

The author has considered forbidden places as a restriction of forbidden markings. With

this assumption this algorithm is permissive. In this solution, timing constraints are not

considered.

Modeling and controller synthesis of the complex, large-scale systems for a safety property

(e.g. deadlock free) in simple Petri nets is the objective of (Aydin et Altug, 2009). In this

approach, the property of interest is identical in all of the modules. A large-scale system

modeled by simple Petri nets is broken into modules using decomposition overlapping. In

(Aydin et Altug, 2009), only overlapping places are allowed while no common transition is

permitted. Interconnections between modules is also modeled by the overlapped places. A

common place is repeated n times, n being the number of the resulting decomposed modules.

If the place is initially marked, the token is only assigned to one of the repeated places. A

set of extra transitions are added to facilitate token exchanges among the overlapped places.

Suppose the Petri nets presented in Fig.5.1. The overlapping decomposition of the model is

shown in Fig.5.2. Two figures 5.1 and 5.2 are both taken from (Aydin et Altug, 2009).

Let us assume a plant system modeled by Petri nets with P being the set of places, as of

(Aydin et Altug, 2009) a non-empty set S ⊂ P is called siphon if Pre(S) ⊂ Post(S). (Pre

and Post are already defined in Section 2.3). S is a minimal siphon if no other siphon is

included in S. In addition, S is called a controlled siphon if M(p) ≥ 1 holds for at least one

p ∈ S. On the other hand, if the condition M0(p) ≥ 1 holds for at least one p ∈ S, adding a

78

control place pc makes S a controlled siphon. The authors have shown that S is a controlled

siphon of the global plant if and only if it is a controlled siphon of its corresponding module.

In this model, the controller synthesis consists in computing the overlapping decompo-

sition of the original Petri nets and achieving a set of disjoint sub-Petri nets; finding all

minimal siphons in each module and making sure they are all controlled siphons (adding

control places if necessary). In this procedure, the control places calculated in each module

are finally added to the original Petri nets.

This approach is structural and state space calculation is not required. Besides, local

controllers have no intercommunication. The solution is extensible for reachability properties

such as enforcing liveness or boundedness. Timing constraints are not considered in this

solution.

In (Abid et Zouari, 2010a), the authors have discussed a decentralized active controller

for the colored Petri nets with a unique property in all of the modules. First, the reachability

graph of the global system is created in order to determine the forbidden markings and the

forbidden states (the states having forbidden markings). The controller synthesis aims to

prevent these forbidden states by disabling some transitions. The markings (states respec-

tively) from which a transition leads to a forbidden marking (forbidden state respectively)

are named dangerous markings (dangerous states respectively). The controller should act

in the dangerous markings and disable the appropriate controllable transitions in order to

prevent the forbidden states.

In this approach, a decentralized controller consists of some local controllers, one for each

module. The typical procedure is that each local controller watches the actual state of its as-

sociated module, communicates with the other modules to extract the actual global marking

of the system, and acts to prevent forbidden states when necessary. Every local controller

in its turn is composed of two submodules: an executor submodule and a communication

submodule. Whenever a module enters a new state, the communication submodule sends

the current local marking to all of the executor submodules and let them extract the actual

global marking.

The executor submodule acts upon the information gathered from all other local con-

trollers if the system global state is dangerous. In this way, the executor submodules of

the local controllers are aware of the system global marking and the local controllers act

79

appropriately in the suitable state. To minimize the communications, the communication

submodule announces the state of its corresponding module in two cases: either its corre-

sponding module exits from a dangerous state or it enters into a dangerous state (whether

from a dangerous or non-dangerous state).

Let us assume a system consisting of n modules, and k be an index (1 ≤ k ≤ n). In each

communication submodule, the following transitions and places are defined:

– Place LaSk holding the latest communicated local marking. Tokens in this place are

chosen from the color class Cflag containing (d flag) for the dangerous markings and

(o flag) otherwise.

– Place CLMk holding the current local marking of the corresponding module.

– Place DLMk holding the set of dangerous markings.

– Synchronized transition S −DLMk to send a dangerous local marking.

– Synchronized transition S−CLMk to send a non dangerous actual local marking when

reached from a dangerous global marking.

In the executor submodule the following places are defined:

– Place GMk holding the actual global marking of the plant system.

– Place DMk containing the set of dangerous global markings.

– Place ASk being an alert state of the local controller in each module.

– Place ATk holding the set of authorizations for the forbidden transitions of the module

k. An input/output arc connects this state to every forbidden transition in order to

verify the authorization of a firing.

The approach mentioned above is based on the fourth configuration (i.e. a unique global

property is controlled in different modules). The modules are not necessarily similar (unlike

Hillah, 2009) while the property of interest is identical in all the modules (in contrast with

Shengbing et al., 2010). The research presented in (Abid et Zouari, 2010a) is based on a

semantic approach without structural or analytical calculations need (in contrary to Aydin

et Altug, 2009; Luo, 2009). The modules intercommunicate through synchronized places and

transitions. More precisely, places hold messages which are transferred by synchronized tran-

sitions and only shared places are allowed. However, the solution of (Abid et Zouari, 2010a)

is based on the colored Petri nets and the timing constraints are not considered.

80

5.3 A decentralized controller for TPN models

In this section, we consider a distributed system consisting of multiple modules, mod-

eled by time Petri nets with a unique property. We investigate if it is possible to break the

safety/reachability controller (output of Algorithm 1 or 3) into some modules and have a set

of decentralized controllers. Note that the objective is to implement an already synthesized

global controller in a modular system, ”Think globally, Act locally” as stated in (Rudie et

Wonham, 1992).

In the following, we investigate if it is possible to implement and adapt the global con-

troller synthesis approach of Section 3.4 with a modular system modeled by TPN. Some of

the possible solutions and their limitations are also discussed. And then, we suggest a decen-

tralized implementation for the solution proposed in Section 3.4. We explain the approach

for the output of Algorithm 1. The same procedure is applicable for reachability controller

obtained from Algorithm 3.

Remember that Algorithm 1 calculates Ctrl, a function of the state classes where the

controller is supposed to limit the intervals of some enabled controllable transitions. When

the state dependent controller is implemented decentrally as a set of local controllers, then

each local controller needs to be state dependent. In order to have the same result as that

of Algorithm 1, each local controller should also be aware of the global state. As such, the

whole information of each module including local markings and local timing domains should

be announced to other modules. This in turn means that, in this case, we cannot have inde-

pendent local controllers and modules should have intercommunication among them.

A deeper look at Algorithm 1 shows that three levels of control with different levels of

dependency and permissiveness can be carried out. The first level which is discussed in detail

in Chapter 3 is state dependent and is the most permissive one. The second level is marking

dependent. The controller should act upon the global marking of the system. Recall the

example of Fig.2.4. We have shown the obtained marking dependent controller in Table 3.1

and Fig.3.7. This level is less permissive but is reasonably applicable. There is always a

trade-off between the permissiveness and the implementation cost. The third level is a static

controller which is the least permissive. At this level, we calculate a safe interval for each

controllable transition as if we are correcting the system before execution. An example of

such scenario is to replace the interval of the transition t1 in the example of Fig.2.4 with

]2, 4]. As discussed earlier, in the example of Fig.2.4 if t2 is fired before t1, there is no need

81

to limit the behavior of t1. In case of a static controller, the interval associated with t1 is

replaced with]2, 4] and the permissiveness is sacrificed.

Let us consider a distributed system with multiple modules and a unique property (the

fourth configuration). We discuss in the following if each of the above-mentioned levels of

control are implementable on a modular system with and without the possibility of intercom-

munication.

5.3.1 Case of static local controllers

One of the control levels obtained from Algorithm 1 is the static controller which is the

least permissive and consequently, the simplest option in terms of implementation. It con-

sists in modifying the intervals associated with the controllable transitions regardless of the

system modifications. As mentioned before, the static controller is like correcting the system

before its execution. Then considering decentralized static controllers, the local controllers

are independent and there is no need to intercommunicate among the modules. The static

controller can be implemented as a set of decentralized controllers.

5.3.2 Case of marking dependent local controllers

A marking dependent controller acts according to the global marking of the system. The

marking dependent controller acts similarly in the states with the same marking. In fact, the

intersection of safe intervals in the states with similar markings are considered to extract the

marking dependent controller of the system. Consequently, there is a risk of loss of permis-

siveness in comparison with the state dependent controller. If the markings are different in

each state (i.e. there is not at least two states with the same marking), the state dependent

controller is identical with the marking dependent controller. Consider the function Ctrl

the state dependent controller obtained from Algorithm 1, we denote the marking dependent

controller extracted from Ctrl by CtrlM and investigate its decentralized implementation.

In our first step, we discuss independent local controllers without any intercommunication

among them. In this case, each local controller decides according to the local marking of its

own module. The above-mentioned marking dependent controller CtrlM is post-processed

to extract the local marking dependent controller. For example, suppose a system is com-

posed of two modules: mod1 and mod2. Let CtrlM be the obtained marking dependent

82

controller. For a global marking M and a controllable transition tc, the set of safe intervals

of tc at marking M is computed as: CtrlM(M, tc) = {int1, int2, ..., intn}. A global marking

is composed of local markings i.e. M = (Mmod1 ,Mmod2). A post-processing step is needed to

extract the local controllers CtrlMmodi dependent to the local markings, where i stands for

the index number associated with each module.

Let us discuss more in detail the implementation of local marking dependent controllers

without any intercommunication among them which is less costly because the local con-

trollers do not need to exchange any information. However, there are some limitations.

Each local controller considers only its own local markings. Remember the above men-

tioned modular system composed of mod1 and mod2. Suppose two forbidden global markings

Mf1 = (Mmod1,Mmod2) and Mf2 = (M ′
mod1,Mmod2) where Mmod1 , M

′
mod1

are the local mark-

ings of mod1 and Mmod2 is the local markings of mod2. The global marking dependent

control function gives two different safe intervals for these markings i.e. CtrlM(Mf1) and

CtrlM(Mf2). Consequently, we have two different safe intervals for Mmod2. In order to have

local marking dependent controllers without intercommunication, the intersection of these

safe intervals should be considered. It is possible that the intersection of the safe intervals for

similar local markings is empty. This in turn means that even if a global marking dependent

controller exists, sometimes it is not possible to extract a set of decentralized controllers

where each local controller is dependent to the corresponding local markings.

For the same system, even if the set of local controllers dependent to the local markings

exists (the intersection of safe intervals for the states with similar markings is not empty),

still we risk to obtain a less permissive controller in comparison with the calculated global

marking dependent controller. Suppose a forbidden global marking Mf = (Mmod1 ,Mmod2)

where Mmod1 is the local marking of mod1 and Mmod2 is the local marking of mod2. On the

other hand, suppose a global safe marking Ms = (Mmod1 ,M
′
mod2

) where Mmod1 is the local

marking ofmod1 andM
′
mod2

is the local marking of mod2. What may happen in decentralized

implementation with independent local controllers is that, local controller of mod1 prevents

Mmod1 and consequently, Ms is prevented (even if Ms is safe). We provide an example in the

following.

Remember the example of the assembly section of a manufacturing line discussed earlier

in Section 3.4.8. As described earlier, the assembly section depicted in Fig.3.8 consists of two

robotic arms, a conveyor and an assembly tray. Each robotic arm is assigned to bring a part

from the corresponding type (A or B) and put it on the conveyor (specified by transitions t1

83

Table 5.1 A marking dependent controller for the TPN of Fig.3.8. The chosen scenario forces
t1 to fire before t2.

Marking Constraint to be applied on t1 and/or t2
α0 : A+B + Conv.ON 1 ≤ t1 < 2 ∧ 5 < t2 ≤ 6

α1 : Conveyor +B + Conv.ON 5 < t2 ≤ 6

and t2). The conveyor runs and places the parts on the tray where they are assembled and

stored in the boxes (modeled by transitions t3 and t4, respectively). The conveyor is always

on and moves non-stop. The assembling operation is done on the tray and is uncontrollable.

Storing an assembled part is also uncontrollable. The assembly tray should receive two parts

from two different types consecutively. It is not allowed to accept more than one part on

the conveyor. Then, a controller is needed for the robotic arms to manage the system so as

to meet the safety property AG Conveyor < 2. As discussed earlier in Section 3.4.8, the

obtained controller provides two scenarios: either forcing t1 to fire at [1, 2[while delaying t2

until]5, 6] or delaying t1 until]6, 7] while forcing t2 at [2, 3[. Suppose we have chosen the first

scenario. The marking dependent controller for this scenario is given in Table 5.1.

Now let us break the system into modules and extract the local controllers dependent

to the local markings. The assembly section is composed of three modules. First module,

named a consists of the robotic arm which moves parts of type A, second module named b

includes the conveyor and the assembling tray and the third one, named c consists of the

robotic arm which moves parts of type B. The local controller of module b is always idle and

has nothing to do as there is no controllable transition in this module. The local marking

dependent controllers of the module a and c are called CtrlMa and CtrlMc, respectively and

are extracted as follows:

– CtrlMa: For marking A force t1 to fire at [1, 2[.

– CtrlMc: For marking B delay t2 until]5, 6].

With the chosen scenario, t1 is fired at [1, 2[. The local controller of the module B de-

lays the controllable transition t2 until]5, 6]. Suppose that just 2 time units after firing t1,

the transition t3 is fired in the module b, the system enters in the global state α3 (refer to

Fig.3.9). Based on the calculation of the global controller, there is no need to prevent firing

of t2; whereas, in our current implementation CtrlMc continues to delay t2 because it is not

aware of what is going on in the other modules.

In our second step, we investigate the implementation of decentralized marking dependent

84

controllers with the possibility of intercommunication. If the intercommunication delay is not

negligible in comparison to the state evolution of the system or if the intercommunication

delay is not included in the time intervals associated with the transitions, this delay should be

considered in the global model of the system before synthesizing the controller by Algorithm 1.

In practice, mechanical movement and evolutions are usually slower than digital evo-

lutions. For example, suppose a mechanical system controlled by a digital microprocessor

system. Intercommunications among local microprocessors take a few milliseconds while dis-

crete evolutions of mechanical equipments cannot be done in less than some seconds. In this

case, intercommunication delay is not comparable with the state evolution frequency. This

delay is negligible or included in the time intervals associated with the system transitions. In

other words, intercommunications are supposed to be fully synchronized. In this case, data

exchanges among the modules do not cause any problem though they are costly in terms of

implementation.

Now suppose a digital system where intercommunication delay is comparable with the

system evolution frequency and cannot be discarded. For example, consider a modular system

composed of two modules. Each module has a controllable transition (i.e. t1 and t2). The

intercommunication delay between two modules is equal with d time unites. Let α be a state

class where both t1 and t2 are newly enabled. The output of Algorithm 1 for this class is to

impose the condition of |t1− t2| > a. In its modular implementation, when t1 becomes newly

enabled in the first module, it takes d time unites for the second module to distinguish this

event and become aware of. Then, when the second module receives the value of the interval

associated with t1, this value is actually t1 + d in the first module. Hence, a post processing

is required for Ctrl (similarly for CtrlM) to reconsider this delay, i.e.:

|t1 − t2| > a + d. (5.1)

Let us look at this problem from another angle. When intercommunication delay is com-

parable with the state evolution frequency, this actually means that the specification of the

global system is changed. Then, if the intercommunication delay is comparable to the state

evolution frequency, this delay should be considered in the global model of the system. After

each discrete event, an intermediate place, Sync followed by an uncontrollable transition tsync

is required. To simplify the model, we can add this delay to the interval associated with an

uncontrollable transition but, a controllable transition has to be followed by the set of in-

termediate Sync place and uncontrollable transition tsync modeling the intercommunication

85

delay (See Fig.5.3 and Fig.5.4).

One important point in this case is that, during the data transmission, recipient modules

are not aware of the real global marking (state) of the system. The local controller of some

module may decide upon the new data while the local controller of some other receiver mod-

ules decide according to the previous state as the data is not still transfered. One solution is

that the controller cannot act once a transmission is established. In fact, CtrlM (similarly

for Ctrl) cannot act in a class where its marking includes a transmission (i.e. a Sync place

is marked). This condition imposes that the controllers cannot make a new decision unless

the new data is received and the global state of the system is properly recognized. In case

intercommunication delay makes any problem in the control procedure, Algorithm 1 fails to

P0

P1

P0

P1

Sync
tc[a, b]

tc[a, b]

tsync[c, d]

••

a)No delay b)Delay considered

Figure 5.3 A controllable transition, considering synchronization delay.

P0

P1

P0

P1

Sync

P0

P1

tu[a, b]
tu[a, b]

tsync[c, d]

tu[a + c, b+ d]

•• •

a)No delay b)Delay considered
=⇒

Figure 5.4 An uncontrollable transition, considering synchronization delay.

86

compute a controller considering the new specification of the system and the supplementary

conditions of the Algorithm. In other words, if intercommunication delay is such significant

that causes a failure in the control procedure then, Algorithm 1 is not able to find a controller

for the model after its new modifications.

Let us investigate how it works in practice. Remember the system controlled by local

microprocessors. The modules are connected directly to each other. When one module is

willing to announce its new marking/state, the local controller establishes a connection with

the other modules. After receiving the corresponding signal (communication request) each

module is waiting to receive the new data.

Note that in this configuration each local controller should be able to distinguish that a

Sync place (in the global model) is marked. Suppose a distributed system where each module

has direct connection only with some of the other modules. A message is transfered through

some intermediate modules before being received by all of the other modules. For example,

in an Internet application a message passes through multiple intermediate ip addresses before

the final recipient receive it. In this case, some of the receiver modules cannot distinguish

that there is a transmission under execution. The local controllers of such receiver modules

might make their decision according to the obsolete information (marking state) because they

are aware of neither the actual global state, nor an under process message transmission.

As a conclusion, consider a modular system where all of the modules have direct intercon-

nections among them. The system is controlled by a set of decentralized marking dependent

local controllers. The local controllers decide according to the global marking of the system.

The local controllers should announce their marking after each new discrete event and all

of the modules should update and reconstruct their copy of global marking. As explained

earlier, the local controllers cannot make any decision during a transmission, (when a Sync

place is marked). Note should be taken that, if the modules are not directly connected (each

local controller cannot distinguish if a communication is established) the local controllers

may work inappropriately and fail to control the system.

5.3.3 Case of state dependent local controllers

Let us investigate if it is possible to implement state dependent controllers as a set of de-

centralized local controllers. First, consider the case of independent local controllers without

any intercommunication. In this case, local controllers should act upon their local states.

87

Therefore, a post processing step is required to extract local state dependent controllers. On

the other hand, in Algorithm 1 the difference between two enabled controllable transitions is

considered to compute Ctrl of the appropriate classes. If two controllable transitions are from

two different modules, independent decentralized implementation is not feasible. Otherwise,

the same as marking dependent controllers, a post-processing step is required to compute

local state dependent controllers of each module.

The same as local marking dependent controllers, the intersection of safe intervals for

same local states should be considered. This intersection can be empty. This in turn means

that, it is possible to have a global state dependent controller while the set of local state

dependent controllers do not exist. And also, considering local state dependent controllers

without any intercommunication among them can cause the loss of permissiveness.

In the next step, consider the decentralized implementation with the possibility of inter-

communication. In order to have a state dependent controller, each local controller should

keep track of the global state of the system. The modules should intercommunicate among

them to extract the global state (i.e. global marking and timing domain) of the system. Then,

each module should announce its new local state after each new discrete event. In this case,

whenever a controllable transition becomes newly enabled its corresponding local controller

should propagate the timing information of the newly enabled controllable transition to all

other modules.

In summary, in a decentralized implementation, having a set of state dependent local

controllers is costly because it requires a lot of information exchanges about both new mark-

ings and time information. If the intercommunication among modules is comparable with the

state evolution frequency of the system, this delay should be considered in the global model of

the system. As explained earlier, each transition is followed by a place and an uncontrollable

transition to model the intercommunication delay. Note that if the modules are not directly

communicating with each other, there is a risk that the decentralized implementation does

not follow the actual synthesized controller of Algorithm 1. In fact, if all of the modules are

not directly connected to each other and the local controllers cannot distinguish that a com-

munication is established, there is no guarantee that decentralized implementation follows

exactly the centralized computed controller.

88

5.3.4 Decentralized implementation with the possibility of intercommunication

We have discussed different possibilities for decentralized implementation of the output

of Algorithm 1. We stated that static controllers and marking dependent controllers can be

implemented on modular systems independently without any intercommunication. Although

independent local controllers are less costly and easier to be implemented, they may sacrifice

the permissiveness of the approach. We concluded that state dependent controller is very

costly and less appropriate to be implemented on modular systems as a set of decentralized

controllers. In this section, we suggest an algorithm for decentralized implementation of a

marking dependent controller with the possibility of intercommunication. In this case, we

want to keep track of the global marking of the system in order to save the permissiveness of

the solution. Then, at this level, our objective is to have a set of local controllers dependent

to the global markings of the system.

We categorize state classes into forbidden, safe and dangerous (those leading to a for-

bidden state) as in (Abid et Zouari, 2010a). Each modular controller should be aware of

the global marking to be able to track the global marking graph of the system. For this

purpose, modules will exchange their local markings after each state evolution. Each local

controller has a communication submodule for data exchanges and an executer submodule

to perform the control procedure obtained from Algorithm 1. In each module, we consider

a local variable, called status, that keeps track of the current status of the module (safe or

dangerous). This status is determined based on the global marking of the system. As long as

the global status is dangerous, local controllers are active. Otherwise, they are idle and have

nothing to do. If there is no enabled controllable transition in a module, then its controller

is idle but communication threads are always active.

The system is divided into modules by finding the overlapped sub Petri nets. As in (Abid

et Zouari, 2010a) and in contrary with (Aydin et Altug, 2009), in our case it is possible to

have both overlapped places and transitions. Once a marking is changed (a discrete event

happens), the corresponding local controller will announce this modification to all other mod-

ules and then, all receivers will reconstruct and extract the global marking. Note that we

have one sender at a time and all others are recipient. In other words, each transition firing

(and its consecutive marking modification) is propagated only by one local controller while

others are receivers. Algorithm 5 formalizes this discussion.

89

Algorithm 5 Decentralized Implementation of the Centralized Controller Synthesized by the
Algorithm 1.

Function Implementing Local Controller (State Class Graph SCG, Global
Dangerous Marking DM)
status = dangerous;
M=M0;
while true do
M=getGlobalMarking(SCG);
if local event is occurred then
if status != getCurrentStatus(M,DM) or getCurrentStatus(M,DM)= dan-
gerous then
Announce the current local marking to all other controllers and get con-
sensus

end if
end if
status=getCurrentStatus(M,DM);
if status= dangerous and Tc(i) ∩ En(M) 6= ∅ then
Apply the synthesized strategy;

end if
Wait until a modification (new local or external marking);

end while

(∗Remark)
Tc(i) is the set of local controllable transitions of module i.
M is the current global marking.

En(M) is the set of enabled transitions at global marking M .

90

At the beginning, the status is potentially dangerous in all of the modules; so each local

controller initializes its corresponding status to dangerous. Then, local controllers extract

the global marking of the system. This way, every module can keep track of the marking of

the entire system. At this point, based on the global marking, if the status is not dangerous,

each local controller can update its status. This modification (from dangerous to safe) is an-

nounced to all other modules. Now, if status is safe, local controllers become idle. They just

listen to the new modifications, if any. On the other hand, in the modules with a dangerous

state, if there exists an enabled controllable transition, the corresponding local controller is

active. In fact, the value of the variable status is particularly interesting in the modules with

enabled controllable transitions. A local controller either active or idle, is always listening to

the new modifications (internal or external).

If a transition is fired in a module, its corresponding local controller verifies the new global

marking and updates the local status, if needed. In the case of a dangerous state or any state

modification, the new marking is announced to all others. This way considering, all of the

modules are able to keep track of the global state class graph.

In summary, local controllers intercommunicate. When a discrete event happens in a

module, if its local status is dangerous or is changed from dangerous to safe, then its local

controller announces the new marking. Otherwise, local controllers are listening to the mod-

ification of other modules. Algorithm 5 formalizes this discussion.

We have shown in Algorithm 5 that, if Algorithm 1 is able to give a centralized mark-

ing dependent controller (a controller exists), then its decentralized implementation is also

feasible. If intercommunication delay is not negligible or included in the intervals associated

with the transitions, this delay should be considered in the global model of the system. Note

that in this case Algorithm 1 should consider an extra condition. The controller cannot act

during a data transmission (i.e. in the classes where a Sync place is marked). As discussed

earlier, this approach is not appropriate if each module cannot distinguish whether or not

data is being transfered (like message transmission in web applications).

In contrary with (Aydin et Altug, 2009) our approach does not add any place or transition

to make a system controlled. In our approach, the behavior of the controller is implicitly

added to the same model. We are dealing with TPNs and the controller modifies time in-

tervals of controllable transitions to guarantee the satisfaction of properties (if the controller

exists).

91

5.3.5 Illustrative examples

This section provides some examples of decentralized implementation of the controller

synthesized by Algorithm 1 in two categories. In the first category, we assume that inter-

communication delay is negligible in comparison to the state evolution of the system or is

included in the intervals associated with the transitions. In the second category, we take into

account the intercommunication delay among modules and follow the procedure to achieve a

decentralized implementation. Note that in the examples of the second category, the modules

have direct connection among them and distinguish the communication process as soon as it

is established.

Case of local controllers with fully-synchronized intercommunications

Let’s consider the same example of Fig.2.4 for the case of fully synchronized modules. As

of Section 3.4, the controller shall act in the state class α0 to prevent t1 from firing until]2, 4]

unless t2 is fired. The corresponding marking dependent controller is reported in Table 3.1.

First, let us break the system into modules by finding the corresponding overlapped Petri

nets. The obtained modular system is presented at Fig.5.5 and two transitions t4−1 and t4−2

are overlapped. Considering the dependency between modules and overlapped transitions,

the state class graph of each module cannot be processed individually. Intercommunication

between modules is inevitable to have the same global state class graph of Fig.2.5 and the

same result. In this example, there is just one controllable transition.

The state class graph of Fig.2.5 determines that α4 and α6 are the forbidden states; α1,

α3 and α0 may lead to these forbidden states and are dangerous, while α2 and α5 are safe.

p1 p2

p3 p4

t1[0, 4] t2[2, 3]

t3[2,∞[t4−1[0, 1] t4−2[0, 1]

• •

Module L Module R

Figure 5.5 The example of Fig.2.4 in modules.

92

Tables 5.2 and 5.3 represent the trace of Algorithm 5 on Fig.5.5. The notions Tc(L) and Tc(R)

stand for the set of local controllable transitions in the modules L and R respectively. Note

that state change from α2 to α5 is not announced to Module L of Fig.5.5 as the status is

always safe and no announcement is required.

Case of local controllers with non-synchronized intercommunications

In the previous section, we have shown an example with fully synchronized local con-

trollers where intercommunication delay is negligible in comparison to the state evolution of

the system or this delay is included in the intervals associated with the transitions. In this

section, we take into account the communication delay among the modules. In other words,

we assume that the intercommunication delay is comparable with the frequency of discrete

state evolutions. In the following, we study two examples. In the first one intercommuni-

cation delay is problematic and prevents the control procedure while in the second one the

Table 5.2 Trace of Algorithm 5 on Fig.5.5 (Module L).

state Action
α0 Extract the initial marking; Status = dangerous.

Tc(L) ∩ En(M) = t1; The controller, delays
t1 and listens to the modifications.

α1 t1 is fired; Status = dangerous.
Marking announcement; Tc(L) ∩ En(M) = ∅.

α3 t2 is fired in module R; Status = dangerous.
Tc(L) ∩ En(M) = ∅.

α2 t2 is fired in module R; Status = safe.
α5 t1 is fired; Status = safe.

Unchanged safe status; no announcement.

Table 5.3 Trace of Algorithm 5 on Fig.5.5 (Module R).

state Action
α0 Extract the initial marking.

Status = dangerous; Tc(R) = ∅.
α1 t1 is fired in module L; Status = dangerous.

Tc(R) = ∅.
α3 t2 is fired; Status = dangerous.

Marking announcement.
α2 t2 is fired; Status = safe.

Marking announcement.

93

controller succeeds to control the system. We will see that Algorithm 1 shows the failure in

the first example.

Example 1:

We consider the same example of assembly section of a manufacturing line depicted in

Fig.3.8 and discussed in Section 3.4.8. As mentioned earlier, we consider intercommunication

among modules in the global model and we revise our modeling accordingly. In this approach

local transitions resulting a data transmission are followed by a set of place (Sync) and a

transition (tsync). The global model should provide a solution for these exchanges and their

corresponding delays.

The assembly section is composed of three modules. First module, named a consists of

the robotic arm which moves parts of type A, second module named b includes the conveyor

and the assembling tray and the third one, named c consists of the robotic arm which moves

parts of type B. The events exchanged between modules are:

A B

Sync1 Sync3

Conveyor

Sync2

Tray

Sync4 Sync5

Conv.ON

t3[2, 4]

t4[10, 10]

tsync2[0, 1]

t1[1, 7] t2[2, 6]

tsync1[0, 1] tsync3[0, 1]

tsync4[1, 1] tsync5[1, 1]

2

• ••

a.Robotic arm A b.Putting down and Assembling c.Robotic arm B

Figure 5.6 The TPN model of the assembly section of a manufacturing line considering
intercommunication delay among the modules.

94

1. When a piece of type A is placed on the conveyor, a token from the module a is sent to

the module b. Consequently, a message is sent to the module c to announce this event.

2. When a piece of type B is placed on the conveyor, a token from the module c is sent to

the module b. Consequently, a message is sent to the module a to announce this event.

3. When Conveyor delivers a part to Tray, a message is sent to the modules a and c to

announce this event and the consequent change of status.

4. Two parts are completely assembled on Tray and the robotic arms are again ready.

Two tokens from the module b are sent to the modules a and c (one for each).

Considering intercommunication delay, the specification of the system is modified and

the model of Fig.3.8 is no more valid. We should revise the global model to reconsider these

new timing constraints. In this example, intercommunication delay is considered one time

unit where applicable. Note that once a part of type A or B is placed on the conveyor, the

event is detected simultaneously in the module b (i.e. delay is zero). On the other hand,

transferring a message from the module a to the module c and vice versa for announcing

new local markings or state evolutions will take a while (i.e. delay is one). Similarly, when

a part is delivered from Conveyor to Tray, this event is distinguished simultaneously in the

module b, but takes a while to be recognized by the other modules. Therefore, for these cases

intercommunication delay is equal with [0, 1]. But, when assembling procedure is finished,

there is no internal action. A message is sent to the modules a and c then intercommunication

delay in this case is [1, 1].

The model of Fig.5.6 represents this system with its new specifications. Two places Sync1

and Sync3 model transmissions among the modules a, b and c. Two transitions tsync1 and

tsync3 represent the corresponding intercommunication delay which is considered equal with

[0, 1] time units. The messages being transfered between the modules contain local markings.

Firing of t3 in the module b is announced to the modules a and c through the place Sync2

and the transition tsync2. Once two parts are assembled on Tray and the system is reinitial-

ized, a token is transfered from module b to each of the other modules within a delay. Two

intermediate places Sync4, Sync5 and two transitions tsync4, tsync5 are added to model this

behavior.

The state class graph of the model comparing to the state class graph of Fig.3.8 becomes

larger and consists of 28 state classes. The abstracted state space after abstraction by in-

clusion consists of 24 state classes. We apply the algorithm on the compact abstracted state

graph given at Fig.5.7 and Table 5.4. Considering the information of classes provided in

95

α0 α2α3 α1

α7

α6

α10

α4

α11

α5

α16

α9

α14

α15

α13

α8

α12

α17

α21

α19

α22

α18

α20

α23

t2 tsync3

t2
t1

t1tsync1t3
t2

t2

tsync2 tsync1

tsync3

t2 t3

t3

t1

t3

t3

t4

tsync2

tsync2 tsync2

tsync2

t1

t3 tsync2

tsync3

tsync3

tsync3

tsync1

tsync1

tsync1

tsync4

tsync5

tsync5

tsync4

Figure 5.7 The state class graph of the model depicted in Fig.5.6.

Table 5.4, the set of forbidden state classes contains: {α12}.

Let us trace Algorithm 1 on Fig.5.7. The algorithm starts from α0 and continues re-

cursively exploring the graph through α2, α5, α8 and finally reaches to α12 with forbid-

den markings. The algorithm returns back to α8 with {tsync1} and to α5 with {t1tsync1}.

The other successors available from α5 are safe. There is an enabled controllable tran-

sition in α5 but it is not newly enabled and the controller should have started earlier.

The algorithm returns back to α2 with {tsync3t1tsync1}. The other path available from α2

leads also to a forbidden state and is computed similarly. The algorithm returns back

to α0 with {t2t1tsync3tsync1, t2tsync3t1tsync1}. In addition, the other path available from α0

through α1 leads also to the forbidden state α12. Finally, the set of bad paths at α0 in-

cludes: {t1tsync1t2tsync3, t1t2tsync1tsync3, t2t1tsync3tsync1, t2tsync3t1tsync1}. Then, the condition

|t1 − t2| > 5 should be imposed in α0 to obtain a safe system. Considering the timing

specification of the current system, this condition cannot be satisfied. Thus, due to the inter-

communication delay in this system, the controller fails to control the system and Algorithm

96

Table 5.4 State classes of Fig.5.7 for t3 = [2, 4].

α0 : A+B + Conv.ON 1 ≤ t1 ≤ 7 ∧ 2 ≤ t2 ≤ 6
α1 : B + Sync1 + Conv.ON 0 ≤ tsync1 ≤ 1 ∧ 0 ≤ t2 ≤ 5
α2 : A+ Sync3 + Conv.ON 0 ≤ t1 ≤ 5 ∧ 0 ≤ tsync3 ≤ 1
α3 : Conveyor + Conv.ON +B 2 ≤ t3 ≤ 4 ∧ 0 ≤ t2 ≤ 5
α4 : Sync1 + Conv.ON + Sync3 0 ≤ tsync1 ≤ 1 ∧ 0 ≤ tsync3 ≤ 1
α5 : Conveyor + Conv.ON + A 2 ≤ t3 ≤ 4 ∧ 0 ≤ t1 ≤ 5
α6 : B + Sync2 + Conv.ON 0 ≤ tsync2 ≤ 1 ∧ 0 ≤ t2 ≤ 3
α7 : Conveyor + Conv.ON + Sync3 0 ≤ t3 ≤ 4 ∧ 0 ≤ tsync3 ≤ 1
α8 : Conveyor + Conv.ON + Sync1 0 ≤ t3 ≤ 4 ∧ 0 ≤ tsync1 ≤ 1
α9 : A+ Conv.ON + Sync2 0 ≤ t1 ≤ 3 ∧ 0 ≤ tsync2 ≤ 1
α10 : Tray + Conv.ON +B 0 ≤ t2 ≤ 3
α11 : Sync2 + Conv.ON + Sync3 0 ≤ tsync2 ≤ 1 ∧ 0 ≤ tsync3 ≤ 1
α12 : 2Conveyor + Conv.ON 0 ≤ t3 ≤ 4
α13 : Sync1 + Conv.ON + Sync2 0 ≤ tsync1 ≤ 1 ∧ 0 ≤ tsync2 ≤ 1
α14 : A+ Conv.ON + Tray 0 ≤ t1 ≤ 3
α15 : Tray + Conv.ON + Sync3 0 ≤ tsync3 ≤ 1
α16 : Conveyor + Conv.ON + Sync2 2 ≤ t3 ≤ 4 ∧ 0 ≤ tsync2 ≤ 1
α17 : Sync1 + Conv.ON + Tray 0 ≤ tsync1 ≤ 1
α18 : Conveyor + Conv.ON + Tray 1 ≤ t3 ≤ 4
α19 : Sync2 + Conv.ON + Tray 0 ≤ tsync2 ≤ 1
α20 : Conv.ON + 2Tray 10 ≤ t4 ≤ 10
α21 : Sync4 + Conv.ON + Sync5 0 ≤ tsync4 ≤ 1 ∧ 0 ≤ tsync5 ≤ 1
α22 : A+ Conv.ON + Sync5 1 ≤ t1 ≤ 7 ∧ 0 ≤ tsync5 ≤ 0
α23 : B + Sync4 + Conv.ON 0 ≤ tsync4 ≤ 0 ∧ 0 ≤ t2 ≤ 6

1 also shows this failure.

Example 2:

Now let us follow another example where in presence of the intercommunication delay,

Algorithm 1 is able to give a controller. To better clarify the approach, we consider the same

example of the assembly section but this time Conveyor needs [2, 3] time units to deliver a

part to Tray. In other terms, the interval associated to t3 is modified from [2, 4] to [2, 3] time

units. The state class graph remains the same but the classes are different. The state classes

are given in Table 5.5. The same as before, the set of bad paths available from α0 contains

{t1tsync1t2tsync3, t1t2tsync1tsync3, t2t1tsync3tsync1, t2tsync3t1tsync1}. The condition |t1 − t2| > 4

97

should be imposed in α0 in order to have a safe system. Note that if the model with t3 = [2, 3]

is synthesized regardless of intercommunication delay, the condition would be |t1 − t2| > 3.

The results here confirm our previous discussions for the equation 5.1.

We insist here that although there is an enabled controllable transition in the state classes

α1 and α2, the controller cannot make a new decision because of active data transmission in

these states. After synthesizing the model (considering t3 = [2, 3]), the final result is:

– Ctrl(α0) = {(t1, t2, {[−5,−4[,]4, 5]})}.

– Ctrl(α3) = {(t2, t0,]3, 5])}.

– Ctrl(α5) = {(t1, t0,]3, 5])}.

Now that delay of intercommunication is considered in the model and the computed con-

troller can guarantee the satisfaction of the given properties, the modular implementation of

Table 5.5 State classes of Fig.5.7 for t3 = [2, 3].

α0 : A+B + Conv.ON 1 ≤ t1 ≤ 7 ∧ 2 ≤ t2 ≤ 6
α1 : B + Sync1 + Conv.ON 0 ≤ tsync1 ≤ 1 ∧ 0 ≤ t2 ≤ 5
α2 : A+ Sync3 + Conv.ON 0 ≤ t1 ≤ 5 ∧ 0 ≤ tsync3 ≤ 1
α3 : Conveyor + Conv.ON +B 2 ≤ t3 ≤ 3 ∧ 0 ≤ t2 ≤ 5
α4 : Sync1 + Conv.ON + Sync3 0 ≤ tsync1 ≤ 1 ∧ 0 ≤ tsync3 ≤ 1
α5 : Conveyor + Conv.ON + A 2 ≤ t3 ≤ 3 ∧ 0 ≤ t1 ≤ 5
α6 : B + Sync2 + Conv.ON 0 ≤ tsync2 ≤ 1 ∧ 0 ≤ t2 ≤ 3
α7 : Conveyor + Conv.ON + Sync3 0 ≤ t3 ≤ 3 ∧ 0 ≤ tsync3 ≤ 1
α8 : Conveyor + Conv.ON + Sync1 0 ≤ t3 ≤ 3 ∧ 0 ≤ tsync1 ≤ 1
α9 : A+ Conv.ON + Sync2 0 ≤ t1 ≤ 3 ∧ 0 ≤ tsync2 ≤ 1
α10 : Tray + Conv.ON +B 0 ≤ t2 ≤ 3
α11 : Sync2 + Conv.ON + Sync3 0 ≤ tsync2 ≤ 1 ∧ 0 ≤ tsync3 ≤ 1
α12 : 2Conveyor + Conv.ON 0 ≤ t3 ≤ 3
α13 : Sync1 + Conv.ON + Sync2 0 ≤ tsync1 ≤ 1 ∧ 0 ≤ tsync2 ≤ 1
α14 : A+ Conv.ON + Tray 0 ≤ t1 ≤ 3
α15 : Tray + Conv.ON + Sync3 0 ≤ tsync3 ≤ 1
α16 : Conveyor + Conv.ON + Sync2 2 ≤ t3 ≤ 3 ∧ 0 ≤ tsync2 ≤ 1
α17 : Sync1 + Conv.ON + Tray 0 ≤ tsync1 ≤ 1
α18 : Conveyor + Conv.ON + Tray 1 ≤ t3 ≤ 3
α19 : Sync2 + Conv.ON + Tray 0 ≤ tsync2 ≤ 1
α20 : Conv.ON + 2Tray 10 ≤ t4 ≤ 10
α21 : Sync4 + Conv.ON + Sync5 0 ≤ tsync4 ≤ 1 ∧ 0 ≤ tsync5 ≤ 1
α22 : A+ Conv.ON + Sync5 1 ≤ t1 ≤ 7 ∧ 0 ≤ tsync5 ≤ 0
α23 : B + Sync4 + Conv.ON 0 ≤ tsync4 ≤ 0 ∧ 0 ≤ t2 ≤ 6

98

the controller in presence of the intercommunication delay will work as well.

Now, it’s time to break the system into modules. The synchronization places and tran-

sitions are overlapped which include the places Sync1 to Sync5 and the transitions tsync1 to

tsync5. These places and transitions model data transmission with their corresponding delays.

The modular system is given in Fig.5.8. Each overlapped place or transition is suffixed with

the name of its corresponding module (e.g. Sync3a). The places Sync1, Sync2 and Sync3 are

overlapped in all of the three modules to show the direct connections among the modules.

As mentioned earlier, if a module cannot distinguish that a transmission is in progress (like

web applications message passing) the controller will not work properly.

Applying Algorithm 1 on the state class graph of the entire system shows that there are

two options to safely control this system: either force t1 to fire at [1, 2[while delaying t2 until

]5, 6] or, force t2 to fire at [2, 3[while delaying t1 until]6, 7]. Suppose we have chosen the

first option, forcing t1 in [1, 2[while delaying t2 until]5, 6]. Consider Fig.5.8: first, all the

modules are in α0. The status is dangerous and local controllers of a and c are active. There

is no controllable transition in the module b and then, its local controller is idle. However,

communication submodules are always active everywhere and listen to the new modifica-

tions. The local controller of c is active and delays t2. Meanwhile, t1 is fired by the local

controller of a. The part is sensed on the conveyor of module b. The new marking is sent

to the module c. The status is yet dangerous in all of the modules. From now on, there

is no enabled controllable transition in the module a and its local controller is idle while

the local controller of c is active and delays t2. Then, t3 is fired in the module b and its

local marking is announced to the others and the status becomes safe in all of the modules.

The local controller of the module c cannot make a new decision until the data transmis-

sion is terminated. Afterwards, the status becomes safe in all of the modules. Consequently,

there is no need to delay t2 anymore and the local controller of the module c also becomes idle.

As explained earlier, the number of data exchanges can be optimized in practice. There

is no need to announce change of state when both previous and new states are safe. For

example, suppose t1 is fired in the module a. When t3 is fired in the module b the status

becomes safe. Then, it is not necessary to announce firing of t2 (in the module c) to the

module a. Once the parts are assembled on Tray and the system is reinitialized, the status

becomes dangerous again and then, this modification should be announced to others. Tables

5.6, 5.7 and 5.8 show this trace after this optimization. Remember that the intercommunica-

tion delay is considered [0, 1] in some cases and then, this optimization does not violate the

99

state class graph. Bypassing a data transmission is as if it takes 0 time units.

A B

Sync3

Sync2a

Sync3a ConveyorSync1c Sync3c

Sync1

Sync1c

Sync2c

Tray

Sync2Conv.ON

Sync4b Sync5bSync4a Sync5c

t3[2, 3]

tsync2[0, 1]

t4[10, 10] tsync5[1, 1]TSync4[1, 1]

t1[1, 7] t2[2, 6]

tsync2a [0, 1] tsync2c [0, 1]

tsync3a [0, 1] tsync1c [0, 1]

tsync1c [0, 1] tsync3c [0, 1]

2

• •

•

a.Robotic arm A b.Putting down and Assembling c.Robotic arm B

Figure 5.8 The modular TPN model of the system depicted in Fig.5.6.

Table 5.6 Trace of Algorithm 5 on Fig.5.8 (block a).

state Action
α0 Extract the initial marking; Status = dangerous; Tc(a) ∩ En(M) = t1.

The controller forces t1 to fire at [1, 2[(based on the chosen scenario)
α1 t1 is fired; Status = dangerous.

Sync1 is marked to announce the marking; Tc(a) ∩ En(M) = ∅.
α3 tsync1 is fired; recalculate the global marking; Status = dangerous.
α6 Sync2 is marked by module b; Status = dangerous.
α10 tsync2 is fired; recalculate the global marking; Status = safe.
α21 Sync4 and Sync5 are marked; Status = safe.
α22 tsync4 is fired; recalculate the global marking; Status = dangerous.

The procedure is similar if we choose to delay t1 until]6, 7] while forcing t2 to fire at [2, 3[.

The important result concluded here is that, considering intercommunication delay among

modules changes the model of the global system, not the typical procedure. The typical pro-

100

Table 5.7 Trace of Algorithm 5 on Fig.5.8 (block b).

State Action
α0 Extract the initial marking; Status = dangerous; Tc(b) ∩ En(M) = ∅.

The controller is idle and listens to the modifications.
α1 t1 is fired in module a; Sync1 is marked; Status = dangerous.
α3 tsync1 is fired; recalculate the global marking; Status = dangerous.
α6 t3 is fired; Sync2 is marked to announce the new marking.
α10 tsync2 is fired; recalculate the global marking; Status = safe.
α15 t2 is fired in the module c; Sync3 is marked; Status = safe.
α18 tsync3 is fired; recalculate the global marking; Status = safe.
α19 t3 is fired and Sync2 is marked; Status = safe.
α20 tsync2 is fired; recalculate the global marking; Status = safe.
α21 t4 is fired; Status = safe; Sync4 and Sync5 are marked.
α22 tsync4 is fired; recalculate the global marking; Status = dangerous.

Table 5.8 Trace of Algorithm 5 on Fig.5.8 (block c).

state Action
α0 Extract the initial marking; Status = dangerous; Tc(c) ∩ En(M) = t2.

The controller delays t2(based on the chosen scenario).
α1 t1 is fired in the module a; Sync1 is marked.

Status = dangerous; Tc(c) ∩ En(M) = t2.
α3 tsync1 is fired, recalculate the global marking.

Status = dangerous; Tc(c) ∩ En(M) = t2; the controller delays t2.
α6 Sync2 is marked as t3 is fired in the module b

Status = dangerous; Tc(c) ∩ En(M) = t2.
α10 tsync2 is fired , recalculate the global marking

Status = safe; Tc(c) ∩ En(M) = t2.
α15 t2 is fired; status= safe; Sync3 is marked.

Tc(c) ∩ En(M) = ∅; No announcement to the module a.
α18 tsync3 is fired; recalculate the global marking; Status= safe.
α21 t4 is fired in module b; Sync5 is marked; Status=safe.
α23 tsync5 is fired; recalculate the global marking; Status = dangerous.

cedure is always making a model of the system, applying the algorithms of Section 3.4. If the

global controller exists, we can apply Algorithm 5 to implement the decentralized controller.

Message passing between modules will take a while which is already considered in the compu-

tations. If our decentralized controllers are marking dependent, only information of new local

markings are exchanged (i.e. tokens representing messages include local markings). If the

decentralized controllers are state dependent, information of newly enabled transitions are

101

also propagated which is more costly (i.e. tokens representing messages include local mark-

ings and timing information of controllable transitions). The state dependent controllers in

decentralized implementation are not recommended.

5.4 Conclusion

In this chapter, we have studied how the forward on-the-fly approach presented in Section

3.4 for controller synthesis of TPN is adapted with distributed and modular systems. We

have shown how to implement this approach on large-scale systems consisting of different

components. The obtained decentralized controller can be state dependent, marking depen-

dent or static.

In this research, we have investigated decentralized independent local controllers and lo-

cal controllers with the possibility of intercommunications. In case local controllers have

non-synchronized intercommunications among them, the intercommunication delay should

be considered in the global model of the system and the model with its new specification is

synthesized with Algorithm 1.

When the intercommunication delay is not negligible, the model should correspond ex-

actly to the actual specification of the system. The intercommunication delay should be

considered in the model before being synthesized. If the intercommunication delay is caus-

ing any problem then, Algorithm 1 fails to find the controller. If it succeeds to calculate a

controller considering intercommunication delay, then it will work also in its decentralized

implementation.

We have also shown that a controller cannot make a new decision during a data transmis-

sion process. Each module should be able to distinguish that a communication is established

otherwise this implementation may fail to work properly. In fact, if the configuration of the

system is such that modules do not have direct connections (like a web application where a

message passes through intermediate modules) then, this approach is less appropriate.

102

CHAPTER 6

Controller Synthesis with Stopwatch

6.1 Introduction to timed models associated with stopwatch

In some applications such as scheduling, it is necessary to suspend a task and retrieve

it again from where it was suspended. The execution time does not include the time spent

in suspension. Once a task is retrieved, the corresponding clock continues to progress from

where is was stopped. This behavior cannot be modeled with the ordinary timed automata

and time Petri nets. In the ordinary timed automata and time Petri nets all of the enabled

clocks progress with a unified rate. It is possible to reinitialize a clock but it cannot be

stopped and retrieved again.

Stopwatch is an extension of timed models to facilitate modeling of interruption and re-

sumption of a job. Once an interrupt happens a task is suspended. Later, it is retrieved and

continues from where it was interrupted. During the interruption, the clock of interrupted

task is stopped while other clocks progress normally. The idea of stopwatch has been dis-

cussed and extended to Timed automata (TA) as well as Time Petri Nets (TPN) and some

types of TA and TPN associated with stopwatch are already introduced (Allahham et Alla,

2007, 2008; Cassez et Larsen, 2000; Roux et Lime, 2004). In stopwatch, we may have some

states whose clocks keep progressing, while in some other state the clock is stopped and keeps

the value it had before being stopped as if the clock has a memory and after being retrieved

it continues with its previous value.

In a multitasking real time system with interruptible tasks and shared resources, a suit-

able scheduler is necessary to manage the resources and prevent blocking and deadlock. The

scheduler guarantees the well functionality of the system in terms of respecting deadline, pri-

ority and similar constraints. Each task cannot start execution until the required resources

are available. A task releases the occupied resources after finishing its execution.

In multitasking systems, tasks are categorized to periodic, aperiodic and sporadic (Isovic

et Fohler, 2000):

– Periodic task: These tasks arrive in regular intervals. Worst case and best case

execution times are of the specifications defined for periodic tasks. Deadline is the

103

other characteristic defined for these tasks with respect to their worst case execution

time. Deadline in periodic tasks can be either soft or hard. A critical deadline is called

hard deadline whereas meeting a soft deadline is not critical.

– Aperiodic task: Tasks with irregular inter arrivals are called aperiodic. Aperiodic

tasks are usually associated with soft deadlines.

– Sporadic task: Aperiodic tasks with a minimum inter arrival are called sporadic.

Sporadic tasks are associated with hard deadlines.

A periodic task may have three states (Altisen et al., 2000):

– Waiting: Once a periodic task arrives, it should wait for required resources.

– Execution: When all required resources are available, the task starts its execution and

spends its execution time in this state.

– Passive: After being executed, the task releases the required resources and waits until

its next arrival. The time between two consecutive task arrivals is equal with the given

period.

In a multitasking system with periodic tasks, the scheduler should manage the shared

resources in a way that the predefined period for the tasks are respected. On the other hand,

some of the tasks may be associated with a deadline or priority. In that case, the scheduler

should suspend the execution of a task with lower priority and let the higher priority tasks

to use the resources. Once the tasks with higher priority are executed, the other tasks with

lower priorities continue their execution. This behavior is called preemptive scheduling.

In the field of controller synthesis, a scheduler is seen as a controller (Altisen et al., 1999,

2000). The scheduler should manage the shared resources and starts execution of each task in

a way that the timing constraints, deadlines and priorities are respected. Arrival of each task

is due to its period and then is uncontrollable. Execution time is also predefined and then is

uncontrollable. The only controllable action is the starting of an execution. In preemptive

scheduling, a task can be suspended during its execution and leave the resources to some

other task with a higher priority. The solution discussed in Chapter 3 in its original form

cannot be used for preemptive scheduler synthesis.

One solution is to model the system with time Petri nets associated with stopwatch. In

this context, each task execution is modeled by a transition equipped with stopwatch and

then the corresponding controller is synthesized to manage suspension and resumption of

each task such that the corresponding timing constraints are respected. As we will see in

104

this chapter, one problem with this solution is that calculating the state space graph of time

Petri nets associated with stopwatch requires some over approximation.

The other problem is that time Petri nets associated with stopwatch do not necessarily

preserve the boundedness property. Let N1 be a time Petri net and N2 be a time Petri net

associated with stopwatch, the following relation holds:

N1 is bounded ⇔ SCG of N1 is finite.

This condition is not always true for a time Petri net associated with stopwatch. In other

terms:

N2 is bounded ; SCG of N2 is finite.

Indeed, if the number of reachable markings in a time Petri net associated with stopwatch

is finite, the number of state classes is not necessarily finite (Roux et Lime, 2004). These

limitations hinder the controller synthesis of time Petri nets associated with stopwatch.

In this thesis, we suggest an alternative solution. We propose to synthesize a time Petri

net without stopwatch where the transitions corresponding to the task executions are con-

sidered controllable. We extract the controller (i.e. scheduling strategy) and then add the

stopwatch to model the controlled system (the system and its scheduler). In fact, we suggest

to implement the synthesized controller by means of stopwatch (Heidari et Boucheneb, 2012a).

In the following, we discuss how the algorithm suggested in Section 3.4 is used for schedul-

ing purposes to synthesize a controller for interruptible tasks. Algorithm 1 is permissive and

the computed controller is restricting time intervals making the system to satisfy the given

properties. In this chapter, we suggest to suspend a task during its bad subinterval. This

approach is useful for preemptive scheduling purposes where safety properties correspond to

meeting deadlines, priorities, preventing deadlock for shared resources and etc.

In this chapter, we use a synthesized controller (output of the algorithm of Section 3.4 in

particular), and we show how to control the system using stopwatch. In order to implement

the controller by means of stopwatch, we assume that it is possible to associate each control-

lable transition with a stopwatch so as to suspend or resume it whenever needed.

The rest of this chapter is organized as follows: Section 6.2 presents a literature review on

different stopwatch Petri nets. Section 6.3 synthesizes a controller using stopwatch. Section

105

6.4 presents an example of a multitasking system. Finally, Section 6.5 gives the conclusion

and future work.

6.2 Literature review

The idea of suspension and resumption of a task in a system, is modeled in different ways

in timed automata and time Petri nets (Allahham et Alla, 2008; Cassez et Larsen, 2000; Roux

et Lime, 2004). In (Cassez et Larsen, 2000), the authors have introduced stopwatch automata

(SWA) as a sub-class of timed linear hybrid automata. In stopwatch automata, an additional

binary variable is defined to show the rate of time progression. The clocks may have two

velocities (time derivation): zero or one. Zero signifies stopped while one signifies normal

progress. If clocks are running, they progress with a global rate, identical to all non-stopped

clocks of the model. The authors have shown that stopwatch automata is as expressive as

timed languages.

In (Roux et Lime, 2004), the authors have introduced inhibitor hyperarcs to interrupt an

enabled transition. Once a place p connected to a transition t via an inhibitor arc is marked,

the transition t is suspended and stops firing. In other words, once an inhibitor arc is enabled,

the corresponding transition is interrupted. They have called these nets IHTPN (Time Petri

Nets with Inhibitor Hyperarcs). Fig.6.1 represents a simple example of time Petri nets with

an inhibitor arc. In this figure, t1 is enabled. As soon as p2 is marked, firing t1 is suspended.

Note that an inhibitor hyperarc is not graphically presented by a classical arrow; instead, it

is shown by an empty circle at the extreme of the edge.

p1 p2

p3

t1[a1, a2]

•

Figure 6.1 A simple example of time Petri nets with inhibitor hyperarc. t1 is active if p2 is
not marked, otherwise it is suspended.

Another stopwatch model comes in (Allahham et Alla, 2007, 2008). Post and Pre-

initialized stopwatch Petri nets (SWPN)(Allahham et Alla, 2007, 2008) also model inter-

ruption and retrieving of tasks. In such stopwatch Petri nets, transitions are partitioned into

106

two disjoint subclasses T = Tint ∪ Tno−int where Tint is the set of interruptible transitions

and Tno−int is the set of non-interruptible transitions. Stopwatches can suspend enabled in-

terruptible transitions. For each transition ti, there is a function v(ti) representing the value

of its associated stopwatch. If ti ∈ Tint, v(ti) signifies the time elapsed since ti was first

enabled, whereas if ti ∈ Tno−int, v(ti) represents the time elapsed since ti was last enabled. A

transition is called firable if it is enabled (M > Pre(ti)) and ↓ Is(ti) ≤ v(ti) ≤↑ Is(ti).

In contrary with IHTPN where a marked place suspended an enabled transition, in this

model stopwatch consumes some tokens to disable an enabled transition. It is implemented

by means of some extra places/transitions. A stopwatch transition is in conflict with an inter-

ruptible transition. Thus, consuming a token can suspend an interruptible enabled transition.

With this model, an interrupt is unpredictable and we don’t know when it happens. In fact

at any time, the interruptible task and the interrupt both have equal chance to happen. The

simple Petri nets of Fig.6.2 reported from (Allahham et Alla, 2008) is a simple example of

SWPN of an interruptible task.

P1

P2 P3

t1[0, 0]

t2[α, β]

tresu[γ1, γ2]

tsusp[λ1, λ2]

•

Figure 6.2 An interruptible task modeled by SWPN, reported from (Allahham et Alla, 2008).

Let ti be a transition and M a marking. ti is called:

– Enabled: if M ≥ Pre(ti) denoted by ti ∈ En(M).

– Firable: if ti ∈ En(M)∧ ↓ Is(ti) ≤ v(ti) ≤↑ Is(ti), denoted by ti ∈ Firable(M, v).

– Suspended: if Pre(ti) > M ∧ v(ti) > 0, denoted by ti ∈ susp(M, v).

↑ enabled(ti,M, tk) signifies that ti is newly enabled by firing tk at marking M .

The new concept Pre − initialization defined in this model refers to non-interruptible

transitions. For every ti ∈ Tno−int, ti is firable if v(ti) is already initialized when ti becomes

107

enabled. In other words, v(ti) = 0 when ti ∈↑ enabled(ti,M, tk).

The concept, Post − initialization is defined for interruptible transitions. When an in-

terruptible transition is fired the associated v(ti) is initialized (v(ti) = 0). Fig.6.3 and Fig.6.4

reported from (Allahham et Alla, 2008) show the difference between time evolution in an

interruptible transition and a non-interruptible transition. In these figures, the notions E,D

and F stand for enabling, disabling and firing of a transition respectively.

T ime

v(ti)

E D E F E

Figure 6.3 Time elapses, ti is an interruptible transition.

T ime

v(ti)

E D E F

Figure 6.4 Time elapses, ti is a non-interruptible transition.

In brief, according to the types of transitions, two types of clock initialization is defined:

– Pre-initialization: Given a transition ti ∈ Tno−int where Tno−int is the set of non-

interruptible transitions, clock initialization is called pre-initialization happening when

108

ti is recently enabled. As soon as a transition becomes enabled, its associated clock is

initialized.

– Post-initialization: Given a transition ti ∈ Tint where Tint is the set of interruptible

transitions, clock initialization is called post-initialization happening after firing ti; it

means that the transition initializes the clock after being fired. Post-initialization is

dependent to transition firing.

In (Allahham et Alla, 2008), continuous and discrete transitions are defined as follows:

Let d ∈ R+, a continuous transition is denoted by (M, v)
d
→ (M, v′) if and only if ∀ti ∈ T :

– v′(ti) = v(ti), if the transition ti is not enabled.

– v′(ti) = v(ti) + d if ti is enabled.

– M ≥ Pre(ti) ⇒ v′ ≤↑ Is(ti) .

And a discrete transition is denoted by (M, v)
ti→ (M ′, v′) if and only if ∀ti ∈ T :

– ti ∈ Firable(M, v).

– M ′ =M − Pre(ti) + Post(ti) .

– v′(ti) = 0 if ti ∈ Tint (Post-initialization).

– ∀tk ∈ T ,v′(tk) =.

– 0 if tk ∈↑ enabled(tk,M, ti);(Pre-initialization).

– v(ti) Otherwise.

In order to perform further timing analysis, the SWPN is transformed to hybrid automa-

ton. In addition, a forward algorithm is suggested to compute the reachable states.

If the number of stopwatches increases, for example if all of the transitions are interrupt-

ible, the complexity of calculation will highly increase. An ordinary TPN is also a SWPN

where Tint = ∅. After having a survey on different stopwatch Petri nets available in the liter-

ature, in the following we will investigate how to integrate stopwatch in controller synthesis

approach suggested in Chapter 3.

6.3 Controller synthesis and stopwatch

In this section, we consider time Petri nets with controllable/uncontrollable transitions

and show how such a system is controlled by associating some of the controllable transitions

with stopwatch. First, we apply the on-the-fly algorithm of Section 3.4 and calculate the ap-

propriate controller. Then, instead of restricting time intervals of corresponding controllable

transitions, we associate them with stopwatch. In fact, we suspend some transition during

its bad subinterval to control a system so as to satisfy a given property.

109

We consider the inhibitor hyperarcs of (Roux et Lime, 2004). The controller shall suspend

a controllable transition in its bad subinterval and retrieve it otherwise. Let us remember

the example of Fig.2.4 with the state class graph of Fig.2.5 and Table 2.2. We have seen

that in order to prevent the system entering forbidden state classes α4 and α6, the controller

should prevent t1 from firing before]2, 4]. Thus, an inhibitor hyperarc is added to the tran-

sition t1. This inhibitor hyperarc connects t1 to a place called psusp. At the beginning, this

place is marked and then, t1 is suspended. At [2, 2] the token of psusp is consumed and the

corresponding hyperarc becomes disabled. The controllable transition t1 is now firable again.

The token is returned to place psusp after t1 is fired. Thus, the controller suspends t1 during

its bad subinterval and resumes it after then.

At the beginning, all clocks are initialized to zero. Then, time elapses but in [0, 2], this

transition is suspended and hence, its clock does not elapse anymore. Later at time [2, 2],

this transition is retrieved and becomes active. We don’t need to delay it anymore, that’s

why the lower bound of the interval associated with t1 is modified to 0. Now the clock starts

elapsing. Within 2 time units t1 should be fired (i.e. when the actual time of the general

clock of the system reaches 4). Then, the interval associated with t1 in a controlled TPN

associated with stopwatch is [0, 2]. Fig.6.5 represents the clock evaluation of the transition

t1. The controlled Petri nets of this example is presented in Fig.6.6.

T ime

v(t1)

0 1 2 3 4
0

1

2

v(t1) = 0

v(t1) 6= 0

Figure 6.5 Clock evaluation of t1 in the controlled TPN of Fig.6.6.

In summary, our goal is to use inhibitor hyperarcs and suspend the appropriate control-

lable transitions during their bad subintervals. The bad subintervals are calculated as in

Section 3.4. Note that in Section 3.4, we were restricting and limiting time intervals while

110

in this approach the idea is to suspend and delay them. In this research, we suppose every

controllable transition can be associated with a stopwatch if needed.

p1 p2

p3 p4

psusp

t2[2, 3]

t4[0, 1]t3[2,∞[

tresu[2, 2] t1[0, 2]

• ••

Figure 6.6 Time Petri net of Fig.2.4, controlled by inhibitor hyperarcs (Tc = {t1}).

Above, we have shown how to control a system when the bad subinterval is at the be-

ginning of the firing interval. What if the acceptable subinterval is at the beginning and

bad subintervals are after? Consider the example of Fig.6.7. A controllable transition t1 is

associated with firing interval [a, b]. Suppose that, based on Algorithm 1, the subinterval

[a, α1] is acceptable while]α1, b] is a bad subinterval, where a ≤ α1 < b. The controlled time

Petri nets is presented in Fig.6.8. Fig.6.9 represents the clock evaluation of t1 and shows how

the new interval associated with t1 is calculated. In [0, a[, psusp is marked and t1 is neither

active nor enabled. Meanwhile, at the time a, tr1 becomes enabled and is fired consuming

the token in psusp. Thus, right at a, the transition t1 becomes active and its associated clock

starts elapsing. Note that, associated stopwatch delays t1 for a time units and we do not

want to delay it anymore; then, the lower bound of the new associated interval in controlled

TPN is 0. After α1 time units, tr2 is fired and psusp becomes marked again. Consequently, t1

is suspended.

Consider the same example of Fig.6.7 and this time suppose that the algorithm 1 gives

the following output:

[a, α1[is acceptable, [α1, α2[is a bad subinterval, [α2, b] is acceptable where the condition

a < α1 < α2 ≤ b holds. With the same idea, the controlled Petri nets is presented in Fig.6.10

and Fig.6.11 shows clock evaluation of t1.

111

p2

p3

t1[a, b]

•

Figure 6.7 A simple time Petri net (Tc = {t1}).

psusp

p2

p3ps1

ps0

tr2[α1 − a, α1 − a]

tr1[a, a] t1[0, α1 − a[
•

••

Figure 6.8 The controlled TPN of Fig.6.7 using inhibitor hyperarcs (Tc = {t1}). Forbidden
interval is]α1, b] where a ≤ α1 < b.

6.3.1 Why inhibitor hyperarcs?

We have shown how to achieve a controlled model from an uncontrolled time Petri nets

by adding inhibitor hyperarcs. One question is why among different types of stopwatch in-

hibitor hyperarcs are chosen. Is it possible to use another stopwatch model? The answer is

yes. Moreover, inhibitor hyperarcs provide more flexibility and less complication. Let us see

if this idea is feasible using other types of Petri nets with stopwatch.

We consider the post and pre-initialized Petri nets proposed in (Allahham et Alla, 2007,

2008) for stopwatch and try to control a model where a controllable transition associated with

time interval [a, b] has a bad subinterval [a, α]. Based on our hypothesis, the controller should

suspend the controllable transition at [a, a] and resume it at [α, α]. The characteristic of post

and pre-initialized Petri nets is that they consume the same token of the original model and

in addition, the exact time when the model becomes suspended is unknown as stopwatch

112

T ime

v(t1)

0 a α1 b
0

α1 − a

v(t1) = 0

v(t1) = α1 − a

Figure 6.9 Clock evaluation of t1 in the controlled TPN of Fig.6.7. Forbidden interval is
]α1, b] where a ≤ α1 < b.

transition and original transition have the same chance of firing. At the first glance, the idea

is feasible by adding one place and two transitions. However, there are some issues. We

explain the problem through an example.

We consider the same example of Fig.2.4. The suggested controlled model using post and

pre-initialized Petri nets comes in Fig.6.12. The controllable transition t1 is associated with

stopwatch. The stopwatch interrupts the task at [0, 0] and resume it at [2, 2]. The problem is:

at [0, 0], both transitions t1 and tsus are enabled with equal chance of firing whereas, in order

to have a controlled model, tsus should fire at [0, 0] before t1. Thus, the controller fails un-

less if we modify the interval associated to t1 to]0, 2] which is not of interest in this approach.

The other alternative is presented at Fig.6.13. An auxiliary place ps solves the problem.

Hence, using the stopwatch Petri nets suggested in (Allahham et Alla, 2007, 2008), it is not

easy to give a general solution to control a model considering the output of Algorithm 1.

In addition, the resulting controlled nets are more complicated. For example, in case the

controllable transition is associated with the interval [a, b] where its bad subinterval is [α, b]

and a < α then, the controlled model becomes complicated.

6.4 Illustrative example

Suppose a multitasking system with the following specifications: Four tasks t1, t2, t3 and

t4 are being executed. Only the two first tasks are controllable. The task t1 is periodic with

113

psusp

p2

p3ps1

ps2

ps0

tr2[α1 − a, α1 − a]

tr3[α2 − α1, α2 − α1]

tr1[a, a] t1[0, b− a + α1 − α2]
•

••

Figure 6.10 A simple time Petri net controlled by inhibitor hyperarcs (Tc = {t1}); bad
subinterval is [α1, α2[where a < α1 < α2 ≤ b.

a period of [6, 6], t4 is dependent on t2 and t3. Two tasks t1 and t2 share a common resource.

On the other hand, t1 enters through a single capacity buffer. It means that if t1 is not

executed by the end of its period, the system will block. The model of this system is depicted

in Fig.6.14. If t1 is not executed by the end of its period the system enters the state Block

and, t5 is the transition to be avoided. Delay is a place modeling the behavior of the buffer

considering the period of the task t1. And finally, t1 executes within [2, 2] time units, t2 in

[2, 3], t3 within [5, 6] and t4 in [0, 1].

The state class graph of the model is given in Fig.6.15 and Table 6.1 shows the state class

informations. Based on the state class graph of the system, the state classes α4, α8, α13, α14,

α18, α20 and α23 are forbidden. Let us briefly trace the algorithm on the state class graph.

First, we follow the algorithm on the left branch where the state classes α4, α8 and α13 are

located. The algorithm starts from α0 and is executed recursively to α1, then α3, α7 and

finally reaches to α13 with a forbidden marking. Then it comes back to α7 with {t5} and to

α3 with {t4t5}. The other successor available from α3 is α8 which is also forbidden. Till now,

there is no enabled controllable transition to avoid these classes and the algorithm continues

returning back to α1 with {t3t4t5, t3t5}. The other successor available from α1 is α4 which is

also forbidden. Thus, it returns back to α0 with {t2t3t4t5, t2t3t5, t2t5}. The other successor

available from α0 is α2 which is safe and the algorithm continues to α5, α9, α15, α19 and finally

α18 which is a forbidden state. Then, it goes back to α19 with {t5} and consequently to α15

with {t2t5}. The other successors available from α15 are the forbidden state α20 and the

state α2 which is already under processing. Note that two enabled controllable transitions

are available at α15 but the controller cannot act at this level because t5 may fire before t1

114

T ime

v(t1)

0 a α1 α2 b
0

α1 − a

b− a + α1 − α2

Figure 6.11 Clock evaluation of t1 in a controlled TPN of Fig.6.7. Forbidden interval is
]α1, α2] where a < α1 < α2 < b.

p1 p2

p3 p4

psusp

t2[2, 3]

t4[0, 1]t3[2,∞[

tsus[0, 0]

tresu[2, 2]

t1[0, 2]

• •

Figure 6.12 Controlling the example of Fig.2.4 using stopwatch of (Allahham et Alla, 2008).
The controller fails.

or t2 and lead to a forbidden state. Then, the algorithm continues and returns back to α9

with {t4t2t5, t2t5} where no controllable transition is available. Consequently, the algorithm

continues and returns back to α5 and finally reaches to α2 where newly enabled controllable

transitions are available. Till now the path to be avoided at α2 includes {t2t3t4t2t5, t2t3t4t5}.

The procedure is similar for the other path available from α2 including α6 and its suc-

cessors. The forbidden state reachable through this path is α23 and in order to avoid this

forbidden state, the controller can act at α21 with two enabled controllable transitions. So,

nothing is returned to α2 from this path. Having a closer look at the state class graph and the

output of the algorithm, we conclude that: at each state where t1 and t2 are newly enabled

and the controller should act (i.e.α0, α2, and α21), the controller should force t1 to fire before

t2 (i.e.t2 − t1 > 0). In other words, t2 should not be active at [2, 2]. It is sufficient to add an

115

p1 p2

p3 p4

psusp

ps t2[2, 3]

t4[0, 1]t3[2,∞[

tsus[0, 0]

tresu[2, 2]

t1[0, 2]

• •

Figure 6.13 Controlled model of Fig.2.4 using stopwatch of (Allahham et Alla, 2008).

Resource p1Delay

Wait p2Block

t5[6, 6] t3[5, 6]

t4[0, 1]

t2[2, 3]t1[2, 2]

• ••

Figure 6.14 A Periodic system with Tc = {t1, t2}.

inhibitor hyperarc to deactivate t2 at [2, 2]. The controller cannot act at the state class α15

as discussed earlier and has nothing to do at the state class α6 (the permissive controller will

act later at the state class α21). Note that, a state class like α14 which is reachable through

a forbidden state (α8) is not processed by the algorithm as it is supposed to be avoided in

the controlled system. The controlled model using inhibitor hyperarcs is given at Fig.6.16.

Our model is now safe. Yet some challenges exist. Look at the state class graph of the

model presented at Fig.6.15. In some paths one task is executed frequently while others are

still waiting. For example, see the paths leading to α17. Although the system is not blocked,

some of the tasks cannot be executed. A good scheduler had better to perform different

tasks alternatively. We may want to consider alternation, particular sequences, add a dead-

line for each task or other possible policies. And finally, we may ask if it is possible to restrict

the execution time of a task even if it is in its safe subinterval. Then, while synthesizing a

scheduler, we can add more constraints and scheduling policies beyond “safe states”. Further

116

α0

α4

α2 α6

α11

α21

α14

α1
α12

α15

α3

α7

α13

α8

α5

α9

α19

α20α18

α10

α17α16

α22α23

t2

t3

t1

t4

t2t5

t3
t5

t1

t2
t3

t3

t1

t3

t1t2
t3

t4

t1

t2

t1

t2 t5

t2

t5

t2

t4

t1

t4

t5
t2
t3

t5

t2

t3

t1

Figure 6.15 The state class graph of the TPN presented at Fig.6.14.

Resource p1Delay

Wait p2

Block

psusp
t5[6, 6]

t3[5, 6]

t4[0, 1]

t2[0, 1]t1[2, 2]

• ••

•

Figure 6.16 Controlled model of Fig.6.14 using inhibitor hyperarcs.

researches are required to answer these questions.

6.5 Conclusion

In this chapter, we have discussed that a scheduler is seen as a controller. We have also

discussed some challenges of using controller synthesis for preemptive scheduling. We have

adapted the approach explained in Section 3.4 to preemptive scheduling purposes by using

time Petri nets associated with stopwatch. Considering the over approximation required for

computing the state class graph of a time Petri nets associated with stopwatch, we have sug-

gested an alternative solution to synthesize the time Petri nets without stopwatch, extract

the appropriate controller and then, associate stopwatch to controllable transitions in order

117

Table 6.1 State classes of the TPN presented at Fig.6.14.

α0 : Delay + P1 +Resource 2 ≤ t2 ≤ 3 ∧ 5 ≤ t3 ≤ 6 ∧ 2 ≤ t1 ≤ 2 ∧ 6 ≤ t5 ≤ 6
α1 : Delay + P1 +Wait 3 ≤ t3 ≤ 4 ∧ 4 ≤ t5 ≤ 4
α2 : Delay + P1 +Resource 2 ≤ t2 ≤ 3 ∧ 3 ≤ t3 ≤ 4 ∧ 2 ≤ t1 ≤ 2 ∧ 6 ≤ t5 ≤ 6
α3 : Delay + P3 +Wait 0 ≤ t4 ≤ 1 ∧ 0 ≤ t5 ≤ 1
α4 : P1 +Wait+Block 0 ≤ t3 ≤ 0
α5 : Delay + P1 +Wait 1 ≤ t3 ≤ 2 ∧ 4 ≤ t5 ≤ 4
α6 : Delay + P1 +Resource 2 ≤ t2 ≤ 3 ∧ 1 ≤ t3 ≤ 2 ∧ 2 ≤ t1 ≤ 2 ∧ 6 ≤ t5 ≤ 6
α7 : Delay +Resource+ P1 2 ≤ t2 ≤ 3 ∧ 5 ≤ t3 ≤ 6 ∧ 2 ≤ t1 ≤ 2 ∧ 0 ≤ t5 ≤ 1
α8 : P3 +Wait+Block 0 ≤ t4 ≤ 1
α9 : Delay + P3 +Wait 0 ≤ t4 ≤ 1 ∧ 2 ≤ t5 ≤ 3
α10 : Delay + P1 +Wait 0 ≤ t3 ≤ 0 ∧ 4 ≤ t5 ≤ 4
α11 : Delay +Resource+ P3 0 ≤ t2 ≤ 2 ∧ 0 ≤ t1 ≤ 1 ∧ 4 ≤ t5 ≤ 5∧

0 ≤ t2 − t1 ≤ 1 ∧ −4 ≤ t2 − t5 ≤ −3
∧ − 4 ≤ t1 − t5 ≤ −4

α12 : Delay +Resource+ P1 2 ≤ t2 ≤ 3 ∧ 0 ≤ t3 ≤ 0 ∧ 2 ≤ t1 ≤ 2 ∧ 6 ≤ t5 ≤ 6
α13 : Resource+ P1 +Block 1 ≤ t2 ≤ 3 ∧ 4 ≤ t3 ≤ 6 ∧ −4 ≤ t2 − t3 ≤ −2
α14 : Resource+ P1 +Block 2 ≤ t2 ≤ 3 ∧ 5 ≤ t3 ≤ 6
α15 : Delay +Resource+ P1 2 ≤ t2 ≤ 3 ∧ 5 ≤ t3 ≤ 6 ∧ 2 ≤ t1 ≤ 2 ∧ 1 ≤ t5 ≤ 3
α16 : Delay + P3 +Wait 0 ≤ t4 ≤ 1 ∧ 4 ≤ t5 ≤ 4
α17 : Delay +Resource+ P3 2 ≤ t2 ≤ 3 ∧ 2 ≤ t1 ≤ 2 ∧ 6 ≤ t5 ≤ 6
α18 : P1 +Wait+Block 2 ≤ t3 ≤ 4
α19 : Delay + P1 +Wait 3 ≤ t3 ≤ 4 ∧ 0 ≤ t5 ≤ 1
α20 : Resource+ P1 +Block 0 ≤ t2 ≤ 2 ∧ 3 ≤ t3 ≤ 5 ∧ −4 ≤ t2 − t3 ≤ −2
α21 : Delay +Resource+ P1 2 ≤ t2 ≤ 3 ∧ 5 ≤ t3 ≤ 6 ∧ 2 ≤ t1 ≤ 2 ∧ 3 ≤ t5 ≤ 4
α22 : Delay + P1 +Wait 3 ≤ t3 ≤ 4 ∧ 1 ≤ t5 ≤ 2
α23 : P1 +Wait+Block 1 ≤ t3 ≤ 3

to prevent their bad subintervals. We have used inhibitor hyperarcs to suspend a controllable

transition in its bad subinterval.

The approach suggested in this chapter is useful for preemptive scheduling purposes to

manage critical sections and shared resources. Further studies could be interesting to see

how different scheduling policies or constraints could be combined to this approach.

118

CHAPTER 7

CONCLUSION

7.1 Analysis of the achievements

In this thesis, we have proposed a forward on-the-fly algorithm for controller synthesis of

safety properties in a system modeled by time Petri nets. We have also extended our algo-

rithm for controller synthesis of reachability properties. The proposed algorithm investigates

the control problem and answers to the question of existence of a controller. In other words,

the algorithm guarantees to give a controller if it exists. If this algorithm fails to calculate a

controller then, the controller does not exist. The proposed approach is decidable for bounded

time Petri nets. This algorithm does not need to calculate the controllable predecessors of

the states which is a costly operation and is used in former methods.

Our algorithm explores the state class graph of a system on-the-fly and collects the paths

leading to forbidden states. Then, it restricts the time intervals of controllable transitions to

prevent these paths happening. This approach calculates a state based controller. However,

a marking dependent controller or a static controller can be extracted. We have shown that

the state based controller is the maximally permissive. We have also proven the correctness

of the algorithm for both safety and reachability properties.

We have optimized the algorithm and suggested to use a more abstracted state space for

controller synthesis. We have investigated different methods of abstraction on our algorithm.

We have concluded that abstraction by inclusion and abstraction by convex union are con-

venient solutions to attenuate the state space explosion. Abstraction by convex hull is less

appropriate because it does not preserve the boundedness property and then marking bound-

edness. With this optimization, our algorithm is more convenient for controller synthesis of

large-scale and complex systems.

We have shown through some case studies that although abstraction methods increase

the complexity of calculations, they reduce efficiently the number of state classes. Consider-

ing the linear relation between the complexity of our controller synthesis algorithm with the

number of available states, using abstraction is very effective. The global time of processing

is reduced and state space explosion is attenuated.

119

We have investigated the implementation of our devised algorithm on modular systems

to answer the question of controller synthesis problem. We have explained how to adapt

the suggested algorithm to modular systems and achieve a set of decentralized controllers.

In summary, the idea has been to synthesis a central controller and then implement it as

a set of decentralized local controllers on a distributed system. We have shown that if a

controller exists and the proposed algorithm succeeds to calculate a controller, it is possible

to implement it on a distributed and modular system. First, the behavior of all modules

are modeled as a whole and our suggested algorithm is applied on. Then, we implement the

obtained controller on the modules. Each module has a local controller. We have considered

a global property which is unique in all modules.

We have studied independent local controllers as well as local controllers with the possi-

bility of intercommunications. We have concluded that independent local controllers are less

permissive. If intercommunication delay is comparable to the state evolution frequency and

is not negligible, this delay should be considered in the global model, before synthesizing the

controller. In that case, a place and an uncontrollable transition model the synchronization

and intercommunication delay.

Finally, we have proposed that in case a controller (like a scheduler) cannot restrict time

intervals associated with controllable transitions, the controllable transitions can be sus-

pended in their bad subintervals. In time Petri nets associated with stopwatch, it is possible

to suspend a task for a while. Synthesizing a time Petri net associated with stopwatch is

complicated and needs some over approximations. Besides, time Petri nets associated with

stopwatch do not preserve the boundedness property. In this thesis, we have suggested a more

effective alternative. We synthesize a time Petri net without stopwatch and then, equip the

controllable transitions with stopwatch where necessary. With this assumption, every con-

trollable transition can be suspended in its bad subinterval and resumed otherwise. Amongst

different types of stopwatch, our solution is based on inhibitor hyperarcs. This approach is

particularly useful at design level for preemptive scheduling purposes and managing shared

resources and critical sections.

7.2 Limitations of the approach

We have shown how to implement an already synthesized centralized controller on a mod-

ular system which is particularly interesting for controller synthesis of large-scale systems.

120

Although we have discussed some methods of abstraction, the state space explosion is always

a challenge and/or limitation in the analysis of large-scale systems.

We have discussed that in order to have a state dependent decentralized controller, timing

information of each state should be announced when a controllable transition is newly en-

abled. These exchanges are costly. Therefore, this approach is less interesting if the number

of inter module exchanges is significant.

In the approach discussed in this thesis, we have assumed that the controller can only

react on the transitions and modify their associated timing intervals. The controller cannot

modify places, the available markings or the specifications of the arcs. In fact in our approach,

the controller is limited to the given input data.

7.3 Future work

Our first perspective is to implement the suggested algorithm as a tool with a graphi-

cal interface. Model checking and controller synthesis are both very useful when applied in

practical applications in the industry. A user friendly graphical interface facilitates these syn-

thesis for both common users and professionals. Such a tool can hide complex mathematical

analysis and can facilitate application of the method in the industry.

In the control synthesis of modular systems, we have considered that the whole system

is synthesized and a centralized controller is obtained. We have answered to the controller

synthesis problem and shown how to implement an already synthesized centralized controller

on a modular system. It is interesting to study if a decentralized controller can be achieved

directly through parallel controller synthesis in each module.

Controller synthesis is also applied in preemptive scheduling purposes where a controller

is in fact a scheduler. Here, we have suggested to control a TPN using stopwatch to suspend

and resume a task when needed. This is a good starting point for further researches on

scheduling and to calculate automatically a scheduler in a multitasking system. Consider-

ing different scheduling policies is challenging and is worth to be considered in further studies.

In this thesis, our controller reacts on the timing intervals associated with the transitions.

It is interesting to investigate other controller synthesis approaches where the controller can

react on the places, markings and/or arcs. Further researches are worth to be done to extract

121

other controllers by adding new places, modifying available markings or manipulating the

arcs.

122

REFERENCES

ABID, C. et ZOUARI, B. (2010a). Decentralised active controller. 7th International Con-

ference on Informatics in Control, Automation and Robotics , ICINCO, Volume 2, 252–59.

ABID, C. A. et ZOUARI, B. (2010b). Synthesis of controllers for symmetric systems.

International Journal of Control, Volume 83, 2354–2367.

ALLAHHAM, A. et ALLA, H. (2007). Réseaux de Petri à chronomètres post et pré-

initialisés. 6ème Colloque Francophone sur la Modélisation des Systèmes Réactifs(MSR’07).

263–280.

ALLAHHAM, A. et ALLA, H. (2008). Post and pre-initialized stopwatch petri nets: Formal

semantics and state space computation. Nonlinear Analysis: Hybrid Systems, Volume 2,

1175 – 1186.

ALTISEN, K., BOUYER, P., CACHAT, T., CASSEZ, F. et GARDEY, G. (2005). Intro-

duction au contrôle des systèmes temps-réel. Journal Européen des Systèmes Automatisés,

Volume 39, 367–380.

ALTISEN, K., GOSSLER, G., PNUELI, A., SIFAKIS, J., TRIPAKIS, S. et YOVINE, S.

(1999). A framework for scheduler synthesis. 20th IEEE Symposium of Real-Time Systems.

154–63.

ALTISEN, K., GOSSLER, G. et SIFAKIS, J. (2000). A methodology for the construction

of scheduled systems. Proceedings of Formal Techniques in Real-Time and Fault-Tolerant

Systems(FTRTFT). 106–20.

ALUR, R. (1999). Timed automata. International Conference on Computer Aided Verifi-

cation: CAV’99. 8–22.

AYDIN, A. et ALTUG, I. (2009). Decentralized structural controller design for large scale

discrete event systems modelled by Petri nets. KYBERNETIKA, Volume 45, 3–14.

BADOUEL, E., BERNARDINELLO, L. et DARONDEAU, P. (1995). Polynomial algo-

rithms for the synthesis of bounded nets. 6th International Joint Conference CAA/FASE.

364–378.

BEHRMANN, G., BOUYER, P., LARSEN, K. et PELANEK, R. (2006a). Lower and upper

bounds in zone-based abstractions of timed automata. International Journal on Software

Tools for Technology Transfer, Volume 8, 204 – 15.

BEHRMANN, G., COUGNARD, A., DAVID, A., FLEURY, E., LARSEN, K. G. et LIME,

D. (2007). Uppaal-tiga: Time for playing games! 17th International Conference on Com-

puter Aided Verification, Volume 4590 of LNCS, 121–125.

123

BEHRMANN, G., DAVID, A., LARSEN, K. G., HAKANSSON, J., PETTERSON, P.,

WANG, Y. et HENDRIKS, M. (2006b). Uppaal 4.0 verification tool for timed automata.

3rd International Conference on the Quantitative Evaluation of Systems. 125–6.

BENGTSSON, J. (2002). Clocks, DBMs and states in timed systems. PhD dissertation,

Uppsala Universitet (Sweden).

BERTHOMIEU, B. et DIAZ, M. (1991). Modeling and verification of time dependent

systems using time Petri nets. IEEE Transactions on Software Engineering, Volume 17,

259–273.

BERTHOMIEU, B. et MENASCHE, M. (1983). An enumerative approach for analyzing

time petri nets. 9th World Computer Congress (IFIP). 41 – 6.

BERTHOMIEU, B. et VERNADAT, F. (2003). State class constructions for branching

analysis of time Petri nets. 9th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS). 442–457.

BOUCHENEB, H., GARDEY, G. et ROUX, O. H. (2009). TCTL model checking of time

Petri nets. Journal of Logic and Computation, Volume 6, 1509–1540.

BOUCHENEB, H. et HADJIDJ, R. (2008). Model checking of time Petri nets, vol. Petri

Net:Theory and Application. I-Tech Publishing, Vienna, Austria.

BOUCHENEB, H. et MULLINS, J. (2003). Analysis of temporal nets: calculation of o(n2)

classes and o(mn) path times. Technique et Science Informatiques, Volume 22, 435 – 59.

BOUYER, P., CHEVALIER, F., KRICHEN, M. et TRIPAKIS, S. (2005). Observation

partielle des systèmes temporisés title of translation:partial observation of timed systems.

Journal Europeen des Systemes Automatises, Volume 39, 381–393.

BOYER, M. et VERNADAT, F. (2000). Language and bisimulation relations between

subclasses of timed petri nets with strong timing semantic. Technical report, LAAS.

BOZGA, M., DAWS, C., MALER, O., OLIVERO, A., TRIPAKIS, S. et YOVINE, S. (1998).

Kronos: a model-checking tool for real-time systems. Lecture Notes in Computer Science,

Volume 1486, 298.

BUY, U. et DARABI, H. (2003). Deadline-enforcing supervisory control for time Petri nets.

IMACS Multiconference on Computational Engineering in Systems Applications (CESA).

BUY, U., DARABI, H., LEHENE, M. et VENEPALLY, V. (2005). Supervisory control

of time Petri nets using net unfolding. 29th Annual International Computer Software and

Applications Conference (COMPSAC), Volume 2, 97–100.

CASSEZ, F., DAVID, A., FLEURY, E., LARSEN, K. G. et LIME, D. (2005). Efficient

on-the-fly algorithms for the analysis of timed games. 16th International Conference on

concurrency theory. 66–80.

124

CASSEZ, F. et LARSEN, K. (2000). The impressive power of stopwatches automata. 11th

International Conference on Concurrency Theory. Proceedings of CONCUR 2000. Springer-

Verlag, 138–152.

CASSEZ, P., DAVID, A., LARSEN, K., LIME, D. et RASKIN, J.-F. (2007). Timed control

with observation based and stuttering invariant strategies. 5th International Symposium of

Automated Technology for Verification and Analysis, ATVA., Volume 4762 of LNCS, 192 –

206.

DAVID, A., KIM, G. L., LEGAY, A., NYMAN, U. et WASOWSKI, A. (2010). EC-

DAR: An environment for compositional design and analysis of real time systems. 8th

International Symposium of Automated Technology for Verification and Analysis (ATVA),

Volume 6252 of LNCS, 365–370.

DAWS, C. et TRIPAKIS, S. (1998). Model checking of real-time reachability properties using

abstractions. 4th International Conference on Tools and Algorithms for the Construction

and Analysis of Systems(TACAS), Volume 1384 of LNCS, 313–329.

GARDEY, G., ROUX, O. et ROUX, O. (2006a). State space computation and analysis of

time petri nets. Theory and Practice of Logic Programming, Volume 6, 301 – 20.

GARDEY, G., ROUX, O. E. et ROUX, O. H. (2006b). Safety control synthesis for time

Petri nets. 8th International Workshop on Discrete Event Systems. 22–28.

GHAFFARI, A., REZG, N. et XIE, X. (2003). Design of a live and maximally permissive

Petri net controller using the theory of regions. IEEE Trans. Robot. Autom., Volume 19,

137–141.

GIUA, A., DICESARE, F. et SILVA, M. (1992). Generalized mutual exclusion contraints

on nets with uncontrollable transitions.

HADJIDJ, R. (2006). Analyse et validation formelle des systèmes temps réel. PhD disser-

tation, École Polytechnique de Montréal.

HEIDARI, P. et BOUCHENEB, H. (2010). Efficient method for checking the existence

of a safety/ reachability controller for time Petri nets. 10th International Conference on

Application of Concurrency to System Design(ACSD). 201–210.

HEIDARI, P. et BOUCHENEB, H. (2012a). Controller synthesis of time Petri nets using

stopwatch. Journal of Engineering. Submitted.

HEIDARI, P. et BOUCHENEB, H. (2012b). A forward on-the-fly approach in controller

synthesis of time Petri nets. InTech - open science - open minds. Book chapter.

HEIDARI, P. et BOUCHENEB, H. (2012c). Maximally permissive controller synthesis for

time Petri nets. International Journal of Control. Accepted.

125

HEIDARI, P., BOUCHENEB, H. et HADJIDJ, R. (2011). A forward on-the-fly method for

controller synthesis in time Petri nets. IEEE Transactions on Automatic Control. Under

revision.

HEIDARI, P., BOUCHENEB, H. et HADJIDJ, R. (2012). A decentralized controller for

distributed systems modelled by time Petri nets. IEEE Transactions on Control Systems

Technology. Under revision.

HILLAH, L. (2009). Intégration des méthodes formelles au développement dirigé par les

modèles, pour la conception et la vérification des systèmes et applications répartis. PhD

dissertation, University of Pierre & Marie Curie (France).

IORDACHE, M. V. et ANTSAKLIS, P. J. (2010). Concurrent program synthesis based on

supervisory control. The American Control Conference (ACC). 3378–3383.

ISOVIC, D. et FOHLER, G. (2000). Efficient scheduling of sporadic, aperiodic, and periodic

tasks with complex constraints. Proceedings - Real-Time Systems Symposium. 207 – 216.

JENSEN, K. et ROZENBERG, G. (1991). High-level Petri nets: Theory and application.

LARSEN, K., WEISE, C., YI, W. et PEARSON, J. (1999). Clock difference diagrams.

Nordic Journal of Computing, 271–298.

LEWERENTZ, C. et LINDNER, T. (1995). Case study ‘Production Cell’: A comparative

study in formal specification and verification. No. 1009. 388 – 388.

LIEN, Y. (1976). Termination properties of generalised Petri nets. SIAM Journal on Com-

puting, Volume 5, 251–65.

LUO, J. (2009). Decentralized control approach of Petri nets based on net structure de-

composition methods. International Conference on Computers and Industrial Engineering,

CIE. 1560–67.

MELCHER, H. et WINKELMANN, K. (1998). Controller synthesis for the ‘Production

Cell’ case study. 2nd Workshop on Formal Methods in Software Practice (FMSP). 24 – 33.

MERLIN, P. M. (1974). A study of the recoverability of computing systems. PhD dissertation,

University of California, Irvine, United States.

MOODY, J. et ANTSAKLIS, P. (2000). Petri net supervisors for DES with uncontrollable

and unobservable transitions. IEEE Transactions on Automatic Control, Volume 45, 462–

76.

PENCZEK, W. et POLROLA, A. (2004). Specification and model checking of temporal

properties in time Petri nets and timed automata. 25th International conference on appli-

cation and theory of Petri nets, Volume 3099 of LNCS, 37–76.

126

RAMADGE, P. J. et WONHAM, W. M. (1987). Supervisory control of a class of discrete

event processes. SIAM Journal on Control and Optimization, Volume 25, 206–230.

ROUX, O. H. et LIME, D. (2004). Time Petri nets with inhibitor hyperarcs. formal semantics

and state space computation. ICATPN’04. 371–390.

ROUX, O.-H., LIME, D., HADDAD, S., CASSEZ, F. et BÉRARD, B. (2005). Comparison

of different semantics for time Petri nets. 3rd Automated Technology for Verification and

Analysis, Volume 3707 of LNCS, 293–307.

RUDIE, K. et WONHAM, W. (1992). Think globally, act locally: decentralized supervisory

control. IEEE Transactions on Automatic Control, Volume 37, 1692 – 708.

SATHAYE, A. S. et KROGH, B. H. (1993). Synthesis of real-time supervisors for controlled

time Petri nets. 32nd Conference on Decision and Control, Volume 1, 235–236.

SHENGBING, J., KUMAR, R., TAKAI, S. et WENBIN, Q. (2010). Decentralized control of

discrete-event systems with multiple local specifications. IEEE Transactions on Automation

Science and Engineering, Volume 7, 512 – 22.

TRIPAKIS, S. (1998). L’Analyse Formelle des Systèmes Temporisés en Pratique. PhD

dissertation, Université Joseph Fourier - Grenoble 1 Sciences et Geographie.

WONG-TOI, H. et HOFFMANN, G. (1991). The control of dense real-time discrete event

systems. 30th IEEE Conference on Decision and Control Part 2 (of 3), Volume 2, 1527–

1528.

WU, N., CHU, C., CHU, F. et ZHOU, M. (2008). Modeling and schedulability analysis of

single-arm cluster tools with wafer residency time constraints using Petri net. International

Conference on Networking, Sensing and Control, (ICNSC). 84–89.

