
c© 2020 Arun Raman

ON THE DECIDABILITY OF PROBLEMS IN LIVENESS OF CONTROLLED DISCRETE
EVENT SYSTEMS MODELED BY PETRI NETS

BY

ARUN RAMAN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Systems and Entrepreneurial Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Doctoral Committee:

Professor R. S. Sreenivas, Chair
Professor Tamer Başar
Professor Carolyn Beck
Assistant Professor Jugal Garg

ABSTRACT

A Discrete Event System (DES) is a discrete-state system, where the state changes at

discrete-time instants due to the occurrence of events. Informally, a liveness property stip-

ulates that a ‘good thing’ happens during the evolution of a system. Some examples of

liveness properties include starvation freedom – where the ‘good thing’ is the process mak-

ing progress; termination – in which the good thing is for an evolution to not run forever; and

guaranteed service – such as in resource allocation systems, when every request for resource

is satisfied eventually. In this thesis, we consider supervisory policies for DESs that, when

they exist, enforce a liveness property by appropriately disabling a subset of preventable

events at certain states in the evolution of DES.

One of the main contributions of this thesis is the development of a system-theoretic

framework for the analysis of Liveness Enforcing Supervisory Policies (LESPs) for DESs. We

model uncertainties in the forward- and feedback-path, and present necessary and sufficient

conditions for the existence of Liveness Enforcing Supervisory Policies (LESPs) for a general

model of DESs in this framework. The existence of an LESP reduces to the membership of

the initial state to an appropriately defined set. The membership problem is undecidable.

For characterizing decidable instances of this membership problem, we consider a modeling

paradigm of DESs known as Petri Nets, which have applications in modeling concurrent

systems, software design, manufacturing systems, etc.

Petri Net (PN) models are inherently monotonic in the sense that if a transition (which

loosely represents an event of the DES) can fire from a marking (a non-negative integer-

valued vector that represents the state of the DES being modeled), then it can also fire from

any larger marking. The monotonicity creates a possibility of representing an infinite-state

system using what can be called a “finite basis” that can lead to decidability. However, we

prove that several problems of our interest are still undecidable for arbitrary PN models.

That is, informally, a general PN model is still too powerful for the analysis that we are

interested in. Much of the thesis is devoted to the characterization of decidable instances

of the existence of LESPs for arbitrary PN models within the system-theoretic framework

introduced in the thesis.

ii

The philosophical implication of the results in this thesis is the existence of what can be

called a “finite basis” of an infinite state system under supervision, on which the membership

tests can be performed in finite time; hence resulting in the decidability of problems and

finite-time termination of algorithms. The thesis discusses various scenarios where such a

finite basis exists and how to find them.

iii

ACKNOWLEDGMENTS

I thank everyone for being them, for that made me who I am.

iv

TABLE OF CONTENTS

CHAPTER 1 CONTEXT . 1
1.1 Discrete Event Systems . 1
1.2 Liveness . 1
1.3 Supervisory Control of Discrete Event Systems 3
1.4 Liveness Enforcing Supervisory Policies . 4
1.5 Problem Statement and Background . 5

CHAPTER 2 NOTATIONS AND DEFINITIONS 14

CHAPTER 3 EXISTENCE OF LIVENESS ENFORCING SUPERVISORY POLI-
CIES FOR PETRI NETS . 18
3.1 Interpretation of the definition of Liveness for Petri Nets 18
3.2 Right-Closure of ∆(N) . 19
3.3 “Is ∆(N) = ∅?” and “Is ∆(N) 6= ∅?” are not Semi-Decidable 20
3.4 “Is ∆(N) right-closed?” is not decidable . 23
3.5 “Is there a right-closed subset of ∆(N)?” and “Is there no right-closed

subset of ∆(N)?” are not semi-decidable . 25
3.6 Marking-Monotone LESP for Arbitrary PNs 26
3.7 Additional Remarks about Marking-Monotone Policies 30

CHAPTER 4 SYNTHESIS OF LIVENESS ENFORCING SUPERVISORY POLI-
CIES FOR PETRI NETS USING A GENERALIZATION OF COVERABIL-
ITY GRAPHS . 39
4.1 Generalized Coverability Graphs . 39
4.2 Synthesis of LESPs using Generalized Coverability Graphs 43

CHAPTER 5 A GENERAL FRAMEWORK FOR LIVENESS ENFORCING SU-
PERVISORY POLICIES FOR DISCRETE EVENT SYSTEMS 51
5.1 B-LESPs for (D,Ψ,Θ) . 52
5.2 B-LESPs for (D,Ψ,Θ, ϕ) . 55
5.3 LESPs with Partial State Observability for Petri Nets 62
5.4 LESPs with Controllability Faults for Petri Nets 64

CHAPTER 6 CONCLUSION . 72

v

APPENDIX A PROOFS . 75
A.1 LESPs for Arbitrary PNs . 75
A.2 LESPs for arbitrary Petri Nets with Partial Marking Observation and

Controllability Faults . 79

REFERENCES . 83

vi

CHAPTER 1

CONTEXT

1.1 Discrete Event Systems

A Discrete Event System (DES) is a discrete-state system, where the state changes at

discrete-time instants due to the occurrence of events.

Definition 1. A Discrete-Event System D is a two-tuple D = (S,R) where S is the set of

states and R ⊆ S × S is a binary relation between pair of states denoting the set of events.

We use D(s0) to denote the DES D along with its initial state s0 ∈ S.

That is, if two states si and sj are related: siRsj, then it means that there is an event

whose occurrence at si takes the DES to sj. We write Succ(s) (resp. Pred(s)) for the set

{s′ ∈ S : sRs′} of immediate successors ({s′ ∈ S : s′Rs} of immediate predecessors) of state

s. A DES D is called finitely branching if Succ(s) is finite for all s ∈ S. In this thesis, we

restrict our attention to finitely branching DESs. We make a simplifying assumption that all

events in the DES occur instantaneously and asynchronously and that no two events occur

simultaneously.

1.2 Liveness

Informally, a liveness property stipulates that a ‘good thing’ happens during the evolution

of a system. Some examples of liveness properties include starvation freedom, termination,

and guaranteed service. In starvation freedom, which states that a process makes progress

infinitely often, the ‘good thing’ equates to making progress. A deadlock in which the system

is hung is an example in which the system stops making progress. In termination, which

asserts that an evolution does not run forever, the ‘good thing’ can be specified as reaching

an appropriately defined final state. In guaranteed service, such as in resource allocation

systems, every request for resource is satisfied eventually, the ‘good thing’ is a resource

being allocated. For example, in Autonomous Traffic Management at intersections, if we

1

interpret the right-of-way as a resource, then a liveness property is every vehicle waiting at

the intersection is guaranteed to enter the intersection eventually [1].

To further illustrate the significance and generality of liveness, let us consider the example

of UAVs flying in a formation. The leader-follower architecture is one of the commonly

studied formation architectures, in which one vehicle is designated as a leader and the

others as followers. The nominal trajectory for the formation is set by the leader and the

other vehicles continuously communicate with each other through sensors etc. to ensure that

they are in the right position. Suppose there is a temporary communication breakdown and

a subset of followers are completely on their own (that is, autonomous) for some amount

of time. What should each vehicle do during that frame of time? Generally, the primary

requirement (good thing) is that the vehicles do not collide with each other. The secondary

requirement (good thing) is that they should not enter a state from which they cannot

be a part of the formation anymore. Another example in which the same questions can

be posed is the case when a Robot tasked to traverse a set of trajectories in a hostile

environment suddenly loses control over some of its actuators, thus temporarily becoming

an underactuated system. Being in a hostile environment, the primary requirement (good

thing) can be that the Robot remains safe (see [2] for an actual case on similar lines). Next,

we interpret the definition of liveness proposed by Alpern in [3] for DESs.

A sequence of states s0s1s2 . . . is called a valid sequence if ∀i ≥ 0: (si, si+1) ∈ R. That

is, for all i ≥ 0, there is an event that takes the system from state si to si+1. Let Sω(s0)

(S∗(s0)) denote the set of valid infinite (finite) sequences of states in S from the initial state

s0. Without loss of generality, an evolution of a DES can be modeled as a member of Sω—

if there is a terminating state, then the infinite sequence can be obtained by repeating the

final state. That is, an evolution of D(s0) is a valid infinite sequence (string) of states:

E(D(s0)) = s0s1s2 . . . (1.1)

We call elements of Sω as evolutions and elements of S∗ as partial evolutions. A property is

a set of such sequences of states. We say that a property B holds true for an evolution E of

D(s0) if E(D(s0)) ⊆ B. For ease of exposition, we will drop the argument D(s0) when it is

clear from the context. We write σ � B when evolution σ is in property B.

Definition 2. A DES is live with respect to a property B if

∀α ∈ S∗(s0),∃β ∈ Sω such that αβ � B (1.2)

That is, every partial evolution can be extended to an evolution for which property B is

2

true. We introduce the semantics of Supervisory Control of DESs in the next section before

moving on to investigating the existence and synthesis of liveness enforcing supervisory

policies for the rest of the thesis.

1.3 Supervisory Control of Discrete Event Systems

We consider supervisory policies that, when they exist, enforce their desired objective by

appropriately disabling a subset of preventable events at certain states in the evolution. We

refer to such events as controllable events, and call its complementary subset of events as

uncontrollable events. For specifying a supervisory policy, we need: (i) appropriate semantics

that describe events in a DES, and (ii) an effective method that identifies the set of events

that can occur at any state. We achieve the former by associating a labeling map L from

the relation R (from Definition 1) to an alphabet Σ, and the latter by defining a transition

function δ : Σ×S → 2S defined as: s′ ∈ δ(a, s) if and only if sRs′ and L((s, s′)) = a. We use

Σe : S → 2Σ to denote the active event function that identifies the set of all events a ∈ Σ

for a state s for which δ(a, s) is defined. If an event e ∈ Σe(s) for some state s, we say that

e is state-enabled at s.

Definition 3. A Labeled Discrete Event System is a tuple D = (S,Σ, δ) where S and Σ

denote the set of states and labeled events respectively. The function δ : Σ × S → S is the

state transition function, where for s ∈ S, σ ∈ Σ : δ(e, s) = ŝ, implies there is an event

labeled e from state s to state ŝ.

Following the additional structure above, the set of events can be partitioned into control-

lable (Σc) and uncontrollable (Σu) events. We denote the supervisory policy by a function

P : S × Σ → {0, 1} that returns a 0 or 1 for each state and each event. We say the event

e is control-enabled at s if P(s, e) = 1 for some state s. An event has to be state- and

control-enabled before it can occur. The occurrence of an event e at state s changes the

state to s′ = δ(e, s). We would also represent this state-transition as: s
e−→ s′. The supervi-

sory policy does not control-disable any uncontrollable event, that is, P(si, e) = 1 ∀e ∈ Σu.

We would use the expression D(s0) to denote a DES D = (S,Σ, δ) with initial state s0 ∈ S.

Henceforth, we only consider Labeled Discrete Event Systems and will refer to them as just

Discrete Event Systems.

3

1.4 Liveness Enforcing Supervisory Policies

If a DES is not live with respect to a propertyB, then it is of interest to evaluate a supervisory

policy that can enforce liveness. In this section, we first define liveness in the context of

supervisory control of DESs. Then we present necessary and sufficient conditions for the

existence of a liveness enforcing supervisory policy.

A sequence of states of the DES s0s1 . . . is said to be a valid sequence under supervision

if ∀i ≥ 0, ∃e ∈ Σe(si) such that P(si, e) = 1 and si+1 = δ(e, si). Let SωP(s0) (S∗P(s0)) denote

the set of valid infinite (finite) sequences of DES states starting from s0 under supervision

of P . A DES is live under supervision of a policy P with respect to a property B if

∀α ∈ S∗P(s0),∃β ∈ SωP such that αβ � B (1.3)

We refer to such a policy as a liveness enforcing supervisory policy with respect to property

B (B-LESP). Let σi denote the first i elements of a valid sequence of states σ. We can

characterize a B-LESP by the set ∆(D), where we do not have B as an argument of ∆(·)
for simplicity, defined as follows:

Definition 4. For a DES D = (S,Σ, δ), ∆(D) ⊆ S is the set of states with the following

properties:

1. ∀s ∈ ∆(D), ∀α ∈ S∗(s), ∃β ∈ Sω such that:

(a) αβ � B

(b) ∀i such that (αβ)iŝ = (αβ)i+1, ŝ ∈ ∆(D).

2. It is control invariant. That is, ∀s1 ∈ ∆(D), eu ∈ Σe(s1) ∩ Σu and s1
eu→ s2, then

s2 ∈ ∆(D).

Item 1 states that every partial evolution from a state in ∆(D) can be extended to an

evolution for which property B holds. However, for every partial evolution from a state in

∆(D), there can also exist an evolution for which property B is not true— that is, it reaches

a state that is not in ∆(D). The control invariance property assures that only a controllable

event can take the DES to a state from where the property B cannot be made true. Then

a supervisory policy P̂ that disables a controllable event if and only if its occurrence takes

the DES state outside the set ∆(D) is a B-LESP.

Definition 5. ∀s ∈ S, ∀e ∈ Σ, the supervisory policy P̂ is such that:

1. if e ∈ Σu, P̂(s, e) = 1,

4

2. if e ∈ Σc, then P̂(s, e) = 1, if and only if s
e−→ s′ (in the absence of supervision), and

s′ ∈ ∆(D).

The definitions also lead to the interpretation that ∆(D) is the collection of states for

which a supervisory policy that can enforce liveness with respect to property B exists.

∆(D) = {s0 ∈ S : ∃ a B-LESP for D(s0)} (1.4)

The following theorem follows directly from the definitions.

Theorem 1. (s0 ∈ ∆(D)) ⇔ (∃ a B-LESP for D(s0)).

Proof. (Sketch) If s0 ∈ ∆(D), then the supervisory policy P̂ defined above is a B-LESP for

D(s0).

It follows from Definition 4 that if s0 /∈ ∆(D), then ∃ α ∈ S∗(s0) for which @β ∈ Sω such

that αβ � B.

A B-LESP P is said to be minimally restrictive if for every B-LESP P̃ , the following

condition holds: ∀s ∈ S,∀e ∈ Σ,P(s, e) ≥ P̃(s, e). Now, from Theorem 1, there exists a

B-LESP for D(s0) if and only if s0 ∈ ∆(D). Definition 5 constrains the state of the DES to

the set ∆(D). We get the following lemma:

Lemma 1. If s0 ∈ ∆(D), then the supervisory policy in Definition 5 is the minimally

restrictive B-LESP for D(s0).

Proof. P̂ disables an event only if its occurrence will take the state of the DES outside

∆(D). If there is a supervisory policy P̃ that is less restrictive than P , then it must enable

an event that takes the DES state outside ∆(D), upon which the DES will not be live. Then

P̃ cannot be a B-LESP.

1.5 Problem Statement and Background

The preceding discussion shows that the synthesis of a B-LESP reduces to the evaluation

of ∆(D) or some subset of it having similar properties. How to evaluate ∆(D) is a critical

question which we will be returning to at several points in the thesis. We discuss the

computational aspects of this evaluation and a general framework for B-LESP synthesis

next.

A decision-problem, that is posed as a “yes” or “no” question for each input, is decidable

(resp. undecidable) if there exists (resp. does not exist) a single algorithm that correctly

5

answers “yes” or “no” to all possible inputs. It is semi-decidable if there exists a single

algorithm that will always correctly answer “yes”, but does not answer at all when the

answer is “no”. Every decision-problem has an associated complementary decision-problem.

The answer to the complementary problem is “yes” if and only if the answer to the original

decision problem is “no”. A decision-problem is decidable if and only if the decision-problem

and its complement, are semi-decidable (cf. section 1.2.2, [4]).

Informally, the definition of decidability suggests that decidable problems are those for

which an algorithm that gives the correct answer, for all inputs, in finite time, exists. In

other words, for a decidable problem, an algorithm that gives the correct answer, for all

inputs, does so by performing finite number of tests. In the context of B-LESP synthesis,

first and foremost is the nature of property B. There has been work in literature on how

to characterize these properties; for example: [5] where they formally characterize liveness

properties in terms of the structure of the Buchi automaton ([6]) that specifies the property.

A discussion along these lines is not in the scope of this thesis. We tacitly assume that

testing if a given string of states (evolution) satisfies property B is decidable.

Several important liveness properties of interest can be specified in one of the following

two ways:

1. Condition on states: if a particular subset of states can be reached from every state in

an evolution of the DES, for example: termination, starvation freedom etc..

2. Condition on events: for example, there must exist a state reachable from every state

in the evolution such that a particular subset of events are state-enabled.

With these considerations, it is reasonable to expect the existence of B-LESPs to be

decidable for several properties of interest for DES with finite state space. DES with finite

state space were studied extensively by Ramadge and Wonham [7]. The accepted model

for a finite state DES is that of a finite state automaton which is the model of Definition

3 with a finite number of states. A detailed treatment of this subject can be found in the

book by Cassandras [8]. In this thesis we are particularly interested in DESs with infinite

state-spaces. Infinite state systems have found applications in modeling of software systems,

communication protocols etc..

Abdulla and others presented general principles for decidability results for infinite state

systems in [9]. They observed that the main requirement for decidability is for the state-space

to be equipped with a well-quasi order (Chapter 2 presents a formal definition) such that the

transitions between states is “monotonic”, in the sense that events from larger states lead

to larger states. The condition of well-quasi order ensures every infinite sequence of states

6

contains an element that is equal to or larger than a previous element in the sequence. Such

systems are referred to as well-structured systems. The theory for well structured transition

systems (WSTS) is presented in detail in [10] where they even show that several classical

computational models like basic process algebra ([11]), petri nets ([12]), communicating

finite-state machines([13]) are instances of WSTS. In this thesis, we consider the Petri Net

modeling paradigm, which is one particular instance of WSTS.

A PN model is a directed bipartite graph where the two sets of nodes are referred to as

places and transitions. The edges connecting the places with the transitions and vice-versa

are referred to as arcs. The arcs have weights associated with them. The initial marking,

m0, of the PN associates a non-negative, integer-valued token-load to each place. A PN

N(m0) is essentially the PN-structure N along with an initial-marking m0. A transition

is said to be state-enabled if the token-load of each of its input places is no less than the

weight associated with the arc from the place to the transition. A state-enabled transition

could fire, which reduces (resp. increases) the token-load of each of its input (resp. output)

places according to the associated arc weights. This process repeats at the newly created

token-load distribution (marking), as often as necessary.

There are several variations to the basic PN model discussed above, with many of them

obtained by generalizing the properties of arcs [14, 15, 16]. Inhibitor arcs are those that

forbid the firing of a transition unless a given subset of places is empty. They are also

referred to as zero-test arcs. Transfer arcs are those which say whether all the tokens of a

place must be added to another place. A similar idea is used define reset arcs that specify

how the firing of transitions empties certain places. In an extension of PNs known as Self

Modifying Nets, the arc weights are not constant but are a linear combination of the current

token-load of places [17]. Another extension of PNs that has found application in modeling

several behaviours is that of Colored Petri Nets in which colors are associated with tokens.

[18] showed that the expressive power of colored PNs is equivalent to that of the basic model

if the number of colors are finite. We will be considering only the basic model of PNs in this

thesis.

In the context of PNs, we work with a specific case of liveness with respect to a particular

property and would not explicitly write B with LESP, unless needed in the context. A PN

is said to be live if it is possible to fire any transition, although not necessarily immediately,

from any marking that is reachable from the initial marking. The supervisory policy enforces

liveness by preventing the firing of a subset of controllable transitions, which correspond

to controllable activities (or events) of the DES. On the other hand, the uncontrollable

transitions represent activities (or events) that are external to the DES, which cannot be

prevented from occurring by the supervisory policy. We present the notations and definitions

7

related to Petri Nets that we will be using in this thesis in Chapter 2.

We present a brief review of the literature pertinent to the synthesis of liveness enforcing

supervisory policies (LESPs) for different classes of PNs. Giua [19] introduced monitors to

supervisory control of PNs. Moody and Antsaklis [20] used monitors to enforce liveness in

certain classes of PNs. This work was extended by Iordache and Antsaklis [21] to include

a sufficient condition for the existence of policies that enforce liveness in a class of PNs

called Asymmetric Choice Petri nets. Reveliotis et al. used the theory of regions to identify

policies that enforce liveness in Resource Allocation Systems [22]. Ghaffari, Rezg and Xie

[23] used the theory of regions to obtain a minimally restrictive supervisory policy that en-

forces liveness for a class of PNs. Marchetti and Munier-Kordon [24] presented a sufficient

condition for liveness, that can be tested in polynomial time, for a class of general PNs

known as Unitary Weighted Event Graphs. Basile et al. [25] presented sufficient conditions

for minimally-restrictive, closed-loop liveness of a class of Marked Graph PNs supervised by

monitors that enforce Generalized Mutual Exclusion Constraints (GMECs). [26] presented

a necessary and sufficient condition for the existence of GMECs that enforces, among other

things, liveness, in a bounded PN. Luo et al. [27] considered various properties of supervisory

policies that ensure the marking of a PN stays within an appropriately defined polyhedron.

Specifically, they consider the problem of eliminating redundant constraints in the polyhe-

dron, which can be used to reduce the number of monitors in an invariant-based supervisor.

Dideban et al. [28] used the concept of an over-state to reduce the number of monitors in an

invariant-based controller for safe PNs. Tricas et al. [29] studied deadlocks in terms of circu-

lar waits in S4PR nets. They showed the circular wait situation corresponds to a particular

marking related to a siphon of this model. Cordone et al. [30] investigated simplified linear

and nonlinear classifiers that are maximally permissive for deadlock avoidance in resource

allocation systems. Chen and Li [31] used the vector covering approach to reduce the sets

of legal markings and first met bad markings, resulting in a maximally permissive control

policy. Hu et al. [32] found that the liveness of the PNs with flexible routes and assembly

operations can be attributed to the absence of undermarked siphons, which is realizable by

synthesizing a proper supervisory controller.

We are interested in the analysis of existence and synthesis of LESPs for a general class

of PNs. Specifically, for a PN structure N with n places, we are interested in understanding

the nature of the set ∆(N) defined as follows:

∆(N) = {m0 ∈ N n : there exists an LESP for N(m0)}, (1.5)

where N denotes the set of non-negative integers. The set ∆(N) is analogous to the set

8

∆(D) discussed in Definition 4. The test for existence (resp. non-existence) of an LESP

for an initial marking reduces to the decision-problem – “Is m0 ∈ ∆(N)?” (resp. “Is m0 /∈
∆(N)?”). Reference [33] proved that “Is m0 ∈ ∆(N)?” is undecidable for arbitrary PNs by

reducing it to the Reachability Inclusion Problem [34]. This result was further refined in [35].

Although undecidable for arbitrary PNs, there are classes of PNs, with certain structural

properties, for which the existence of an LESP is decidable [35, 36, 37, 38]. The H-class of

PN structures is the largest among the decidable classes identified in those references [37].

TheH-class has the following structural properties: (1) for each place, the weights associated

with the outgoing arcs that terminate on uncontrollable transitions must be the smallest of

all outgoing arc-weights; (2) the set of input places to each uncontrollable transition is no

larger than the set of input places of any transition which shares a common input place with

it. For these classes of PNs, ∆(N) is right-closed. That is, if there exists an LESP for an

initial marking, then there exists a (possibly different) LESP for all term-wise larger initial

markings as well.

If a transition is permitted to fire by a marking monotone policy (MM-policy) at a marking

m ∈ N n, then it will be permitted to fire at any marking m̂ ≥m, as well. If an MM-policy

that is an LESP for N(m0) is also an LESP for N(m̂0) for any m̂0 ≥m0, then we say there

is a marking monotone LESP (MM-LESP) for N(m0). That is, if there is an MM-LESP for

N(m0), then there is an MM-LESP for N(m̂0) for any m̂0 ≥m0, which means the set

∆M(N) = {m0 ∈ N n : there exists an MM-LESP for N(m0)},

is right-closed, and ∆M(N) ⊆ ∆(N). Note that if ∆(N) is right-closed, then ∆M(N) = ∆(N)

(because the firing of a transition results in a larger marking if it is fired from a larger initial

marking). Coincidentally, if N ∈ H, then ∆(N) = ∆M(N) [37]. These results in the

literature provide pointers on a possible approach to expand the class of PNs for which the

existence of an LESP is decidable. First, by restricting the properties of the set ∆(N) (for

example, right-closure); and second, by restricting the nature of the LESP (for example,

MM-LESPs). In Chapter 3, we explore this direction.

With an objective of characterizing the structure and properties of PNs for which the

existence and non-existence of an LESP is decidable, we start with investigating if it is

the right-closure of ∆(N) that is the reason for the decidability of LESP. We characterize

the exhaustive class of PNs, Ĥ, such that (N ∈ Ĥ) ⇔ (∆(N) is right-closed). Testing

membership in Ĥ-class is posed as the decision problems: “Is ∆(N) right-closed?” and “Is

∆(N) not right-closed?”. We then observe that an empty set is right-closed by definition.

Consequently, a positive result for the decision problem “Is ∆(N) right-closed?” would mean

9

that there are either countably-infinite markings or no markings for which an LESP exists.

Therefore, before venturing into the decision problem of right-closure, we investigate the

decision-problems: “Is ∆(N) = ∅?” and “Is ∆(N) 6= ∅?”. In addition to being associated

with right-closure, these can also be interpreted as a generalization of the decision problems:

“Is m0 ∈ ∆(N)?” and “Is m0 /∈ ∆(N)?” studied in [33] and [35]. We then show that “Is

∆(N) = ∅?” and “Is ∆(N) 6= ∅?” are not semi-decidable for arbitrary PNs.

Coming back to right-closure, we prove that “Is ∆(N) right-closed?” is not decidable.

Then we further reduce the scope of the problem and investigate a variation to right-closure.

We attempt to determine that for a given PN N , if there exists a subset of markings,

∆̃(N) ⊆ ∆(N), that is right-closed. This relaxation does not improve the results, and the

decision problems: “Is there a right-closed subset of ∆(N)?” and “Is there no right-closed

subset of ∆(N)?” are also not semi-decidable.

At the end, we turn our attention at restricting the nature of LESPs. We pose the decision

problems: “Is m0 ∈ ∆M(N)?′′ and “Is m0 /∈ ∆M(N)?′′ and prove that it is decidable.

That is, the existence and non-existence of an MM-LESP for an arbitrary PN is decidable.

Moreover, the algorithm for decidability also evaluates the largest ∆M(N), if ∆M(N) 6= ∅.
Thus, starting from the two decision problems: “Is m0 ∈ ∆(N)?” and “Is m0 /∈ ∆(N)?”

that are not semi-decidable, we present a string of results that culminate in decidable sub-

problems: “Is m0 ∈ ∆M(N)?” and “Is m0 /∈ ∆M(N)?”. These results lead to the conclusion

that extracting any kind of information about ∆(N) for an arbitrary PN is most likely an

extremely hard problem. Besides, we can also conclude that between the properties of the

set of initial markings for which an LESP exists, and the characteristics of the LESP, it

is the characteristics of the LESP that plays a prominent role in determining decidability.

To be specific, let R(N,m,P) denote the set of reachable markings for N(m) under the

supervision of an LESP P . If a supervisory policy P is such that R(N,m,P) (which can

have an unbounded number of markings) can be reduced to a reachability graph with a

finite number of appropriately defined symbolic markings such that the liveness property is

preserved, then the existence of P is likely to be decidable. We take this direction forward

in Chapter 4.

As noted earlier during the discussion of WSTSs, PNs have an inherent monotonicity in

their operation in that if a transition can fire from a smaller marking, then it can also fire

from any larger marking. In addition, the marking resulting from the firing of a transition

from a larger marking is greater than the marking that results from the firing of the same

transition at a smaller marking. Infinite (finite) state systems can be modeled by what are

known as unbounded (resp. bounded) PNs (see for eg. [39]). However, an algorithm for deter-

mining the reachability of a state in unbounded PNs does not exist to date. Consequently a

10

majority of the automated analysis of PNs is done using an abstraction of reachability graphs

known as coverability graphs. The coverability graph of a PN is essentially the Karp and

Miller Tree [40], where duplicate nodes are merged as one. Due to the inherent monotonicity

in the operation of PNs, if there is a string of transitions that can be fired from a marking

that results in a larger marking, then the string of transitions can be fired as often as neces-

sary, resulting in an infinite sequence of increasing markings. The main concept behind the

coverability graph is to represent this infinite sequence of increasing markings by a single

symbolic marking. With this abstraction, the coverability graph becomes a finite represen-

tation of a possibly infinite reachability graph of a PN, with possibly some loss of analytical

fidelity. The loss of information in the coverability graph notwithstanding, they are easy

to generate and have found use in testing for boundedness of places [41], existence of dead

transitions, and Model Checking [42], and others. In Chapter 4, we develop a generalized

notion of coverability graph by appropriately defining the order among markings. That is,

a general interpretation of the operator “≥”. We illustrate the utility of this generalization

through an algorithm that can be used to test the existence and non-existence LESPs for

a wide class of PNs. The generalization presented in this chapter retains more information

about the behaviour of the underlying PN as compared to the traditional coverability graph.

Consequently, it can also be effectively used in other applications of coverability graphs like

model checking.

Having investigated the existence and synthesis of B-LESP for general DES models and its

decidability in the context of PN models of DES, we move towards a general framework for

DES. From Theorem 1, the existence of a B-LESP for a DES D(s0) reduces to a membership

problem to the set ∆(D). Suppose the initial state is in ∆(D). Then for every state s received

by the supervisor and every event e, the minimally restrictive B-LESP P̂ of Definition 5 first

tests if enabling e results in a marking in ∆(D); if yes, then e is control-disabled. In addition

to evaluating ∆(D)— aspects of which we will discuss in Chapters 3 and 4, there are three

key components to this method: (i) the state s, (ii) the evaluation of the state resulting

from occurrence of event e from s, and (iii) the action of enabling or disabling the event.

Keeping these steps in mind, in Chapter 5, we tackle a general class of problem in which the

supervisory action can be impeded due to various reasons:

1. Oftentimes due to limitations of the communication channel, partial observability of

states, noise or faults, the supervisor may not receive precise state information. Be-

sides, in some cases, like for the purpose of security and privacy, precise state informa-

tion may be deliberately not communicated to the supervisor.

2. Invariably, whenever there is uncertainty, a natural thing to do is to bring in the

11

analysis of estimation or learning of parameters of the system in order to mitigate

its effects. A detailed analysis in this direction, which can also include estimation of

transition function, δ, of D among other things, is out of the scope of this thesis, but

we do include a simplified interpretation. We assume that the supervisor receives a

fixed set Θ ⊆ S as the set of ground states or the set of feasible actual states from an

estimator as supplemental information.

3. We also consider faults in the feedback channel that modify the supervisory action.

As a consequence, the policy actually supervising the DES can be different to the one

prescribed by the supervisor.

Figure 1.1 presents a block diagram of the framework that we have discussed. We will

formally discuss the framework in Chapter 5 of the thesis.

Plant DES Supervisor

Estimator or
Learning Algorithm

Figure 1.1: Supervisory Control Framework

We first define ∆(D)-like sets for specifying the necessary and sufficient conditions for the

existence of B-LESPs under this framework. Then we consider PN models and discuss the

existence and synthesis of LESPs for two specific cases: partial observability in the forward

path (an appropriately defined Ψ operator), and controllability faults in the feedback path

(an appropriately defined ϕ operator).

There are two notions of observability in the PN paradigm ([43], [44], [45]). A large

volume of literature on PNs considers the semantic in which information about the firing of

transitions is communicated with the supervisor and the supervisor then reconstructs the

marking of the PN based on the transition-firing sequence. Partial Observability in this

paradigm refers to the case when the transitions of the PN are partitioned into observable

and unobservable. Compatible with our framework of Figure 1.1, we are interested in the

second notion of partial observation in which the token-load of some of the places of the

PN is not known. The main idea behind controller synthesis in this set-up is that there is a

12

controller that can enforce a certain property only if the control action is same for all possible

actual markings of the system reconstructed from the partial token-load information.

Fault-tolerance in DES modeled by PNs has largely been explored in the context of unre-

liable resources. Informally stated, resources are modeled as tokens and a resource (token)

that was previously available can become unavailable due to faults. The unreliable avail-

ability of tokens in a PN model can take a PN from a live state to a deadlocked state.

References [46, 47, 48, 49, 50] present Fault-tolerant deadlock avoidance algorithm with un-

reliable resources for assembly and several manufacturing processes respectively. Reference

[51] presents a supervisory control framework for deadlock avoidance in sequential RASs

with resource outages. References [52] and [53] discuss deadlock avoidance problem in Au-

tomated Manufacturing Systems modeled by PNs with unreliable resources. Reference [54]

considers faults in controllers that are modeled by PNs. In this Chapter, we consider failure

events where a subset of controllable transitions becomes temporarily uncontrollable at an

arbitrary discrete-time instant. This could be due to a device- or line-fault, where commu-

nication between supervisor and plant is temporarily unavailable; or due to the activity of a

malicious-user. We assume that the loss of controllability happens only for a finite number

of event occurrences. The main idea behind LESP synthesis is to construct appropriately

defined subsets of ∆(N) and nominally constrain the marking of the PN to those subsets,

such that even when the fault does happen, the marking stays inside ∆(N).

We conclude the thesis in Chapter 6 where some areas for future research are also sug-

gested.

13

CHAPTER 2

NOTATIONS AND DEFINITIONS

We use N (N+) to denote the set of non-negative (positive) integers. The term card(•)
denotes the cardinality of the set argument. The symbol Σ∗ denotes the set of all possible

strings (including the empty string) that can be constructed from an alphabet Σ.

A binary relation ∼ on a set X is reflexive if a ∼ a, symmetric if (a ∼ b) ⇔ (b ∼ a),

and transitive if ((a ∼ b) ∧ (b ∼ c)) ⇔ (a ∼ c), for a, b, c ∈ X. A Quasi Ordering (qo)

is any reflexive and transitive relation. A well quasi ordering (wqo) is a qo in which every

strictly decreasing sequence and every subset of incomparable elements is finite. For a well

quasi ordered set, every nonempty subset has atleast one but no more than finite number

of minimal elements [55]. A wqo is a well order if every nonempty subset has exactly one

minimal element.

The unit vector whose i-th value is unity is represented as 1i. Given two integer-valued

vectors x,y ∈ N k, we use the notation x ≥ y if xi ≥ yi for all i ∈ {1, 2, . . . k}. We use the

term max{x,y} to denote the vector whose i-th entry is max{xi,yi}.
Suppose x1, . . . ,xk ∈ Rn, and λ1, . . . , λk ∈ R, where R denotes the set of real numbers.

Then
∑k

i=1 λixi is a convex combination of the vectors x1, . . . ,xk ∈ Rn if ∀i, λi ≥ 0 and∑k
i=1 λi = 1. The Minkowski sum of A ⊆ Rn and B ⊆ Rn is the set {a+ b : a ∈ A, b ∈ B}.

The convex-hull conv({x1, . . . ,xk}) of a set of vectors {x1, . . . ,xk} is the smallest convex set

that contains it. We use the term Int(•) to denote the set of integer-valued vectors contained

in the set argument. For instance, Int(conv({x1, . . . ,xk})) denotes the set of integer-valued

vectors in the convex hull of {x1, . . . ,xk}.
A Petri net structure N = (Π, T,Φ,Γ) is an ordered 4-tuple, where Π = {p1, . . . , pn} is a

set of n places, T = {t1, . . . , tm} is a collection of m transitions, Φ ⊆ (Π × T) ∪ (T × Π) is

a set of arcs, and Γ : Φ → N+ is the weight associated with each arc. A PN is said to be

Ordinary if the weights associated with its arcs is unitary. That is, ∀τ ∈ Φ,Γ(τ) = 1. The

initial marking function (or the initial marking) of a PN structure N is a function m0 : Π

→ N n, which identifies the number of tokens in each place. The marking can be interpreted

as an integer-valued vector where the i-th component represents the token load of the i-th

place pi ∈ Π. For ease of exposition, some of the symbols that we have used to denote a

14

marking are specific to that particular section. The meaning of a particular symbol should

be clear from the context.

We use the notation m(p) to denote the tokens in place p ∈ Π. Let Π1 ⊆ Π2 ⊆ Π, m1 ∈
N card(Π1) and m ∈ N card(Π2). We use the notation m(Π1) = m1 to denote m(p) = m1(p),

for all p ∈ Π1.

We will use the term Petri net (PN) and the symbol N(m0) to denote a PN structure N

along with its initial marking m0. In graphical representations of PNs, the places are repre-

sented by circles, transitions by rectangles, and arcs are represented by directed edges. For

brevity, only the non-unitary arc-weights are placed alongside arcs in graphic representations

of PNs in this paper. The tokens are represented by filled-circles that reside in the circles that

represent places. The set of transitions in the PN is partitioned into controllable- (Tc ⊆ T)

and uncontrollable-transitions (Tu ⊆ T). The controllable (uncontrollable) transitions are

represented as filled (unfilled) boxes in graphical representation of PNs.

We define the sets •x = {y|(y, x) ∈ Φ} and x• = {y|(x, y) ∈ Φ}. A transition t ∈ T is said

to be state-enabled at a marking mi if ∀p ∈ •t,mi(p) ≥ Γ(p, t). The set of state-enabled

transitions at marking mi is denoted by the symbol Te(N,m
i).

If tj ∈ Te(N,m), then m ≥ IN•,j, which is the j-th column of the n×m input matrix IN,

defined as

INi,j =

{
Γ(p, t) if pi ∈ •tj,

0 otherwise.

The output matrix is an n×m matrix that encodes the firing of an enabled transition:

OUTi,j =

{
Γ(t, p) if pi ∈ t•j ,

0 otherwise.

The incidence matrix C of the PN N is an n×m matrix, where C = OUT− IN.

A supervisory policy P : N n × T → {0, 1}, is a function that returns a 0 or 1 for each

marking and each transition. The supervisory policy P permits the firing of transition tj

at marking mi, if and only if P(mi, tj) = 1. If P(mi, tj) = 1 for some marking mi, we say

the transition tj is control-enabled at mi. A transition has to be state- and control-enabled

before it can fire. To reflect the fact that the supervisory policy does not control-disable

any uncontrollable transition, we assume that ∀mi ∈ N n,P(mi, tj) = 1, if tj ∈ Tu. A state-

and control-enabled transition t can fire, which changes the marking mi to mi+1 according

to mi+1(p) = mi(p)− Γ(p, t) + Γ(t, p).

A string of transitions σ = t1 . . . tk, where tj ∈ T (j ∈ {1, . . . , k}), is said to be a valid

firing string starting from the marking mi if 1) the transitions t1 ∈ Te(N,mi), P(mi, t1) = 1,

15

and 2) for j ∈ {1, 2, . . . , k − 1}, the firing of the transition tj produces a marking mi+j and

tj+1 ∈ Te(N,mi+j) and P(mi+j, tj+1) = 1. If mi+k results from the firing of σ ∈ T ∗ starting

from the initial marking mi, we represent it symbolically as mi σ→ mi+k. If x(σ) is an

m-dimensional vector whose i-th component corresponds to the number of occurrences of ti

in a valid string σ, and if mi σ−→mj, then mj = mi + Cx(σ).

Given an initial marking m0, the set of reachable markings for m0, which is denoted by

R(N , m0), is defined as the set of markings generated by all valid firing strings starting with

marking m0 in the PN N . The set of reachable markings under the supervision of P in N

from the initial marking m0 is denoted by R(N , m0, P).

A PN N(m0) is said to be live if ∀t ∈ T,∀mi ∈ R(N,m0),∃mj ∈ R(N,mi) such that

t ∈ Te(N,mj) (cf. level 4 liveness, [12, 56]). A transition tk is live under the supervision of

P , if ∀mi ∈ R(N,m0,P),∃mj ∈ R(N,mi,P) such that tk ∈ Te(N,mj) and P(mj, tk) = 1.

A policy P is a liveness enforcing supervisory policy (LESP) for N(m0) if all transitions

in N(m0) are live under P . The policy P is said to be minimally restrictive if for every

LESP P̂ : N n × T → {0, 1} for N(m0), the following condition holds: ∀mi ∈ N n,∀t ∈
T,P(mi, t) ≥ P̂(mi, t). The set

∆(N) = {m0 : ∃ an LESP for N(m0)}

represents the set of initial markings for which there is an LESP for a PN structure N . The

set ∆(N) is control invariant with respect to N . That is, if m1 ∈ ∆(N), tu ∈ Te(N,m1)∩Tu
and m1 tu→ m2 in N , then m2 ∈ ∆(N). Equivalently, only the firing of a controllable

transition at any marking in ∆(N) can result in a new marking that is not in ∆(N). There

is an LESP for N(m0) if and only if m0 ∈ ∆(N). If m0 ∈ ∆(N), the LESP that prevents

the firing of a controllable transition at any marking when its firing would result in a new

marking that is not in ∆(N), is the minimally restrictive LESP for N(m0) [33].

A supervisory policy P : N n × T → {0, 1} is a marking monotone policy (MM-policy)

if ∀m̂ ≥ m,∀t ∈ T,P(m̂, t) ≥ P(m, t). That is, if a transition is permitted by an MM-

policy at a marking, it will be permitted at a larger marking as well. If an MM-policy that

is an LESP for N(m0), is also an LESP for N(m̂0),∀m̂0 ≥ m0, then it is said to be a

marking-monotone LESP (MM-LESP) for N(m0). The set

∆M(N) = {m0 : ∃ an MM-LESP for N(m0)}

denotes the set of initial marking for there is an MM-LESP for the PN structure N . It

follows that ∆M(N) ⊆ ∆(N).

16

A set of markingsM⊆ N n is said to be right-closed if ((m1 ∈M)∧(m2 ≥m1)⇒ (m2 ∈
M)). A right-closed set, M, is uniquely identified by its finite set of minimal elements

denoted by min(M). The empty-set is right-closed by definition; and ∆M(N) ⊆ ∆(N), is

right-closed for any PN structure N .

The H-class of PN structures is identified by the following structural properties: (1) for

each place, the weights associated with the outgoing arcs that terminate on uncontrollable

transitions must be the smallest of all outgoing arc-weights; (2) the set of input places to

each uncontrollable transition is no larger than the set of input places of any transition

which shares a common input place with it. Formally stated, let Ω(t) = {t̂ ∈ T |•t ∩• t̂ 6= ∅}
denote the set of transitions that share a common input place with t ∈ T for a PN structure

N = (Π, T,Φ, F). A PN structure N ∈ H if and only if ∀p ∈ Π, ∀tu ∈ p• ∩ Tu, we have

(Γ(p, tu) = mint∈p•Γ(p, t)) ∧ (∀t ∈ Ω(tu),
• tu ⊆• t). For these classes of PNs, ∆(N) is

right-closed [37].

A PN structure is free-choice (FC) if ∀p ∈ Π, card(p•) > 1⇒ •(p•) = {p}, where card(•)
denotes the cardinality of the set argument. In other words, a PN structure is free-choice

if and only if an arc from a place to a transition is either the unique output arc from that

place, or, is the unique input arc to the transition. ∆(N) is right-closed for an FCPN and

the existence of an LESP for N(m0) is decidable [35].

17

CHAPTER 3

EXISTENCE OF LIVENESS ENFORCING
SUPERVISORY POLICIES FOR PETRI NETS

3.1 Interpretation of the definition of Liveness for Petri Nets

In Chapter 2, we mentioned that in the context of PNs, we say that transition tk is live under

the supervision of P , if ∀mi ∈ R(N,m0,P), ∃mj ∈ R(N,mi,P) such that tk ∈ Te(N,mj)

and P(mj, tk) = 1. A policy P is a liveness enforcing supervisory policy (LESP) for N(m0)

if all transitions in N(m0) are live under P . In addition, the set ∆(N) represents the set of

initial markings for which there is an LESP for a PN structure N .

In the context of the definitions given by Alpern [3], for a general case, enforcing ∆(N)

is equivalent to enforcing a liveness property and not necessarily equivalent to enforcing a

safety property. If B is a safety property, then ∀σ ∈ Sω:

(σ 2 B)⇒ (∃i ∈ N : ∀β ∈ Sω, σiβ 2 B) (3.1)

A safety property means that if an infinite string is not in B, then there exists a finite

substring for which every extension results in string not in B. Informally, a safety property

implies that: (i) a bad thing never happens; (ii) if it happens, it is irremediable; and (iii)

the point at which the bad thing happens is an identifiable point. Now, when the objective

is to enforce ∆(N), the bad thing would be the marking leaving the set; and it leaves the

set at an identifiable point.

Let us consider a marking m0 /∈ ∆(N). It is possible that for every marking reachable from

m0 there is an uncontrollable way of reaching a marking in ∆(N) and also an uncontrollable

way of reaching a marking that is not in ∆(N). Because of the “every” clause in the definition

of a safety property, enforcing ∆(N) is not equivalent to enforcing a safety property, for a

general case, if we strictly go by the definition given by Alpern. However, we can draw some

philosophical parallels. The relation between enforcing ∆(N) and a safety property depends

entirely on the interpretation of “irremediable” in the context of supervisory control. We do

not delve any deeper into this discussion in this thesis but just mention that if we interpret

18

irremediable as no guaranteed way of reaching ∆(N), then philosophically, enforcing ∆(N)

is equivalent to enforcing a safety property.

3.2 Right-Closure of ∆(N)

In Chapter 1, we noted that the H-class of PN structures is the largest among the classes

identified in [35, 36, 37, 38] for which the existence of an LESP is decidable and for which

∆(N) is right-closed. Consider the PN structure N1 shown in Fig. 3.1. It does not belong

to H-class as the outgoing arcs of place p1 violate the H-class restriction. However, it can

be verified that ∆(N1) = {m ∈ N 5 : (m(p1) + m(p2) + m(p3) + m(p4) + m(p5) ≥ 1)}, is

indeed right-closed. This example illustrates that there are PN structures that do not belong

to H-class but still have a right-closed ∆(N). In this section, we present a necessary and

sufficient condition for the right-closure of ∆(N) for an arbitrary PN structure N .

Recall that for an uncontrollable transition tu, INtu is the smallest integer-valued vector

that state-enables tu. Let P = Int(conv({INtu}tu∈Tu)) (resp. k × P = Int(conv({k ×
INtu}tu∈Tu)), k ∈ N) denote the set of integer-valued vectors in the convex-hull of the

columns of the input matrix IN (resp. k times the columns of the input matrix IN) that

correspond to the uncontrollable transitions in N .

Let Ĥ be a class of PN structures where for any N ∈ Ĥ,

(m ∈ ∆(N))⇒ ((m + P) ⊂ ∆(N)). (3.2)

That is, if m ∈ ∆(N), then ∀x ∈ P, (m + x) ∈ ∆(N). The operator “+” in Equation 3.2

denotes the Minkowski Sum as defined in Section 2. Note that recursing over the expression

in Equation 3.2 will give us an equivalent condition: (m ∈ ∆(N)) ⇒ ((m + k × P) ⊂
∆(N)), k ∈ N . The following result shows that for any N ∈ Ĥ the set ∆(N) is right-closed;

and if ∆(N) right-closed, then N ∈ Ĥ.

Theorem 2. (N ∈ Ĥ) ⇔ (∆(N) is right-closed).

Proof. See Appendix.

Coming back to the Petri Net N1 in Figure 3.1, the set P for N1 consists of five vectors

of N 5, viz., {(1 0 0 0 0)T , (0 2 0 0 0)T , (0 0 1 0 0)T , (0 0 0 1 0)T , (0 0 0 0 1)T}. For any

marking m ∈ ∆(N1) (i.e. m(p1) + m(p2) + m(p3) + m(p4) + m(p5) ≥ 1), it is easy to verify

that m∗ ∈m+P satisfies m∗(p1) +m∗(p2) +m∗(p3) +m∗(p4) +m∗(p5) ≥ 1. Thus, N1 ∈ Ĥ.

19

p1
p2

t4

t1

p4
p3

t2

t3

2

p5

t5 t6

Figure 3.1: A PN structure N1 /∈ H.

In subsequent sections, we prove that the necessary and sufficient condition of Theorem

2 cannot be tested for an arbitrary PN structure. To establish this, we need the results

presented in the next section where we consider the decidability of “Is ∆(N) = ∅?” and “Is

∆(N) 6= ∅?” for arbitrary PN structures.

3.3 “Is ∆(N) = ∅?” and “Is ∆(N) 6= ∅?” are not

Semi-Decidable

From an arbitrary PN structure N = (Π, T,Φ,Γ), we construct Ñ = (Π̃, T̃ , Φ̃, Γ̃) as follows:

1. Create m+ 1 places such that Π̃ = Π ∪ {πi}m+1
i=1 ;

2. Create n + 2 transitions such that T̃ ← T ∪ {tm+i}n+2
i=1 , where with the exception of

tm+1, all other newly added transitions are uncontrollable;

3. Create m+ 1 uncontrollable transitions: T̃ ← T̃ ∪ {τi}m+1
i=1 ;

4. The arcs are:

Φ̃←Φ ∪ {(tm+1, pi)}ni=1 ∪ {(ti, πi), (πi, τi), (πi, τm+1)}mi=1

∪ {(pi, tm+2+i), (πm+1, tm+2+i), (tm+2+i, πm+1)}ni=1

∪ {(tm+2, πm+1), (πm+1, tm+2), (πm+1, tm+1)}

∪ {(τm+1, πm+1)};

5. The arc weights are: {Γ̃((tm+1, pi) = m0
i)}ni=1, Γ̃(πm+1, tm+2) = 2. All other weights

for the newly added arcs are unitary.

20

t

t

N

!
p

p

n
p

p

p

n
p

m
t

!

m

!

!
! m

 m

!

 m
t

 m
t
 m

t
 m

t

 m n
t

!
m

!
m

n
m

 !m

Figure 3.2: The PN structure Ñ = (Π̃, T̃ , Φ̃, Γ̃) used for deciding “Is ∆(N) = ∅?”.

The PN structure Ñ = (Π̃, T̃ , Φ̃, Γ̃) that results from this construction is shown in Fig. 3.2.

N is an arbitrary PN and its structure is not drawn in the figure. The places {pi}ni=1 and

transitions {ti}mi=1 denote the places and transitions of N .

Recall from Section 2 that a transition tk is live under the supervision of P if ∀mi ∈
R(N,m0,P),∃mj ∈ R(N,mi,P) such that tk ∈ Te(N,mj) and P(mj, tk) = 1. A policy P
is a liveness enforcing supervisory policy (LESP) for N(m0) if all transitions in N(m0) are

live under P .

Let m̃0 be an initial marking of Ñ . Transition τm+1 is live if and only if (iff) a marking

that places at least a token in each of the places πi, for all i ∈ {1, 2, . . . ,m}, is reachable

from any marking that is reachable from m̃0. Firing of the uncontrollable transition τi can

empty the tokens in πi, for all i ∈ {1, 2, . . . ,m}. Therefore, τm+1 is live iff the token load of

places πi for all i ∈ {1, 2, . . . ,m} can be replenished as often as necessary. Since transition

ti is the input transition of the place πi for all i ∈ {1, 2, . . . ,m}, τm+1 is live iff PN N can

be made live. More formally, if m0 is an initial marking of N , then τm+1 is live iff there

exists a supervisory policy P such that ∀ti ∈ T,∀mk ∈ R(N,m0,P),∃mj ∈ R(N,mk,P)

such that ti ∈ Te(N,m
j) and P(mj, t) = 1. This observation can also be restated as: a

marking that places one (or arbitrarily large number of tokens) token in πm+1 is reachable

from any marking that is reachable from the initial marking iff N(m0) can be made live by

supervision.

21

Consider the place πm+1 and assume for the sake of discussion that tm+1 is control-disabled.

If πm+1 has more than one token, the uncontrollable transition tm+2 can fire repeatedly till

there is just one token in πm+1. That is, if a policy disables tm+1, then a marking at which

πm+1 has 1 token is always reachable from a marking at which πm+1 has k > 0 tokens.

Besides, if πm+1 has a non-zero token load, then the places {p1, p2, . . . , pn} in PN N

can be emptied through an appropriate number of firings of members of the uncontrollable

transition set {tm+3, tm+4, . . . , tm+n+2}. In other words, if a policy disables tm+1 at marking

m of Ñ for which m(πm+1) 6= 0 and m(pi) 6= 0 for some i ∈ {1, . . . , n}, then a marking at

which the places {p1, p2, . . . , pn} are all empty is reachable from m.

We use m ∈ N card(Π̃) to represent this marking of Ñ at which πm+1 has one token while all

other places have zero tokens in them. We use the ideas from the preceding two paragraphs

to synthesize a policy which does not control-enable transition tm+1 until the PN reaches the

marking m. At m, the firing of the transition tm+1 places m0
i -many tokens in place pi, where

i ∈ {1, 2, . . . , n}. This is akin to initializing the PN structure N with a marking m0, while

the rest of the places of Ñ are all empty. Here we have used m0 to denote the marking for

which m0(pi) = m0
i . Following the discussion above, a token (or arbitrarily large number of

tokens) is guaranteed to be added to place πm+1 if and only if m0 ∈ ∆(N). Once there is a

token in πm+1, transition tm+1 cannot be control-enabled until the PN reaches the marking

m, and the sequence can be repeated, making Ñ live. This is the main idea of the proofs

given in Appendix.

Observation 1. (∆(Ñ) 6= ∅)⇔ (m ∈ ∆(Ñ))

Proof. See Appendix

Observation 2. (m ∈ ∆(Ñ))⇔ (m0 ∈ ∆(N))

Proof. See Appendix

Theorem 3. 1. “Is ∆(N) 6= ∅?” is not semi-decidable.

2. “Is ∆(N) = ∅?” is not semi-decidable.

Proof. By Observations 1 and 2, we have (∆(Ñ) 6= ∅)⇔ (m0 ∈ ∆(N)). This result follows

directly from the fact that neither “Is m0 ∈ ∆(N)?” nor “Is m0 /∈ ∆(N)?” is semi-

decidable [35].

22

...

...

p1 p2 pn

pi
pi

π1 π2 πm

t1 t2 tm

πm+1

πm+2

τ1 τ2 τm
τm+1

𝛾i

ϵi

δi

i∈{1,2,…,n} i∈{1,2,…,n}

N

N

βi

Figure 3.3: The PN structure N = (Π, T,Φ,Γ) used for deciding “Is ∆(N) right-closed?”.

3.4 “Is ∆(N) right-closed?” is not decidable

In this section, we use the fact that ∆(N) = ∅ is right-closed to prove that “Is ∆(N) right-

closed?” is not decidable. We construct a partially controlled PN N = (Π, T,Φ,Γ) from an

arbitrary partially controlled PN N = (Π1, T1,Φ1,Γ1) as follows:

1. Create m+ n+ 2 places such that Π = Π1 ∪ {πi}m+2
i=1 ∪ {βi}ni=1.

2. Create 3n+m+1 transitions: T = T1∪{τi}m+1
i=1 ∪{γi}ni=1∪{εi}ni=1∪{δi}ni=1; where {γi}ni=1

and {δi}ni=1 are controllable transitions, and {τi}m+1
i=1 and {εi}ni=1 are uncontrollable

transitions.

3. The arcs are:

Φ1 =Φ ∪ {(ti, πi), (πi, τi), (πi, τm+1), (πm+2, ti), (ti, πm+2)}mi=1

∪ {(πm+2, γi), (γi, βi), (βi, εi), (pi, εi), (δi, pi)}ni=1

∪ {(πm+1, γi), (πm+1, δi), (δi, πm+2)}ni=1.

4. Weights for the newly added arcs are unitary.

The construction can be divided into five parts:

23

1. An arbitrary netN , which is the core of the construction. Places {pi}ni=1 and transitions

{ti}mi=1 belong to PN N whose structure is not drawn in the construction.

2. The enable place πm+2 which is required to have a non-zero token load if any transition

in N is to be state-enabled.

3. Places {πi}mi=1 and transitions {τi}mi=1 capture the liveness property of subnet N as

described in the introductory discussion in Section 3.3.

4. Places {βi}ni=1 and transitions {γi, εi}ni=1: Each time a (controllable) γi-transition is

permitted to fire, it decreases (resp. increments) the token load of its input-place

set (resp. output-place set) {πm+1, πm+2} (resp. {βi}). The subsequent firing of the

(uncontrollable) εi-transition decrements the number of tokens in place pi from N by

unity.

5. Transitions {δi}ni=1: The firing of a (controllable) δi-transition increments the token

load of place pi. It also replenishes the tokens in πm+2. In essence, the firing of a

δi-transition cancels the effect of permitting a γi-transition (cf. Item 4) on place πm+2,

and the effect of firing of εi-transition on place pi. Since the transitions {γi, δi}ni=1

are controllable, the supervisory policy can select which one of them is to be control-

enabled at any marking.

The observation that is key to the decidability result in this section is that there is a

marking in ∆(N) if and only if there is a marking in ∆(N). The main idea is as follows.

Assume there exists a marking m1 ∈ ∆(N). Let us use m1 to denote the marking of N

that initializes N under m1, with a single token in πm+2, and zero tokens elsewhere. We

argue that (m1 ∈ ∆(N)) ⇒ (m1 ∈ ∆(N)). Now, starting at m1 the transitions in T1 can

be made live under supervision as m1 ∈ ∆(N). This ensures that the markings for which

the place πm+1 has arbitrarily large number of tokens are reachable from any marking that

is reachable from m1. For illustration, let us use mj to denote one such marking.

1. At mj, place πm+1 has two tokens, πm+2 has one token, mj(Π1) ∈ ∆(N) and all other

places have zero tokens. As discussed earlier, mj is reachable from m1. At mj, pick

any pi that has a non-zero token load. The corresponding controllable transition γi is

state- and control-enabled at this marking. In fact, since m1 ∈ ∆(N), markings for

which γi is state- and control-enabled are reachable from mj for every i ∈ {1, . . . n}.

2. We have γ•i = βi and •εi = {pi, βi}. The firing of γi will remove a token each from

πm+1 and πm+2 and add one token to place βi. Since πm+2 had only one token, none of

24

the transitions in T1 can fire and the marking of N cannot change. Thus, a marking

that state-enables the uncontrollable transition εi is reachable from mj. In fact, since

γ•i = βi and •εi = {pi, βi}, following the discussion in Item 1 above, markings for which

εi is state-enabled are also reachable from mj for every i ∈ {1, . . . n}. The firing of εi

will decrease the token-load of pi and βi by one.

3. Following this, the corresponding transition δi is control-enabled. The firing of δi

replenishes the token-load of pi and πm+2 by one, effectively cancelling the effect of the

firing of γi and εi on them, as discussed above.

4. Since m1 ∈ ∆(N), the tokens in place πm+1 can be replenished as often as necessary

and the whole process can be repeated for each γi, εi and δi, for all i ∈ {1, 2, . . . , n}.
Thus, markings that state- and control-enable each of the transitions in N are reachable

from every marking that is reachable from the initial marking (m1). All transitions in

N(m1) are live under supervision, and ∆(N) 6= ∅.

Observation 3. (∆(N) 6= ∅)⇔ (∆(N) 6= ∅)

Proof. See Appendix.

Observation 4. (∆(N) 6= ∅) ⇔ (∆(N) is not right-closed)

Proof. See Appendix.

Theorem 4. “Is ∆(N) right-closed?” is not decidable.

Proof. By Observation 4, we have that (∆(N) 6= ∅) ⇔ (∆(N) is not right-closed). This

result follows directly from the fact that neither “Is ∆(N) = ∅?” nor “Is ∆(N) 6= ∅?” is

semi-decidable (by Theorem 3).

In this section, we proved that “Is ∆(N) is right-closed?” is not decidable. In the next

section we consider the decidability of “Is there a (non-empty) right-closed subset of ∆(N)?”.

3.5 “Is there a right-closed subset of ∆(N)?” and “Is there no

right-closed subset of ∆(N)?” are not semi-decidable

In this section we look at procedures for finding right-closed subsets of ∆(N) for an arbitrary

PN N . Every ∆(N), trivially, has the empty set as its right-closed subset. Therefore, we

consider only the non-empty subsets of ∆(N). We use the construction in Fig. 3.2. Recall

25

from Section 3.3 that at the marking m, πm+1 has one token while all other places have

zero tokens in them. In Observation 2, we noted that the supervisory policy that enforces

liveness in Ñ enables tm+1 only after Ñ has reached the marking m. The marking m is

reachable from any marking larger than m through the firing of uncontrollable transitions

tm+2 to tm+n+2. This observation forms the basis of the next result.

Observation 5. Let m ≥m, then (∆(Ñ) 6= ∅)⇔ (m ∈ ∆(Ñ)).

Proof. See Appendix.

Observation 6. (∆(Ñ) 6= ∅)⇔ (∃M ⊆ ∆(Ñ), such thatM is right-closed, and min(M) =

{m}).

This observation follows directly from Observation 5. The next result follows from Obser-

vation 6 and Theorem 3.

Theorem 5. For an arbitrary PN N ,

1. “Is there a right-closed subset of ∆(N)?” is not semi-decidable.

2. “Is there no right-closed subset of ∆(N)?” is not semi-decidable.

Till now, we showed that restricting the properties of ∆(N) does not result in decidable

instances of the problem of existence of an LESP for N(m0). In the next section, we focus

on a restricted class of LESPs, i.e. marking-monotone LESP (MM-LESP), whose existence

for arbitrary PNs is proved to be decidable.

3.6 Marking-Monotone LESP for Arbitrary PNs

An LESP P for N(m0) is an MM-LESP if (1) ∀m̂ ≥ m, ∀t ∈ T,P(m̂, t) ≥ P(m, t), and

(2) P is also an LESP for N(m̂0) for any m̂0 ≥ m0. For a PN structure N , the set

∆M(N) := {m0 ∈ N n : ∃ an MM-LESP for N(m0)} is a right-closed subset of ∆(N). As an

example, for the PN structure N1 shown in Fig. 3.1, ∆(N1) = {m ∈ N 5 : (m(p1) + m(p2) +

m(p3) + m(p4) + m(p5) ≥ 1)}, and ∆M(N1) = ∆(N1). The trivial policy of enabling all

transitions is an MM-LESP for N(m0) for any m0 ∈ ∆(N). There are some known classes of

PNs for which ∆M(N) = ∆(N), and the existence of the minimally restrictive LESP, which

is also an MM-policy, for N(m0) is decidable [35, 36, 37, 38].

We are interested in determining whether there is an MM-LESP for an arbitrary PN

N(m0) (i.e. “Is m0 ∈ ∆M(N)?” and “Is m0 /∈ ∆M(N)?”). We present a (decidable)

26

necessary and sufficient condition for the existence of an MM-LESP for N(m0). This result

involves the coverability graph G(N(m0),P) = G(V,A,Ψ), which is essentially the Karp-

Miller tree, where the duplicate nodes are merged as one (cf. Fig. 1, [35]). More formally,

the coverability graph of a PN N(m0) under the supervision of a marking monotone policy

P is a directed graph G(N(m0),P) = (V,A,Ψ), where V is the set of vertices, A is the

set of directed edges, and Ψ : A → V × V is the incidence function. For each a ∈ A, if

Ψ(a) = (vi, vj), then the directed edge a is said to originate (terminate) at vi (vj) (cf. Fig. 1

and 2, [35]). Since each vertex in the coverability graph has at most one outgoing edge labeled

by each transition in T , directed paths in the coverability graph can be unambiguously

identified by strings in T ∗. If there is a path from vi ∈ V to vj ∈ V with label σ∗ ∈ T ∗

in G(N(m0),P), we denote it as vi
σ∗−→ vj. Following Reference [35], we say G(N(m0),P)

satisfies the path-requirement if ∃v1, v2 ∈ V, ∃σ1, σ2 ∈ T ∗, such that (1) v1
σ1−→ v2

σ2−→ v2, (2)

x(σ2) ≥ 1, that is, all transitions in T appear at least once in σ2, and (3) Cx(σ2) ≥ 0, where

x(•) ∈ Nm is an m-dimensional vector, which represents the number of occurrences of each

t ∈ T in the string argument.

Theorem 6. There is an MM-LESP for N(m0) if and only if ∃∆̂(N) ⊆ ∆(N), such that

1. m0 ∈ ∆̂(N),

2. ∆̂(N) is control invariant with respect to N ,

3. ∆̂(N) is right-closed, and

4. ∀mi ∈ min(∆̂(N)), G(N(mi), P) satisfies the path requirement. That is, ∀mi ∈
min(∆̂(N)), there is a path v0

σ1→ v1
σ2→ v1, in the coverability graph G(N(mi),P) =

(V,A), such that x(σ2) ≥ 1 and Cx(σ2) ≥ 0, where 1 is the m-dimensional vector of

all ones, P ensures the reachable markings never leaves ∆̂(N).

Proof. See Appendix.

Algorithm 3, which strongly parallels the procedure in Fig. 8 of reference [35], is a pro-

cedure for determining the largest set ∆̂(N) that satisfies the properties listed in Theorem

6. Let ∆f (N) ⊇ ∆(N) denote the set of all initial markings for which an LESP exists for

N when all transitions are assumed to be controllable. Reference [33] proved that ∆f (N) is

right-closed and is computable. ∆f (N) is the initial estimate of ∆(N). Algorithm 3 finds,

if it exists, by brute force, the largest right-closed control invariant subset of ∆f (N), whose

minimal elements satisfy the path-requirement. The current estimate of ∆(N) at any point

in the algorithm is denoted by Υ̂. If any of the two properties— control invariance or the

27

path requirement on the coverability graph, is violated then the minimal element that vio-

lated the condition is replaced by the smallest set of elements larger than that element, and

Υ̂ is appropriately modified. This process is repeated till we find ∆M(N) or till m0 drops

out of Υ̂. Algorithms 1 and 2 respectively present procedures for “bumping-up” the minimal

elements when the control invariance and path requirement are violated. They take the PN

structure N and the current estimate Υ̂ as inputs and respectively output the largest subset

of Υ̂ that satisfies the control invariance and path requirement. In Algorithm 3, the PN

structure N is the input and the subset ∆̂(N) for N(m0) is the output.

Algorithm 1 BumpUpForControlInvariance(N, Υ̂)

1: while ∃tu ∈ Tu, ∃m̃i ∈ min(Υ̂) such that (max{INtu , m̃
i}+ C× 1tu) /∈ Υ̂ do

2: Replace m̃i by a set of k − 1 vectors {m̂l}k−1
l=1 where for each j ∈ {1, 2, . . . , k} − {i},

create a new marking m̂l, given by the expression m̂l = m̃i+max{0, m̃j−(max{IN×
1tu , m̃

i}+ C× 1tu)}.
3: Replace the resulting set of {m̃i}i vectors by their minimal elements, and modify the

value of k to equal the size of the minimal set of vectors. Υ̂ is the right-closed set
identified by this minimal set of vectors.

4: end while

Algorithm 2 BumpUpForPathRequirement(N, Υ̂)

1: for m̃i ∈ min(Υ̂) where G(N(m̃i), P̃Υ̂) does not have the path do

2: Define a right-closed set Υ, where min(Υ) = (min(Υ̂) − {m̃i}) ∪ {m̃i + ω × 1j|j ∈
{1, 2, . . . , n}}, where 1j the unit-vector where the j-th component is unity.

3: Replace m̃i by the set:

{m̃i + 1j|j ∈{1, 2, . . . , n}, G(N(m̃i + ω × 1j), P̃Υ)

satisfies the path requirement} (3.3)

4: end for
5: Replace the resulting set of {m̃i}i vectors by their minimal elements, and modify the

value of k to equal the size of the minimal set of vectors. Υ̂ is the right-closed set
identified by this minimal set of vectors.

Algorithm 2 aims to compute the supremal controllable subset of the right closed set Υ̂

with respect to the PN structure N . This supremal controllable subset is also right closed.

Consequently, when there is an element m̃i that violates the control invariance requirement,

it is elevated by an appropriate minimal amount, as stated in Step 2. During this elevation

process, it might happen that we get some minimal elements that are ordered (that is,

m̃i ≥ m̃j for some i, j). Step 3 trims the set of minimal elements of the current version of

28

Υ̂ to ensure that only the smallest elements are retained. This process proceeds until (the

current version of) Υ̂ is control invariant.

Proceeding under the stipulation that (the current version of) Υ̂ is control invariant with

respect to N , for any m0 ∈ Υ̂, there is a supervisory policy, P̃Υ̂, that ensures R(N,m0, P̃Υ̂) ⊆
Υ̂. If ∀m̃i ∈ min(Υ̂), the required path condition in G(N(m̃i), P̃Υ̂) is satisfied, then P̃Υ̂ is

an LESP for N(m0) for any m0 ∈ Υ̂ (cf. [35]).

In Algorithm 3, when there exists an element m̃i ∈ N n where G(N(m̃i), P̃Υ̂) does not

have the required path, it should be elevated by an appropriate set of unit-vectors. Step 2

identifies those among the n-many unit-vectors that are to be used to elevate the minimal

element m̃i. Specifically, if the placement of an unbounded number of tokens (i.e. ω-many

tokens) in just the j-th place does not result in a coverability graph with the required path,

then the j-th unit vector is not used to elevate the minimal element m̃i. Otherwise, the

corresponding vector m̃i + 1j is retained in the current set Υ, as shown in Step 3. This

process proceeds until all elements satisfy the path requirement.

Algorithm 3 Test for existence of the subset ∆̂(N) for N(m0)

1: Υ̂ = ∆f (N), and let {m̃i}ki=1 = min(Υ̂).

2: while ((∃tu ∈ Tu,∃m̃i ∈ min(Υ̂), such that max{m̃i, INu} + C · 1u /∈ Υ̂) ∨ (∃m̃i ∈
min(Υ̂) such that G(N(m̃i), P̃Υ̂) does not have the path requirement)) ∧ (m0 ∈ Υ̂) do

3: BumpForControlInvariance(N, Υ̂)

4: BumpForPathCondition(N, Υ̂)
5: end while
6: if m0 /∈ Υ̂ then
7: return(“no solution”);
8: else
9: return Υ̂

10: end if

Theorem 7. The existence of an MM-LESP for an arbitrary PN N(m0) is decidable.

Proof. The existence (non-existence) of an MM-LESP for N(m0) is subject to the existence

(resp. non-existence) of a proper subset ∆̂(N) which is right-closed, control invariant, sat-

isfies the path-requirement and contains m0. In Algorithm 3, we seek a sequence of proper

subsets Υ̂ (where ∆̂(N) ⊆ Υ̂ ⊆ ∆(N) ⊆ ∆f (N)) using exhaustive search until we find such

a ∆̂(N) or until m0 /∈ Υ̂.

If there is an MM-LESP in N(m0), from Lemma 5.13 in [35] we know that there is a

finite set of minimal elements {m̃i}ki=1 that define a control invariant, right-closed set and

satisfy the path-requirement. The k-many, n-dimensional, minimal elements {m̃i}ki=1 are

29

p1 p2

t4

t1

t8

p4p3

t2

t3

t9

p5

t5
t6

t7

2

(a) PN N4

p1

p2

t4

t1

p4p3

t2 t3

p5

t5
t6

2

(b) PN N5

Figure 3.4: Examples to illustrate features of marking-monotone LESP.

determined using brute force by Algorithm 3, in finite time. On the other hand, this process

will terminate when m0 /∈ Υ̂, thus certifying the non-existence of a candidate Υ = ∆̂(N)

with m0 ∈ ∆̂(N), in finite time; thus proving the semi-decidability of the existence (non-

existence) of a MM-policy that enforces liveness in an arbitrary partially controllable PN

N(m0).

Figure 3.4a presents an example N4(m0) where ∆(N4) is not right-closed, but there is an

MM-LESP for N(m0). Specifically, ∆(N4) = {m0 ∈ N 5 | (m0(p1) +m0(p3) +m0(p5) ≥ 1)∨
((m0(p2)+m0(p4))mod2 = 1)}. Here ∆M(N4) = {m0 ∈ N 5 |m0(p1)+m0(p3)+m0(p5) ≥ 1}.
The MM-LESP, P , will ensure at least one token in {p1, p3, p5}. However, it is to be noted

that P is not the minimally restrictive for N4(m0), since ∆M(N4) ⊂ ∆(N5).

On the other hand, the existence of a right-closed subset of ∆(N) does not guarantee

the existence of a MM-LESP. Consider N5 with initial marking (0 1 0 0 1)T . Following the

procedures explicated in Algorithm 3, we end up with the control invariant Υ̂ represented

by min(Υ̂) = {m̃i}7
i=1 = {(1 0 0 0 0)T ,(0 2 0 0 0)T ,(0 1 1 0 0)T ,(0 1 0 1 0)T ,(0 0 2 0

0)T ,(0 0 1 1 0)T ,(0 0 0 2 0)T}. Since the initial marking m0 is not in Υ̂, there is no MM

LESP for N5(m0). However, there is an LESP for N5(m0). Note that ∆(N5) = {m0 ∈
N 5 | m0(p1) + m0(p2) + m0(p3) + m0(p4) ≥ 1 or m0(p5)mod2 = 1}. A supervisory policy

that ensures that there is at least one token in {p1, p2, p3, p4} or there are odd tokens in p5

is an LESP. This example also shows that even if there is no marking-monotone LESP for

arbitrary PN N(m0), there may be an LESP for N(m0).

3.7 Additional Remarks about Marking-Monotone Policies

Although well established methods exist for synthesizing policies that enforce certain prop-

erties (like liveness, safety, boundedness etc.), it is likely that there do not exist systematic

30

procedures for the synthesis of policies that enforce complex objectives (like the combination

of several objectives). One of the ways of accomplishing this is by decomposing the complex

objective into simpler objectives and then synthesizing policies for enforcing these simpler

objectives (cf. Figure 3.5).

Plant Model Supervisor 1 Supervisor 2

Plant for Supervisor 2

Figure 3.5: Sequential Synthesis of Supervisory Policies.

The issue with this approach is that while there was a model, within a modeling-paradigm,

of the original infinite-state DES, there may not exist a model of the supervised system within

the same modeling-paradigm. For instance, Example 3.1 of [57] presents a plant DES that is

a Petri Net (PN), where the desired behavior B corresponds to the requirement to be non-

blocking. Giua and DiCesare have shown that there is no PN that can model the resulting

supervised-system. In the context of Figure 3.5, this result shows that while the plant for

Supervisor 1 is a PN, the plant for Supervisor 2 cannot be a PN in any sequential attempt

to the synthesis of supervisory policies. The identification of a necessary and sufficient

condition for a DES modeling paradigm (different from Finite State Automata) where the

supervised-DES can also be represented using the same modeling paradigm, plays a critical

role in the sequential synthesis of supervisory policies for DES. Thus, there are two aspects

to this problem– (i) the algebraic framework under which the supervisor construction is

carried out; and, (ii) the model. We discuss each of these points in the remainder of the

section.

Modular problem specification and supervisor construction for DES was first discussed by

Ramadge and Wonham in [58, 7]. They modeled the behavior of DES as a prefix closed

language L over the set of event alphabet Σ, where each u ∈ L is a possible event sample

path. The behaviour of the language L is modeled by a generator G which is an automaton

(Σ, Q, δ, q0). For multiple objective controller synthesis, if each objective is specified in

terms of a controlled language Ki, then the overall desired behaviour is specified by the

controlled language ∩iKi. There are two key points– controllability of the desired language

and compatibility between multiple objectives. For prefix closed languages, if K1 and K2

are controllable, then K1 ∩K2 is also controllable (see Section IV in [7] for the definition of

controllability). Compatibility between multiple objectives is formalized by the concept of

31

nonconflicting languages. Two controlled languages K1, K2 ∈ Σ∗, are said to nonconflicting

if pr(K1 ∩ K2) = pr(K1) ∩ pr(K2) where pr(•) denotes the prefix of the string argument.

That is, whenever the two languages K1 and K2 share a prefix, they also share a word

containing this prefix.

Modeling of a supervised Petri net by another Petri net was first discussed in [59], where

the authors gave an algorithm for constructing the PN model of the supervised system. They

proved that such a construction can always be carried out for conservative PNs (cf. Theorem

4.1 in [59]). Reference [57] proved by a counter-example that not all supervised Petri nets

can be modeled by a PN. Using the work in the aforementioned papers as a starting point,

in this section we first formally define the concept of composition of a PN model and a

supervisory policy. We extend the algorithm in [59] to unbounded PNs, and prove that a

composition of a PN model and a supervisory policy P that enforces a property B exists

if and only if the supervisory policy is marking-monotone B-enforcing supervisory policy

(MM-BESP) over the reachable markings. By definition, if P is an MM-BESP for an initial

marking, then it is an MM-BESP for all larger initial markings as well. Since the policy does

not change for a larger initial marking, the composition of the PN and the policy also stays

the same for a larger initial marking. This is an important property to have while designing

a system as analysis for various initial markings become easy.

We use BESP as a shorthand to denote a property B enforcing supervisory policy. The

set of initial markings for which property B can be enforced is defined as: D(B, N) =

{m0 ∈ N n : ∃ a BESP for N(m0)}. This can also be restated as: (∃ a BESP for N(m0))

⇔ (m0 ∈ D(B, N)). Note that we have used different notations in this section because are

only considering property B and not liveness with respect to it.

3.7.1 Main Results

Definition 6. Let P be a BESP for N1(m0). N1(m0) and P are said to be B-composable

if there exists a Petri net N2 such that R(N2,m
0) = R(N1,m

0,P). We refer to N2(m0) as

the B-preserving composition of N1(m0) and P.

Theorem 8. [60] There exists an MM-BESP for N(m0) if and only if there exists a subset

D̂(B, N) ⊆ D(B, N) such that:

1. m0 ∈ D̂(B, N).

2. D̂(B, N) is right-closed.

3. A supervisory policy that enforces the set D̂(B, N) is a BESP.

32

Proof. (If) Suppose D̂(B, N) is right-closed and m0 ∈ D̃(B, N). Let {m̃i}li=1 denote the

minimal elements of D̂(B, N). Consider a supervisory policy that enforces the set D̂(B, N),

that is:

1. ∀tu ∈ Tu, (m0 tu−→m1) ⇒ (m1 ≥ m̃i for some i ∈ {1, . . . , l}).

2. ∀tc ∈ Tc, (P(m0, tc) = 1) ⇔ (m0 tc−→m1, m1 ≥ m̃i for some i ∈ {1, . . . , l})

Let m̂0 ≥ m0 and consider a transition t such that m0 t−→ m1 and m̂0 t−→ m̂1. Suppose

P(m0, t) = 1. Then (m1 ≥ m̃i)⇒ (m̂1 ≥ m̃i). Therefore, a supervisory policy that enforces

a right-closed set (D̂(B, N) in this case) will permit the transition t to fire at m̂0 as well,

and hence is marking-monotone. By Item 3, the supervisory policy that enforces D̂(B, N)

is a BESP. Therefore, a supervisory policy that enforces the set D̂(B, N) is an MM-BESP.

(Only If) Suppose there exists an MM-BESP for N(m0). Let D̂(B, N) = DM(B, N). Then

D̂(B, N) is right-closed by definition. Since there is an MM-BESP for N(m0), it follows that

m0 ∈ D̂(B, N). Suppose m1 ∈ D̂(B, N) and m1 tu−→ m2 for some tu ∈ Tu. Then we have

that m2 ∈ D̂(B, N). If not, the supervisory policy will not be an MM-BESP for m2 (as

D̂(B, N) = DM(B, N)). In fact, using the same argument, the MM-BESP will disable any

controllable transition whose firing takes the PN outside D̂(B, N). Therefore, the marking

monotone policy that enforces the set D̂(B, N) is a BESP.

Let TM(B, N, t) ⊆ DM(B, N) be the set of markings such that ∀m ∈ TM(B, N, t), PM(m, t) =

1, where PM is an MM-BESP that enforces the set DM(B, N). Since PM is an MM-BESP,

TM(B, N, t) is right-closed.

Lemma 2. Let {m̃i}ki=1 = min(DM(B, N)). For any tc ∈ Tc, min(TM(B, N, tc)) = {max{0, m̃i−
C × 1c}}ki=1. Here 1c is the unit-vector whose c-th element (corresponding to transition tc)

is unity, the max operator acts element-wise, and 0 represents a vector of all zeros of ap-

propriate size.

Proof. Recall that we need m0 ∈ DM(B, N) for PM to enforce property B. First we note that

∀m̃i ∈ min(DM(B, N)), max{0, m̃i−C×1c} ∈ TM(B, N, tc). Since (m̃i−C×1c)+C×1c =

m̃i, we have max{0, m̃i−C×1c}+C×1c ≥ m̃i. That is, the firing of tc keeps the marking in

the set DM(B, N). That max{0, m̃i−C×1c} is the minimal element of TM(B, N, tc) follows

from the observation that it is the largest non-negative marking greater than (m̃i−C× 1c)

and that m̃i is the minimal element of DM(B, N).

Algorithm 4 presents a procedure for evaluating a B-preserving composition, N2 = (Π2, T2,Γ2),

of a PN N1 = (Π1, T1,Γ1) and an MM-BESP, PM , that enforces the set DM(B, N1). We need

33

Algorithm 4 Compose(N1, DM(B, N1))

1: Π2 = Π1

2: T2 = T1u

3: Γ2(t, p) = Γ1(t, p), Γ2(p, t) = Γ1(p, t) ∀t ∈ T1u

4: for i ∈ {1, . . . |T1c|} do
5: for j ∈ {1, . . . k} do
6: T2 ← T2 ∪ {tji}
7: for ∀p ∈ Π2 do
8: Γ(p, tji) = (max{0, m̃j −C× 1i})(p)
9: Γ(tji , p) = (max{0, m̃j −C× 1i}+ C× 1i)(p)

10: end for
11: end for
12: end for

to construct N2 such that R(N2,m
0) = R(N1,m

0,PM). A supervisory policy has no control

over the uncontrollable transitions. Therefore, intuitively, the behaviour of the system in the

uncontrollable space should be the same for N1 and N2 (Steps 2 and 3). Lemma 2 identifies

k minimal elements of the set TM(B, N, t) for a controllable transition ti of N1. Using this

observation, each controllable transition, ti, of N1 is replaced by k-many controllable transi-

tions, {tji}kj=1 in N2. The input arc-weights of {tji}kj=1 correspond to these minimal elements

of TM(B, N, ti). The output arc-weights of {tji}kj=1 correspond to effect of firing ti. Steps 4

to 12 accomplish these tasks. T1c and T1u denote the set of controllable and uncontrollable

transitions in N1 respectively.

MM-BESPs are a generalized version of MM-BESPs-over-reachable-markings. While MM-

BESPs consider the marking monotonicity over all markings, MM-BESPs over reachability

only consider the markings that are reachable from the initial marking (that is, ignoring

the markings that are not reachable from the initial marking). It follows that the existence

of an MM-BESP implies the existence of an MM-BESPs over reachability. Lemma 2 and

Algorithm 4 can be easily extended for MM-BESPs over reachable markings by constraining

the analysis to reachability markings. We do not explicate the details in the interest of

space.

Theorem 9. For an arbitrary Petri Net N1: (∃ a B-preserving composition of N1(m0) and

P) ⇔ (P is an MM-BESP over reachable markings).

Proof. (⇒) Suppose there exists a B-preserving composition of N1(m0) and P . Then

R(N2,m
0) = R(N1,m

0,P). Since we have to consider the unsupervised reachability graph

of N2, without loss of generality in the context of the proof, we assume all transitions in

N2 are uncontrollable. The condition R(N2,m
0) = R(N1,m

0,P) implies that transitions

34

{tji} ∈ T2 are state-enabled at a marking if and only if P(m, tc) = 1 for some tc ∈ T1c. To see

this, assume ∃tji ∈ T2 and a marking m such that tji ∈ Te(N2,m) but P(m, ti) = 0, where

ti ∈ T1c. Then (m + C× 1ji) ∈ R(N2,m
0)−R(N1,m

0,P), which is a contradiction. In the

same way if ∃ti ∈ T1c and a marking m such that @tji ∈ T2 such that tji ∈ Te(N2,m) but

P(m, tc) = 1, then (m+C×1i) ∈ R(N1,m
0,P)−R(N2,m

0), which is again a contradiction.

Therefore, ∀m, ∀tu ∈ T2, (tu ∈ Te(N2,m))⇔ (P(m, t) = 1 for some t ∈ T1). A transition

that is enabled at a marking is also enabled at all larger markings. This means that P is

a marking-monotone policy. Since N2 is a B-preserving composition, it means that P is an

MM-BESP.

(⇐) We prove that the PN N2 obtained by the construction in Algorithm 4 is a B-

preserving composition of N1 and a BESP P . We use induction to prove that R(N2,m
0) =

R(N1,m
0,P). The base case is the initial marking m0. Consider a string σ that is a valid

firing string from m0. Suppose m0 σ−→ m1 and m0 σ1−→ m2, where σ1 ∈ pr(σ). Here we use

pr(•) to denote the set of prefixes of the string argument. The induction hypothesis is that

m2 ∈ R(N2,m
0) and m2 ∈ R(N1,m

0,P) ∀σ1 ∈ pr(σ).

Since the input arc-weights of uncontrollable transitions are the same in N1 and N2,

if ∃tu ∈ T1u ∩ Te(N1,m
1), then ∃tu ∈ T2 ∩ Te(N2,m

1). Since the output arc-weights of

uncontrollable transitions are same in N1 and N2, if m1 tu−→ m3, then m3 ∈ R(N2,m
0) and

m3 ∈ R(N1,m
0,P). Next consider a ti ∈ T1c. If P(m1, ti) = 1, then from Lemma 2, we

have that m1 ≥ m̂i for some m̂i ∈ min(TM(B, N, ti)). Then it follows from the construction

in Algorithm 4, that ∃j such that tji ∈ Te(N2,m
1) (Step 8). Moreover, the firing of tji

adds Ci(p)-many tokens in places p ∈ Π2, which is equal to the number of tokens added in

p ∈ Π1. Therefore, if m1 ti−→ m4, then m4 ∈ R(N2,m
0) and m4 ∈ R(N1,m

0,P). On the

other hand, if P(m1, ti) = 0, then from Lemma 2, we have that @m̂i ∈ min(TM(B, N, ti))
such that m1 ≥ m̂i. Then it follows from the construction in Algorithm 4, that @j such that

tji ∈ Te(N2,m
1) (Step 8). This constitutes the induction step.

An important consequence of the above theorem is that if there exists an MM-BESP P
for N(m0), then there exists a composition of P and N(m0). Moreover, due to the marking-

monotone nature over the whole space of markings, the composition remains the same for

any m̂0 ≥ m0. This is a desirable feature in the design of systems as analysis for various

initial markings becomes easy, without having to evaluate the composition for each of them

separately.

Suppose we want to synthesize a supervisory policy that enforces the property ∧lc=1Bc
in a Petri net N1(m0). We assume that the existence of an MM-BcESP over reachable

markings is decidable for all c ∈ {1, . . . , l}, and that there exists a procedure for synthesis.

35

We also assume that the composed model and the supervisory policy that enforces ∧lc=1Bc
is independent of the order in which Bcs are enforced. Algorithm 5 gives an outline of the

procedure for the synthesis of a supervisory policy that enforces (∧lc=1Bc). A more specific

procedure will depend on the properties that we want to enforce. Note that in Algorithm 5

we use the set γ̂ as a proxy for the MM policy, which due to result in Theorem 8 does not

lead to any loss of generality.

Algorithm 5 SeqSynth(Bc, Nc)

1: γ̂ = N n

2: while (m0 ∈ γ̂) ∧ ({Bc}lc=1 are not enforced) do
3: for c = 1 to l do
4: γ̂=Synthesize(γ̂,Bc, Nc)
5: Nc+1=Compose(Bc, Nc)
6: end for
7: end while

The algorithm stops either when the initial marking drops out of the estimate γ̂ or when

property ∧lc=1Bc can be enforced by enforcing γ̂. However, whether a specific instance

of the procedure (for given {Bc}lc=1) will terminate or not will depend on the subroutine

synthesize. The subroutine synthesize takes the current estimate of γ̂ and modifies it so

that another property Bc can be enforced. For several properties the while loop in Algorithm

5 will terminate in a single iteration. But a PN that is live can lose liveness if some markings

that were originally reachable cannot be reached anymore. Therefore, if liveness is one of

the Bis, then the while loop in Algorithm 5 might have to execute several times till all the

properties are enforced.

3.7.2 An Illustrative Example

We illustrate the procedure in Algorithm 4 and 5 using an example. We are interested in

synthesizing a supervisory policy, P , for the PN N1 as shown in Figure 3.6. If m0 is the

initial marking, then the objectives for supervisions are: (1) N1(m0) should be live; and (2)

∀m1 ∈ R(N1,m
0,P), m1(p6)+m1(p7)+m1(p8) ≥ 1. The set of initial markings for which an

LESP exists, D(L, N1), is given by the right-closed set with minimal elements m̃1 = (1 0 0 0

0 0 0 0)T and m̃2 = (0 0 0 1 1 0 0 0)T ([61]). Let C1 = (-1 1 0 0 0 0 0 0)T denote the column

of the incidence matrix C corresponding to transition t1. Applying the result from Lemma

2, we get two minimal elements of TM(L, N1, t1), {m̂i}i=1,2, as: m̂1 = max{0, m̃1 −C1} =

(2 0 0 0 0 0 0 0)T and m̂2 = max{0, m̃2 −C1} = (1 0 0 1 1 0 0 0)T .

36

Figure 3.6: Petri Net, N1, to illustrate the procedure of Algorithms 4 and 5.

Upon firing of t1 from m̂1 and m̂2, we get the markings m1 = (1 1 0 0 0 0 0 0)T and m2

= (0 1 0 1 1 0 0 0)T respectively.

The first thing to note is that m1,m2 ∈ D(L, N1). The PN N2 which is a composition

of N1 and the LESP PL is shown in Figure 3.7. Transition t1 in N1 is replaced by two new

controllable transitions t11 and t21. The input (output) arc-weights of t11 and t21 correspond to

m̂1 and m̂2 (resp. m1 and m2) respectively. Transition t9 will always be enabled by the LESP

PL. Therefore, there is no change in it. It can be verified that R(N2,m
0) = R(N1,m

0,PL).

Next we synthesize an LESP that enforces the property: ∀m1 ∈ R(N1,m
0,P), m1(p6) +

m1(p7) + m1(p8) ≥ 1. Let DM(C, N1) = {m ∈ N n : m(p6) + m(p7) + m(p8) ≥ 1}. Since

the tokens in place p8 can be lost by the uncontrolled firing of t10, transition t9 should be

controlled enabled if and only if the resulting marking is in DM(C, N1). By Lemma 2, the

minimal elements of TM(C, N1, t1) are: {(0 0 0 0 0 0 2 0)T , (0 0 0 0 0 1 1 0)T}. For this

particular example, the intersection of DM(L, N1) and DM(C, N1) gives us an estimate of

the set of markings for which a supervisory policy that enforces both properties exists.

37

Figure 3.7: Petri Net, N2.

Figure 3.8: Petri Net, N3.

38

CHAPTER 4

SYNTHESIS OF LIVENESS ENFORCING
SUPERVISORY POLICIES FOR PETRI NETS

USING A GENERALIZATION OF COVERABILITY
GRAPHS

4.1 Generalized Coverability Graphs

The traditional coverability graph (TCG) is the Karp and Miller tree [40], where duplicate

nodes are merged as one. Due to the inherent monotonicity in the operation of PNs, if there

is a string of transitions σ that can be fired from a marking m1 that results in a larger

marking m2(≥ m1), then σ can be fired from m2 also; resulting in an even larger marking

m3(≥ m2). This process can be repeated infinitely often to obtain an infinite sequence of

increasing markings. The main concept behind the TCG is to represent this infinite sequence

of increasing markings by a single marking. With this abstraction, the TCG becomes a finite

representation of a possibly infinite reachability graph of a PN. The algorithm for drawing

a TCG can be found in [56, 12].

We now discuss some important features of TCG using the PN N1 and its TCG shown

in Figure 4.1. The node (ω 0) of Figure 4.1b basically represents that the string t1t2 can

be repeated from (1 0) as often as necessary to obtain an arbitrarily large number of tokens

in place p1 and zero tokens in p2. ω is a symbol such that ω + 1 = ω − 1 = ω. It can be

interpreted as a very large positive integer. Our aim is to generalize the TCG so that it can

elicit more information about the underlying system. However, we also want it to be finite.

Formally, let {ζ0, ζ1, . . . , ζk−1} be a k-fold partition of N such that:

1. Each ζi is countably infinite.

2. The addition and subtraction operations are interpreted as binary operators: ζi×ζj →
ζl, for all i, j and some corresponding l in the set {0, . . . , k− 1}. That is, the result of

addition and subtraction amongst any element of ζi and any element of ζj belongs to

the same ζl.

39

(a) PN N1

1 0

0 1

t1

W 0

t2

W W

t1

t1 t2 t3

(b) Traditional Coverability Graph for
N1

Figure 4.1: An example PN N1 with its traditional coverability Graph.

3. ∀i, j ∈ {0, . . . , k − 1}, ∀x ∈ ζi, ∀n ∈ ζj, ∃hji ∈ N+ such that:

x+ n+ . . .+ n︸ ︷︷ ︸
hji times

= y, where y ∈ ζi

4. ∀i, j ∈ {0, . . . , k − 1}, for all large enough x ∈ ζi, ∀n ∈ ζj, ∃gji ∈ N+ such that:

x− n− . . .− n︸ ︷︷ ︸
gji times

= z, where z ∈ ζi

5. ∀i ∈ {0, . . . , k − 1}, we use the symbol ωi to denote a very large number in ζi. That

is, ∀x ∈ ζi: ωi > x. Let {x0, x1, . . .} denote such a ζi, then ωi will also be referred to

as limn xn.

6. Let m ∈ ζj. We use what can be called a continuous extension of addition: ωi +m =

limn(xn) +m = limn(xn +m) = ωl, where (xn +m) ∈ ζl. Property 2 ensures that this

operation is well-defined and ζl is unique for a given ζi and ζj.

7. We define a well quasi order - on N as: (x - y) ⇔ ((x ≤ y) ∧ (x, y ∈ ζi)). If x 6= y,

40

then we denote the wqo by the symbol ‘≺’.

The construction can be extended for n-dimensional vectors. Specifically, ∀i ∈ {1, . . . , n}, let

{ζ i0, ζ i1, . . . , ζ iki−1} be a partition with largest elements denoted by {ωij}
ki−1
j=0 and equipped with

a wqo -i, as discussed above. Let xi and yi denote the i-th component of two integer-valued

vectors x,y ∈ N n for all i ∈ {1, 2, . . . n}. We have:

(xi -i yi)⇔ ((xi ≤ yi) ∧ (xi,yi ∈ ζ ij)) j ∈ {1, . . . , ki} (4.1)

(x - y)⇔ (xi -i yi, ∀i ∈ {1, 2, . . . n}) (4.2)

We sometimes use the notation % defined as: (x - y)⇔ (y % x). Since we are partitioning

the n-dimensional space into finitely-many sets and using the standard order ≤ within them,

the following observation follows:

Observation 7. - on N n is a wqo.

In line with the algorithm stated in reference [56], the generalized coverability graph

(GCG) can be constructed by the following algorithm:

1. Label the initial marking m0 as the root and tag it new.

2. While new markings exist, do the following:

(a) Select a new marking m.

(b) If m is identical to a marking on the path from the root to m, then tag m old

and go to another new marking.

(c) If no transitions are enabled at m, tag m as dead-end.

(d) While there exists enabled transitions at m, do the following for each enabled

transition t:

i. Obtain m′ that results from the firing of t at m.

ii. On the path from the root to m, if there exists a marking m′′ such that

m′′(p) ≤m′(p) for each place p and m′ 6= m′′, that is, m′′ is coverable, then:

for each place p such that m′′(p) ≺p m′(p), replace m′(p) by ωpi , where ≺p
denotes the wqo corresponding to place p.

iii. introduce m′ as a node, draw an arc with label t from m to m′, and tag m′

as new.

Recall that for a wqo every strictly decreasing sequence and every subset of incomparable

elements is finite. As a consequence, we get the following result:

41

1 0

0 1

t1

W 0

t2

W 1

t1 t2

W 2

t1 t2

W W0

t1

t3

W W2

t2

W W1

t1t3

t2

t1

t3

t2

t1

Figure 4.2: Generalized Coverability Graph for N1, where ζ1
0 = N is used for place p1; and

ζ2
i = {n ∈ N | n(mod3) = i}, and ωi = limn ζi, for i ∈ {0, 1, 2} is used for place p2.

Observation 8. The Generalized Coverability Graph has finite number of nodes.

Figure 4.2 shows the generalized Coverability Graph for the PN N1 in Figure 4.1 with

ζ1
0 = N (corresponding to p1) and {ζ2

i = i (mod) 3}2
i=0 (corresponding to p2). Token-value

in place p1 is equipped with the traditional notion of ω. For place p2, ωi denotes a very

large integer that is i (mod) 3 for i = 0, 1, 2. We have: ω0 + 1 = ω1, ω1 + 1 = ω2 and

ω2 + 1 = ω0. Since GCG conveys more information when compared to TCG, it could have

significantly more nodes compared to TCG. In Section 4.2, we illustrate the application of

GCG in testing the existence and non-existence of a large class of LESPs for arbitrary PNs.

42

4.2 Synthesis of LESPs using Generalized Coverability Graphs

Marking monotone supervisory policies have the feature that if they permit a transition to

fire at a marking, then they permit the transition to fire at all larger markings as well. If a

marking monotone supervisory policy P , that is an LESP for N(m0), is also an LESP for

N(m̂0) for any m̂0 ≥ m0, then P is a marking-monotone LESP (MM-LESP). The set of

initial markings for which an MM-LESP exists, ∆M(N), is right-closed. While neither the

existence nor the non-existence of an LESP for an arbitrary PN N(m0) is semi-decidable

[35], the existence of a marking monotone LESP (MM-LESP) for N(m0) is decidable for an

arbitrary PN [62].

We use the traditional interpretation of ordering of integers in determining marking-

monotonicy and right-closure (eg. references [35, 62]). By generalizing the notion of order,

we can generalize the algorithm for the synthesis of MM-LESP. This is the main idea of the

results in this section. We first illustrate the process using the example PN N1 from Figure

4.1a.

From [62], ∆M(N) is a control-invariant right-closed subset of ∆(N) for which the following

path requirement is true: ∀mi ∈ min(∆M(N)), there is a path v0
σ1→ v1

σ2→ v1, in the TCG

G(N(mi),P) = (V,A), such that x(σ2) ≥ 1 and Cx(σ2) ≥ 0, where 1 is the m-dimensional

vector of all ones, P ensures the reachable markings never leaves ∆M(N). There exists an

MM-LESP for N(m0) iff m0 ∈ ∆M(N). In the first half of this section, we will define a set

∆C(N), an instance of which is ∆M(N).

First we generalize the definition of right-closure.

Definition 7. A set of markings M is called right-closed with respect to a wqo - if: ((m ∈
M) ∧ (m - m̂))⇒ (m̂ ∈M).

The minimal elements of a setM that is right-closed with respect to a wqo -, denoted by

min-(M), is the set of markings such that: ∀m ∈M, ∃m̃i ∈ min-(M) such that m̃i -m.

Since - is a wqo, min-(M) is finite.

We use max-{m, INt} to denote the smallest (interpreted in the traditional sense) marking

such that INt ≤ max-{m, INt} and m - max-{m, INt}.
LetM be a set of markings which is right-closed with respect to -. M is control invariant

with respect to (N,-) if ∀m1 ∈ M,∀tu ∈ Te(N,m1) ∩ Tu and max-{m1, INtu}
tu−→ m2 in

N : m̃ -m2 for some m̃ ∈ min-(M,-).

If two markings m1 and m2 are such that either m1 - m2 or m2 - m1, then, for ease of

exposition, we would say that they belong to the same class.

43

Definition 8. A supervisory policy P : N n × T → {0, 1} is a class monotone policy (CM-

policy) if ∀m̂ % m,∀t ∈ T,P(m̂, t) ≥ P(m, t). That is, if a transition is permitted by a

CM-policy at a marking, it will be permitted at all larger markings inside the class as well.

If a CM-policy that is an LESP for N(m0), is also an LESP for N(m̂0),∀m̂0 %m0, then it

is said to be a class-monotone LESP (CM-LESP) for N(m0).

The set

∆C(N,-) = {m0 : ∃ a CM-LESP for N(m0)}

denotes the set of initial markings for which there is a CM-LESP for the PN structure N .

It follows that ∆C(N,-) ⊆ ∆(N).

Consider a PN N with the initial marking m0 ∈ ∆C(N,-). We define a class-monotone

supervisory policy P̂ for N(m0) as follows— ∀mi ∈ R(N,m0, P̂),

1. if tl ∈ Tu, P̂(mi, tl) = 1,

2. if tl ∈ Tc, then P̂(mi, tl) = 1, if and only if tl ∈ Te(N,mi) and mi tl−→ mj in N (in the

absence of supervision), and mj ∈ ∆C(N,-).

Theorem 10. There exists a CM-LESP for N(m0) if and only if m0 ∈ ∆C(N) where

∆C(N) ⊆ ∆(N) is a set with the following properties:

1. it is right-closed with respect to -;

2. it is control invariant with respect to (N,-);

3. ∀m1 ∈ ∆C(N),∃m2,m3 ∈ ∆C(N),∃ a valid firing string σ = σ1σ2 in N such that

m1 σ1−→ m2 σ2−→ m3,m3 % m2, all transitions appear at least once in σ2, and ∀σ3 ∈
pr(σ1σ2), (m1 σ3−→m4)⇒ (m4 ∈ ∆C(N)).

Proof. (Only if) Suppose there exists a CM-LESP P for N(m0). Then from Theorem 5.1

in [33], m0 ∈ Υ, where Υ is a control invariant set such that: ∀m1 ∈ Υ,∃m2,m3 ∈ Υ,∃
a valid firing string σ = σ1σ2 in N such that m1 σ1−→ m2 σ2−→ m3,m3 ≥ m2, all transitions

appear at least once in σ2, and ∀σ3 ∈ pr(σ1σ2), (m1 σ3−→ m4) ⇒ (m4 ∈ Υ). Now, since, P
is a class-monotone LESP for all m ∈ Υ, it is an LESP for and is class-monotone over all

markings m̂ %m. Therefore, there exists a class-monotone LESP for all markings m̂ %m,

and Υ is right-closed with respect to -. Combining the above two observations, we get that

m3 %m2, which proves Item 3 of the theorem.

(If) If m0 ∈ ∆C(N) with ∆C(N) having the properties as elucidated in the statement of

the theorem (items 2 and 3), then by Theorem 5.1 of [33], the supervisory policy P̂ defined

above is an LESP. By item 1, P is a CM-LESP.

44

Observation 9. The class-monotone supervisory policy P̂ defined above is the minimally

restrictive CM-policy that enforces liveness in N(m0) where m0 ∈ ∆C(N,-).

The takeaway from Observation 9 is that if we have an effectively computable procedure

for testing membership of m0 in ∆C(N,-), then we can construct the minimally restrictive

CM-policy that enforces liveness in N(m0).

Lemma 3. If the set min-(M) of a set of markings M which is right-closed with respect to

- is effectively computable, its control invariance with respect to N can be decided in finite

time.

Proof. M is control invariant with respect (N,-) if and only if ∀tu ∈ Tu,∀mi ∈ min-(M),∃m̃j ∈
min-(M), such that

(max -{mi, INu}+ C× 1u) % m̃j (4.3)

where 1u is the m-dimensional unit-vector where the u-th component is unity, INu is the

u-th column of the n×m input matrix of N , and C is the n×m incidence matrix of N .

By definition of max -{mi, INu}, there cannot be a marking mk such that: mi - mk

≺ max -{mi, INu}. Consider a marking mk % max -{mi, INu}. Then by item 2 of the

characterization of -, addition of C × 1u to mk will result in a marking that is (ordered

with and) greater than max -{mi, INu}+ C× 1u.

Therefore, if the control invariance condition is satisfied by elements in min-(M,-), then

it is satisfied by all elements in (M,-). On the other hand, if there is a minimal element

that does not satisfy the control invariance condition, then obviously the set is not control

invariant. Now, since - is a wqo, min(M,-) has finite number of elements, and hence the

control invariance of (M,-) can be decided in finite time.

For a traditional coverability graph G(N(m0),P) = (V,A) constructed under the supervi-

sion of a marking monotone P , where V and A denote the set of nodes and edges respectively,

∀v ∈ V, ∀k ∈ N there exists a valid firing string σ starting from m0 such that m0 σ−→mi and

mi(pj) =

{
v(j) if v(j) 6= ω,

≥ k otherwise.
(4.4)

That is, if the j-th entry of a vector denoting the node v in the TCG has a collection of

ω-symbols, and if we replaced the ω-symbols with any integer k to obtain a marking m̂,

then there is a valid firing string σ ∈ T ∗ such that m0 σ−→ mi such that mi ≥ m̂ (see

Theorem 4.2 of [63] and Equation 1 of [35]). We can obtain a similar observation for a GCG

G-(N(m0),P) = (V̂ , Â) constructed under the supervision of a class monotone P , where V̂

45

and Â denote the set of nodes and edges respectively. ∀v̂ ∈ V̂ ,∀k ∈ ζjl where m0(pj) ∈ ζjl ,
there exists a valid firing string σ starting from m0 such that m0 σ−→mi and

mi(pj) =

{
v(j) if v(j) 6= ωjl ,

% k otherwise.
(4.5)

Observation 10. Consider an initial marking m0 ∈ ∆C(N,-). Let G-(N(m0), P̂) =

(V,A) be the GCG of N(m0) under the supervision of a class-monotone LESP P̂ defined

earlier. Then ∃vi ∈ V , ∃σ1, σ2 ∈ T ∗, such that v0
σ1−→ vi

σ2−→ vi in G-(N(m0), P̂) and

x(σ2) ≥ 1, and Cx(σ2) ≥ 0, where 1 is the m-dimensional vector of all ones.

Proof. Since m0 ∈ ∆C(N,-), and P̂ is a CM-LESP for N(m0), from Theorem 10, ∀m1 ∈
∆C(N),∃m2,m3 ∈ ∆C(N),∃ a valid firing string σ = σ1σ2 in N such that m1 σ1−→ m2 σ2−→
m3,m3 % m2, all transitions appear at least once in σ2, and ∀σ3 ∈ pr(σ1σ2), (m1 σ3−→
m4) ⇒ (m4 ∈ ∆C(N)). Therefore, there is a path v0

σ̂1σ̂2−−→ v1
σ̂2−→ v1 in G-(N(m0), P̂)

where x(σ̂2) ≥ 1 and Cx(σ̂2) ≥ 0. Letting σ1 = σ̂1σ̂2 and σ2 = σ̂2, we get the above

observation.

For a control invariant set Υ ⊆ N n, that is right-closed with respect to a wqo -, we define

the class monotone supervisory policy P̃Υ : N n × T → {0, 1} as follows

P̃Υ(mi, t) =

0 if (t ∈ Tc) ∧ (∃mj ∈ Υ,mj %mi)

∧(mj tc−→mk in N,mk /∈ Υ),

1 otherwise,

(4.6)

This supervisory policy is used in the following observation, which presents the necessary

and sufficient conditions for the existence of a CM-LESP based on GCG.

Lemma 4. There is a class-monotone supervisory policy that enforces liveness in N(m0)

if and only if there is a finite set of minimal elements, min-(Υ), of a control invariant set

Υ ⊆ N n that is right-closed with respect to -, such that ∀m̃i ∈ min-(Υ), there is a path

v0
σ1−→ v1

σ2−→ v1, in the generalized coverability graph G-(N(m̃i, P̃Υ)) = (V,A), such that

x(σ2) ≥ 1 and Cx(σ2) ≥ 0, where 1 is the m-dimensional vector of all ones, and m0 ∈ Υ.

Proof. (Only if) Let Υ = ∆C(N,-)(⊆ ∆(N)), in which case the class monotone policy P̃Υ in

the statement of the observation is identical to the class monotone policy P̂ in Observation

9. The existence of a path with the specific structure in the statement of the observation

follows from Observation 10.

46

(If) Since Υ is control invariant we have R(N,m0, P̃Υ) ⊆ Υ. Since all members of m̃i ∈
min-(Υ) satisfy the requirement on the GCG, and P̃Υ is class-monotone, the same is true of

any m1 ∈ R(N,m0, P̃Υ)(⊆ Υ). From equation 4.5 we note that ∃m2 ∈ R(N,m1, P̃Υ) such

that

m2(pi) =

{
% k if v1(i) = ωil , where m1(pi), k ∈ ζ il ,
v1(i) otherwise.

By choosing k large enough, we can guarantee validity (under supervision) of σ2 at m2.

That is, for sufficiently large k, ∃σ3 ∈ T ∗, such that m1 → σ3 → m2 → σ2 → m3. Since

Cx(σ2) ≥ 0, it follows that m3 %m2, and since x(σ2) ≥ 1, we conclude the (class monotone)

policy P̃Υ enforces liveness in N(m0).

Algorithm 6 Test for existence of the subset ∆̂(N) for N(m0)

1: Υ̂ = N n, and let {m̃i}ki=1 = min-(Υ̂).

2: while ((∃tu ∈ Tu,∃m̃i ∈ min-(Υ̂), such that max- {m̃i, INu} + C · 1u /∈ Υ̂) ∨ (∃m̃i ∈
min-(Υ̂) such that G(N(m̃i), P̃Υ̂) does not have the path requirement)) ∧ (m0 ∈ Υ̂) do

3: BumpForControlInvariance(N, Υ̂)

4: BumpForPathCondition(N, Υ̂)
5: end while
6: if m0 /∈ Υ̂ then
7: return(“no solution”);
8: else
9: return Υ̂

10: end if

Algorithm 7 BumpUpForControlInvariance(N, Υ̂)

1: while ∃tu ∈ Tu, ∃m̃i ∈ min-(Υ̂) such that (max-{INtu , m̃
i} +C× 1tu) /∈ Υ̂ do

2: Replace m̃i by a set of k − 1 vectors {m̂l}k−1
l=1 where for each j ∈ {1, 2, . . . , k} − {i},

create a new marking m̂l, given by the expression m̂l =
⌈
(m̃i+max{0, m̃j−(max{IN×

1tu , m̃
i}+C×1tu)})

⌉
-

, where we use dme- to denote the smallest marking such that

m - dme-.
3: Replace the resulting set of {m̃i}i vectors by their minimal elements with respect to

-, and modify the value of k to equal the size of the minimal set of vectors. Υ̂ is the
right-closed set with respect to - identified by this minimal set of vectors.

4: end while

We discuss the algorithm using the example PN N1. Since ∆C(N,-) is right-closed with

respect to -, its minimal elements completely describe the set. For finding the minimal

47

Algorithm 8 BumpUpForPathRequirement(N, Υ̂)

1: for m̃i ∈ min-(Υ̂) where G(N(m̃i), P̃Υ̂) does not have the path do

2: Define a right-closed set Υ, where min(Υ) = (min(Υ̂) − {m̃i}) ∪ {m̃i + ωjk × 1k|j ∈
{1, 2, . . . , n}, k ∈ {0, 1, 2, . . . , kj − 1}}, where 1k the unit-vector where the k-th com-
ponent is unity.

3: Replace m̃i by the set:

{dm̃ie(k)|k ∈{1, 2, . . . , n}, G(N(m̃i + ωjk × 1j), P̃Υ)

satisfies the path requirement} (4.7)

4: end for
5: Replace the resulting set of {m̃i}i vectors by their minimal elements with respect to

-, and modify the value of k to equal the size of the minimal set of vectors. Υ̂ is the
right-closed set with respect to - identified by this minimal set of vectors.

elements we start with the initial estimate of N n and remove elements that do not satisfy

the conditions related to the existence of a CM-LESP.

The initial estimate Υ̂0 = N n with minimal elements min-(Υ̂0) = {(0, 0), (0, 1), (0, 2)} is

control invariant with respect to (N,-). It is easy to see that the minimal element (0, 0) does

not satisfy the path requirement on the GCG. As a consequence, we replace the minimal

element (0, 0) with {(1, 0), (1, 1), (1, 2)} to obtain the new estimate Υ̂1, where min-(Υ̂1) =

min- {(1, 0), (1, 1), (1, 2), (0, 1), (0, 2)} = {(1, 0), (0, 1), (0, 2)}. The set of markings Υ̂1 is

control invariant with respect to (N,-). That is, the firing of any uncontrollable transition

form any marking in Υ̂1 results in a marking that is also in Υ̂1. This can be seen by noting

that the firing of t2 ∈ Tu from any marking m, where (1, 0) - m, results in the marking

m̂ ∈ Υ1, as max
-
{(1, 0), INt2}︸ ︷︷ ︸

(1,3)

+Ct2 = (3, 2)

 - m̂.

Similarly, if (0, 1) - m, the firing of t2 ∈ Tu at marking m results in a marking m̂ ∈ Υ1, as

(max-{(0, 1), INt2}+ Ct2 = (2, 0)) - m̂; and if (0, 2) - m, the firing of t2 ∈ Tu at marking

m results in a marking m̂ ∈ Υ1, as (max-{(0, 2), INt2}+ Ct2 = (2, 0)) - m̂.

Suppose t3 ∈ Tu fires from m ∈ Υ1 resulting in the marking m̂. If (1, 0) - m, since

max-{(1, 0), INt3}+ Ct3 = (1, 0) - m̂, and m̂ ∈ Υ1. Likewise, if (0, 1) - m (resp. (0, 2) -

m), since max-{(0, 1), INt3}+ Ct3 = (0, 1) - m̂ (resp. max-{(0, 2), INt3}+ Ct3 = (0, 2) -

m̂), and m̂ ∈ Υ1.

The GCG under the class-monotone policy PΥ̂1
(which ensures the reachable markings

48

0 1

2 0

t2

W 1

t1

W 2

t1

W 0

t2

W W0

t1

t2 t1

t3

W W2

t2

W W1

t1t3

t2

t1

t3

t2

t1

Figure 4.3: Generalized Coverability Graph for N1, where ζ1
0 = N is used for place p1; and

ζ2
i = {n ∈ N | n(mod3) = i}, and ωi = limn ζi, for i ∈ {0, 1, 2} is used for place p2.

49

0 2

2 1

t2

W 2

t1

4 0

t2

W 3

t1

W 1

t2 t1t1

W 0

t2

W W1

t1

t2

t3

t1

W W2

t1

W W0

t2

t3

t1

t2

t3 t1

t2

t3

Figure 4.4: Generalized Coverability Graph for N1, where ζ1
0 = N is used for place p1; and

ζ2
i = {n ∈ N | n(mod3) = i}, and ωi = limn ζi, for i ∈ {0, 1, 2} is used for place p2.

never leave Υ̂1) with initial-marking (1, 0), (0, 1) and (0, 2) are identical to the GCG’s shown

in Figures 4.2, 4.3 and 4.4 respectively. Each of the GCG’s under supervision satisfy the

path-requirement. That is, they all have a closed-path (ω, ω0)
(t1t2t1)3t3−−−−−−→ (ω, ω0). That is,

all transitions appear at least once in this closed-path, and the net-change in token-load of

all places is non-negative. Therefore, the class-monotone policy PΥ̂1
is a CM-LESP; from

the construction procedure we also know that min(∆c(N,-)) = {(1, 0), (0, 1), (0, 2)}. In the

standard algebra, this set is defined as follows: if there are 0(mod)3 tokens in p2, then there

must be at least one token in p1 for an (CM-)LESP to exist for N(m0).

50

CHAPTER 5

A GENERAL FRAMEWORK FOR LIVENESS
ENFORCING SUPERVISORY POLICIES FOR

DISCRETE EVENT SYSTEMS

In this chapter, we first present results for existence of a B-LESP in the framework of Figure

5.1 for a general model of DES as discussed in Chapter 1. Then we consider specific cases

of uncertainties (partial observability in the forward path, and controllability faults in the

feedback path) in PN models of DES. We prove that the existence of an LESP for arbitrary

PN in the presence of these uncertainties is undecidable even if an LESP for a uncertainty-

free case is known. We then present decidable instances of this problem.

Plant DES Supervisor

Estimator or
Learning Algorithm

Figure 5.1: Supervisory Control Framework

Let the plant DES be D = (S,Σ, δ) and consider some other DES D′ = (S ′,Σ′, δ′). We

introduce the function Ψ : S → S ′ that transforms the states of DES D to the states of DES

D′ to model scenarios when the supervisor does not receive precise information about the

state of the DES. Ψ is identity if the supervisor receives precise state information.

The first natural step in synthesizing a B-LESP in the presence of Ψ is to find the possible

actual state(s) of the DES D given a received-state of D′. Let s ∈ S ′ be a state received by

the supervisor and let [s]Ψ ⊆ S denote the set of states corresponding to s ∈ S which project

to the same state Ψ(s). That is:

[s]Ψ = {ŝ ∈ S : Ψ(s) = Ψ(ŝ)} (5.1)

[s]Ψ can also be characterized as the inverse of operator Ψ. For a state s ∈ S such that

51

Ψ(s) = s̃, we have:

Ψ−1(s̃) = {ŝ ∈ S : Ψ(ŝ) = s̃} (5.2)

Invariably, whenever there is uncertainty, a natural thing to do is to bring in the analysis

of estimation or learning of parameters of the system in order to mitigate its effects. A

detailed analysis in this direction, which can also include estimation of transition function,

δ, of D among other things, is out of the scope of this thesis, but we do include a simplified

interpretation. We assume that the supervisor receives a fixed set Θ ⊆ S as the set of ground

states or the set of feasible actual states from an estimator as supplemental information in

order to counter the effect of Ψ in the forward path. Consequently, the set of actual states

that we evaluate using the Ψ−1 operator can be narrowed down to Ψ−1∩Θ. We would denote

the system consisting of the DES D along with Ψ and Θ by the three tuple (D(s0),Ψ,Θ).

The operator Ψ models scenarios in which the supervisor may not receive precise state

information. We introduce the operator ϕ : {0, 1}card(Σc) → {0, 1}card(Σc), that acts on the

supervisory action and modifies it, to model faults in the feedback channel. Here card(·)
denotes the cardinality of the set argument. As a consequence, the policy actually supervising

the DES can be different to the one prescribed by the supervisor. We would denote the

system composed of the DES D along with Ψ, Θ and ϕ by the four tuple (D(s0),Ψ,Θ, ϕ).

We discuss the operator ϕ in detail in Section 5.2.

5.1 B-LESPs for (D,Ψ,Θ)

The initial step in a brute-force approach for the synthesis of a B-LESP for (D(s0),Ψ,Θ)

is to synthesize a B-LESP assuming precise state information (that is, Ψ is identity and

Θ = S). The supervisor takes an appropriate supervisory action by evaluating all possible

actual states of the DES D corresponding to the received state s′. We define a supervisory

policy for (D,Ψ,Θ) as: PΨ,Θ : S ′ × Σ → {0, 1}. Given a received state, we introduce a

notion of equivalence of supervisory action among the possible actual states of the DES in

the next definition.

Definition 9. A supervisory policy PΨ,Θ : S ′ × Σ→ {0, 1} is Ψ-invariant with respect to a

supervisory policy P : S × Σ→ {0, 1} if ∀e ∈ Σ:

(PΨ,Θ(s′, e) = 1)⇒ (
∧

s∈Ψ−1(s′)∩Θ

P(s, e) = 1))

52

That is, PΨ,Θ is Ψ-invariant with respect to P if PΨ,Θ enables an event e at a state s′ only

if P enables e at all states s ∈ [s′]Ψ ∩ Θ. A straightforward observation from the definition

is:

Observation 11. Let PΨ,Θ1 and PΨ,Θ2 be two supervisory policies that are Ψ-invariant with

respect to a supervisory policy P. Then (Θ1 ⊆ Θ2)⇔ (PΨ,Θ1(s, e) ≥ PΨ,Θ2(s, e)).

Let I denote the identity function. The case when the supervisor has precise information

about the state of the DES can be represented as Ψ = I and Θ = S. Then we can define

PΨ,Θ as follows. ∀e ∈ Σ:

(PΨ,Θ(s′, e) = 1)⇔ (
∧

s∈Ψ−1(s′)∩Θ

PI,S(s, e) = 1) (5.3)

The motivation for defining PΨ,Θ as in Equation 5.3 is very simple. Recall that ∆(D) is

the set of initial states for which a B-LESP exists. Suppose s0 ∈ ∆(D) and that PI,S is of

the form given in Definition 5. That is, it permits an event e if and only if its occurrence

does not take the state of the DES D outside the set ∆(D). Then, what the definition of

PΨ,Θ above is saying is that PΨ,Θ will permit e at a received state s′ ∈ S ′ only if all possible

actual states of DES D are such that permitting event e will not take the DES D outside

∆(D). On the other hand, even if there is one possible actual state of D, for which the

received state is s′, and for which the occurrence of e will take the DES state outside ∆(D),

then PΨ,Θ would disable e. We state the following lemma to formalize this discussion:

Lemma 5. Let PI,S be a B-LESP such that ∀e ∈ Σ,∀s1 ∈ S: (PI,S(s1, e) = 1) ⇔ ((s1
e−→

s2)∧(s2 ∈ ∆(D))). If PΨ,Θ is a B-LESP for (D,Ψ,Θ), then PΨ,Θ is Ψ-invariant with respect

to PI,S.

Proof. Suppose for contradiction that PΨ,Θ is a B-LESP for (D,Ψ,Θ) but it is not Ψ-

invariant with respect to PI,S. Then there exists a state s′ for which PΨ,Θ(s′, e) = 1, and

there exists a state s ∈ Ψ−1(s′) ∩ Θ such that PI,S(s, e) = 0. Now since PI,S is the maxi-

mally permissive B-LESP (Lemma 1), there is no other B-LESP P̂ such that P̂(s, e) = 1.

Consequently, if the actual state of the DES D is s ∈ Ψ−1(s′) ∩ Θ, then permitting e at a

received state s′ will take the state of D outside ∆(D), and PΨ,Θ is not a B-LESP, which is

a contradiction.

Next, we intend to define a ∆(D)-like set that describes the set of initial states of D for

which a B-LESP exists for (D,Ψ,Θ). Let us denote that set by ∆(D,Ψ,Θ).

∆(D,Ψ,Θ) = {s0 ∈ S : ∃ a B-LESP for (D,Ψ,Θ)} (5.4)

53

Obviously ∆(D,Ψ,Θ) ⊆ ∆(D). Since we are looking to enforce liveness with respect to B,

the set ∆(D,Ψ,Θ) must possess properties similar to ∆(D). The discussion of the property

of Ψ-invariance and Lemma 5 gives hints on the additional properties that ∆(D,Ψ,Θ) should

possess. We introduce the set ξ(D, e) ⊆ ∆(D) as the set of states from which the occurrence

of event e keeps the DES state in ∆(D).

ξ(D, e) = {s ∈ ∆(D) : δ(e, s) ∈ ∆(D)} (5.5)

In other words, ξ(D, e) is the set of states of D for which the the policy PI,S(s, e) as defined

in Lemma 5 would enable the event e. Note that ξ(D, e) = S, ∀e ∈ Σu. As seen in Lemma 5,

any B-LESP for (D,Ψ,Θ) disables an event e at a received state s′ if Ψ−1(s′)∩Θ * ξ(D, e).

Now, if we have to characterize the set of states, ∆(D,Ψ,Θ), for which a B-LESP exists for

(D,Ψ,Θ), then the maximally permissive B-LESP for (D(s0),Ψ,Θ), where s0 ∈ ∆(D,Ψ,Θ),

should enable every event whose occurrence does not take the DES state outside ∆(D,Ψ,Θ).

Consequently, if an event e from state s ∈ ∆(D,Ψ,Θ) results in a state s̃ ∈ ∆(D,Ψ,Θ), then

([s]Ψ ∩Θ) ⊆ ξ(D, e). This is the main idea in the next definition. Recall that σi denotes the

first i elements of a valid sequence of states σ.

Definition 10. For a DES D = (S,Σ, δ), ∆(D,Ψ,Θ) ⊆ S is the set of initial states with

the following properties:

1. ∀s ∈ ∆(D,Ψ,Θ), ∀α ∈ S∗(s),∃β ∈ Sω such that:

(a) αβ � B

(b) ∀i such that (αβ)iŝ = (αβ)i+1: ŝ ∈ ∆(D,Ψ,Θ)

2. ∀s ∈ ∆(D,Ψ,Θ), ∀e ∈ Σ: (δ(e, s) = s̃ and s̃ ∈ ∆(D,Ψ,Θ))⇒ (([s]Ψ ∩Θ) ⊆ ξ(D, e)).

3. It is control invariant. That is, ∀s1 ∈ ∆(D,Ψ,Θ), eu ∈ Σe(s1) ∩ Σu and s1
eu→ s2, then

s2 ∈ ∆(D,Ψ,Θ).

Theorem 11. (∃ a B-LESP for (D(s0),Ψ,Θ)) ⇔ (s0 ∈ ∆(D,Ψ,Θ)).

Proof. (⇐) From property 2, every event from a state in ∆(D,Ψ,Θ) that results in a state

in ∆(D,Ψ,Θ) will be permitted by the supervisory policy PΨ,Θ as defined in Equation 5.3.

From 1a, 1b and 3, if s0 ∈ ∆(D,Ψ,Θ) then PΨ,Θ is a B-LESP for (D(s0),Ψ,Θ).

(⇒) If ∃ a B-LESP PΨ,Θ for (D(s0),Ψ,Θ), then by Lemma 5, it is Ψ-invariant with respect to

PI,S as defined in the lemma. This implies that it will permit a controllable event at s′ only

if its occurrence from all s ∈ Ψ−1(s′)∩Θ does not take the state outside ∆(D). That is, only

54

if Ψ−1(s′)∩Θ ⊆ ξ(D, e). Every state reached under every evolution under the supervision of

PΨ,Θ should satisfy this property. Therefore, Item 2 is a necessary condition. That Items 1a,

1b, 3 of Definition 10 are true for every evolution under the supervision of PΨ,Θ follows from

the fact that it is a B-LESP. Therefore, every state of every evolution under the supervision

of PΨ,Θ is in ∆(D,Ψ,Θ) and s0 ∈ ∆(D,Ψ,Θ). Indeed, PΨ,Θ = PΨ,Θ.

Next, we build on this result to include the effect of ϕ.

5.2 B-LESPs for (D,Ψ,Θ, ϕ)

We noted that the operator ϕ can modify the sequence of supervisory action taken by the

supervisor. That is, the policy actually supervising the DES can be different than the one

prescribed by the supervisor. Intuitively, for an event e at a state s, ϕ can change the

supervisory action from 1 (enable) to a 0 (resp. disable) or vice versa. That is, ϕ models

a bit-flip operation. If ϕ is such that it can change infinitely-many control actions, then ϕ

can, in some cases, ensure that property B is not satisfied for any evolution. Let us denote

the property not-B by B.

Theorem 12. Suppose ϕ is such that it can flip infinitely many supervisory actions. Then

there does not exist a B-LESP for (D,Ψ,Θ, ϕ) if there exists a B-LESP for (D,Ψ,Θ).

Proof. Suppose there exists a B-LESP PΨ,Θ for (D,Ψ,Θ) for an initial state s0. Then ϕ

can mimic the supervisory action of PΨ,Θ at each state to ensure that property B is never

satisfied. Therefore, there does not exist a B-LESP for (D,Ψ,Θ, ϕ).

The non-existence of a B-LESP means that it is not possible to enforce not-B by steering

the controllable events. It is possible that there does not exist a B-LESP but there still

does not exist a B-LESP for (D,Ψ,Θ). In that case, the existence and non-existence will be

dependent on the uncontrollable events.

In this thesis, we pay attention to the case when ϕ can change finitely-many control actions.

The minimally restrictive B-LESP permits an event if its occurrence will keep the DES in

∆(D,Ψ,Θ). Therefore, even if ϕ disables an event that was enabled by the supervisor, the

state will still be in ∆(D,Ψ,Θ) and liveness can be enforced. The interesting case is when ϕ

enables an event that was disabled by the supervisor. Then the occurrence of that event can

take the DES state outside ∆(D,Ψ,Θ) resulting in loss of liveness. In this thesis, informally

speaking, we work with the case when ϕ non-deterministically modifies a finite number of

0s to 1s. For ease of exposition, we model the effect of ϕ as an extraneous fault-event that

55

renders a subset of controllable events temporarily uncontrollable. As a result of the fault-

event, the subset of controllable events affected by it can occur even when disabled by the

supervisor. The interpretation is valid from an application point of view also, as this could

happen due to a device- or line-fault, where communication between supervisor and plant is

temporarily unavailable; or due to the activity of a malicious-user.

5.2.1 Motivation and Faults Semantics using a Petri Net Example

Figure 5.2: Petri Net Ni

Consider the fully controllable PN Ni shown in Figure 5.2. ∆(Ni) is right-closed with

minimal elements {(1 1 0 0 0)T , (0 0 1 0 0)T , (0 0 0 1 0)T , (0 0 0 0 1)T}. Suppose an

extraneous fault-event occurs at (0 0 1 0 0)T ∈ ∆(Ni) that renders transition t2 (temporarily)

uncontrollable. That is, the supervisory policy cannot prevent it from firing. Then the

affected transition t2 can fire at (0 0 1 0 0)T and the resulting marking is not in ∆(Ni). The

objective of this section is to analyse the existence and synthesis of LESPs tolerant to such

controllability failures.

Formally, we use the term fault-event, denoted by φ, to refer to an extraneous discrete-

event where an arbitrary subset of controllable transitions, Tf ⊆ Tc, becomes temporarily

uncontrollable. The fault-event φ is followed (not necessarily immediately) by an extraneous

rectification-event, denoted by ρ, where all transitions in Tf ⊆ Tc become controllable again.

That is, between the fault- and the rectification-event, the set of uncontrollable (resp. con-

trollable) events is effectively Tf ∪ Tu (resp. Tc − Tf). Before the fault-event, and after the

rectification-event, the set of uncontrollable (resp. controllable) events is Tu (resp. Tc).

Coming back to the PN in figure 5.2, we observed that the firing of t2 from (0 0 1 0 0)T

resulted in a marking that is not in ∆(Ni). An obvious way of making the PN tolerant to

56

fault is to constrain the marking of the PN to a subset of ∆(Ni) so that when a transition

affected by fault does fire, the resulting marking is still inside ∆(Ni). In addition, that subset

of ∆(Ni) should also satisfy the properties of ∆(Ni) so that the supervisory policy that

constrains the marking to it enforces liveness. Consider the right-closed set ∆̂(Ni) ⊆ ∆(Ni)

with minimal elements {(2 2 0 0 0)T , (0 0 2 0 0)T , (0 0 0 2 0)T , (0 0 0 0 2)T , (1 1 1 0 0)T , (1 1

0 1 0)T , (1 1 0 0 1)T , (0 0 1 1 0)T , (0 0 1 0 1)T , (0 0 0 1 1)T }. Consider the policy P̂ defined

such that for any controllable transition tc ∈ Tc at any marking m1 ∈ ∆̂(Ni): (P̂(m1, tc) =

0) ⇔ ((m1
tc→ m2) ∧ (m2 /∈ ∆̂(Ni))). P̂ is an LESP for Ni(m0) for any m0 ∈ ∆̂(Ni). It

follows that, P̂(m0, t2) = 0 for m0 = (0 0 2 0 0)T ; and ∀m ∈ ∆̂(Ni), P̂(m, t4) = 1 (cf. [64]

for details).

We illustrate the detection semantics next. Suppose Ψ = I and that the fault-event φ

occurs at m0, rendering the transition in the set Tf = {t4} to be uncontrollable. A fault-

event can be detected if a controllable transition that was disabled by the LESP fired. But

since the LESP P̂ does not disable the transition t4 for any marking in ∆̂(Ni), this fault will

not be detected. In contrast, let Tf = {t2, t4}, and suppose (0 0 2 0 0)T
φt2−−→ (0 0 1 0 0)T

under the supervision of P̂ . If the supervisor stores information about its past actions, then

the fault can be detected by comparing the transition that fired to those that were enabled

by the supervisor. However, we do not assume that the supervisor stores information about

its past actions and consider a general setting in which the fault-event has to be inferred

from only the current marking of the PN. For this example, the firing of a transition affected

by the fault can be detected by observing that the current marking (0 0 1 0 0)T no longer

belongs to ∆̂(Ni).

Due to cost considerations, a fault may not be rectified immediately after detection. We

quantify the tolerance of N(m0) to a fault-event by associating a positive integer kr with it;

where kr is the mandatory number of detected firings of transitions that are affected by the

fault before it is rectified. Under these semantics, the fault-free scenario is represented as

the case when kr = 0.

Continuing with the example for the case when Tf = {t2, t4}, if kr = 1 then the fault will

be rectified immediately at the marking (0 0 1 0 0)T , (0 0 2 0 0)T
φt2ρ−−→ (0 0 1 0 0)T , and

all transitions in Tc will be controllable afterwards. No other transition in Ni can fire at

the marking (0 0 1 0 0)T before the occurrence of the rectification-event ρ. If kr > 1, the

rectification-event cannot occur at marking (0 0 1 0 0)T , and (0 0 2 0 0)T
φt2t2−−−→ (0 0 0 0 0)T

under the supervision of P̂ . Thus, we can conclude that for Ni(m0) where m0 ∈ ∆̂(Ni), the

LESP P̂ is tolerant to a fault-event if kr ≤ 1.

Consider the right-closed set ∆̃(Ni) ⊆ ∆(Ni) with minimal elements {(3 3 0 0 0)T , (0 0

3 0 0)T , (0 0 0 3 0)T , (0 0 0 0 3)T , (2 2 1 0 0)T , (2 2 0 1 0)T , (2 2 0 0 1)T , (1 1 2 0 0)T ,

57

(1 1 0 2 0)T , (1 1 0 0 2)T , (0 0 2 1 0)T , (0 0 2 0 1)T , (0 0 1 2 0)T , (0 0 1 0 2)T , (0 0 0 2

1)T , (0 0 0 1 2)T , (1 1 1 1 0)T , (1 1 1 0 1)T , (1 1 1 1 0)T , (1 1 0 1 1)T , (1 1 1 0 1)T , (1 1 0

1 1)T , (0 0 1 1 1)T }. It follows that ∆̃(Ni) ⊂ ∆̂(Ni) ⊂ ∆(Ni). The policy P̃ that ensures

all markings, that are reachable under supervision, are within the set ∆̃(Ni) is an LESP for

N(m0) for any m0 ∈ ∆̃(Ni). Following previous discussion, we can claim that for Ni(m0)

where m0 ∈ ∆̃(Ni), the LESP P̃ is tolerant to a single-fault-event if kr ≤ 2.

To summarize the detection method for the example, if the initial marking of Ni is in

∆̃(Ni), then the first firing of a transition affected by the fault will be detected when the

current marking is in the set ∆̂(N) − ∆̃(N). The second firing of a transition affected by

the fault will be detected when the current marking is in ∆(Ni) − ∆̂(Ni). If kr = 2, then

the fault will be immediately rectified upon reaching ∆(Ni) − ∆̂(Ni) and the PN can be

supervised for liveness as in the fault-free case.

In what follows, we define a sequence of nested sets and use membership to them to detect

firings of affected events by using only the current state of the PN. Under the semantics enun-

ciated earlier, the rectification-event ρ occurs immediately after the kr-th firing of affected

transitions is detected.

5.2.2 Existence Results for a general DES model

Formally, a supervisory policy for (D,Ψ,Θ, ϕ), PΨ,Θ,ϕ : S ′ × Σ → {0, 1} returns a 0 or 1

for each state and event. It permits the occurrence of an event e at state s, if and only if

PΨ,Θ,ϕ(s′, e) = 1. As per convention, we have ∀eu ∈ Σu, s
′ ∈ S ′, PΨ,Θ,ϕ(s′, eu) = 1. In what

follows, we first develop the theory by ignoring the effect of Ψ, that is by assuming Ψ = I

and Θ = S.

Definition 11. Let ∆0(D, I, S, ϕ) = ∆(D, I, S). Then ∆k(D, I, S, ϕ) ⊆ ∆(D, I, S), k ∈ N+,

is the set of all initial states that satisfies the following conditions:

1. ∀s ∈ ∆k(D, I, S, ϕ), ∀α ∈ S∗(s),∃β ∈ Sω such that:

(a) αβ � B

(b) ∀i such that (αβ)iŝ = (αβ)i+1: ŝ ∈ ∆k(D, I, S, ϕ)

2. It is control invariant. That is, ∀s1 ∈ ∆k(D, I, S, ϕ), eu ∈ Σe(s1) ∩ Σu and s1
eu→ s2,

then s2 ∈ ∆k(D, I, S, ϕ).

3. ∀s1 ∈ ∆k(D, I, S, ϕ), ∀e ∈ Σ: (s1
e−→ s2)⇒ (s2 ∈ ∆j(D, I, S, ϕ)), where j ≥ k − 1.

58

Properties 1 and 2 in Definition 11 are the properties of ∆(D, I, S) (= ∆(D), Definition

4). Property 3 ensures that the state of the DES remains in a set that satisfies the properties

of ∆(D, I, S) before and after the detection of occurrence of events affected by faults.

Suppose the number of occurrences of events affected by the fault detected till now

is kd, and the current state s ∈ ∆kr−kd(D, I, S, ϕ). As ∆k(D, I, S, ϕ) (k = {0, . . . , kr})
is control-invariant, only the occurrence of controllable events can take the state outside

∆kr−kd(D, I, S, ϕ). Consider the supervisory policy Pf where ∀s ∈ S

1. ∀e ∈ Σu: Pf (s, e) = 1.

2. ∀e ∈ Σc: (Pf (s, e) = 1) ⇔ (s
e−→ s̃ such that s̃ ∈ ∆kr−kd(D, I, S, ϕ)).

Due to Properties 1 and 2 in Definition 11, Pf is a B-LESP for (D, I, S). Since Pf dis-

ables any controllable event that takes the state outside ∆kr−kd(D, I, S, ϕ), if the state of

the supervised DES does not belong to ∆kr−kd(D, I, S, ϕ), then it must be because of the

occurrence of a (controllable) event affected by fault. This is the central idea for detection

of occurrence of events affected by fault. For every state s reached under the supervision

of Pf from s ∈ ∆kr−kd(D, I, S, ϕ), the supervisor first tests if s ∈ ∆kr−kd(D, I, S, ϕ). If

s /∈ ∆kr−kd(D, I, S, ϕ), then by Property 3 of Definition 11, s ∈ ∆kr−kd−1(D, I, S, ϕ). At

this point, the supervisor detects the occurrence of an event affected by the fault, updates

kd ← kd+1, and continues with the same policy as explicated above. That is, it now enforces

the set ∆kr−kd−1(D, I, S, ϕ). We formalize these observations in the next theorem.

Theorem 13. (s0 ∈ ∆kr(D, I, S, ϕ))⇔ (∃ a B-LESP for (D, I, S, ϕ)).

Proof. (⇒) Assume s0 ∈ ∆kr(D, I, S, ϕ), and the fault-event φ renders Σf ⊆ Σc to be

temporarily uncontrollable when it occurs immediately after some state s reached under the

supervision of Pf . It follows that kd = 0 when the the fault-event occurs. If the policy Pf
ensures the state of the supervised DES never leaves ∆kr(D, I, S, ϕ), then s ∈ ∆kr(D, I, S, ϕ),

as well. Properties 1 and 2 in Definition 11 imply that Pf is a B-LESP for (D, I, S). We use

property 3 to prove robustness against fault. Consider a controllable event ec ∈ Σe(s), and

let s
φec−−→ s. There are three possible cases:

1. ec /∈ Σf , that is ec is not affected by the fault-event. Then ec will occur if and only if

Pf (s, ec) = 1, and we have s ∈ ∆kr(D, I, S, ϕ). kd remains 0.

2. (ec ∈ Σf) ∧ (Pf (s, ec) = 1), that is ec is affected by the fault-event but its firing is as

intended by Pf . We have s ∈ ∆kr(D, I, S, ϕ). kd remains 0.

59

3. (ec ∈ Σf) ∧ (Pf (s, ec) = 0). Following Property 3, we have s ∈ ∆kr−1(D, I, S, ϕ) and

kd = 1.

That there exists an B-LESP for (D, I, S, ϕ) follows by replacing s by s, and repeating the

above argument by induction over kr-many unintended occurrences of ef ∈ Σf (that is for

kd from 1 to kr).

(⇐) Assume there exists a B-LESP Pf for (D, I, S, ϕ), and the fault-event φ renders

Σf ⊆ Σc to be temporarily uncontrollable when it occurs immediately after some marking

that is reached under supervision. Let s0 ∈ Skr for some set Skr . Now, since Pf is a B-LESP

for (D, I, S, ϕ) it is a B-LESP for (D, I, S) also. By Theorem 11, Skr satisfies Properties 1

and 2 in Definition 11. Since Pf is a B-LESP for (D, I, S, ϕ), from all s, every string of states

resulting from occurrences of events in which unintended occurrences of events affected by

fault: ef ∈ Σf appear less than or equal to kr-many times should result in a state that is in

∆(D, I, S). Specifically, ∀s ∈ Skr , s
φef−−→ s1. Then s1 ∈ Skr−1 for some set Skr−1 such that

∀s′ ∈ Skr−1:

1. every string of states resulting from occurrences of events in which unintended occur-

rences of events affected by fault: ef ∈ Σf appear less than or equal to (kr − 1)-many

times should result in a state that is in ∆(D, I, S); and

2. (D, I, S, ϕ) can be made live— for the case when none of the ef ∈ Σf ever fire when

Pf (s′, ef) = 0.

Therefore, Skr−1 also satisfies Properties 1 and 2 in Definition 11. The rest of the proof

follows by induction by replacing kr by (kr − 1) in the above argument. The induction

will have kr steps with the last iteration resulting in a marking in ∆(D, I, S). Therefore,

Skr ⊆ ∆kr(D, I, S) and Skr−1 ⊆ ∆kr−1(D, I, S, ϕ). Hence s0 ∈ ∆kr(D, I, S, ϕ).

Theorem 13 presented the necessary and sufficient condition for the existence of a B-LESP

for (D, I, S, ϕ). The B-LESP Pf first tests if a received state s ∈ ∆kr−kd(D, I, S, ϕ) or not.

If s /∈ ∆kr−kd(D, I, S, ϕ), then by Property 3 of Definition 11, s ∈ ∆kr−kd−1(D, I, S, ϕ). At

this point, the supervisor detects the occurrence of an event affected by the fault, updates

kd ← kd + 1, and continues with the same policy as explicated above. The process becomes

tedious in the presence of Ψ 6= I because the detection method described before cannot be

applied in a straightforward manner. Taking a small detour from the framework that we

have been considering, let us suppose, for the sake of discussion, that information regarding

the occurrence of events of the DES is available to the supervisor (let’s say through the

learning algorithm) so that detection of occurrence of an event affected by fault is not a

60

problem. Then we can define the set ∆k(D,Ψ,Θ, ϕ) as follows. The idea is the same as that

in Definition 10 and Definition 11 combined together. Similar to Equation 5.5, we define a

set ξ(D, I, S, ϕ) as the set of states in ∆k(D, I, S, ϕ, e) from which the occurrence of an event

e results in a state in ∆k(D, I, S, ϕ).

ξk(D, I, S, ϕ, e) = {s ∈ ∆k(D, I, S, ϕ) : δ(e, s) ∈ ∆k(D, I, S, ϕ)} (5.6)

Definition 12. Let ∆̂0(D,Ψ,Θ, ϕ) = ∆(D,Ψ,Θ). Then ∆̂k(D,Ψ,Θ, ϕ) ⊆ ∆(D,Ψ,Θ),

k ∈ N+, is the set of all initial states that satisfies the following conditions:

1. ∀s ∈ ∆̂k(D,Ψ,Θ, ϕ), ∀α ∈ S∗(s),∃β ∈ Sω such that:

(a) αβ � B

(b) ∀i such that (αβ)iŝ = (αβ)i+1: ŝ ∈ ∆̂k(D,Ψ,Θ, ϕ)

2. ∀s ∈ ∆̂k(D,Ψ,Θ, ϕ), ∀e ∈ Σ:

(δ(e, s) = s̃ and s̃ ∈ ∆̂k(D,Ψ,Θ, ϕ))⇒ (([s]Ψ ∩Θ) ⊆ ξk(D, I, S, ϕ, e))

3. It is control invariant. That is, ∀s1 ∈ ∆̂k(D,Ψ,Θ, ϕ), eu ∈ Σe(s1) ∩ Σu and s1
eu→ s2,

then s2 ∈ ∆̂k(D,Ψ,Θ, ϕ).

4. ∀s1 ∈ ∆̂k(D,Ψ,Θ, ϕ), ∀e ∈ Σ: (s1
e−→ s2)⇒ (s2 ∈ ∆̂j(D,Ψ,Θ, ϕ)), where j ≥ k − 1.

We can define a supervisory policy PΨ,Θ,ϕ that is Ψ-invariant with respect to Pf .

(PΨ,Θ,ϕ(s′, e) = 1)⇔ (
∧

s∈Ψ−1(s′)∩Θ

Pf (s, e) = 1) (5.7)

As discussed in Section 5.1, PΨ,Θ,ϕ is a B-LESP for (D,Ψ,Θ, ϕ), if information about occur-

rence of events that enables evaluation of Pf is available. Suppose the number of unintended

occurrences of events affected by faults till now is kd. If Ψ 6= I, then for a received state s′

an important step in this process is to infer if the actual state s ∈ ∆kr−kd(D, I, S, ϕ) or not.

This condition is captured in Item 2 of the following theorem.

Theorem 14. ∃ a B-LESP for (D(s0),Ψ,Θ, ϕ) if and only if:

1. s0 ∈ ∆̂kr(D,Ψ,Θ, ϕ), and

2. ∀i, j ∈ {0, 1, . . . , kr}, i 6= j, ∀sm ∈ ∆̂i(D,Ψ,Θ, ϕ), ∀sn ∈ ∆̂j(D,Ψ,Θ, ϕ)

[sm]Ψ ∩ [sn]Ψ = ∅ (5.8)

61

In this section, we presented necessary and sufficient conditions for the existence of B-

LESPs for a general class of problems. In the next section, we consider PN models of DES

and present decidable instances of this problem for two cases– partial observability and

controllability faults.

Theorems 3.1 and 3.2 in [35] prove that neither the existence nor the nonexistence of an

LESP for an arbitrary PN is semidecidable. In light of this theorem, we expect that the

existence of an LESP for an arbitrary PN with partial observability and/or controllability

faults is also undecidable. We prove a stronger result in the appendix of the thesis where in

the the existence of LESPs with partial observability and/or controllability faults is unde-

cidable given m0 ∈ ∆(N). This result is significant because it proves that the complexity in

the synthesis of an LESPs for arbitrary PNs with partial observability and/or controllability

faults is not solely inherited from the complexity in the synthesis of an LESP.

5.3 LESPs with Partial State Observability for Petri Nets

Consider a PN N = (Π, T,Φ,Γ) with n places. In this section, we consider LESP synthesis

for DES modeled by PNs with partial marking information; that is, when token information

of only a subset of places Π0 ⊆ Π is received by the supervisor. Specifically, ΨΠ0 : N n →
N card(Π0). Then Ψ−1

Π0
will be the set of all non-negative integer-valued n-dimensional vectors

that project to the same vector in the card(Π0)-dimensional space. We assume Θ = N n.

A Π0-LESP Pp : N card(Π0) × T → {0, 1} outputs a 0 or a 1 for each marking ΨΠ0(m) and

each transition. A transition t is control-enabled iff Pp(ΨΠ0(m), t) = 1. The policy does

not control-disable any uncontrollable transition. Next we present some straightforward

extension of notations defined previously.

[m]Ψ = {m̂ ∈ N n : ΨΠ0(m) = ΨΠ0(m̂)} (5.9)

For a marking m ∈ N n such that ΨΠ0(m) = m̃, we have:

Ψ−1
Π0

(m̃) = {m̂ ∈ N n : ΨΠ0(m̂) = m̃} (5.10)

We define the following set:

∆(N,ΨΠ0 ,N n) = {m0 ∈ N n : ∃ a Π0-LESP for N(m0)} (5.11)

and characterize it, from Definition 10 and Theorem 5.1 in [33], as follows:

62

Definition 13. For a PN N = (Π, T,Φ,Γ), ∆(N,ΨΠ0 ,N n) is the set of initial markings

with the following properties:

1. ∀m1 ∈ ∆(N,ΨΠ0 ,N n),∃m2,m3 ∈ ∆(N,ΨΠ0 ,N n), ∃ a valid firing string σ = σ1σ2 in

N such that m1
σ1−→ m2

σ2−→ m3,m3 ≥ m2, all transitions appear at least once in σ2,

and ∀σ3 ∈ pr(σ1σ2), (m1
σ3−→ m4) ⇒ (m4 ∈ ∆(N,ΨΠ0 ,N n). Here pr(•) denotes the

prefix of the string argument.

2. ∀m ∈ ∆(N,ΨΠ0 ,N n): m
t−→ m̃ and m̃ ∈ ∆(N,ΨΠ0 ,N n)) ⇒ ((t ∈ Tu) ∨ ([m]ΨΠ0

∩
N n) ⊆ ξ(N)))

3. It is control invariant.

Theorem 15. ∃ a Π0-LESP for (N(m0),ΨΠ0 ,N n) if and only if m0 ∈ ∆(N,ΨΠ0 ,N n).

Proof. Special case of Theorem 11.

Theorem 16. The existence of a Π0-LESP for N(m0) such that m0 ∈ ∆(N) and for a

given Π0 is undecidable.

Proof. See Appendix.

Lemma 6. ∆(N) is right-closed for N ∈ H. Let N ∈ H. There exists an LESP for

(N(m0),ΨΠ0 ,N n) if:

1. m0 ∈ ∆(N);

2. ∀m̃i ∈ min(∆(N)):

m̃i(p) =

Ψ(m̃i)(p), if p ∈ Π0

0, otherwise

Proof. If ∀m̃i ∈ min(∆(N)): m̃i(p) = Ψ(m̃i)(p) ∀p ∈ Π0, and 0 otherwise; then the super-

visor can determine if a marking m1 is greater than some m̃i (in other words, in ∆(N)) or

not by observing Ψ(m1). Therefore, the minimally restrictive LESP that restricts the PN

marking to ∆(N) can be applied in the presence of Ψ also.

Theorem 17. Let N ∈ H. There exists an LESP for (N(m0),ΨΠ0 ,N n) if and only if

∃M ⊆ ∆(N) such that:

1. min(M) ⊆ min(∆(N))

63

2. ∀m̃i ∈ min(M):

m̃i(p) =

Ψ(m̃i)(p), if p ∈ Π0

0, otherwise

3. M satisfies the conditions of ∆̂(N) as given in Theorem 6, which presents the necessary

and sufficient condition for the existence of an MM-LESP.

Proof. (If) Follows from Lemma 6, and the observation that a supervisory policy that re-

stricts the markings of the PN to M is an MM-LESP.

(Only If) If there exists an LESP for (N(m0),ΨΠ0 ,N n), then every transition enabled by

the supervisory policy at a marking m is either uncontrollable or Ψ−1(Ψ(m)) ⊆ ξ(N) (as

defined in Equation 5.5). This is only possible if m0 ∈M whereM is a right-closed subset

of ∆(N) that satisfies the conditions of ∆̂(N) as given in Theorem 6, and ∀m̃i ∈ min(M):

m̃i(p) = Ψ(m̃i)(p) ∀p ∈ Π0, and 0 otherwise. Every right-closed subset of ∆(N) has mini-

mal elements greater than or equal to the minimal elements of ∆(N). Therefore, it is not

possible min(M) * min(∆(N)) but Item 2 is satisfied by min(M).

Since m0 ∈ ∆(N) is decidable for N ∈ H, and the conditions in Theorem 17 can be tested

in finite time, we get the following theorem:

Theorem 18. The existence of an LESP for (N(m0),ΨΠ0 ,N n) is decidable if N ∈ H.

5.4 LESPs with Controllability Faults for Petri Nets

We assume that perfect marking information is available

5.4.1 Extension of Notations and Results for faults scenarios in Petri Nets

A supervisory policy, in the context of faults, Pf : N n × T × {0, . . . , kr} → {0, 1}, returns a

0 or 1 for each marking, each transition, and the observed number of (unintended) firings of

controllable transitions affected by the fault. It permits the firing of transition tj at marking

mi when kd-many (0 ≤ kd ≤ kr) unintended firings of controllable transitions have been

detected, if and only if Pf (mi, tj, kd) = 1. We require Pf (mi, tu, kd) = 1 ∀tu ∈ Tu, ∀kd. For

a given Tf ⊆ Tc, a state-enabled transition t ∈ Te(N,mi) can fire under the supervision of

Pf at marking mi when kd-many (0 ≤ kd ≤ kr) unintended firings of controllable transitions

have been detected, if either (1) Pf (mi, t, kd) = 1; or (2) 0 < kd < kr, and t ∈ Tf .

64

A string of transitions σ = t1 . . . tk, where tj ∈ T (j ∈ {1, . . . , k}), is said to be a valid

firing string in the presence of controllability faults, starting from the marking mi, after

kd-many (0 ≤ kd ≤ kr) unintended firings of controllable transitions have been detected thus

far, if (1) the transition t1 ∈ Te(N,mi) can fire at the marking mi, and (2) for j ∈ {1, . . . , k},
the firing of the transition tj produces a marking mi+j, tj+1 ∈ Te(N,mi+j) and the transition

tj+1 can fire at the marking mi+j. We denote this as mi
σ−→ mi+k under the supervision of

Pf . We say σ is a valid firing string of transitions under faults from marking mi under the

supervision of Pf .
The set Rφ(N,m0,Pf , kr, Tf) denotes the set of markings generated by all valid firing

strings of transitions from m0 under the supervision of Pf in N , under the influence of a

fault φ that will be rectified immediately after kr-many unintended firings of controllable

transitions in the set Tf ⊆ Tc are detected. Consequently, ∀k2
r ≤ k1

r , ∀T 2
f ⊆ T 1

f ⊆ Tc, Rφ

(N,mi,Pf , k2
r , T

2
f) ⊆ Rφ(N,mi,Pf , k1

r , T
1
f) ⊆ R(N,mi), where we assume that Pf is defined

for k1
r .

For the example in Figure 5.2 with initial marking (1 1 0 0 0)T consider the supervisory pol-

icy P that constraints the marking to ∆(Ni) irrespective of faults. Then Rφ(Ni, (1 1 0 0 0)T ,P
, 1, {t2}) = {(0 0 0 0 0)} ∪ R(Ni, (1 1 0 0 0)T ,P). Next, consider the initial mark-

ing (0 0 2 0 0)T with kr = 1 and the supervisory policy P̂ which constrains the PN

marking to ∆̂(Ni) till the first unintended firing of t2 is detected, and to ∆(Ni) after-

wards. For this case, Rφ(Ni, (0 0 2 0 0)T , P̂ , 1, {t2}) = R(Ni, (0 0 2 0 0)T ,P). Note

that R(Ni, (0 0 2 0 0)T ,P) is the set of reachable markings in the absence of faults un-

der the supervision of P defined above. On the other hand, since ∆̂(Ni) ⊂ ∆(Ni), we have

R(Ni, (0 0 2 0 0)T , P̂) ⊂ R(Ni, (0 0 2 0 0)T ,P).

Definition 14. A supervisory policy Pf : N n × T × {0, . . . , kr} → {0, 1}, is said to be

a Fault Tolerant Liveness Enforcing Supervisory Policy (FT-LESP) for a PN N(m0) if

∀t ∈ T,∀Tf ⊆ Tc,∀mi ∈ Rφ(N,m0,Pf , kr, Tf), ∃mj ∈ Rφ(N,mi,Pf , kr − kd, Tf) such that

Pf (mj, t, kd) = 1 and t ∈ Te(N,mj), where kd denotes the number of unintended firings of

controllable transitions detected when the marking mi is reached in the PN N(m0) under the

supervision of Pf .

Since a supervisory policy in the context of faults, Pf : N n × T × {0, . . . , kr} → {0, 1},
can be effectively described by (kr + 1)-many fault-free supervisory policies {Pi : N n×T →
{0, 1}}kri=0, where Pf (m, t, i) = Pi(m, t), where 0 ≤ i ≤ kr, an FT-LESP can be represented

by (kr + 1)-many fault-free LESPs. Corollary 1 follows directly from this observation.

Corollary 1. (∃ FT-LESP for N(m0)) ⇒ (∃ an LESP for N(m0)).

65

An FT-LESP Pf : N n × T × {0, . . . , kr} → {0, 1} is said to be minimally restrictive for

N(m0) if, for 0 ≤ kd ≤ kr, every FT-LESP P̂f : N n × T × {0, . . . , kr} → {0, 1} satisfies

the following condition : ∀mi ∈ N n,∀t ∈ T,Pf (mi, t, kd) ≥ P̂f (mi, t, kd). That is, if the

FT-LESP Pf prevents the firing of a transition t at a marking mi after kd-many fault have

been detected, then all FT-LESPs would do the same. We get the following definitiona as

a straightforward extension of Definition 11 and Theorem 5.1 in [33]

Definition 15. Let ∆0(N) = ∆(N). Then ∆k(N) ⊆ ∆(N), k ∈ N+, is the set of all initial

markings that satisfies the following conditions:

1. It is control-invariant with respect to N .

2. ∀m1 ∈ ∆k(N),∃m2,m3 ∈ ∆k(N),∃ a valid firing string σ = σ1σ2 in N such that

m1
σ1−→ m2

σ2−→ m3,m3 ≥ m2, all transitions appear at least once in σ2, and ∀σ3 ∈
pr(σ1σ2), (m1

σ3−→ m4) ⇒ (m4 ∈ ∆k(N)). Here pr(•) denotes the prefix of the string

argument.

3. ∀m1 ∈ ∆k(N), ∀t ∈ T : (m1
t−→m2)⇒ (m2 ∈ ∆j(N), where j ≥ k − 1).

Properties 1 and 2 in Definition 15 are the properties of ∆(N) (Theorem 5.1 in [33]).

The detection mechanism and the policy Pf is a simple notational extension of what as

discussed in the context of ∆(D, I, S, ϕ) in the discussion before Theorem 13.

Theorem 19. (m0 ∈ ∆kr(N))⇔ (∃ an FT-LESP for N(m0)).

Proof. Special case of Theorem 13.

We get the following result as a direct consequence of Corollary 1 and Theorem 19.

Corollary 2. ∀k ∈ N , ∆k ⊆ ∆k+1.

Another consequence of Theorem 19 is that for a given marking m and a value of kd,

there exists an FT-LESP for N(m) if and only if m ∈ ∆kr−kd(N). That is, any FT-LESP

must at least disable any controllable transition whose firing takes the PN marking outside

∆kr−kd(N). We get the following corollary as a consequence of this observation:

Corollary 3. Suppose m0 ∈ ∆kr(N). Then Pf is the minimally restrictive FT-LESP for

N(m0).

Theorem 20. Given an LESP for an arbitrary PN N(m0), the existence of an FT-LESP

for a given set Tf and a given value of kr is undecidable.

Proof. See Appendix.

66

5.4.2 FT-LESP for Fully Controllable Ordinary Free Choice PNs

The main result of this section is that ∆kr(N) is right-closed for a fully controllable Ordinary

FCPN (O-FCPNs). We first prove an intermediate result that the minimally restrictive FT-

LESP for a fully controlled O-FCPN will not disable any non-choice transitions. Recall that

for an FCPN N = (Π, T,Φ,Γ), a transition t ∈ T is said to be a non-choice (resp. choice)

transition if {t} = (•t)• (resp. if {t} ⊂ (•t)•).

Let the initial marking m0 ∈ ∆kr(N) and consider a marking m ∈ ∆k(N) reached under

the supervision of Pf (that is, (kr−k)-many faults have been detected) such that a non-choice

transition t ∈ Te(N,m). From Corollary 3, (Pf (m, t, kr − k) = 1) ⇔ ((m
t−→ m1) ∧ (m1 ∈

∆k(N))). We start with the stipulation that m1 ∈ ∆k(N), which allows us to specify a

supervisory policy corresponding to which we can define the unintended firings, and later

prove that the stipulation is indeed correct. Let σf be a valid string of transitions under

faults from m1 under the supervision of Pf in which the unintended occurrences of affected

transitions (belonging to Tf) appear k times and m1

σf−→m2. In what follows, we prove that

our stipulation that m1 ∈ ∆k(N) is indeed correct by proving m2 ∈ ∆(N). Note that the

rectification event occurs at m2 and the supervisor regains control of all transitions.

Let σs denote the largest substring of σf that is a valid firing string from m, and m
σs−→ m̂1,

under the supervision of Pf . Also, let σf\σs denote the ordered string of transitions in σf

that did not appear in σs. In the first step of the proof we specify a string (σs)(ω1)(t)(σf\σs)
that can be fired from m and observe that the resulting marking is in ∆(N).

m
t−→m1

σf−→m2
ω1−→ m̂4 (5.12)

m
σs−→ m̂1

ω1−→ m̂2
t−→ m̂3

σf\σs−−−→ m̂4 (5.13)

In the second step, we prove that the string tσf fired from m can be extended by ω1 which

we then use to prove that m2 ∈ ∆(N).

The scenario described by Equation (5.13) can be interpreted as a simulation of a specific

path under supervision from m that replicates σf (that is, the effect of unintended firing

of transitions). σs and σf\σs can be determined with the knowledge of σf . The string

ω1 is determined as follows. Suppose (unintended occurrences of) controllable transitions

belonging to the set Tf appear j ≤ k times in σs. Since m ∈ ∆k(N), from Property 3 of

Definition 15 and Corollary 2, we have m̂1 ∈ ∆k−j(N). Consequently, there exists a valid

firing string of transitions specified by the policy Pf from m̂1 after which t will be permitted

by Pf . That is, ∃ω1 ∈ T ∗ such that (i) m̂1
ω1−→ m̂2, Pf (m̂2, t, kr − k + j) = 1; and (ii)

m̂1
ω2−→ m1, m1 ∈ ∆k−j(N) ∀ω2 ∈ pr(ω1). For the example PN Ni in Figure 5.2, let k = 1,

67

m = (1 1 0 0 1)T , t = t1, and Tf = {t2}. Then from (5.12) and (5.13), we have:

(1 1 0 0 1)T
t1−→ (0 0 1 0 1)T

t2−→ (0 0 0 0 1)T
t5−→ (1 1 0 0 0)T

(1 1 0 0 1)T
ε−→ (1 1 0 0 1)T

t5−→ (2 2 0 0 0)T
t1−→ (1 1 1 0 0)T

t2−→ (1 1 0 0 0)T

Observation 12. σf\σs is a valid firing string from m̂3 (in the absence of supervision).

Proof. Let t1 denote the first transition that appears in σf\σs. Then t1 must have an input

place that is an output place of t. That is, ∃p ∈ {•t1} ∩ {t•}. If not, then t1 can be fired

without firing transition t, which is a contradiction since t1 does not appear in σs. There

are two cases: (i) {•t2j}• 6= t1; and (ii) {•t2j}• = t1. In the first case, t1 is a choice transition.

Then since N is ordinary and free choice, {•t1} = p for some place p ∈ {t•}, and hence

t1 ∈ Te(N, m̂3). In the second case, t1 is a non-choice transition. Then {•t1} ⊂ {σ•s} and

{•t1} ⊆ {t•}. Here we use {σ•s} to denote the set of places populated by the firing of string σs

from m0. The string ω1 does not reduce the token load of the input places of the non-choice

transition t1 (as {•t2j}• = t1), it follows that t1 ∈ Te(N, m̂3). Continuing in the same way,

if tk is the k-th transition in σf\σs, then ∃p ∈ {•tk} ∩ (∪k−1
i=1 {ti•}). The rest of the proof

follows by induction by using the same arguments as for t1.

Observation 13. ω1 is a valid firing string from m2 under the supervision of Pf .

Proof. Let t1 be the first transition in ω1. Since ω1 is a valid firing string from m̂1, it means

that the firing of string σs from m̂0 populates the input places of t1 with sufficient number of

tokens so as to enable the transition. Now, since σs is a substring of σf , its firing from m1 also

populates the input places of t1 with sufficient number of tokens so as to enable transition

t1; and the input places of t1 would not be emptied by transitions in σf\σs. Suppose for

contradiction that t1 /∈ Te(N,m2) and the firing of some transition in σf\σs emptied the

input places of t1. Then t1 cannot be non-choice as {•t2j}• = t1 and once populated {•t1}
cannot be emptied without firing t1. If t1 is a choice transition, then it means that there

exists t′ ∈ {•t1}• that appears in σf . But then it appears in σs also, and hence does not

appear in σf\σs which is a contradiction. The rest of the proof follows through recursion

using the same arguments by taking σs = σst
1 and σf = σf t

1.

Observation 14. m̂4,m2 ∈ ∆(N).

Proof. The string (σs)(ω1)(t)(σf\σs) is such that the unintended firing of affected transitions

in Tf appear k times. Since m ∈ ∆k(N), by Property 3 of Definition 15, m̂4 ∈ ∆(N).

Since m̂4 ∈ ∆(N), there exists a valid firing string σ = σ1σ2 in N such that m̂4
σ1−→

68

m̂5
σ2−→ m̂6, m̂6 ≥ m̂5, all transitions appear at least once in σ2, and ∀σ3 ∈ pr(σ1σ2),

(m̂1
σ3−→ m̂7) ⇒ (m̂7 ∈ ∆(N)). Due to the fully controllable nature of the PN, a path

with such properties, ω1σ1σ2, also exists for m2. Besides, the control invariance property is

trivially true. Therefore, m2 ∈ ∆(N).

Since m2 ∈ ∆(N) is true for all values of k such that m ∈ ∆k(N), it follows that

m1 ∈ ∆k(N). Therefore, the firing of a non-choice transition from m ∈ ∆k(N) does not

take the marking outside the set. The minimally restrictive FT-LESP will not disable any

non-choice transition.

Lemma 7. The minimally restrictive FT-LESP for a fully controlled O-FCPN will not

control disable any non-choice transitions.

Theorem 21. ∆kr(N) is right-closed for a fully controlled ordinary free choice PN.

Proof. If ∆kr(N) = ∅, then it is right-closed by definition. Let m0 ∈ ∆kr(N). We need

to prove that m̂0 ∈ ∆kr(N) for all m̂0 ≥ m0. We prove this by induction. The base case

is established by letting kr = 0 and observing that ∆0(N)(= ∆(N)) for an FCPN is right-

closed ([35]). The induction hypothesis is that ∆i(N) for i ∈ {1, 2, . . . , kr−1} is right-closed.

We know that m0 ∈ ∆kr(N). Since the PN is fully controlled, the path property and control

invariance (Properties 1 and 2 in Definition 15) follow trivially for all m̂0 ≥ m0. For the

induction step, we need to prove that the firing of a single transition from every m̂0 ≥ m0

results in a marking that is in ∆kr−1(N).

By Lemma 7 and the discussion preceding it, for a fully controlled O-FCPN, the firing of

a non-choice transition from m̂0 will result in a marking in ∆kr(N). We consider the case

of choice transitions and let m̂0 = m0 + m̃. If Te(N, m̂0) = Te(N,m0), then m̂0
t−→ m and

m0
t−→ m, and m = m + m̃. We have: (m0 ∈ ∆kr(N)) ⇒ (m ∈ ∆kr−1(N)). By induction

hypothesis, ∆kr−1(N) is right closed. Therefore, m ∈ ∆kr−1(N). If Te(N,m0) ⊂ Te(N, m̂0),

then m̂0 ≥m0 +
∑

t∈Ten INt where Ten = Te(N, m̂0)− Te(N,m0). The firing of transition ti

from m̂0 would give:

m̂0 + Cti ≥m0 + OUTti +
∑

t∈Ten−{ti}

INt

(m0 ∈ ∆kr(N)) ⇒ (m0 ∈ ∆kr−1(N)). By induction hypothesis, ∆kr−1(N) is right closed.

Therefore, m̂0 + Cti ∈ ∆kr−1(N).

In general, ∆kr(N) is not right-closed for arbitrary PNs. Figure 5.3 presents an example

of a PN structure that is not an O-FCPN and for which ∆1(Nj) is not right-closed. It is

69

Figure 5.3: PN Nj for which ∆1(Nj) is not right-closed for kr = 1.

clear that ∆0(Nj) = {m ∈ N : m ≥ 1}. Let kr = 1 and Tf = {t1}. Then: 1
φt2t1ρ−−−→ 1 which

is in ∆0(Nj). If the initial token load is 2 then: 2
φt1ρ−−→ 0, which is not in ∆(Nj). We have

∆1(Nj) = ∆0(Nj)− {2}.
Algorithm 9 presents a recursive procedure for the synthesis of FT-LESP for a fully con-

trolled O-FCPN. Letting ∆0 = ∆(N), the procedure FTLESP fcpn(N , ∆(N), m0) com-

putes a sequence of sets ∆1, . . . ,∆kr each satisfying the properties in Definition 15. The

while condition in the algorithm tests for Property 3 of Definition 15. If it is not satisfied

for any of the minimal elements of ∆k (that is, there is a transition whose firing results in

a marking not in ∆k−1), then the minimal elements of the current estimate are raised (Step

3) by the smallest possible amount. Step 4 removes the redundant entries in the updated

set by keeping only the minimal (smallest) elements. The updated estimate is then tested

for Properties 1 and 2 in the (subroutine of) Step 5. We refer the reader to [35] for further

details with only a note here that if any of the Properties 1 and 2 are not satisfied, then

(the subroutine of) Step 5 essentially updates the estimate using a process similar to Steps

3 and 4 given here. The program exits the while loop either when the set ∆k with required

properties is found or if m0 drops out of the estimate.

We illustrate the algorithm using the PN Ni in Figure 5.2. min(∆(Ni)) = {(1 1 0 0 0)T ,

(0 0 1 0 0)T , (0 0 0 1 0)T , (0 0 0 0 1)T}. Firing of t2 from (0 0 1 0 0)T will result in the

marking (0 0 0 0 0)T which is not in ∆(Ni). The execution will go to Step 3 in the algorithm

following which (0 0 1 0 0)T will be replaced by {(1 1 1 0 0)T , (0 0 2 0 0)T , (0 0 1 1 0)T , (0 0

0 1 1)T} in min(∆(Ni)). In Step 5, we test the path property (control invariance is trivially

true). While the path property for (1 1 0 0 0)T
t1t3t4t5t1t2−−−−−−→ (1 1 0 0 0)T for the original ∆(Ni)

was true with the path t1t3t4t5t1t2, it is not true for the updated version because (1 1 0 0

0)T
t1−→ (0 0 1 0 0)T and (0 0 1 0 0)T is not in ∆(Ni) anymore. Therefore, the algorithm

(subroutine of Step 5) will raise the minimal elements and replace (1 1 0 0 0)T by {(2 2 0 0

0)T , (1 1 1 0 0)T , (1 1 0 1 0)T , (1 1 0 0 1)T}. Further steps in the iterations to obtain ∆1(Ni)

(which was denoted as ∆̂(Ni) in Section 5.2.1) from ∆(Ni) are shown in the Figure 5.4.

70

Algorithm 9 FTLESP fcpn(N,∆k−1,m0)

1: ∆k = ∆k−1 . Let min(∆k−1) = {m̃j}lj=1

2: while (m0 ∈ ∆k, ∃t ∈ T , ∃mi ∈ min(∆k) such that max{mi, INt}+ Ct /∈ ∆k−1) do
3: Replace mi by a set of l vectors {m̂c}lc=1 where each m̂c is defined corresponding to

each j ∈ {1, . . . l} as follows: m̂c = mi + max{0, m̃j − (max{mi, INt}+ Ct)}
4: Replace the resulting set of {m̃i}i by its minimal elements and modify the value of l

to equal the size of the minimal set of vectors. The updated ∆k is denoted by this set
of minimal elements.

5: ∆k ← The largest (right-closed) subset of ∆k (from Step 3) such that Properties (a)
and (b) are satisfied for all members.
{/* This procedure parallels portions of the algorithm in figure 8 of reference [35], and
is skipped for brevity */}

6: end while
7: if m0 /∈ ∆k then
8: ∆k = ∅
9: return {∆i}ki=1

10: end if
11: if k = kr then
12: return {∆i}ki=1

13: else
14: FTLESP fcpn(N,∆k,m0)
15: end if

(1 1 0 0 0) (0 0 1 0 0) (0 0 0 1 0) (0 0 0 0 1)

(1 1 0 0 0) (1 1 1 0 0) (0 0 2 0 0) (0 0 1 1 0) (0 0 1 0 1) (0 0 0 1 0) (0 0 0 0 1)

(1 1 0 0 0) (0 0 2 0 0) (0 0 0 1 0) (0 0 0 0 1)

(2 2 0 0 0) (1 1 1 0 0) (1 1 0 1 0) (1 1 0 0 1) (0 0 2 0 0) (0 0 0 1 0) (0 0 0 0 1)

(2 2 0 0 0) (1 1 1 0 0) (0 0 2 0 0) (0 0 0 1 0) (0 0 0 0 1)

(2 2 0 0 0) (1 1 1 0 0) (0 0 2 0 0) (1 1 0 1 0) (0 0 1 1 0) (0 0 2 1 0) (0 0 0 2 0) (0 0 0 1 1) (0 0 0 0 1)

(2 2 0 0 0) (1 1 1 0 0) (0 0 2 0 0) (1 1 0 1 0) (0 0 1 1 0) (0 0 0 2 0) (0 0 0 0 1)

(2 2 0 0 0) (1 1 1 0 0) (0 0 2 0 0) (1 1 0 1 0) (0 0 1 1 0) (0 0 0 2 0) (1 1 0 0 1) (0 0 1 0 1) (0 0 2 0 1) (0 0 0 1 1) (0 0 1 1 1) (0 0 0 2 1) (0 0 0 0 2)

(2 2 0 0 0)(1 1 1 0 0)(0 0 2 0 0)(1 1 0 1 0)(0 0 1 1 0)(0 0 0 2 0) (1 1 0 0 1)(0 0 1 0 1)(0 0 0 1 1)(0 0 1 1 1)(0 0 0 2 1) (0 0 0 0 2)

Initial estimate

Condition in while loop for (0 0 1 0 0) for t2

Trimming the set by keeping only its minimal elements

Path property violated for (1 1 0 0 0) for t1

Trimming the set by keeping only its minimal elements

Path property violated for (0 0 0 1 0) for t4

Trimming the set by keeping only its minimal elements

Trimming the set by keeping only its minimal elements

Path property violated for (0 0 0 0 1) for t5

Figure 5.4: Iterations to obtain ∆1(Ni) (which was denoted as ∆̂(Ni) in Section 5.2.1) from
∆(Ni)

71

CHAPTER 6

CONCLUSION

This thesis is about the decidability of problems in liveness of controlled discrete event

systems. The existence of an LESP for a DES depends on the membership of the initial

state to an appropriately defined set. We considered a particular modeling paradigm of DES

known as Petri Nets. There is an LESP for a PN N(m0) if and only if m0 ∈ ∆(N) where

∆(N) := {m0 | ∃ an LESP for N(m0)},

In prior work, it was proved that neither the membership nor the non-membership of

a marking in ∆(N) is semi-decidable for an arbitrary PN structure. We generalized this

decision problem and showed that neither “Is ∆(N) = ∅?” nor “Is ∆(N) 6= ∅?” is semi-

decidable.

An integer-valued set of vectors is said to be right-closed if the presence of a vector in the

set implies that all term-wise larger vectors are also in the set. We presented a necessary

and sufficient condition for ∆(N) to be right-closed for an arbitrary PN. Following this,

we showed that “Is ∆(N) right-closed?” is undecidable for arbitrary PN structures. We

also showed that for arbitrary PN structures the decision problems: “Is there a right-closed

subset of ∆(N)?” and “Is there no right-closed subset of ∆(N)?” are not semi-decidable.

If a transition is control-enabled at some marking under the supervision of a marking-

monotone policy (MM-policy), then it is control-enabled at all larger markings as well. An

MM-policy P is a marking-monotone LESP (MM-LESP) for N(m0) if it is an LESP for

N(m̂0) for all m̂0 ≥ m0, as well. The set

∆M(N) := {m0 | ∃ an MM-LESP for N(m0)},

is a right-closed subset of ∆(N) for any PN structure N . After introducing a class of PN

structures for which the set ∆(N) is known to be right-closed, we showed that the existence

of an MM-LESP for an arbitrary PN N(m0) is decidable. That is, “Is m0 ∈ ∆M(N)?” is

decidable for any PN structure N . Thus, starting from the two decision problems: “Is m0 ∈
∆(N)?′′ and “Is m0 /∈ ∆(N)?′′ that are not semi-decidable, we present a string of results

72

that culminates in decidable sub-problems: “Is m0 ∈ ∆M(N)?′′ and “Is m0 /∈ ∆M(N)?′′.

These results lead to the conclusion that extracting any kind of information about ∆(N)

for an arbitrary PN is most likely an extremely hard problem. Besides, we can also conclude

that between the properties of the set of initial markings for which an LESP exists, and

the characteristics of the LESP, it is the characteristics of the LESP that plays a prominent

role in determining decidability. That is, if a supervisory policy P is such that R(N,m,P)

(which can have an unbounded number of markings) can be represented by a reachability

graph with a finite number of appropriately defined symbolic markings such that the liveness

property is preserved, then the existence of P is likely to be decidable. Marking Monotone

LESPs is one instance of such an LESP in which a reachability graph with possibly infinite

number of markings is reduced to a coverability graph with finite number of nodes.

Using this idea, we presented a generalization of coverability graphs. The central idea for

the generalization is to partition the set of non-negative integers into subsets with certain

properties, and then defining order on those subsets. The overall procedure preserves the

typical characteristics of coverability graph while eliciting additional information about the

underlying system which makes it more general than traditional coverability graphs. We

showed that the generalized coverability graphs can be used to test the existence and non-

existence of LESPs for a larger class of PNs. The extension of coverability graphs discussed in

this thesis provides a general method for creating a finite representation of the reachability

graph of an unbounded PNs. The process of LESP synthesis discussed in this context is

verification-based. That is, the user hypothesizes a ∆(N) based on the PN structure and

other aspects, and defines the class/order accordingly, consistent with the algebra enunciated

in Chapter 4. Then we make use of the result that the existence of a CM-LESP is decidable

to verify if the hypothesis is correct. For instance, for the example PN N1 illustrated in

Chapter 4, after the sets {ζ i0, ζ i1, . . . , ζ iki−1}, i ∈ {1, . . . , n}, and the set {ωij}
ki−1
j=0 under the

wqo -i are assigned by the user, the results show how the existence of a (CM-)LESP can

be certified to be correct. Using the generalization presented in this thesis in other areas of

applications of coverability graph is a direction of future research.

The supervisory action discussed in this thesis is dependent on the current state s, the

evaluation of the next-state resulting from occurrence of event e from s, and the action of

enabling or disabling the event. Keeping these steps in mind, in Chapter 5, we tackled a

general class of problem in which the supervisory action can be impeded due to various

reasons. We considered scenarios in which precise state information is not available to the

supervisor and when the control action is modified due to the occurrence of faults. We

presented necessary and sufficient conditions for the existence of a B-LESP for a general

DES model in this setting. We then discussed two specific cases for PN models of DES—

73

partial state observability and controllability faults. We showed that the existence of LESP

for an arbitrary PN is undecidable in both scenarios, which is an expected result since the

existence of an LESP in uncertainty-free case is undecidable. We go a step further and prove

that it is undecidable even if an LESP for an uncertainty-free case is available. This leads

to the conclusion that the complexity in LESP-synthesis under imprecise state information

or controllability faults is not solely inherited from the complexity in LESP synthesis. One

aspect of this framework which we did not investigate in this thesis is the learning algorithm.

This is one major direction of future research.

74

APPENDIX A

PROOFS

A.1 LESPs for Arbitrary PNs

Theorem 2: (N ∈ Ĥ) ⇔ (∆(N) is right-closed).

Proof. (⇒) If ∆(N) = ∅, it is right-closed by definition. If ∆(N) 6= ∅, we establish the result

by proving the contrapositive. Assume ∆(N) is not right-closed. Particularly, assume there

exists m1 ∈ ∆(N) such that (m1 + m̂) /∈ ∆(N). Now, ∆(N) for a fully controllable PN is

right-closed. Therefore, if (m1 + m̂) /∈ ∆(N), then the set of uncontrollable transitions of

N will be non-empty, and hence P = Int(conv({INtu}tu∈Tu)) is a non-empty set. Consider

m1 ∈ ∆(N) and let Πc denote the set of places connected to only controllable transitions

(i.e. Π•c∩Tu = ∅). The initial token load of all p ∈ Πc can be increased to an arbitrarily large

value and the initial marking will still be inside ∆(N). This is true because the supervisory

policy can act as if the extra tokens in all p ∈ Πc never existed, and enforce liveness in the

same way as for m1. Therefore, without loss of generality we can assume that the marking

(m1 + m̂) /∈ ∆(N) has additional tokens in only those places that are connected to at least

one uncontrollable transition. This implies, as P is the convex hull of the columns of the

input matrix that correspond to the uncontrollable transitions, that there exists an integer

k such that (m1 + m̂) ∈ (m1 + k × P). On the other hand, we have (m1 + m̂) /∈ ∆(N).

Then by the characterization of Ĥ class above, we have N /∈ Ĥ.

(⇐) We prove this via the contrapositive. Assume N /∈ Ĥ. This means that there exists

an m ∈ ∆(N) for which there exists a (larger) marking inside the set m + P at which the

PN is not live. This implies ∆(N) is not right-closed.

Observation 1: (∆(Ñ) 6= ∅)⇔ (m ∈ ∆(Ñ)).

Proof. (⇒) If there is a marking m1 ∈ ∆(Ñ), then following the introductory discussion

above, there is a marking m2 ∈ ∆(Ñ) reachable from m1 under the supervision of any

LESP for Ñ(m1), where m2(πm+1) 6= 0. Additionally, ∃σu ∈ ({tm+2, tm+3, . . . , tm+n+2} ∪
{τ1, τ2, . . . , τm})∗ (note, σu is string of uncontrollable transitions) such that m2 σu→m. That

75

is, m is reachable from m2. Since m2 ∈ ∆(Ñ), and m2 σu→ m, where σu is a string of

uncontrollable transitions, by control invariance, it follows that m ∈ ∆(Ñ).

(⇐) If m ∈ ∆(Ñ) then ∆(Ñ) 6= ∅ by definition.

Observation 2: (m ∈ ∆(Ñ))⇔ (m0 ∈ ∆(N))

Proof. (⇒) If m ∈ ∆(Ñ), then since Te(Ñ ,m) = {tm+1}, we have m
tm+1−→ m1 under the

supervision of any LESP for Ñ(m). At m1, the PN structure N is initialized with a marking

m0, while the rest of the places of Ñ are all empty. Since m1 ∈ ∆(Ñ) it follows that

m0 ∈ ∆(N). If it were otherwise, the transition τm+1 cannot be made live in Ñ(m1), and

we must conclude that m1 /∈ ∆(Ñ).

(⇐) If m0 ∈ ∆(N), there is an LESP P for N(m0). This LESP is used to construct an

LESP P̃ for Ñ(m) as follows for m ∈ N card(Π̃), t̃ ∈ T̃

P̃(m, t̃) =

P(m(Π), t̃) if t̃ ∈ T ,
1 if t̃ ∈ (T̃ − T − {tm+1}),
1 iff (t̃ = tm+1) ∧ (m = m),

where, m(Π) denotes the marking of the subnet N . The fact that P̃ is an LESP for Ñ(m)

follows directly from the construction of Ñ and the fact that P is an LESP for N(m0).

Observation 3: (∆(N) 6= ∅)⇔ (∆(N) 6= ∅).

Proof. (⇒) Assume there exists a marking m1 ∈ ∆(N). Consider another marking m1 of

the PN N that initializes (a) the places of N (i.e. {p1, . . . pn}) with token loads identified

by the marking m1, that is m1(Π1) = m1, (b) a single token in πm+2 and (c) zero tokens in

all other places. We show that m1 ∈ ∆(N) by constructing an LESP P for N(m1).

Let P be a policy such that ∀tc ∈ T1 :

(P(m2, tc) = 0)⇔ ((m2 tc−→m3) ∧ (m3(Π1) /∈ ∆(N))) (A.1)

That is, it prevents a controllable transition in T1 if and only if its firing takes the mark-

ing of N outside ∆(N). Since m1 ∈ ∆(N), all transitions in T1 are live when N(m1) is

under the supervision of P . Consequently, from the definition of liveness, ∀k ∈ N , ∀m4 ∈
<(N,m1,P),∃m5 ∈ <(N,m4,P) such that m5(πm+1) ≥ k, m5(Π1) ∈ ∆(N), and m5(πm+2) =

1.

The supervisory policy P control-enables a transition γi, where i ∈ {1, . . . , n}, at a

marking m6 ∈ <(N,m1,P) if and only if (a) m1 σ−→ m6 under the supervision of P , and

#(σ, γi) = #(σ, δi), (b) m6(pi) 6= 0, (c) m6(πm+2) = 1, and (d) m6(πm+1) ≥ 2. That is, if

76

m6 γi−→ m7 under the supervision of P , then Te(N,m
7) = {εi} and m7(πm+2) = 0. Here we

use the notation #(σ, t) to denote the number of occurrences of transition t in a valid firing

string σ.

A transition in the set {δi}ni=1 is control-enabled at m8 ∈ <(N,m1,P) if and only if (i)

m8(πm+2) = 0, and (ii) ∃m6 ∈ <(N,m1,P) such that m6 γiεi−−→ m8 under the supervision of

P . That is, if m8 δi−→ m9 under the supervision of P , then m9(πm+2) = 1 and m9(Π1) ∈
∆(N).

Thus, following the discussion in the paragraph preceding this observation, all transitions

in N(m1) are live under supervision of P , and ∆(N) 6= ∅.
(⇐) We prove this via the contrapositive. If ∆(N) = ∅, then τm+1 cannot be made live, and

∆(N) = ∅.

Observation 4: (∆(N) 6= ∅) ⇔ (∆(N) is not right-closed)

Proof. (⇒) Suppose ∆(N) 6= ∅, consider the marking m1 from Observation 3. Next consider

a marking, m2 > m1, where m2(p) = m1(p),∀p ∈ (Π − {βi}ni=1), and m2(βi) ≥ m1(pi), for

each pi ∈ Π1. At the marking m2, the uncontrollable transitions in the set {εi}ni=1 can fire

as often as necessary to empty all places in the set {pi}ni=1. Consequently, there can be no

LESP for N(m2), and m2 /∈ ∆(N) while m1 ∈ ∆(N). Therefore, if ∆(N) 6= ∅, it cannot be

right-closed.

(⇐) By definition, (∆(N) = ∅) ⇒ (∆(N) is right-closed).

Observation 3: Let m ≥m, then (∆(Ñ) 6= ∅)⇔ (m ∈ ∆(Ñ)).

Proof. (⇒) By Observations 1 and 2, ∆(Ñ) 6= ∅ if and only if m ∈ ∆(N). Assume Ñ is

initialized with the marking m ≥ m. We define a supervisory policy P̃1 as follows. For

m ∈ N card(Π̃), t̃ ∈ T̃

P̃1(m, t̃) =

1 if t̃ ∈ (T̃ − {tm+1}),
0 iff (t̃ = tm+1) ∧ (m 6= m),

P̃(m, t̃) iff (t̃ = tm+1) ∧ (m = m).

The marking m is reachable from all markings in <(Ñ ,m, P̃1), and m ∈ ∆(Ñ). Once the

PN reaches the marking m, we switch to the supervisory policy P̃ as defined in Observation

2. Therefore, ∀t ∈ T̃ ,∀mi ∈ R(N,m, P̃1),∃mj ∈ R(N,mi, P̃1) such that t ∈ Te(N,mj) and

P̃1(mj, t) = 1. Thus, m ∈ ∆(Ñ).

(⇐) Straightforward by definition.

Theorem 6: There is an MM-LESP for N(m0) if and only if ∃∆̂(N) ⊆ ∆(N), such that

77

1. m0 ∈ ∆̂(N),

2. ∆̂(N) is control invariant with respect to N ,

3. ∆̂(N) is right-closed, and

4. ∀mi ∈ min(∆̂(N)), G(N(mi), P) satisfies the path requirement. That is, ∀mi ∈
min(∆̂(N)), there is a path v0

σ1→ v1
σ2→ v1, in the coverability graph G(N(mi),P) =

(V,A), such that x(σ2) ≥ 1 and Cx(σ2) ≥ 0, where 1 is the m-dimensional vector of

all ones, P ensures the reachable markings never leaves ∆̂(N).

Proof. (Only If) Let ∆̂(N) = ∆M(N). Since there is an MM-LESP for N(m0), it follows

that m0 ∈ ∆̂(N). By definition, ∆̂(N) (= ∆M(N)) is right-closed. Suppose m1 ∈ ∆̂(N)

and m1 tu−→ m2 for some tu ∈ Tu, then it must be that m2 ∈ ∆̂(N) (= ∆M(N)), as well.

Otherwise, the supervisory policy will not be an MM-LESP for m2. Therefore, ∆̂(N) is

control invariant with respect to N . In fact, using the same argument, it must be true that

the supervisory policy disables any controllable transitions that result in a marking that is

not in the set ∆̂(N). The supervisory policy P that ensures the reachable marking never

leaves ∆̂(N) = ∆M(N) is an MM-LESP for N(m0). From lemma 5.13, [35], we note that

the path-requirement of Theorem 6 is satisfied, as well.

(If) Suppose there is a right-closed, control invariant subset ∆̂(N) ⊆ ∆(N), such that m0 ∈
∆̂(N) and each minimal element in min(∆̂(N)) satisfies the path requirement addressed in

Theorem 6. We consider a supervisory policy P for N(m0), which prevents any controllable

transition whose firing will take the marking outside ∆̂(N), and show that P is a marking-

monotone LESP.

Suppose there exists an m ∈ R(N,m0,P) and t ∈ T such that P(m, t) = 1. Since this

supervisory policy prevents a controllable transition if and only if its firing takes the marking

outside ∆̂(N), it implies that ∃mj ∈ min(∆̂(N)) such that max{m, INt} + C × 1t ≥ mj.

Now consider all markings larger than m. For all m̂ ≥ m,max{m̂, INt} + C × 1t ≥
max{m, INt}+ C× 1t ≥ mj. Since the markings are in ∆̂(N) after the firing of t from all

m̂ ≥m, we have P(m̂, t) = 1. Hence the supervisory policy is marking-monotone.

Since ∆̂(N) is control-invariant with respect to N , and its minimal elements satisfy the

path-requirement, there exists an LESP for all markings in ∆̂(N) (Theorem 5.1 in [33]).

On the other hand, the right-closure property of ∆̂(N) indicates that if m0 ∈ ∆̂(N) then

∀m̂0 ≥ m0, m̂0 ∈ ∆̂(N), as well. Thus, P enforces liveness for N(m̂0), for any m̂0 ≥ m0.

Therefore, the policy is a marking-monotone LESP.

78

A.2 LESPs for arbitrary Petri Nets with Partial Marking

Observation and Controllability Faults

... ...

... ...

... ...

... ...

...

...

...

......

2
2

2
3

3 2

All transitions
uncontrollable

All transitions controllable

To all places in N except

Figure A.1: A graphical illustration of the construction of the PN N using the PNs N̂ and
Ñ

We construct a PN N from a PN N̂ , and the PN Ñ which was first discussed in [33].

The construction is shown in Figure A.1. N̂ is exactly as constructed in the figure with

places {pi}2
i=1 and transitions {tj}3

j=1. Its reachability graph is shown in Figure A.2. Ñ

is constructed by connecting two arbitrary petri nets Nl = (Πl, Tl,Φl,Γl) (l = 1, 2). Πl =

{pl1, pl2, . . . , pln} and Tl = {tl1, tl2, . . . , tlml
} (l = 1, 2) is the set of places and transitions respec-

tively. Note that card(Π1) = card(Π2) = n. All transitions in N1 (N2) are uncontrollable

(resp. controllable). Note that the arcs for N1 and N2 are not drawn in Figure A.1 since we

do not stipulate any particular structure. Ñ = (Π̃, T̃ , Φ̃, Γ̃) is constructed as follows:

• Π̃← Π1 ∪ Π2, T̃ ← T1 ∪ T2 and Φ̃← Φ1 ∪ Φ2.

• Create 2n+ 4 new and unused places such that Π̃← Π̃ ∪ {πi}n+4
i=1 ∪ {π̃j}n+2

j=3 .

• Create 5n + 4 new and unused transitions: T̃ ← T̃ ∪ {τi}n+4
i=1 ∪ {τ̂ ij |i ∈ {1, 2}, j ∈

{1, 2, . . . , n}} ∪ {τ̃ ij |i ∈ {1, 2}, j ∈ {1, 2, . . . , n}}.

79

• ∀t ∈ T1, modify Φ̃ as Φ̃← Φ̃∪ {(π1, t), (t, π1)}. That is, π1 self loops on all transitions

of Ñ that originally belonged to N1.

• ∀t ∈ T2, modify Φ̃ as Φ̃← Φ̃∪ {(π2, t), (t, π2)}. That is, π2 self loops on all transitions

of Ñ that originally belonged to N2.

• Modify Φ̃ as Φ̃← Φ̃ ∪ {(πi, τi), (τi, πi+1)}n+3
i=1 ∪ {(πn+4, τn+4)}.

• ∀p ∈ Π̃, modify Φ̃ as Φ̃ ← Φ̃ ∪ {(τn+4, p)}. That is every place of Ñ is an output of

τn+4.

• ∀i ∈ {1, 2, . . . , n}, modify Φ̃ as Φ̃ ← Φ̃ ∪ {(πi+2, τ̂
1
i), (p1

i , τ̂
1
i), (τ̂ 1

i , π̂i+3), (π̂i+3, τ̂
2
i),

(p2
i , τ̂

2
i), (τ̂ 2

i , πi+2)}.

• ∀i ∈ {1, 2},∀j ∈ {1, 2, . . . n}, modify Φ̃ as Φ̃← Φ̃ ∪ {(πn+3, τ̃
i
j), (p

i
j, τ̃

i
j)}.

Weights of all arcs in Φ̃ − Φ1 − Φ2 is one. We use m0
i ∈ N n to represent an arbitrary pair

of initial markings of Ni, i = {1, 2}. The initial marking of Ñ , m̃0, is such that m̃0(π1) = 1,

m̃0(Π1) = m0
1, m̃0(Π2) = m0

2 and all other places have zero tokens. Theorem 5.3 of [33]

provides a detailed proof that Ñ has an LESP if and only if R(N1,m
0
1) ⊆ R(N2,m

0
2).

We briefly discuss the idea of the proof for completeness. Liveness of transition τ1 can be

guaranteed iff the token load of π1 is repeatedly replenished. But since the initial marking

is such that m̃0(π1) = 1, •π1 = {τn+4} and m̃0(πn+4) = 0, the token load of π1 can be

repeatedly replenished iff the single token at π1 at the initial marking is safely passed on

to πn+4. In fact, Ñ is live once a token is placed in πn+4 as τ •n+4 = Π̃. Therefore, the

presence of a token in πn+4 is a necessary and sufficient condition for liveness of Ñ . Now

the token can reach πn+4 if and only if it is not lost at πn+3 by firing of the transitions τ̃ ij ,

(i = 1, 2 and j = 1, 2, . . . n). The firing of τ̃ ij can be prevented iff all places in N1 and N2

are empty, that is, {pji}nj=1 = 0 for i = 1, 2 and j = 1, 2, . . . n. Now, places {pji}nj=1 can be

emptied by the firing of transitions τ̂ ij for i = 1, 2 and j = 1, 2, . . . n. But emptying of all

{pji}nj=1 is possible if and only if N1(m0
1) and N2(m0

2) reach the exact same marking, which

is true iff R(N1,m
0
1) ⊆ R(N2,m

0
2). To see this note that the places π1 and π2 act as enable

places for PNs N1 and N2 respectively. From the initial marking, N1 can reach any marking

in R(N1,m
0
1) till the firing of uncontrollable transition τ1 which removes one token from

π1 and populates π2. Since τ2 and all transitions in N2 are controllable, N2 can be steered

to any marking in R(N2,m
0
2). Therefore, N1(m0

1) and N2(m0
2) can reach the exact same

marking iff R(N1,m
0
1) ⊆ R(N2,m

0
2). The reachability inclusion problem is undecidable for

arbitrary PNs [34]. Therefore, determining the existence of an LESP for Ñ is undecidable.

80

Figure A.2: Reachability graph of N̂ with initial marking (2 2)T

We construct the PN N = (Π, T,Φ,Γ) with initial marking m0, from N̂ and Ñ (see

Figure A.1) as: Π← Π̂ ∪ Π̃; T ← T̂ ∪ T̃ ; Φ← Φ̂ ∪ Φ̃ ∪ (t1, π1) ∪ (τn+4, p1) ∪ (τn+4, p2); and,

m0(p1) = m0(p2) = 2, m0(Π̃) = m̃0.

Observation 15. The following statements are equivalent: (a) N is live; (b) Ñ is live; and

(c) N̂ is live.

Proof. (a) ⇒ (b) and (a) ⇒ (c) follows from the definition of liveness.

The firing of transition t1 places a token in π1 without affecting the marking of N̂ . If N̂ is

live, then the token in π1 is repeatedly replenishable. Therefore, the marking with a token

in place πn+4 is reachable from every marking that is reachable from the initial marking

thereby guaranteeing the liveness of the subnet Ñ . Hence (c) ⇒ (b). From this, it follows

that N is live and we have (c) ⇒ (a)

Ñ is live implies that a marking that places a token in πn+4 is reachable from every

marking that is reachable from the initial marking. Liveness of subnet N̂ follows from the

observation that {p1, p2} ∈ τ •n+4. Therefore, (b) ⇒ (c).

Observation 16. P ′ is an LESP for N(m0), where:

P ′(m, t) =

1 if (t = t1) ∧ (m(p1) = 1) ∧ (m(p2) = 3)

0 if (t = t1) ∧ (m(p1) 6= 1 ∨m(p2) 6= 3)

1 if t ∈ T − {t1}

Proof. That P ′ is an LESP for N̂((2 2)T) is clear from the reachability graph in Figure A.2.

From Observation 15, P ′ is an LESP for N(m0).

P ′ enforces liveness in N by making the subnet N̂ live. Suppose kr = 1 and Tf = {t1}. If

the fault-event φ occurs at a marking m ∈ R(N,m0,P ′) when m(p1) = 2 and m(p2) = 2,

then an unintended firing of the affected transition t1 will take the subnet N̂ to the marking

(3 1)T following which the policy P ′ does not enforce liveness in the presence of faults. In

fact, it is easy to see from the reachability graph that there does not exist an FT-LESP for

N̂ for initial marking (2 2)T , kr = 1 and Tf = {t1}. By construction, the only way to make

81

N(m0) live in the presence of faults for kr = 1 and Tf = {t1} is by synthesizing an LESP

for Ñ .

Observation 17. There exists a Π0-LESP for N(m0) for Π0 = Π̃ if and only if there exists

an LESP for Ñ .

Observation 18. There exists an FT-LESP for N(m0) for kr = 1 and Tf = {t1} if and

only if there exists an LESP for Ñ .

As proved in Theorem 5.3 of [33], the existence of an LESP for Ñ is undecidable due to

the undecidability of the reachability inclusion problem.

Theorems 20 and 16: Given an LESP for an arbitrary PN N(m0):

1. the existence of an FT-LESP for a given set Tf and a given value of kr is undecidable.

2. the existence of a Π0-LESP for a given Π0 is undecidable.

Proof. Suppose for contradiction that there exists an algorithm Af that takes the PN struc-

ture N(m0), the set Tf and the value of kr (respectively the set Π0) as inputs and outputs

yes if and only if m0 ∈ ∆kr(N) (resp. m0 ∈ ∆Π0(N)). Then for inputs N(m0) (as in the

construction), Tf = {t1} and kr = 1 (resp. Π̃) the algorithm Af can be used to decide if

R(N1,m
0
1) ⊆ R(N2,m

0
2) for arbitrary PNs N1 and N2, which is an undecidable problem.

82

REFERENCES

[1] T.-C. Au, N. Shahidi, and P. Stone, “Enforcing liveness in autonomous traffic manage-
ment,” in Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011.

[2] “Sols 2649-2652: Curiosity loses its attitude,” Jan. 2020. [Online]. Avail-
able: https://mars.nasa.gov/msl/mission-updates/8587/sols-2649-2652-curiosity-loses-
its-attitude/

[3] B. Alpern and F. B. Schneider, “Defining liveness,” Information processing letters,
vol. 21, no. 4, pp. 181–185, 1985.

[4] D. Osherson, M. Stob, and S. Weinstein, Systems that Learn: An Introduction to Learn-
ing Theory for Cognitive and Computer Scientists. Cambridge, MA: The MIT Press,
1986.

[5] B. Alpern and F. B. Schneider, “Recognizing safety and liveness,” Distributed comput-
ing, vol. 2, no. 3, pp. 117–126, 1987.

[6] S. Eilenberg, Automata, languages, and machines. Academic press, 1974.

[7] P. J. Ramadge and W. M. Wonham, “The control of discrete event systems,” Proceedings
of the IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[8] C. G. Cassandras and S. Lafortune, Introduction to discrete event systems. Springer
Science & Business Media, 2009.

[9] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay, “General decidability theorems
for infinite-state systems,” in Proceedings 11th Annual IEEE Symposium on Logic in
Computer Science. IEEE, 1996, pp. 313–321.

[10] A. Finkel and P. Schnoebelen, “Well-structured transition systems everywhere!” Theo-
retical Computer Science, vol. 256, no. 1-2, pp. 63–92, 2001.

[11] W. Fokkink, Introduction to process algebra. springer science & Business Media, 2013.

[12] J. L. Peterson, Petri net theory and the modeling of systems. Prentice Hall PTR, 1981.

[13] D. Brand and P. Zafiropulo, “On communicating finite-state machines,” Journal of the
ACM (JACM), vol. 30, no. 2, pp. 323–342, 1983.

83

[14] G. Ciardo, “Petri nets with marking-dependent arc cardinality: Properties and analy-
sis,” in International Conference on Application and Theory of Petri Nets. Springer,
1994, pp. 179–198.

[15] C. Dufourd, A. Finkel, and P. Schnoebelen, “Reset nets between decidability and un-
decidability,” in International Colloquium on Automata, Languages, and Programming.
Springer, 1998, pp. 103–115.

[16] B. Heinemann, “Subclasses of self-modifying nets,” in Application and Theory of Petri
Nets. Springer, 1982, pp. 187–192.

[17] R. Valk, “Self-modifying nets, a natural extension of petri nets,” in International Col-
loquium on Automata, Languages, and Programming. Springer, 1978, pp. 464–476.

[18] J. L. Peterson et al., “A note on colored petri nets,” Inf. Process. Lett., vol. 11, no. 1,
pp. 40–43, 1980.

[19] A. Giua, “Petri nets as discrete event models for supervisory control,” Rensselaer Poly-
technic Institute, Troy, NY, 1992.

[20] J. O. Moody and P. J. Antsaklis, Supervisory control of discrete event systems using
Petri nets. Springer Science & Business Media, 2012, vol. 8.

[21] M. Iordache and P. J. Antsaklis, Supervisory control of concurrent systems: a Petri net
structural approach. Springer Science & Business Media, 2007.

[22] S. A. Reveliotis, E. Roszkowska, and J. Y. Choi, “Generalized algebraic deadlock avoid-
ance policies for sequential resource allocation systems,” IEEE Transactions on Auto-
matic Control, vol. 52, no. 12, pp. 2345–2350, 2007.

[23] A. Ghaffari, N. Rezg, and X. Xie, “Design of a live and maximally permissive petri net
controller using the theory of regions,” IEEE transactions on robotics and Automation,
vol. 19, no. 1, pp. 137–141, 2003.

[24] O. Marchetti and A. Munier-Kordon, “A sufficient condition for the liveness of weighted
event graphs,” European Journal of Operational Research, vol. 197, no. 2, pp. 532–540,
2009.

[25] F. Basile, L. Recalde, P. Chiacchio, and M. Silva, “Closed-loop live marked graphs
under generalized mutual exclusion constraint enforcement,” Discrete Event Dynamic
Systems, vol. 19, no. 1, pp. 1–30, 2009.

[26] F. Basile, R. Cordone, and L. Piroddi, “Integrated design of optimal supervisors for the
enforcement of static and behavioral specifications in petri net models,” Automatica,
vol. 49, no. 11, pp. 3432–3439, 2013.

[27] J. Luo and K. Nonami, “Approach for transforming linear constraints on petri nets,”
IEEE Transactions on Automatic Control, vol. 56, no. 12, pp. 2751–2765, 2011.

84

[28] A. Dideban and H. Alla, “Reduction of constraints for controller synthesis based on safe
petri nets,” Automatica, vol. 44, no. 7, pp. 1697–1706, 2008.

[29] F. Tricas, F. Garcia-Valles, J. M. Colom, and J. Ezpeleta, “A petri net structure-based
deadlock prevention solution for sequential resource allocation systems,” in Proceedings
of the 2005 IEEE international conference on robotics and automation. IEEE, 2005,
pp. 271–277.

[30] R. Cordone, A. Nazeem, L. Piroddi, and S. Reveliotis, “Designing optimal deadlock
avoidance policies for sequential resource allocation systems through classification the-
ory: existence results and customized algorithms,” IEEE Transactions on Automatic
Control, vol. 58, no. 11, pp. 2772–2787, 2013.

[31] Y. Chen and Z. Li, “Design of a maximally permissive liveness-enforcing supervisor with
a compressed supervisory structure for flexible manufacturing systems,” Automatica,
vol. 47, no. 5, pp. 1028–1034, 2011.

[32] H. Hu, M. Zhou, Z. Li, and Y. Tang, “Deadlock-free control of automated manufac-
turing systems with flexible routes and assembly operations using petri nets,” IEEE
Transactions on Industrial Informatics, vol. 9, no. 1, pp. 109–121, 2012.

[33] R. S. Sreenivas, “On the existence of supervisory policies that enforce liveness in
discrete-event dynamic systems modeled by controlled petri nets,” IEEE Transactions
on Automatic Control, vol. 42, no. 7, pp. 928–945, 1997.

[34] M. H. T. Hack, “Decidability questions for petri nets.” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 1976.

[35] R. Sreenivas, “On the existence of supervisory policies that enforce liveness in partially
controlled free-choice petri nets,” IEEE Transactions on Automatic Control, vol. 57,
no. 2, pp. 435–449, 2012.

[36] N. Somnath and R. Sreenivas, “On deciding the existence of a liveness enforcing su-
pervisory policy in a class of partially controlled general free-choice petri nets,” IEEE
Transactions on Automation Science and Engineering, vol. 10, no. 4, pp. 1157–1160,
2013.

[37] E. Salimi, N. Somnath, and R. Sreenivas, “A software tool for live-lock avoidance in sys-
tems modelled using a class of petri nets,” International Journal of Computer Science,
Engineering and Applications, vol. 5, no. 2, pp. 1–13, April 2015.

[38] R. Sreenivas, “On a decidable class of partially controlled petri nets with liveness en-
forcing supervisory policies,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 43, no. 5, pp. 1256–1261, 2013.

[39] R. S. Sreenivas and B. H. Krogh, “On petri net models of infinite state supervisors,”
IEEE transactions on Automatic Control, vol. 37, no. 2, pp. 274–277, 1992.

85

[40] R. M. Karp and R. E. Miller, “Parallel program schemata,” Journal of Computer and
system Sciences, vol. 3, no. 2, pp. 147–195, 1969.

[41] M. P. Cabasino, A. Giua, and C. Seatzu, “Identification of unbounded petri nets from
their coverability graph,” in Proceedings of the 45th IEEE Conference on Decision and
Control. IEEE, 2006, pp. 434–440.

[42] K. Schmidt, “Model-checking with coverability graphs,” Formal Methods in System
Design, vol. 15, no. 3, pp. 239–254, 1999.

[43] A. Giua and C. Seatzu, “Observability of place/transition nets,” IEEE Transactions on
Automatic Control, vol. 47, no. 9, pp. 1424–1437, 2002.

[44] M. V. Iordache and P. J. Antsaklis, “Supervision based on place invariants: A survey,”
Discrete Event Dynamic Systems, vol. 16, no. 4, pp. 451–492, 2006.

[45] L. E. Holloway, B. H. Krogh, and A. Giua, “A survey of petri net methods for controlled
discrete event systems,” Discrete Event Dynamic Systems, vol. 7, no. 2, pp. 151–190,
1997.

[46] F.-S. Hsieh, “Fault-tolerant deadlock avoidance algorithm for assembly processes,”
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans,
vol. 34, no. 1, pp. 65–79, 2004.

[47] M. Lawley and W. Sulistyono, “Robust supervisory control policies for manufacturing
systems with unreliable resources,” IEEE Transactions on Robotics and Automation,
vol. 18, no. 3, pp. 346–359, 2002.

[48] F.-S. Hsieh, “Robustness of deadlock avoidance algorithms for sequential processes,”
Automatica, vol. 39, no. 10, pp. 1695–1706, 2003.

[49] F.-S. Hsieh, “Reconfigurable fault tolerant deadlock avoidance controller synthesis for
assembly production processes,” in Systems, Man, and Cybernetics, 2000 IEEE Inter-
national Conference on, vol. 4. IEEE, 2000, pp. 3045–3050.

[50] S. Wang, S. Chew, and M. Lawley, “Using shared-resource capacity for robust control
of failure-prone manufacturing systems,” IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, vol. 38, no. 3, pp. 605–627, 2008.

[51] S. Reveliotis and Z. Fei, “Robust deadlock avoidance for sequential resource alloca-
tion systems with resource outages,” IEEE Transactions on Automation Science and
Engineering, vol. 14, no. 4, pp. 1695–1711, 2017.

[52] Y. Feng, K. Xing, Z. Gao, and Y. Wu, “Transition cover-based robust petri net con-
trollers for automated manufacturing systems with a type of unreliable resources,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 11, pp. 3019–
3029, 2017.

86

[53] G. Liu, P. Li, Z. Li, and N. Wu, “Robust deadlock control for automated manufac-
turing systems with unreliable resources based on petri net reachability graphs,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2018.

[54] L. Li, C. Hadjicostis, and R. Sreenivas, “Designs of bisimilar petri net controllers with
fault tolerance capabilities,” IEEE Transactions on Systems, Man, and Cybernetics-
Part A: Systems and Humans, vol. 38, no. 1, pp. 207–217, 2008.

[55] J. B. Kruskal, “The theory of well-quasi-ordering: A frequently discovered concept,”
Journal of Combinatorial Theory, Series A, vol. 13, no. 3, pp. 297–305, 1972.

[56] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of the IEEE,
vol. 77, no. 4, pp. 541–580, 1989.

[57] A. Giua and F. DiCesare, “Blocking and controllability of petri nets in supervisory
control,” IEEE Transactions on Automatic Control, vol. 39, no. 4, pp. 818–823, 1994.

[58] P. J. Ramadge and W. M. Wonham, “Modular feedback logic for discrete event sys-
tems,” SIAM Journal on Control and Optimization, vol. 25, no. 5, pp. 1202–1218, 1987.

[59] A. Giua and F. DiCesare, “Supervisory design using petri nets,” in Proceedings of the
30th IEEE Conference on Decision and Control. IEEE, 1991, pp. 92–97.

[60] A. Raman and R. Sreenivas, “Sequential synthesis of supervisory policies for discrete-
event systems modeled by petri nets,” in Proceedings of the 2019 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), Bari, Italy. IEEE, October
2019.

[61] S. Chandrasekaran, N. Somnath, and R. Sreenivas, “A software tool for the automatic
synthesis of minimally restrictive liveness enforcing supervisory policies for a class of
general petri net models of manufacturing-and service-systems,” Journal of Intelligent
Manufacturing, vol. 26, no. 5, pp. 945–958, 2015.

[62] C. Chen, A. Raman, H. Hu, and R. S. Sreenivas, “On liveness enforcing supervisory
policies for arbitrary petri nets,” to appear, IEEE Transactions on Automatic Control,
circa December 2020.

[63] C. Reutenauer, The mathematics of Petri nets. Prentice-Hall, Inc., 1990.

[64] V. Deverakonda and R. Sreenivas, “On a sufficient information structure for supervisory
policies that enforce liveness in a class of general petri nets,” IEEE Transactions on
Automatic Control, vol. 60, no. 7, pp. 1915–1921, 2015.

87

