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This work develops an iterative deadlock prevention method for a special class of Petri nets that can well model a variety of flexible
manufacturing systems. A deadlock detection technique, called mixed integer programming (MIP), is used to find a strict minimal
siphon (SMS) in a plant model without a complete enumeration of siphons. The policy consists of two phases. At the first phase,
SMSs are obtained by MIP technique iteratively and monitors are added to the complementary sets of the SMSs. For the possible
existence of new siphons generated after the first phase, we add monitors with their output arcs first pointed to source transitions
at the second phase to avoid new siphons generating and then rearrange the output arcs step by step on condition that liveness
is preserved. In addition, an algorithm is proposed to remove the redundant constraints of the MIP problem in this paper. The
policy improves the behavioral permissiveness of the resulting net and greatly enhances the structural simplicity of the supervisor.
Theoretical analysis and experimental results verify the effectiveness of the proposed method.

1. Introduction

Deadlocks [1] always appear in the operations of a flexible
manufacturing system (FMS). Hence, deciding how to reduce
the impact of deadlocks is a very tricky problem that we have
to cope with. Digraphs, automata, and Petri nets are three
major mathematical tools to deal with deadlock problems in
resource allocation systems.

Digraphs are used to deal with the deadlock detection
and avoidance in [2, 3]. Researchers [4, 5] adopt automata
as model tools to dispose the deadlock problem while Petri
nets [6] are applied to model and analyze FMS. The main
Petri net strategies are deadlock detection and recovery [7, 8],
deadlock avoidance [9–11], and deadlock prevention [12–19].

This paper focuses our attention on deadlock prevention
problems. A Petri net based deadlock prevention approach
utilizes an off-line computational mechanism to impose
constraints on a system to prevent the system from reaching

deadlock states. Monitors (control places) and their related
arcs are used to achieve such purposes and collectively called
a supervisor of the plant model.

The theory of regions, as a technique to design supervi-
sors for a Petri net, is adopted in [13, 20, 21]. Generally, the
theory can lead to an optimal supervisor [22–28] if it exists.
However, the theory is based on a reachability graph, which
may cause state explosion with a net size increasing.

McMillan and Probst propose the concept of unfolding
nets in [29] to describe the behavior of an FMS. A prefix of an
unfolding net is adequate to completely describe the proper-
ties of a net, which is a concise but efficientmethod compared
with the theory of regions. However, deciding how to find a
complete and simple prefix is still worth consideration.

Siphons are special sets of places of a Petri net, by control-
ling which one can effectively prevent deadlocks. Ezpeleta et
al. [12] propose a policy by enumerating siphons and impose
constraints for the siphons to solve deadlock prevention
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problems. However, it is a time-consuming task with nets
scale expansion [30]. In addition, behavioral permissiveness
and structural complexity are tough issues that we have to
face. Li and Zhou [14] propose elementary siphon theory,
where enumerated siphons are divided into two parts: ele-
mentary and dependent. Monitors are only needed for the
elementary siphons as long as the dependent siphons are
controllable, which greatly reduces the structural complexity.
Moreover, the computational complexity is reduced and the
behavioral permissiveness is enhanced in the subsequent
research [15, 31–38].

Huang et al. [39] propose a two-stage deadlock preven-
tion policy for System of Simple Sequential Processes with
Resources (S3PR), a class of Petri nets that was proposed in
[12]. The policy explores SMS based on the MIP technique,
developed by Chu andXie [40] for structurally bounded nets.
For S3PR, at the first stage, by the MIP technique, maximal
unmarked siphon is obtained first if there exist deadlocks.
SMS can be derived from the maximal unmarked siphon and
a corresponding constraint, imposed on the complementary
set of the SMSs to prevent it from being unmarked, is
obtained enforcing the constraint to the MIP problem to
check the liveness of the plant net under the constraint. If
there still exists a maximal unmarked siphon, repeat the
above process till the plant net is live under the derived
constraints. Thus, we can obtain one or more constraints and
add corresponding monitors (including their related arcs) to
the complementary sets of the SMSs. Hence, the resulting
net obtained after the first stage is a net consisting of the
plant net and the corresponding monitors. Control-induced
siphons (composed by operation places, resource places, and
the monitors) can possibly be generated due to the addition
of the monitors. The second stage, similar to the first one, is
still an iterative process in finding siphons and the difference
is that the monitors of this stage are added with their output
arcs pointed to source transitions, which makes the control-
induced siphons controlled and no problematic siphons were
generated. The policy can usually lead to a more permissive
supervisor than that proposed in [12].

However, there exist the following defects in [39]. First,
the SMS obtained after an iteration is nondeterministic due
to the following two reasons. The first is that the solution
(corresponds to a maximal unmarked siphon) of the MIP
problem is not unique and the second is that we can find
different SMSs from the same maximal unmarked siphon
via different place selection sequences. Thus, the sequence
of the generation of SMSs is uncertain. Sometimes, SMS can
be controlled if the subsequent SMSs are controlled. Hence,
adding a monitor for the SMS is redundant and makes the
control structure complex.

Second, at the second stage in [39], the constraint, men-
tioned at Step 17 ofAlgorithm 2 of [39] and used for exploring
the condition of liveness in the considered MIP problem, is
imposed on the complementary set of new generated SMSs
(derived from a control-induced siphon) while the output
arcs of the constraint corresponding monitor are pointed
to source transitions. It causes the fact that the constraints

obtained at the second stage are always more than the
necessarymonitors. However, the number of addedmonitors
for SMSs is requested consistent with that of the obtained
constraints in terms of the policy, which leads to the fact
that redundant monitors are generated and the behavioral
permissiveness is generally restricted.

This work improves [39] in terms of structural complexity
and behavioral permissiveness by the following three points.
First, for removing the redundant constraints, an algorithm
is developed that checks the redundancy of a constraint by
deciding whether the liveness is preserved after its removal.
This operation markedly reduces the structural complexity.
Second, a new type of constraints is constructed to replace
the one that emerged at Step 17 of Algorithm 2 in [39] to
reduce structural complexity and enhance behavioral permis-
siveness. The generation of redundant monitors is avoided
by imposing the new constraint on the complementary set
of newly generated SMSs and the set of its upstream places
(defined in Definition 14), which makes the constraint have
the same effectwith themonitors added at the second stage on
preventing the newly generated SMS from being unmarked.
Third, for each output arc of themonitors added at the second
stage, it is led from the source transition step by step to
release more legal states on condition that the liveness is
preserved. In summary, the improvements largely enhance
the performance of a supervisor for a plant net.

The rest of this paper is organized as follows. Prelimi-
naries used in this paper are presented in the next section.
In Section 3, we introduce a deadlock prevention policy
that mainly contains two phases: siphon control phase and
extended siphon control phase.The specificmethod is shaped
to an algorithm in Section 4. By experimental analysis, the
performance of the proposed method is shown in Section 5.
Finally, Section 6 concludes this paper.

2. Preliminaries

2.1. Basics of Petri Nets. A Petri net is a four-tuple 𝑁 =

(𝑃, 𝑇, 𝐹,𝑊), where 𝑃 and 𝑇 are the sets of places and
transitions, respectively. 𝐹 ⊆ (𝑃×𝑇) ∪ (𝑇×𝑃) is called a flow
relation, represented by arcs with arrows from transitions to
places or fromplaces to transitions.𝑊: (𝑃×𝑇)∪(𝑇×𝑃) → N

is a mapping that assigns a weight to an arc: 𝑊(𝑥, 𝑦) > 0 if
(𝑥, 𝑦) ∈ 𝐹, where 𝑥 ∈ 𝑃, 𝑦 ∈ 𝑇 (or 𝑥 ∈ 𝑇, 𝑦 ∈ 𝑃), and
N = {0, 1, 2, . . .}. If𝑊(𝑥, 𝑦) ≤ 1, ∀(𝑥, 𝑦) ∈ 𝐹, the net is called
an ordinary Petri net; otherwise, it is called a generalized Petri
net.

A marking (also called a state)𝑀 is a mapping from 𝑃 to
N. The number of tokens in place 𝑝 is denoted by 𝑀(𝑝). A
place 𝑝 is marked at a marking𝑀 if𝑀(𝑝) > 0.𝑀(𝑆) denotes
the sumof tokens of all places in 𝑆; that is,𝑀(𝑆) = ∑

𝑝∈𝑆
𝑀(𝑝),

where 𝑆 ⊆ 𝑃. 𝑆 is marked at 𝑀 if 𝑀(𝑆) > 0. 𝑆 is unmarked
at 𝑀 if 𝑀(𝑆) = 0. (𝑁,𝑀

0
) is called a net system and 𝑀

0
is

called an initial marking of𝑁.
Let 𝑥 ∈ 𝑃 ∪ 𝑇 be a node of 𝑁 = (𝑃, 𝑇, 𝐹,𝑊). ∙𝑥 = {𝑦 ∈

𝑃 ∪ 𝑇 | (𝑦, 𝑥) ∈ 𝐹} is called the preset of 𝑥 and 𝑥
∙
= {𝑦 ∈

𝑃 ∪ 𝑇 | (𝑥, 𝑦) ∈ 𝐹} is called the postset of 𝑥. Similar notation
extended to a set of nodes is as follows: given𝑋 ⊆ 𝑃∪𝑇, ∙𝑋 =

∪
𝑥∈𝑋

∙
𝑥,𝑋∙

= ∪
𝑥∈𝑋

𝑥
∙, ∙∙𝑋 = ∪

𝑥∈𝑋

∙∙
𝑥, and𝑋

∙∙
= ∪

𝑥∈𝑋
𝑥
∙∙.
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A nonempty set 𝑆 ⊆ 𝑃 is called a siphon if ∙𝑆 ⊆ 𝑆
∙. 𝑆

is minimal if there is no siphon in 𝑆 as a proper subset. 𝑆 is
strict if ∙𝑆 ⫋ 𝑆

∙.
A transition 𝑡 ∈ 𝑇 is enabled at a marking 𝑀 if, ∀𝑝 ∈

∙
𝑡, 𝑀(𝑝) ≥ 𝑊(𝑝, 𝑡) and denoted as 𝑀[𝑡⟩. Firing 𝑡 yields a
new marking 𝑀 that can be denoted by 𝑀[𝑡⟩𝑀

 and 𝑀
 is

called an immediately reachablemarking from𝑀. Amarking
𝑀

 is said to be reachable from𝑀 if there exists a sequence
of transitions 𝜎 = 𝑡

0
𝑡
1
⋅ ⋅ ⋅ 𝑡

𝑛
and markings 𝑀

1
,𝑀

2
, . . ., and

𝑀
𝑛
such that 𝑀[𝑡

0
⟩𝑀

1
[𝑡
1
⟩𝑀

2
⋅ ⋅ ⋅𝑀

𝑛
[𝑡
𝑛
⟩𝑀

 holds. The set
of markings reachable from𝑀 in𝑁 is called the reachability
set of Petri net (𝑁,𝑀) and denoted as 𝑅(𝑁,𝑀). The set of
legal states of net (𝑁,𝑀

0
) is defined as follows: M = {𝑀 |

𝑀 ∈ 𝑅(𝑁,𝑀
0
) ∧ 𝑀

0
∈ 𝑅(𝑁,𝑀)}.

A transition 𝑡 ∈ 𝑇 is live at𝑀
0
if, ∀𝑀 ∈ 𝑅(𝑁,𝑀

0
), ∃𝑀

∈

𝑅(𝑁,𝑀), 𝑀
[𝑡⟩. (𝑁,𝑀

0
) is live if, ∀𝑡 ∈ 𝑇, 𝑡 is live at 𝑀

0
. It

is dead at 𝑀
0
if ∄𝑡 ∈ 𝑇, 𝑀

0
[𝑡⟩. It is deadlock-free if ∀𝑀 ∈

𝑅(𝑁,𝑀
0
), ∃𝑡 ∈ 𝑇,𝑀[𝑡⟩.

A 𝑃-vector is a column vector 𝐼 : 𝑃 → Z indexed by 𝑃
and a 𝑇-vector is a column vector 𝐽 : 𝑇 → Z indexed by 𝑇,
whereZ is the set of integers.The column vectors where every
entry equals 0(1) are denoted by 0(1). [𝑁] is a |𝑃|×|𝑇| integer
matrixwith [𝑁](𝑝, 𝑡) = 𝑊(𝑡, 𝑝)−𝑊(𝑝, 𝑡). 𝐼𝑇 is the transposed
versions of vector 𝐼. 𝑃-vector 𝐼 is called a 𝑃-invariant if 𝐼 ̸= 0
and 𝐼𝑇[𝑁] = 0𝑇 and ‖𝐼‖ = {𝑝 | 𝐼(𝑝) ̸= 0} is the support of 𝐼. 𝐼
is minimal if its support is not contained in the support of any
other and its components are mutually prime. 𝑃-invariant 𝐼
is a 𝑃-semiflow if its every element is nonnegative.

2.2. S3PR. In this subsection, we introduce a class of Petri
nets, called S3PR, first defined in [12], which stands for
Systems of Simple Sequential Processes with Resources and can
model real-life automated FMSs.

Definition 1 (see [12]). An ordinary Petri net𝑁 = (𝑃, 𝑇, 𝐹) is
called a state machine if, ∀𝑡 ∈ 𝑇, |∙𝑡| = |𝑡

∙
| = 1. It is strongly

connected if, ∀𝑥, 𝑦 ∈ 𝑃 ∪ 𝑇, there is a sequence of nodes
𝑥, 𝑎, 𝑏, . . . , 𝑐, and 𝑦 such that (𝑥, 𝑎), (𝑎, 𝑏), . . ., and (𝑐, 𝑦) ∈ 𝐹,
where {𝑎, 𝑏, . . . , 𝑐} ⊆ 𝑃 ∪ 𝑇.

Definition 2 (see [12]). A simple sequential process (S2P) is a
Petri net 𝑁 = ({𝑝

0
} ∪ 𝑃

𝐴
, 𝑇, 𝐹), where 𝑃

𝐴
̸= 0 is the set of

operation places, 𝑝0 is the idle process place, 𝑁 is a strongly
connected state machine, and the circuit of𝑁 contains 𝑝0.

Definition 3 (see [12]). A simple sequential process with
resources (S2PR) is a Petri net 𝑁 = ({𝑝

0
} ∪ 𝑃

𝐴
∪ 𝑃

𝑅
, 𝑇, 𝐹)

such that

(1) the subnet generated by𝑋 = 𝑃
𝐴
∪ {𝑝

0
} ∪ 𝑇 is S2P,

(2) 𝑃
𝑅

̸= 0 and (𝑃
𝐴
∪ {𝑝

0
}) ∩ 𝑃

𝑅
= 0, where 𝑃

𝑅
is called

the set of resource places,
(3) ∀𝑝 ∈ 𝑃

𝐴
, ∀𝑡 ∈

∙𝑝, ∀𝑡 ∈ 𝑝
∙, ∃𝑟

𝑝
∈ 𝑃

𝑅
, ∙𝑡 ∩ 𝑃

𝑅
=

𝑡
∙

∩ 𝑃
𝑅
= {𝑟

𝑝
},

(4) (a) ∀𝑟 ∈ 𝑃
𝑅
, ∙∙𝑟 ∩ 𝑃

𝐴
= 𝑟

∙∙
∩ 𝑃

𝐴
̸= 0 and (b), ∀𝑟 ∈ 𝑃

𝑅
,

∙
𝑟 ∩ 𝑟

∙
= 0,

(5) ∙∙
(𝑝

0
) ∩ 𝑃

𝑅
= (𝑝

0
)
∙∙
∩ 𝑃

𝑅
= 0.

Definition 4 (see [12]). S3PR is a system of S2PR, defined as
follows:

(1) An S2PR is an S3PR.
(2) Let𝑁

𝑖
= ({𝑝

0

𝑖
}∪𝑃

𝐴𝑖
∪𝑃

𝑅𝑖
, 𝑇

𝑖
, 𝐹

𝑖
), 𝑖 ∈ {1, 2}, be two S3PR

such that (𝑃
𝐴1

∪ {𝑝
0

1
}) ∩ (𝑃

𝐴2
∪ {𝑝

0

2
}) = 0, 𝑃

𝑅1
∩ 𝑃

𝑅2
=

𝑃
𝐶

̸= 0, and 𝑇
1
∩ 𝑇

2
= 0. Then, combine 𝑁

1
and 𝑁

2

via 𝑃
𝐶
into a net 𝑁 = (𝑃

0
∪ 𝑃

𝐴
∪ 𝑃

𝑅
, 𝑇, 𝐹). 𝑁 is also

an S3PR, defined as follows: (1) 𝑃
𝐴
= 𝑃

𝐴1
∪ 𝑃

𝐴2
, (2)

𝑃
0
= {𝑝

0

1
} ∪ {𝑝

0

2
}, (3) 𝑃

𝑅
= 𝑃

𝑅1
∪ 𝑃

𝑅2
, (4) 𝑇 = 𝑇

1
∪ 𝑇

2
,

and (5) 𝐹 = 𝐹
1
∪ 𝐹

2
.

Transitions in (𝑃
0
)
∙ are called source transitions, which

represent the entry of raw materials when FMS is modeled
with an S3PR.

Definition 5 (see [12]). For 𝑟 ∈ 𝑃
𝑅
,𝐻(𝑟) =

∙∙
𝑟∩𝑃

𝐴
is called the

set of holders of 𝑟, which represent the operation places that
use 𝑟. Let 𝑆 be 𝑠 siphon and 𝑆𝑅 = 𝑆 ∩𝑃

𝑅
; [𝑆] = (∪

𝑟∈𝑆
𝑅𝐻(𝑟)) \ 𝑆

is called the complementary set of 𝑆.

Theorem 6 (see [12]). An S3PR (𝑁,𝑀
0
) is live if, ∀𝑀 ∈

𝑅(𝑁,𝑀
0
), ∀𝑆 ∈ Π,𝑀(𝑆) > 0.

Let Π be the set of SMSs in an S3PR. The above theorem
indicates that an S3PR is live if there is no siphon that can be
emptied.

2.3. MIP Technique. Let (𝑁,𝑀) be an ordinary net with𝑁 =

(𝑃, 𝑇, 𝐹) and let 𝑆 be themaximal unmarked siphon at𝑀; that
is, ∀𝑝 ∉ 𝑆,𝑀(𝑝) > 0. In the sequel, we introduce a technique,
first proposed in [40], to find 𝑆 in𝑁 by exploring the solution
of a mixed integer programming (MIP) problem. ∀𝑝 ∉ 𝑆, let
V
𝑝
= 1 and, ∀𝑡 ∉ 𝑆

∙, let 𝑧
𝑡
= 1.

Since 𝑆 is a siphon and, ∀𝑝 ∉ 𝑆, 𝑀(𝑝) > 0, any 𝑝 with
V
𝑝
= 1 and any 𝑡 with 𝑧

𝑡
= 1 should be removed from the

solution. Furthermore, ∀𝑡 ∈ 𝑝
∙, V

𝑝
= 0 implies 𝑧

𝑡
= 0 and,

∀𝑝 ∈ 𝑡
∙, 𝑧

𝑡
= 1 implies the truth of V

𝑝
= 1. This leads to

𝑧
𝑡
≥ ∑

𝑝∈
∙
𝑡

V
𝑝
−


∙
𝑡
 + 1, ∀𝑡 ∈ 𝑇,

V
𝑝
≥ 𝑧

𝑡
, ∀ (𝑡, 𝑝) ∈ 𝐹,

V
𝑝
, 𝑧

𝑡
∈ {0, 1} .

(1)

For a structurally bounded net, we have

V
𝑝
≥

𝑀(𝑝)

SB (𝑝)
, ∀𝑝 ∈ 𝑃, (2)

where SB(𝑝) = max{𝑀(𝑝) | 𝑀 = 𝑀
0
+ [𝑁]𝑌, 𝑀 ≥ 0,

𝑌 ≥ 0} denotes the structural bound of place 𝑝. Therefore,
the maximal unmarked siphon can be determined by the
following MIP problem and there exist siphons unmarked in
(𝑁,𝑀

0
) if 𝐺MIP

(𝑀
0
) < |𝑃|:

𝐺
MIP

(𝑀
0
) = Minimize∑

𝑝∈𝑃

V
𝑝 (3)
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subject to constraints (1)-(2) and

𝑀 = 𝑀
0
+ [𝑁]𝑌, 𝑀 ≥ 0, 𝑌 ≥ 0. (4)

Although MIP problems are NP-hard, it is shown in [40]
that its computational efficiency is relatively insensitive to
the initial marking andmore efficient than state enumeration
methods.

Theorem 7 (see [40]). Let (𝑁,𝑀
0
) be an ordinary Petri net

with𝑁 = (𝑃, 𝑇, 𝐹). (𝑁,𝑀
0
) is live if 𝐺𝑀𝐼𝑃

(𝑀
0
) = |𝑃|.

Theorem 7 is used to check S3PR (𝑁,𝑀
0
) whether live-

ness is enforced or not. If 𝐺MIP
(𝑀

0
) equals the cardinality of

the place set of𝑁, it implies that (𝑁,𝑀
0
) is live.

However, the classical MIP problem to determine a max-
imal unmarked siphon in [40] only applies to ordinary Petri
nets. As for a generalized Petri net, deadlocks may occur due
to insufficiently marked siphons. Hence, the new conditions
for checking whether there exist amaximal unmarked siphon
in a generalized Petri net (𝑁,𝑀

0
) with 𝑁 = (𝑃, 𝑇, 𝐹,𝑊) are

presented in [41], where a new constraint (5) is used to replace
constraint (2):

V
𝑝
≥
(𝑀(𝑝) −𝑊(𝑝, 𝑡) + 1)

SB (𝑝)
,

∀𝑝 ∈ 𝑃, ∀𝑊(𝑝, 𝑡) > 0.

(5)

The maximal unmarked siphon of a generalized Petri net
(𝑁,𝑀

0
) can be determined by the following MIP problem

and there exist unmarked siphons if 𝐺MIP
gen (𝑀0

) < |𝑃|:

𝐺
MIP
gen (𝑀

0
) = Minimize∑

𝑝∈𝑃

V
𝑝 (6)

subject to constraints (1) and (5) and

𝑀 = 𝑀
0
+ [𝑁]𝑌, 𝑀 ≥ 0, 𝑌 ≥ 0. (7)

Theorem 8 (see [41]). Let (𝑁,𝑀
0
) be a generalized Petri net

with𝑁 = (𝑃, 𝑇, 𝐹,𝑊). (𝑁,𝑀
0
) is live if 𝐺𝑀𝐼𝑃

𝑔𝑒𝑛
(𝑀

0
) = |𝑃|.

For a generalized Petri net (𝑁,𝑀
0
), if 𝐺MIP

gen (𝑀0
) equals

the cardinality of the place set of 𝑁, we can conclude that
(𝑁,𝑀

0
) is live.

3. Siphon Control Approach

In general, the presentedmethodmainly contains two phases:
siphon control phase and extended siphon control phase.The
two phases are similar in finding siphons and the difference
between them is the fashion of adding monitors for the
siphons.

First, we apply the MIP technique to a plant net to obtain
a maximal unmarked siphon (if there exists one), derive a
minimal siphon from themaximal one by theminimal siphon
extraction algorithm in [42], and check liveness by solving
an MIP problem of the plant net after enforcing a constraint

imposed on the complementary set of the minimal siphons.
Repeat the above process until the plant net is live under a
set of constraints. After removing redundant constraints by a
proposed algorithm, we add monitors to the complementary
sets of the minimal siphons according to the remaining
constraints. If in the resulting net there still exists a deadlock,
we conduct the next phase.

At the second phase, a newly presented constraint, dif-
ferent from the one claimed at Step 17 of Algorithm 2 in
[39], is enforced to the MIP problem of the resulting net
of the first phase for preventing the system from reaching
deadlock states. After iterations, we obtain a set of constraints
and implement the constraints by adding monitors with the
output arcs (with weights) pointing to the source transitions
to avoid the generation of new problematic siphons.Then the
output arcs of the monitors are rearranged to obtain a more
permissive supervisor.

3.1. Siphon Control Phase. At this phase, for modeling a
maximally permissive supervisor as much as possible, a
monitor for an SMS is designed to be imposed on the
complementary set of the SMSs.

Definition 9 (see [39]). Let 𝑆 be an SMS in an S3PR (𝑁,𝑀
0
).

A monitor 𝑉
𝑆
for 𝑆 is added to 𝑁 to prevent 𝑆 from being

unmarked such that

(1) ∙
𝑉
𝑆
= {𝑡 ∈ 𝑝

∙
| 𝑝 ∈ [𝑆], 𝑝

∙∙
∉ [𝑆]}; 𝑉∙

𝑆
= {𝑡 ∈

∙𝑝 | 𝑝 ∈

[𝑆],
∙∙𝑝 ∉ [𝑆]},

(2) ∀𝑡 ∈ ∙
𝑉
𝑆
, 𝑊(𝑡, 𝑉

𝑆
) = 1; ∀𝑡 ∈ 𝑉

∙

𝑆
,𝑊(𝑉

𝑆
, 𝑡) = 1,

(3) 𝑀(𝑉
𝑆
) = 𝑀

0
(𝑆) − 1,

where𝑊(𝑉
𝑆
, 𝑡) and𝑊(𝑡, 𝑉

𝑆
)denote theweights of related arcs

of 𝑉
𝑆
and𝑀(𝑉

𝑆
) denotes the initial number of tokens in 𝑉

𝑆
.

Theorem 10 (see [43]). The addition of 𝑉
𝑆
for 𝑆 minimally

restricts the behavior of a plant net.

Definition 9 shows the fashion of adding amonitor for an
SMS at the first phase. In the sequel, we should identify SMSs
that need to be controlled.

In this study, the MIP technique is applied to iteratively
find SMSs to avoid a complete siphon enumeration. For an
S3PR (𝑁,𝑀

0
), an SMS 𝑆 can be found in 𝑁 by the MIP

technique if it is not live. A constraint∑
𝑝∈[𝑆]

𝑀(𝑝) ≤ 𝑀
0
(𝑆)−

1 is enforced to the MIP problem of 𝑁, which implies that 𝑆
cannot be unmarked any more in the MIP problem while the
constraint minimally restricts the behavior of the plant net,
where𝑀(𝑝) is a variable of theMIP problem and denotes the
number of tokens in 𝑝 and𝑀

0
(𝑆) is the number of tokens in

𝑆 at the initial marking. If 𝑁 is live under the constraint, we
just need to enforce the constraint by adding a corresponding
monitor to𝑁 and end the first phase. Otherwise, we need to
iterate andwill obtain a set of constraints in theMIP problem,
under which𝑁 can never reach deadlock states.

However, if the number of constraints is more than
one, there may be the case that not all the constraints are
necessary. As mentioned in Introduction, some constraints
can be replaced by the combination of other constraints and



Discrete Dynamics in Nature and Society 5

Input: A Petri net (𝑁,𝑀) and a set of constraints 𝐶 = {𝑐
1
, . . . , 𝑐

𝑛
}.

Output: A set of necessary constraints 𝐶
𝑁
.

(1) begin
(2) 𝐶

𝑁
fl 0. \∗ 𝐶

𝑁
denotes a set of necessary constraints ∗\

(3) while {𝐶 ̸= 0}

(3.1) Choose a constraint 𝑐
𝑖
from 𝐶; 𝐶 fl 𝐶 \ {𝑐

𝑖
}.

(3.2) Enforce 𝐶 ∪ 𝐶
𝑁
to the MIP problem of𝑁.

(3.3) if there exists a maximal unmarked siphon
(3.3.1) 𝐶

𝑁
fl 𝐶

𝑁
∪ {𝑐

𝑖
}.

(4) Output 𝐶
𝑁
.

(5) end

Algorithm 1: Extraction of necessary constraints.

therefore they are redundant. Here, we propose an algorithm
to exclude redundant constraints and the remaining ones are
necessary.

Algorithm 1 eliminates redundancy by excluding a con-
straint each time. If the liveness is preserved after remov-
ing the constraint, we can conclude that the constraint is
redundant and should be removed. Otherwise, it should be
considered as necessary.

A necessary constraint corresponds to an SMS that needs
to be controlled. The constraint is achieved by adding a
monitor and related arcs to the plant net to prevent the cor-
responding SMS from being unmarked. Hence, a necessary
constraint requires a monitor.

Given an S3PR (𝑁,𝑀
0
) with𝑁 = (𝑃

0
∪𝑃

𝐴
∪𝑃

𝑅
, 𝑇, 𝐹,𝑊),

we enforce the necessary constraints by adding monitors
according to Definition 9 and denote the resulting net as
(𝑁1

,𝑀
1), where 𝑁

1
= (𝑃

0
∪ 𝑃

𝐴
∪ 𝑃

𝑅
∪ 𝑃

𝑉
, 𝑇, 𝐹 ∪ 𝐹

1
,𝑊

1
)

and 𝑃
𝑉
denotes the set of monitors 𝑉

𝑆
. Then,

(1) ∀𝑝 ∈ 𝑃
0
∪ 𝑃

𝐴
∪ 𝑃

𝑅
, ∀𝑡 ∈ 𝑇, 𝑊

1
(𝑝, 𝑡) = 𝑊(𝑝, 𝑡),

𝑊
1
(𝑡, 𝑝) = 𝑊(𝑡, 𝑝) and

(2) ∀𝑡 ∈ ∙
𝑉
𝑆
, ∀𝑉

𝑆
∈ 𝑃

𝑉
, 𝑊

1
(𝑡, 𝑉

𝑆
) = 1; ∀𝑡 ∈ 𝑉

∙

𝑆
, ∀𝑉

𝑆
∈

𝑃
𝑉
, 𝑊

1
(𝑉

𝑆
, 𝑡) = 1,

(3) ∀𝑝 ∈ 𝑃
𝐴
∪ 𝑃

0
∪ 𝑃

𝑅
,𝑀1

(𝑝) = 𝑀
0
(𝑝),

(4) ∀𝑉
𝑆
∈ 𝑃

𝑉
,𝑀1

(𝑉
𝑆
) is thesame as𝑀(𝑉

𝑆
) inDefinition 9.

Theorem 11 (see [39]). (𝑁1
,𝑀

1
) is live if no siphon in𝑁1 can

be emptied.

Now, the S3PR net depicted in Figure 1(a) is taken as an
example. It has 11 places, where {𝑝

1
, 𝑝

5
} is the set of idle

places, {𝑝
2
, 𝑝

3
, 𝑝

4
, 𝑝

6
, 𝑝

7
, 𝑝

8
} is the set of operation places,

and {𝑝
9
, 𝑝

10
, 𝑝

11
} is the set of resource places. Applying the

MIP technique to the net, a maximal unmarked siphon
{𝑝

4
, 𝑝

7
, 𝑝

8
, 𝑝

9
, 𝑝

10
, 𝑝

11
} is found. An SMS can be derived from

themaximal one, denoted as 𝑆
1
= {𝑝

4
, 𝑝

7
, 𝑝

10
, 𝑝

11
}, where𝑝

10

and 𝑝
11

are resource places and {𝑝
3
, 𝑝

7
} and {𝑝

4
, 𝑝

6
} denote

their holder sets, respectively. According to the definition of
complementary sets, we have [𝑆

1
] = {𝑝

3
, 𝑝

6
} and𝑀

0
(𝑆
1
)−1 =

3 − 1 = 2. Constraint 𝑀(𝑝
3
) + 𝑀(𝑝

6
) ≤ 2 is enforced

to the MIP problem of the plant net to check whether the
plant net is live under the constraint. If it is not live, we
need to continue to find an SMS and enforce a corresponding
constraint to the MIP problem of the plant net. After three
iterations, the plant net is live under three derived constraints.
We find that there exists no redundant constraint by applying
Algorithm 1. Three monitors are added by Definition 9 and
shown in Figure 1(b).

We find that all of the above three constraints are
necessary. However, if we change the initial marking of the
net in Figure 1(a) to the one shown in Figure 2(a), we may
find three constraints in turn:

𝑀(𝑝
2
) + 𝑀(𝑝

3
) + 𝑀(𝑝

6
) + 𝑀(𝑝

7
) ≤ 4, (8)

𝑀(𝑝
2
) + 𝑀(𝑝

7
) ≤ 2, (9)

𝑀(𝑝
3
) + 𝑀(𝑝

6
) ≤ 2. (10)

If constraint (8) can be found first, we still require con-
straints (9) and (10) to guarantee liveness, which makes con-
straint (8) redundant. Consequently, Algorithm 1 becomes an
essential tool to deal with this condition. The controlled net
is shown in Figure 2(b).

In fact, the condition of Theorem 11 is not always met.
Newly added monitors and resource places may coproduce
new siphons.Therefore, the second phase is proposed to solve
this problem.

3.2. Extended Siphon Control Phase. In this subsection, we
still utilize the MIP-based deadlock detection method to find
siphons (if there exist ones). In order to avoid the case that
the added monitors take part in generating new siphons (i.e.,
control-induced siphons), the output arcs of monitors (with
weighted arcs) added at this phase are pointed to source
transitions first. Then the output arcs are rearranged to be far
away from the source transitions to release legal states. The
following definitions are presented to introduce the fashion
of adding a monitor for an SMS at the second phase.

Definition 12. Let (𝑁,𝑀
0
) be an S3PR, let 𝑝0 be the idle place

of a process, and let 𝑝
𝑎
and 𝑝

𝑏
be different operation places
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Figure 1: (a) An S3PR (𝑁,𝑀
0
) and (b) a controlled system of𝑁.

5 5

t1 t8

t7

t6

t2

t3

t4 t5

p1 p5

p2 p8

p3

p4 p6

p11

p10

p7

p9

(a)

5 5

t8
t1

t2

t3

t4

t7

t6

t5

p8

p9

p2

p3

p4

p11

p10

p1 p7
p5

p6

VS1

VS2

(b)

Figure 2: (a) An S3PR (𝑁,𝑀
0
) and (b) a controlled system of𝑁.

in the process. If 𝑝
𝑏
can be found in the process path (in

accordance with the direction of the arrows of the process
flow) from𝑝

𝑎
to 𝑝0 (𝑝

𝑎
and𝑝0 are not included), 𝑝

𝑏
is called a

downstream place of 𝑝
𝑎
, denoted as 𝑝

𝑏
≺ 𝑝

𝑎
, and 𝑝

𝑎
is called

an upstream place of 𝑝
𝑏
, denoted as 𝑝

𝑎
≻ 𝑝

𝑏
.

Definition 13. Let𝑝 be an operation place of an S3PR.𝑃
𝐷
(𝑝) =

{𝑞 | 𝑞 ≺ 𝑝} is called the set of downstream places of 𝑝 and
𝑃
𝑈
(𝑝) = {𝑞 | 𝑞 ≻ 𝑝} is called the set of upstream places of 𝑝.

Definition 14. Let 𝑆 be an SMS of an S3PR, let [𝑆] be the
complementary set of 𝑆, and let 𝑝 be an operation place in
[𝑆]. 𝑃

𝑈
([𝑆]) = ⋃

𝑝∈[𝑆]
{𝑞 | 𝑞 ∈ 𝑃

𝑈
(𝑝) ∧ 𝑞 ∉ [𝑆]} is called the

set of upstream places of [𝑆] and 𝑃
𝑈𝑖
([𝑆]) = 𝑃

𝑈
([𝑆]) ∩ 𝑃

𝐴𝑖
is

called the set of upstream places of [𝑆] in process 𝑖, where 𝑃
𝐴𝑖

denotes the set of operation places in process 𝑖.

Take the S3PR net (𝑁,𝑀
0
) depicted in Figure 1(a) as an

example. 𝑝
4
is a downstream place of 𝑝

3
, denoted as 𝑝

4
≺

𝑝
3
. 𝑝

2
is an upstream place of 𝑝

3
, denoted as 𝑝

2
≻ 𝑝

3
.

Moreover,𝑝
3
and𝑝

4
are the downstreamplaces of𝑝

2
, denoted

as 𝑃
𝐷
(𝑝

2
) = {𝑝

3
, 𝑝

4
}. 𝑝

2
and 𝑝

3
are the upstream places of

𝑝
4
, denoted as 𝑃

𝑈
(𝑝

4
) = {𝑝

2
, 𝑝

3
}. It is supposed that 𝑃

𝐴1
=

{𝑝
2
, 𝑝

3
, 𝑝

4
} and 𝑃

𝐴2
= {𝑝

6
, 𝑝

7
, 𝑝

8
}. 𝑆

1
= {𝑝

4
, 𝑝

7
, 𝑝

10
, 𝑝

11
} and

𝑆
2
= {𝑝

3
, 𝑝

8
, 𝑝

9
, 𝑝

10
} are two SMSs in 𝑁. 𝑃

𝑈
([𝑆

1
]) = {𝑝

2
},

𝑃
𝑈1
([𝑆

1
]) = {𝑝

2
}, and 𝑃

𝑈2
([𝑆

1
]) = 0. Similarly, 𝑃

𝑈
([𝑆

2
]) =

{𝑝
6
}, 𝑃

𝑈1
([𝑆

1
]) = 0, and 𝑃

𝑈2
([𝑆

1
]) = {𝑝

6
}.

Definition 15. Let 𝑆 be an SMS of (𝑁1
,𝑀

1
) with𝑁

1
= (𝑃

0
∪

𝑃
𝐴
∪𝑃

𝑅
∪𝑃

𝑉
, 𝑇, 𝐹∪𝐹

1
).The complementary set of 𝑆 is defined

as [𝑆] = ⋃
𝑉𝑆∈𝑆

𝐻(𝑉
𝑆
)⋃

𝑟∈𝑆
𝐻(𝑟)\𝑆, where𝑉

𝑆
∈ 𝑃

𝑉
and 𝑟 ∈ 𝑃

𝑅
.

[𝑆] can be written in the multiset form 𝑇ℎ
𝑆
= ∑

𝑝∈𝐻(𝑉𝑆)
𝑝 +

∑
𝑝∈𝐻(𝑟)

𝑝−∑
𝑝∈𝑆

𝑝 and 𝑇ℎ
𝑆
(𝑝) represents the coefficient of 𝑝.
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Suppose that 𝑇ℎ
𝑆
= 𝑎 ⋅ 𝑝

𝑙
+ 𝑏 ⋅ 𝑝

𝑚
+ 𝑐 ⋅ 𝑝

𝑛
, and we have

𝑇ℎ
𝑆
(𝑝

𝑙
) = 𝑎, 𝑇ℎ

𝑆
(𝑝

𝑚
) = 𝑏, and 𝑇ℎ

𝑆
(𝑝

𝑛
) = 𝑐.

Definition 16. Let 𝑆 be an SMS of (𝑁
1
,𝑀

1
). 𝑄

𝑆
(𝑝) =

max{max
𝑞∈𝑃𝐷(𝑝)

𝑇ℎ
𝑆
(𝑞), 𝑇ℎ

𝑆
(𝑝)} is called the maximum

demand for resources of 𝑝 on 𝑆.

Next, we illustrate the definition with the example 𝑇ℎ
𝑆
=

𝑎 ⋅ 𝑝
𝑙
+ 𝑏 ⋅ 𝑝

𝑚
+ 𝑐 ⋅ 𝑝

𝑛
+ ⋅ ⋅ ⋅ + 𝑟 ⋅ 𝑝

𝑥
+ 𝑠 ⋅ 𝑝

𝑦
+ 𝑡 ⋅ 𝑝

𝑧
. Suppose

that {𝑝
𝑙
, 𝑝

𝑚
, 𝑝

𝑛
} is a set of operation places in a process with

𝑝
𝑙

≻ 𝑝
𝑚

≻ 𝑝
𝑛
while {𝑝

𝑥
, 𝑝

𝑦
, 𝑝

𝑧
} is a set of operation

places in another process, and we have 𝑃
𝐷
(𝑝

𝑙
) = {𝑝

𝑚
, 𝑝

𝑛
},

𝑄
𝑆
(𝑝

𝑙
) = max{𝑇ℎ

𝑆
(𝑝

𝑙
), 𝑇ℎ

𝑆
(𝑝

𝑚
), 𝑇ℎ

𝑆
(𝑝

𝑛
)}, 𝑃

𝐷
(𝑝

𝑚
) = {𝑝

𝑛
},

and 𝑄
𝑆
(𝑝

𝑚
) = max{𝑇ℎ

𝑆
(𝑝

𝑚
), 𝑇ℎ

𝑆
(𝑝

𝑛
)}.

Definition 17 (see [39]). Let 𝑆 be an SMS in (𝑁
1
,𝑀

1
). A

monitor 𝐸𝑉
𝑆
for 𝑆 is added to 𝑁

1 to prevent 𝑆 from being
unmarked such that

(1) ∀𝑡 ∈ 𝑃
0∙
,𝑊(𝐸𝑉

𝑆
, 𝑡) = 𝑄

𝑆
(𝑝) (𝑝 ∈ 𝑡

∙
∩ 𝑃

𝐴
),

(2) ∀𝑡 ∈ 𝑇\𝑃
0∙
,𝑊(𝑡, 𝐸𝑉

𝑆
) = 𝑄

𝑆
(𝑝)−𝑄

𝑆
(𝑝


) (𝑝 ∈

∙
𝑡∩𝑃𝐴,

𝑝

∈ 𝑡

∙
∩ 𝑃

𝐴
),

(3) 𝑀(𝐸𝑉
𝑆
) = 𝑀

1
(𝑆) − 1,

where𝑊(𝐸𝑉
𝑆
, 𝑡) and𝑊(𝑡, 𝐸𝑉

𝑆
) denote the weights of related

arcs of 𝐸𝑉
𝑆
and𝑀(𝐸𝑉

𝑆
) denotes the initial number of tokens

in 𝐸𝑉
𝑆
.

If (𝑁1
,𝑀

1
) is not live, we can find an SMS 𝑆 containing

monitors added at the first phase. In [39], at the second stage,
a constraint∑

𝑝∈[𝑆]
𝑀(𝑝) ≤ 𝑀

1
(𝑆) − 1 is enforced to the MIP

problem of𝑁1 to prevent 𝑆 from being unmarked in theMIP
problem, where 𝑀(𝑝) is a variable of the MIP problem and
denotes the number of tokens in 𝑝, 𝑀1

(𝑆) is the number
of tokens in 𝑆 at 𝑀1. By exprimental analysis, it is found
that the constraint is imposed on the complementary set of 𝑆
while the output arcs of monitors are pointed to source tran-
sitions to prevent the generation of control-induced siphons,
which makes redundant constraints emerged. Hence, in the
following, a new type of constraints is proposed to solve the
problem.

Based on Definitions 12–16, we propose a new con-
straint, ∑

𝑝∈[𝑆]∪𝑃𝑈([𝑆])
𝑄
𝑆
(𝑝) ⋅ 𝑀(𝑝) ≤ 𝑀

1
(𝑆) − 1, to replace

∑
𝑝∈[𝑆]

𝑀(𝑝) ≤ 𝑀
1
(𝑆) − 1, where 𝑀(𝑝) is a variable of the

MIP problem and denotes the number of tokens in 𝑝 and
𝑀

1
(𝑆) is the number of tokens in 𝑆 at𝑀1. Similar to the first

phase, for controlling the derived SMSs in the MIP problem,
we can obtain one or a set of such constraints, under which
𝑁

1 is live. Applying Algorithm 1 to the constraints, we find a
set of necessary constraints and each of them corresponds to
an SMS that needs to be controlled.

For the net (𝑁1
,𝑀

1
) with 𝑁

1
= (𝑃

0
∪ 𝑃

𝐴
∪ 𝑃

𝑅
∪ 𝑃

𝑉
, 𝑇,

𝐹 ∪ 𝐹
1
,𝑊

1
) obtained after the first phase, the necessary

constraints are enforced by adding monitors to𝑁1 according
to Definition 17 and the resulting net is denoted as (𝑁2

,𝑀
2),

where𝑁2
= (𝑃

0
∪𝑃

𝐴
∪𝑃

𝑅
∪𝑃

𝑉
∪𝑃

𝐸𝑉
, 𝑇, 𝐹 ∪ 𝐹

1
∪𝐹

2
,𝑊

2
) and

𝑃
𝐸𝑉

denotes the set of monitors 𝐸𝑉
𝑆
. Then,

(1) ∀𝑝 ∈ 𝑃
0
∪ 𝑃

𝐴
∪ 𝑃

𝑅
∪ 𝑃

𝑉
, ∀𝑡 ∈ 𝑇,𝑊

2
(𝑝, 𝑡) = 𝑊

1
(𝑝,

𝑡),𝑊
2
(𝑡, 𝑝) = 𝑊

1
(𝑡, 𝑝),

(2) ∀𝑡 ∈ 𝑇, ∀𝐸𝑉
𝑆
∈ 𝑃

𝐸𝑉
, 𝑊

2
(𝐸𝑉

𝑆
, 𝑡) and 𝑊

2
(𝑡, 𝐸𝑉

𝑆
) are

the same as𝑊(𝐸𝑉
𝑆
, 𝑡) and𝑊(𝑡, 𝐸𝑉

𝑆
) in Definition 17,

respectively,

(3) ∀𝑝 ∈ 𝑃
0
∪ 𝑃

𝐴
∪ 𝑃

𝑅
∪ 𝑃

𝑉
,𝑀

2
(𝑝) = 𝑀

1
(𝑝),

(4) ∀𝐸𝑉
𝑆

∈ 𝑃
𝐸𝑉
, 𝑀2

(𝐸𝑉
𝑆
) is the same as 𝑀(𝐸𝑉

𝑆
) in

Definition 17.

Theorem 18 (see [44]). (𝑁2
,𝑀

2
) is live.

The fashion of adding monitors in Definition 17 restricts
the behavioral permissiveness while avoiding the generation
of control-induced siphons. Hence, we utilize Algorithm 2 to
release legal states.

Algorithm 2 aims to construct amore permissive supervi-
sor, which releases most legal states. For each monitor added
by Definition 17, move each of its output arcs that originally
points to a source transition step by step away from the source
transition. Note that all the movements are implemented on
condition that the liveness is preserved and the liveness is
checked by the MIP problem for generalized Petri nets.

Theorem 19. (𝑁2
,𝑀

2
) is live.

Proof. (𝑁2
,𝑀

2
) is obtained based on the rearrangements of

the output arcs of monitors in (𝑁
2
,𝑀

2
). By Theorem 18, it is

found that (𝑁2
,𝑀

2
) is live. In addition, each movement of

the output arcs is implemented on condition that𝐺MIP
gen (𝑀

𝑚2
)

((𝑁𝑚2
,𝑀

𝑚2
) denotes the resulting net of each movement)

equals the cardinality of the place set of 𝑁𝑚2, which implies
that there is no unmarked siphon. According to Theorem 8,
(𝑁

2
,𝑀

2
) is live.

For the S3PR shown in Figure 3, the number of its
maximally permissive states is 891. The first phase leads to 12
monitors, as shown in Table 1. The resulting net is denoted
as (𝑁1

,𝑀
1
). However, there still exist maximal unmarked

siphons rendering deadlocks. Two minimal siphons 𝑆
13

=

{𝑝
5
, 𝑝

10
, 𝑝

16
, 𝑝

21
, 𝑝

22
, 𝑝

24
, 𝑝

25
, 𝑉

𝑆4
, 𝑉

𝑆6
, 𝑉

𝑆8
} and 𝑆

14
= {𝑝

5
,

𝑝
10
, 𝑝

16
, 𝑝

21
, 𝑝

22
, 𝑝

24
, 𝑝

25
, 𝑉

𝑆3
, 𝑉

𝑆4
, 𝑉

𝑆9
} can be derived. The

multisets of [𝑆
13
] and [𝑆

14
] are presented as below.𝑁1 is live

under constraints (12) and (13).
Multisets are as follows:

𝑇ℎ
𝑆13

= 2𝑝
2
+ 𝑝

3
+ 𝑝

4
+ 2𝑝

7
+ 2𝑝

8
+ 2𝑝

9
+ 3𝑝

12

+ 2𝑝
13
+ 3𝑝

14
+ 𝑝

15
+ 2𝑝

18
+ 2𝑝

19
+ 𝑝

20
,

𝑇ℎ
𝑆14

= 3𝑝
2
+ 𝑝

3
+ 𝑝

4
+ 2𝑝

7
+ 2𝑝

8
+ 3𝑝

9
+ 2𝑝

12
+ 𝑝

13

+ 2𝑝
14
+ 𝑝

15
+ 𝑝

18
+ 𝑝

19
+ 𝑝

20
.

(11)
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Input: Net (𝑁2,𝑀2
) with𝑁

2
= (𝑃 ∪ 𝑃

𝑉
∪ 𝑃

𝐸𝑉
, 𝑇, 𝐹 ∪ 𝐹

1
∪ 𝐹

2
,𝑊

2
).

Output: A more permissive supervisor (𝑁2


,𝑀2


).
(1) begin
(2) 𝑃fin

𝐸𝑉
fl 0. \∗ 𝑃

fin
𝐸𝑉

denotes the set of monitors with rearranged output arcs ∗\
(3) while {𝑃

𝐸𝑉
̸= 0}

(3.1) Choose a monitor 𝐸𝑉
𝑆
from 𝑃

𝐸𝑉
; 𝑃

𝐸𝑉
fl 𝑃

𝐸𝑉
\ {𝐸𝑉

𝑆
}; 𝑃𝑚1 fl 𝑃 ∪ 𝑃

𝑉
∪ 𝑃

𝐸𝑉
∪ 𝑃

fin
𝐸𝑉
.

The resulting net is denoted by (𝑁𝑚1,𝑀𝑚1
), where𝑁𝑚1

= (𝑃
𝑚1
, 𝑇, 𝐹 ∪ 𝐹

1
∪ 𝐹

𝑚1
,𝑊

𝑚1
).

(3.2) Find 𝑃
𝑈
([𝑆]) = ⋃

𝑖∈𝐾
𝑃
𝑈𝑖
([𝑆]), where 𝐾 = {1, . . . , 𝑘} and 𝑘 is the total number of processes.

\∗ 𝑆 is the SMS controlled by 𝐸𝑉
𝑆
∗\

(3.3) foreach 𝑃
𝑈𝑖
([𝑆]) (0 < 𝑖 < 𝑘 + 1),

(3.3.1) 𝑃
𝐼𝑅

fl {𝑝
0

𝑖
}
∙∙; 𝑃

𝐼𝑅
fl 0; 𝑃

𝑈
([𝑆]) fl 𝑃

𝑈
([𝑆]) \ 𝑃

𝑈𝑖
([𝑆]).

\∗ 𝑃
𝐼𝑅
and 𝑃



𝐼𝑅
denote two sets of operation places ∗\

(3.3.2) while {𝑃
𝐼𝑅

̸= 0}

(3.3.2.1) Choose 𝑝 ∈ 𝑃
𝐼𝑅
; 𝑃

𝐼𝑅
fl 𝑃

𝐼𝑅
\ {𝑝}.

(3.3.2.2) 𝑃
𝑈𝑖
([𝑆]) fl 𝑃

𝑈𝑖
([𝑆]) \ {𝑝}; 𝑃

𝑈
([𝑆]) fl 𝑃

𝑈
([𝑆]) ∪ 𝑃

𝑈𝑖
([𝑆]).

(3.3.2.3) 𝐸𝑉
𝑆
with rearranged output arcs is added to (𝑁𝑚1,𝑀𝑚1

)

such that 𝐸𝑉
𝑆
+ ∑

𝑝∈𝑃𝑈([𝑆])
𝑝 + ∑

𝑝∈[𝑆]
𝑝 is a 𝑃-invariant of the resulting net,

denoted by (𝑁𝑚2,𝑀𝑚2
), where𝑁𝑚2

= (𝑃
𝑚2
, 𝑇, 𝐹 ∪ 𝐹

1
∪ 𝐹

𝑚2
,𝑊

𝑚2
) and 𝑃

𝑚2
= 𝑃

𝑚1
∪ {𝐸𝑉

𝑆
}.

(3.3.2.4) if {𝐺MIP
gen (𝑀

𝑚2
) = |𝑃

𝑚2
|}

(3.3.2.4.1) 𝑃

𝐼𝑅
fl 𝑃



𝐼𝑅
∪ {𝑝}.

(3.3.2.5) else
(3.3.2.5.1) 𝑃

𝑈
([𝑆]) fl 𝑃

𝑈
([𝑆]) \ 𝑃

𝑈𝑖
([𝑆]); 𝑃

𝑈𝑖
([𝑆]) fl 𝑃

𝑈𝑖
([𝑆]) ∪ {𝑝}; 𝑃

𝑈
([𝑆]) fl 𝑃

𝑈
([𝑆]) ∪ 𝑃

𝑈𝑖
([𝑆]).

(3.3.2.6) Remove 𝐸𝑉
𝑆
from (𝑁

𝑚2,𝑀𝑚2
) and obtain (𝑁

𝑚1,𝑀𝑚1
).

(3.3.3) if {𝑃

𝐼𝑅
̸= 0}

(3.3.3.1) 𝑃
𝐼𝑅

fl 𝑃
∙∙

𝐼𝑅
; 𝑃

𝐼𝑅
fl 0; go to (3.3.2)

(3.4) 𝐸𝑉
𝑆
with rearranged output arcs is added to (𝑁𝑚1,𝑀𝑚1

) such that 𝐸𝑉
𝑆
+ ∑

𝑝∈𝑃𝑈([𝑆])
𝑝 + ∑

𝑝∈[𝑆]
𝑝 is a 𝑃-invariant

of the resulting net, denoted by (𝑁2


,𝑀2


); 𝑃fin
𝐸𝑉

fl 𝑃
fin
𝐸𝑉

∪ {𝐸𝑉
𝑆
}.

(4) Output (𝑁2


,𝑀2


) with𝑁
2


= (𝑃 ∪ 𝑃
𝑉
∪ 𝑃

fin
𝐸𝑉
, 𝑇, 𝐹 ∪ 𝐹

1
∪ 𝐹

2
 ,𝑊

2
 ).

(5) end

Algorithm 2: Synthesis of a more permissive supervisor.

4 3 4 4p1
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p19
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p20

p21
p26 p16

p25

p7
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p6 p11

p14

p13

p24

p10

p12

t1 t21
t6

t20
t2

t3
t19

t4

t17 t12

t13

t14

t15
t7

t8

t16

t11

t10

t9
t18

t5

p9p23

p15

Figure 3: An S3PR example.
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Table 1: Monitors added at the first phase.

𝑉
𝑆𝑖

𝑀
1
(𝑉

𝑆𝑖
) Preset Postset 𝑉

𝑆𝑖
𝑀

1
(𝑉

𝑆𝑖
) Preset Postset

𝑉
𝑆1

4 𝑡
4
, 𝑡
9
, 𝑡
15
, 𝑡
20

𝑡
1
, 𝑡
6
, 𝑡
11
𝑡
17

𝑉
𝑆2

3 𝑡
4
, 𝑡
7
, 𝑡
15
, 𝑡
20

𝑡
1
, 𝑡
6
, 𝑡
11
, 𝑡
17

𝑉
𝑆3

3 𝑡
3
, 𝑡
8
, 𝑡
14
, 𝑡
19

𝑡
1
, 𝑡
6
, 𝑡
11
, 𝑡
17

𝑉
𝑆4

3 𝑡
4
, 𝑡
9
, 𝑡
20

𝑡
1
, 𝑡
6
, 𝑡
17

𝑉
𝑆5

2 𝑡
4
, 𝑡
20

𝑡
1
, 𝑡
17

𝑉
𝑆6

3 𝑡
2
, 𝑡
9
, 𝑡
15
, 𝑡
18

𝑡
1
, 𝑡
6
, 𝑡
11
, 𝑡
17

𝑉
𝑆7

1 𝑡
12
, 𝑡
18

𝑡
11
, 𝑡
17

𝑉
𝑆8

2 𝑡
3
, 𝑡
7
, 𝑡
14

𝑡
1
, 𝑡
6
, 𝑡
11

𝑉
𝑆9

2 𝑡
14
, 𝑡
19

𝑡
11
, 𝑡
17

𝑉
𝑆10

2 𝑡
2
, 𝑡
9

𝑡
1
, 𝑡
6

𝑉
𝑆11

2 𝑡
8
, 𝑡
12
, 𝑡
18

𝑡
6
, 𝑡
11
, 𝑡
17

𝑉
𝑆12

1 𝑡
14

𝑡
11

3

9

3 2

3
2

t1

t2

t4

t17

t11

t14

t15

t6

t20

t9

(a)

3

9

3 2

3
2

t1

t2

t4

t11

t14

t15

t6

t9

(b)

Figure 4: Monitor 𝐸𝑉
𝑆13

(a) with original output arcs and (b) with rearranged output arcs.

Constraints are as follows:

2𝑀(𝑝
2
) + 𝑀(𝑝

3
) + 𝑀(𝑝

4
) + 2𝑀(𝑝

7
) + 2𝑀(𝑝

8
)

+ 2𝑀(𝑝
9
) + 3𝑀(𝑝

12
) + 3𝑀(𝑝

13
) + 3𝑀(𝑝

14
)

+ 𝑀(𝑝
15
) + 2𝑀(𝑝

18
) + 2𝑀(𝑝

19
) + 𝑀(𝑝

20
) ≤ 9,

(12)

3𝑀(𝑝
2
) + 𝑀(𝑝

3
) + 𝑀(𝑝

4
) + 3𝑀(𝑝

7
) + 3𝑀(𝑝

8
)

+ 3𝑀(𝑝
9
) + 2𝑀(𝑝

12
) + 2𝑀(𝑝

13
) + 2𝑀(𝑝

14
)

+ 𝑀(𝑝
15
) + 𝑀(𝑝

18
) + 𝑀(𝑝

19
) + 𝑀(𝑝

20
) ≤ 9.

(13)

It is found that constraint (10) is redundant by apply-
ing Algorithm 1. According to constraint (12), 𝐸𝑉

𝑆13
with

its output arcs pointed to source transitions, as shown in
Figure 4(a), is added to𝑁1 by Definition 17.The resulting net
𝑁

2 is live and it has 870 reachable states. Finally, we find𝐸𝑉
𝑆13

with rearranged output arcs by Algorithm 2, as depicted in
Figure 4(b). We denote the resulting net as𝑁2. It is live and
has 878 reachable states that are very close to the number of
maximally permissive states.

4. Deadlock Prevention Algorithm

In this section, the proposed method is shaped to an
algorithm to show how to synthesize a liveness-enforcing
supervisor and a supporting example is given in Algorithm 3.

The supervisor synthesized by Algorithm 3 preserves
the legal states of a plant net to a large extent on a basis
of low computational complexity. The MIP-based deadlock
detection approach is iteratively used to find unmarked
siphons, which avoids a complete siphon enumeration and
saves computational time. The first phase is optimal or
maximally permissive in the sense that no legal states are
excluded since a monitor is added to the complementary set
of SMSs. However, it always makes the generation of control-
induced siphons unavoidable while minimally restricting the
behavior of a plant net. To accelerate the convergence, the
output arcs of the monitors added at the second phase are
first pointed to the source transitions of the plant net and
subsequently rearranged away from the source transitions to
release legal states on condition that the liveness is preserved.
It guarantees the liveness as well as largely enhances the
behavioral permissiveness. Hence, the policy in Algorithm 3
can synthesize a liveness-enforcing supervisor with low
computational complexity.

The Petri net shown in Figure 5 is a well-known model
of FMS [12]. We can define this Petri net model as an S3PR
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Input: An S3PR (𝑁,𝑀
0
) with𝑁 = (𝑃, 𝑇, 𝐹).

Output: A liveness-enforcing net (𝑁2


,𝑀2


) with𝑁
2


= (𝑃 ∪ 𝑃
𝑉
∪ 𝑃

𝐸𝑉
, 𝑇, 𝐹 ∪ 𝐹

1
∪ 𝐹

2
 ,𝑊

2
 ).

(1) begin
(2) 𝐶

𝑆𝐶
fl 0; 𝑃

𝑉
fl 0. \∗ 𝐶

𝑆𝐶
and 𝑃

𝑉
denote the sets of constraints in the MIP problem and monitors obtained

at the first phase, respectively ∗\
(3) Apply MIP to𝑁 to obtain a maximal unmarked siphon.
(4) if there exists such a siphon then

(4.1) Obtain a minimal siphon 𝑆
𝑖
from the maximal one.

(4.2) Enforce a constraint 𝑐
𝑖
, ∑

𝑝∈[𝑆𝑖]
𝑀(𝑝) ≤ 𝑀

0
(𝑆

𝑖
) − 1, to the MIP problem of𝑁; 𝐶

𝑆𝐶
fl 𝐶

𝑆𝐶
∪ {𝑐

𝑖
}; go to step (3).

(5) if {𝐶
𝑆𝐶

= 0} then 𝑁
2


fl 𝑁;𝑀2


fl 𝑀
0
; go to step (17).

(6) Apply Algorithm 1 to 𝐶
𝑆𝐶
, obtain a set of necessary constraints 𝐶

𝑁
.

(7) foreach 𝑐
𝑖
∈ 𝐶

𝑁
,

(7.1) Add a corresponding monitor 𝑉
𝑆𝑖
to𝑁 by Definition 9.

(7.2) 𝑃
𝑉
fl 𝑃

𝑉
∪ {𝑉

𝑆𝑖
}.

(8) Obtain (𝑁1,𝑀1) and𝑁
1
= (𝑃 ∪ 𝑃

𝑉
, 𝑇, 𝐹 ∪ 𝐹

1
).

(9) 𝐶
𝐸𝑆𝐶

fl 0; 𝑃
𝐸𝑉

fl 0. \∗ 𝐶
𝐸𝑆𝐶

and 𝑃
𝐸𝑉

denote the sets of constraints in the MIP problem and monitors obtained
at the second phase, respectively ∗\

(10) Apply MIP to𝑁1 to obtain a maximal unmarked siphon.
(11) if there exists such a siphon then

(11.1) Obtain a minimal siphon 𝑆
𝐸𝑖
from the maximal one.

(11.2) Enforce a constraint 𝑐
𝐸𝑖
, ∑

𝑝∈[𝑆𝐸𝑖
]∪𝑃𝑈([𝑆𝐸𝑖

])
𝑄
𝑆
(𝑝) ⋅ 𝑀(𝑝) ≤ 𝑀

1
(𝑆

𝑖
) − 1, to the MIP problem of𝑁1;

𝐶
𝐸𝑆𝐶

fl 𝐶
𝐸𝑆𝐶

∪ {𝑐
𝐸𝑖
}; go to step (10).

(12) if {𝐶
𝐸𝑆𝐶

= 0} then 𝑁
2


fl 𝑁
1;𝑀2



fl 𝑀
1; go to step (17).

(13) Apply Algorithm 1 to 𝐶
𝐸𝑆𝐶

to obtain a set of necessary constraints 𝐶
𝐸𝑁

.
(14) foreach 𝑐

𝐸𝑖
∈ 𝐶

𝐸𝑁
,

(14.1) Add a corresponding monitor 𝐸𝑉
𝑆𝑖
to𝑁1 by Definition 17.

(14.2) 𝑃
𝐸𝑉

fl 𝑃
𝐸𝑉

∪ {𝐸𝑉
𝑆𝑖
};𝑁2

= (𝑃 ∪ 𝑃
𝑉
∪ 𝑃

𝐸𝑉
, 𝑇, 𝐹 ∪ 𝐹

1
∪ 𝐹

2
,𝑊

2
).

(15) Obtain (𝑁
2,𝑀2

) and𝑁
2
= (𝑃 ∪ 𝑃

𝑉
∪ 𝑃

𝐸𝑉
, 𝑇, 𝐹 ∪ 𝐹

1
∪ 𝐹

2
,𝑊

2
).

(16) Apply Algorithm 2 to (𝑁2,𝑀2
) to find (𝑁

2


,𝑀2


).
(17) Output (𝑁2



,𝑀2


).
(18) end

Algorithm 3: A liveness-enforcing policy.
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, 𝑝
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, 𝑝

24
, 𝑝

25
, 𝑝

26
}.

The MIP technique is applied to 𝑁 and a maximal
unmarked siphon 𝑆max1 = {𝑝

1
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4
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8
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9
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} can be obtained. A

minimal siphon 𝑆
1
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, 𝑝
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} can be derived from

𝑆max1. Thus, we have [𝑆
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} and 𝑀

0
(𝑆
1
) − 1 =

𝑀
0
(𝑝
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)+𝑀

0
(𝑝

26
)−1 = 2. Constraint𝑀(𝑝

13
)+𝑀(𝑝

19
) ≤ 2 is

enforced to the MIP problem of𝑁. Unfortunately, there still
exists a maximal unmarked siphon. The above process pro-
ceeds until we find seven constraints under which 𝑁 is live.
There is no redundant constraint acquired by Algorithm 1
implying that there are seven SMSs to be controlled. Then
we add seven monitors 𝑃

𝑉
= {𝑉

𝑆𝑖
| 𝑖 ∈ {1, . . . , 7}} to 𝑁 by

Definition 9, as shown inTable 2, and denote the resulting net
as (𝑁1

,𝑀
1
).

Applying the MIP technique to 𝑁
1, we can still find a

maximal unmarked siphon 𝑆max8 = {𝑝
2
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3
, 𝑝

4
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8
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𝑉
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13
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Table 2: Monitors added at the first phase.
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8
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extracted from 𝑆max8, and the multisets form of its comple-
mentary set are𝑇ℎ

𝑆8
= 𝑝

11
+𝑝

12
+2𝑝

18
. We have𝑀1

(𝑆
8
)−1 =

𝑀
1
(𝑝

26
) + 𝑀

1
(𝑉

𝑆4
) + 𝑀

1
(𝑉
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) − 1 = 2 + 2 + 2 − 1 = 5. Then
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6
)+𝑀(𝑝

11
)+𝑀(𝑝

12
)+2𝑀(𝑝

18
)+2𝑀(𝑝
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is enforced to the MIP problem of 𝑁1. However, there still
exists a maximal unmarked siphon and 𝑁

1 requires another
constraint to guarantee liveness. It is found that both
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Figure 5: The Petri net model of an FMS.
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Figure 6: (a) Monitors 𝐸𝑉
𝑆8
and (b) 𝐸𝑉

𝑆9
.

constraints are necessary by Algorithm 1 and we add two
monitors, 𝑃

𝐸𝑉
= {𝐸𝑉

𝑆𝑖
| 𝑖 ∈ {8, 9}}, as shown in Figure 6, to

𝑁
1 by Definition 17.The resulting net is denoted as (𝑁2

,𝑀
2
).

(𝑁
2
,𝑀

2
) excludes many legal states although it is live.

The number of maximally permissive states of this plant
model is 21581 while (𝑁2

,𝑀
2
) preserves 19773 ones.Then we

apply Algorithm 2 to (𝑁
2
,𝑀

2
) to rearrange the output arcs

of monitors added at the second phase. The two monitors
with rearranged output arcs are shown in Figure 7. The final
net, denoted by (𝑁2

,𝑀
2
), is live and it has 20444 reachable

states.

5. Comparison and Discussion

The performance of the proposed policy is shown in Table 3
by calculating the example in Figure 5 compared with the

existingmethods.Thefirst column represents the policies and
the second column shows the number of reachable states.
The third and fourth list the numbers of the added monitors
and the related arcs, respectively. The fifth exhibits whether
a complete siphon enumeration is necessary in a policy.
Similarly, the sixth points out the necessity of a complete
state enumeration. The seventh indicates the computational
complexity.

The performance analysis of the policies is conducted by
considering the following three criteria: behavioral permis-
siveness, computational complexity, and structural complex-
ity. The advantage of the proposed policy can be analyzed in
terms of the three criteria. The obtained supervisor by the
proposed method of the net in Figure 5 is suboptimal. How-
ever, the number of its reachable states is nearly maximally
permissive, only a bit smaller than those of the policies in
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Figure 7: (a) Monitors 𝐸𝑉
𝑆8
with rearranged output arcs and (b) 𝐸𝑉

𝑆9
with rearranged output arcs.

Table 3: Performance comparison of policies applied to the example in Figure 5.

Policy referred to Number of
states

Number of
monitors

Number of
arcs

Complete siphon Complete state Computational complexity

Piroddi et al. [45] 21581 13 82 ✓ M Exponential

Ezpeleta et al. [12] 6287 18 106 ✓ M Exponential

Huang et al. [39] 12656 16 88 M M NP-hard

Huang [47] 16425 7 34 ✓ M Exponential

Li and Zhou [14] 6287 6 32 ✓ M Exponential

Li et al. [32] 6331 5 27 M M NP-hard

Li and Zhou [15] 15999 6 29 M M NP-hard

Park and Reveliotis [16] 2480 7 38 ✓ M Polynomial

Tricas et al. [17] 14850 8 40 M M NP-hard

Uzam and Zhou [46] 21562 19 112 M ✓ Exponential

Xing and Hu [48] 15098 4 17 ✓ M Exponential

The proposed policy 20444 9 45 M M NP-hard

[45, 46] while the computational complexity of these policies
is exponential, their supervisors have more monitors and
arcs, and they need either a complete siphon enumeration or a
complete reachability graph. The proposed policy, compared
with the policies in [15, 17, 32, 39], can providemore reachable
states.

Among the policies listed in Table 3, we choose four
representative ones to compare with the proposed policy
in Table 4 through ten examples (obtained by an S3PR-
generating program of our work group except examples
7, 8, and 10), where number of RS and number of M
denote the numbers of reachable states and the additonal
monitors, respectively. The 12th and the last column indicate
the maximally permissive behavior and the ratio of the
reachable states of supervisors obtained by the proposed
policy to the maximally permissive behavior, respectively.
By the experimental study, we can find that the supervisor,
synthesized by the proposed policy, has less monitors and is
more permissive than the existing ones.

6. Conclusions

The deadlock prevention problem is always a tough and fussy
task in FMSs. Behavioral permissiveness, computational
complexity, and structural complexity are three criteria for
checking the performance of supervisors. This work presents
a deadlock prevention method for an S3PR. A siphon is a
special set of places that can lead a system to a deadlock
state. The MIP technique is iteratively used to find maximal
unmarked siphons. Due to the high computational efficiency
of the MIP method, we can save computation time substan-
tially. At the first phase, in order to find a more permissive
supervisor, monitors are added to the complementary sets
of the derived minimal siphons. Unfortunately, the added
monitors are always involved in the generation of control-
induced siphons.Hence, at the second phase, a new fashion of
addingmonitors such that the output arcs of themonitors are
pointed to source transitions is adopted to avoid generating
control-induced siphons. Then the output arcs are moved
from the source transitions along the opposite direction to
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the work flow for releasing legal states on condition that
the liveness is preserved. In addition, this work proposes a
redundant constraint removal algorithm that greatly reduces
the structural complexity and enhances the behavioral per-
missiveness.
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