
BOOK NO: 1797461
Bound by

Abbey
'- Bookbinding Co.

s Terrace, Car* ffCF!44HY

South Wales. U.K Tel: (01222) 395882

Structured Petri Nets
for the Design and Implementation of
Manufacturing Control Software
with Fault Monitoring Capabilities

Thesis Submitted to the University of Wales for the Degree of

Doctor of Philosophy

By

Martin Stanton, BSc
Department of Engineering

University of Wales College, Newport

1998

Declarations

Declarations

DECLARATION

This work has not previously been accepted in any substance for any degree and is not being currently
submitted in candidature for any degree.

Signedf..L..l..UW.WMLA(.r..\^.............. (candidate)

STATEMENT 1

This thesis is the result of my own investigations, except where otherwise stated.
Other sources are acknowledged by footnotes giving explicit references. A bibliography is appended.

(candidate)

STATEMENT 2

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library
loan, and for the ti$}e ar^s^rrimary t</be made available to outside organisations.

(candidate)

Acknowledgements

Acknowledgements

I would like to thank Arthur Buck for his advice, encouragement and constructive criticism
throughout the project, Geoff Roberts and Hefin Rowlands for their friendship and support, Bill
Arnold for his time and effort, and my fellow research students for their comradeship and
discussion during our time in B14. Finally I would like to thank my wife Denise and my
daughter Hannah for letting me work late and for wanting me to finish.

Summary

Summary

The thesis describes a method for the design and implementation of manufacturing control
software using structured Petri nets. An earlier design method is presented from which a
more formal approach is developed, and a definition for structured Petri nets is given. This
definition is then compared to other classes of Petri net found in the literature. A comparison
is also made between the proposed design method and other methods described in the
literature. The structured Petri nets are then used to create a control structure, which is
shown to have properties that allow the detection and diagnosis of faults originating both in
the hardware and the software of the system. A detailed discussion is also presented
concerning the implementation of structured Petri nets on various types of manufacturing
controller and on general-purpose computers. In particular, results are presented from
experiments with various implementation methods on programmable logic controllers.
Conclusions are then drawn on the various aspects of the work and details of further research
possibilities are described.

Table of Contents

Table of Contents

Declarations..!

Acknowledgements.. ii

Summary ...iii

Tableof Contents...iv

List of Figures.. xi

List of Tables ...xiv

Chapter 1 Introduction to the Research...1-1
1.1 Introduction...................... ... 1-1

1.2 Objectives of the Research...1-2

1.3 Achieving the Objectives.. A-2

1.4 PetriNets..1-4

1.5 Application to Manufacturing Systems.. 1-5

1.6 Petri Nets for Control..1-7

1.6.1 Centralised control.. 1-7

1.6.2 Decentralised control.. 1-7

1.6.3 Different levels of control model...1-8

1.7 Overview of Thesis...A-Q

1.8 References... .. 1-10

Chapter 2 A Control Structure...2-1
2.1 Pefi7'nefs..2-l

2.1.1 Transition firing rule...-..--.-2-2

2.2 The Control Structure...2-2

2.2.1 Places transitions and arcs ..2-2

2.3

IV

Table of Contents

2.3.1 Safety net ...2-5

2.3.2 Linking the control net and the subnets ...2-5

2.3.3 Subnet/Output net link..2-6

2.4 Implementation............2-7

2.5 Fault Monitoring..2-9

2.6 Limitations of the Current Method..2-\o
2.6.1 The design method...2-10

2.6.2 Implementation ...2-11

2.7 Important Properties..2-12

2.7.1 Size of the control code..2-12

2.7.2 Complexity..2-12

2.7.3 Fault diagnosis ...2-13

2.8 Areas of Improvement.2-13

2.8.1 Modelling and control of complex concurrent systems2-13

2.8.2 Structural analysis ..2-1 3

2.8.3 Enhance fault diagnosis ...2-14

2.8.4 Implementation on other types of controller...2-14

2.9 Chapter Sunwnary..2-i4

Chapter 3 Structured Petri Nets3-1
3.1 Introduction..^^
3.2 A Standard Petri Net Definition...3-1

3.2.1 Petri nets ..3-2

3.3 Important Properf/es...3-2

3.3.1

3.3.2

3.3.3

3.4 Analysis..— —•——•—•———•— ••-••3-5
3.5 Marked Graphs. -.3-7

3.5.1 Definition...3-8

3.6 Decision Free Petri Nets ..3-8

3.6.1 Operation and resource places ..3-9

3.7 Free Choice Petri Nets..3-W

3.8 Petri Nets with External Inputs and Outputs...................3--\-\
3.8.1 Controlled Petri nets..-.............-...--.........3-12

3.9 A Definition for Structured Petri Nets... ,3-13

3.9.1

Table of Contents

3.10 Implications on Properties.3-15

3.10.1 Liveness ...3-15

3.11 Chapter Summary....................................3-17

3.12 References..3^8

Chapter 4 Petri Net Modules...................4-1
4.1 Modelling a Pneumatic Cylinder..4-1

4.2 Monitoring and Control...4-3
4.2.1 Monitoring...4-4

4.2.2 Controlling the hardware ..4-5

4.2.3 Controlling the software..4-6

4.3 Elements of Structured Petri Nets..4-8

4.4 Interpreting Net Elements.........................4-8

4.4.1 Transitions ..4-9

4.4.2 Places...4-9

4.4.3 Control places...4-12

4.5 The Controller and its Environment..........4-12

4.5.1 Hardware..4-13

4.5.2 Safety subsystem ...4-1 3

4.5.3 Hardware and software I/O ..4-14

4.5.4 Hardware controls ..4-14

4.5.5 Software controls..4-15

4.5.6 Feedback places ..4-15

4.6 Sudnete...4-l6

4.7 Creating a Hierarchical Structure...4-17

4.8 Joining Petri Net Modules. ... A^Q
4.9 Chapter Summary... .4-20

Chapters Developing a Control Structure..........5-1
5.1 The Aims of the Method...5-1

5.2 77ieAfef/iod...-.-.-5-2

5.3 Specifications of Systems Tasks................................5-3

5.3.1 The initialisation task... . .-.- -5-3

5.4 Defining the communications................^>-^
5.4.1 Describing the interface..-------.-.-.--.--------------- 5^

VI

Table of Contents

5.4.2 Control/feedback pairs ...5-6

5.5 Decomposing the System into its Constituent Subsystems....5-8
5.5.1 Subsystem actions ...5-10

5.6 Mapping Subsystem Actions to System Tasks.........................5-10

5.7 Constructing the Control Net...5-1 1
5.7.1 Describing the paths...5--|2

5.7.2 Merging the paths...5-i3

5.7.3 Ensuring the net is conflict free ..5-13

5.8 Subsystem Development.5-16

5.9 Other Approaches to Controller Design.....5-16
5.9.1 Venkatesh...5-17

5.9.2 Net condition/event systems ..5-17

5.9.3 Zhou and DiCesare ..5-18

5.9.4 Resource Control Nets ...5-20

5. 10 Chapter Summary..5-20

5.11

Chapters Application of the Control Structure................6-1
6.1 Example: A Raw Materials Station..............6-1

6.1.1 Function of the raw materials station..6-2

6.2 System Requirements of the Raw Materials Station 6-2

6.3 Defining the Communications...^^
6.4 Breakdown of Subsystem Components.............................6-5

6.4.1 Effect of the number of subsystems on the control net. 6-5

6.5 Mapping Systems and Subsystem Tasks ...6-7

6.6 Creating the Petri Net...6-8
6.6.1 Describing the paths...6-8

6.6.2 Mapping tasks to places...6-9

6.6.3 Describing the transitions for the Petri net ...6-10

6.7 Merging the Paths..Q^3

6.7.1 Removing Decisions form the net ..6-14

6.8 Generating the Subnets...................................6-15
6.8.1 The pallet manipulator subsystem ...6-16

6.8.2 The loading bay subsystem..6-17

6.8.3 The cylinder storage subsystem...6-17

6.9 Designing the Output Nets...6-17

6.10 Software Design for a Manufacturing Cell..............................6-18
6.10.1 Development of the manufacturing cell control code.6-19

VII

Table of Contents

6.10.2 Designing the cell control net ...6-20

6.10.3 Designing the robot control net ..6-20

6.10.4 CMC control code ...6-21

6.10.5 Implementation ...6-21

6.10.6 Further developments and enhancements...6-21

6.11 Further Developments for the Control Structure6-22
6.11.1 Shop floor controller ...6-22

6.11.2 Computer Integrated Manufacture ...6-23

6.12 Chapter Summary..6-24
6.13 References...6-25

Chapter? Implementation...7-1
7.1 Interpretation and Implementation...7-1

7.2 Methods of Implementation...7-2
7.2.1 The'token player'...7-3

7.2.2 Structured program approach ..7-4

7.3 Implementation on a PLC...7-4

7.4 Representation of a Petri Net by Ladder Logic....................................7-6
7.4.1 Implementation using ladder logic..7-7

7.5 The Need for a New Approach...7-8
7.5.1 Defining a 'correct' implementation ..7-9

7.6 Testing the Implementation Methods............................7-1 o
7.6.1 Results of applying this implementation method....................................7-12

7.6.2 A more 'correct' implementation..^-^

7.7 Testing the Implementations..7-16
7.7.1 Experiment 1 ..7-17

7.7.2 Experiment 2..7-19

7.7.3 Experiment 3..7-19

7.8 Comparing the results.. ..7-20

7.9 Implementation in Higher Level Languages.......................................7-23
7.9.1 Robot controller...-..7-23

7.9.2 Relational database..-.........7-24

7.10 Chapter Summary... ..7-25

7.11 References...•...•••••••••••-•--•-•--••-^-26

Chapters Fault Monitoring...8-1
8.1 Faults and Failures...8-1

8.2 Hard and Soft Faults.......................... ...8-2

VIII

Table of Contents

8.3 Classifying Failures...8-3
8.3.1 Hardware failures ...8-3
8.3.2 Software failures...8-4
8.3.3 Product faults..8-6
8.3.4 The need to reduce software faults..8-6

8.4 Fault prevention...8-7
8.4.1 Strutured programming ..8-7
8.4.2 Parallelism..8-8
8.4.3 Modularity...8-8

8.5 Considerations for Monitoring...8-9
8.5.1 Initial state ..8-9
8.5.2 Timing lnformation..8-10

8.6 A Fault Monitoring Architecture.. ...8-11
8.7 Monitoring a Sequence.. ...8-15
8.8 Space Cost of the Method...8--\5
8.9 Fault Monitoring Mechanism..8-l6
8.10Implementation Issues.. ...8-16
8.11 Dealing with Choices... ...8-17

8.11.1 Concurrency ...8-17
8.12 Monitoring...^?
8.13 Diagnosis and Containment..8^8
8.14 Using Standard Software.. ...8-18
8.15 Chapter Summary..8^9
8-16 References... ..8-19

Chapters Conclusions and Further Research..................................9-1
9.1 Structured Petri Nets. ...9-2

9.1.1 Relationship with Free Choice Petri Nets...9-2

9.2 Petri Net Modules......................... ..9-2
9.2.1 Centralised and distributed systems ..9-4
9.2.2 Systems integration..9-4

9.3 The Design Method..9-5
9.4 Implementation...9-6

9.4.1 Implementation on a relational database ...9-7

9.5 Fault Monitoring......................................— ...9-7

9.6 Further Research..-— 9-8
9.6.1 Structured Petri nets..--•----•-----9-9
9.6.2 Forbidden state problems.........................———.——..———•——••————9-9

IX

Table of Contents

9.7 The Design Method... ...9-10
9.8 Implementation.................................... ...9-10

9.8.1 Analysis of a PLC...9-11

9.8.2 Relational Database and CASE...9-11

9.8.3 Fault Monitoring..9-12

9.9 Work on Safety Systems.... ..9-12
9.10 Chapter Summary..9-w
9.11 References...Q-^5

Appendix 1 Petri Nets for the Raw Materials Station.................. AM

Appendix 2 Updated Net for the Pallet Manipulator A2-1

Appendix 3 Manufacturing Cell Documentation AS 1

Appendix4 Papers..A4-1

List of Figures

List of Figures

Figure 2.1 Symbols used in graphical representation of Petri nets....................................2-3
Figure 2.2 Petri net structure for a single machine ..2-4
Figure 2.3 Control net/subnet link ..2-6
Figure 2.4 Subnet/output net link ...2-7
Figure 2.5(a) Petri net segment ..2-8
Figure 2.5(b) Ladder representation for place p3 ..2-8
Figure 2.6 Structure of the Ladder Logic program ...2-9
Figure 3.1 A Petri net showing structural conflict when there is a choice of operations....3-4
Figure 3.2 The Petri net of Figure 3.1 with the conflict resolved..3-5
Figure 3.3 Example Petri net with external inputs and outputs..3-14
Figure 4.1 A simple Petri net description of a pneumatic cylinder4-2
Figure 4.2 An extended Petri net description of the pneumatic cylinder............................4-3
Figure 4.3 A Petri net with external inputs ...4-5
Figure 4.4 A Petri net with both external inputs and outputs ...4-6
Figure 4.5 A full Petri net description of a pneumatic cylinder controller4-7
Figure 4.6 Symbols used in the graphical representation of structured Petri nets4-9
Figure 4.7 A primitive place, p1f is used to indicate that the system is ready..................4-11
Figure 4.8 The relationship between a controller and its immediate environment...........4-13
Figure 4.9 A control structure with three levels of control ..4-17
Figure 4.10 A communicating pair of Petri net modules ..4-18
Figure 5.1 Sequence of steps for the Petri net controller development.............................5-2
Figure 5.2 Control/Feedback Diagram for a system with many environmental entities.....5-6
Figure 5.3 Action 2 is shared by both tasks and therefore causes a conflict between

transitions t5 and t6 ..5-14
Figure 5.4 Place p7 now resolves the conflict...5-15
Figure 6.1 Layout of raw materials station ...6-1

Figure 6.2 Communications between the raw materials station and its supervisory
controller..6-4

Figure 6.3 Petri net structure for the Raw Materials Station ..6-7
Figure 6.4 Initialisation path for the raw materials station..6-12

Figure 6.5 Paths describing the function of getting a block and pallet.............................6-12
Figure 6.6 Paths describing placing a cylinder from slope 1 and a pallet........................6-12

Figure 6.7 The paths describing placing a cylinder from slope 2 and a pallet.................6-13

Figure 6.8 Paths that describe getting an empty pallet and placing a loaded (or empty)
pallet onto the conveyor...-...........-6-13

xi

List of Figures

Figure 6.9 Control net for the raw materials station ...6-14

Figure 6.10 The paths of Figure 6.5 with added state places ..6-15
Figure 6.11 The path for getting an empty pallet with additional state place.....................6-15

Figure 6.12 Control net including additional state places...6-16
Figure 6.13 Control structure fora manufacturing cell...6-18

Figure 6.14 Layout of the Manufacturing Cell ..6-20

Figure 6.15 Example of a Conveyor System..6-22
Figure 6.16 Proposed architecture for Computer Integrated Manufacturing System6-23

Figure 7.1 Example net before the firing of transition t2 ...7-8
Figure 7.2 Example net after the firing of transition t2 ..7-9
Figure 7.3 Sample net used to test implementation methods..7-11
Figure 7.4 Ladder logic program for Petri net of Figure 7.3 using the original

implementation method...7-l2
Figure 7.5 Second ladder logic implementation of the Petri net of Figure 7.37-14
Figure 7.6 Third ladder logic implementation of the Petri net of Figure 7.37-15
Figure 7.7 Comparison between markings of different implementations.........................7-22
Figure 8.1 Relationship between a manufacturing station and the elements in its

environment ..8-11
Figure 8.2 Architecture of the proposed fault monitoring system.....................................8-13
Figure 8.3 General Petri net structure used for the control of manufacturing systems

including communications signals...8-14
Figure A1.1 Control net.. A1-2
Figure A1.2 Hardware initialisation.. A1-3
Figure A1.3 Hardware initialisation continued... A1-4
Figure A1.4 Hardware initialisation continued... A1-5
Figure A1.5 Hardware initialisation continued... A1-6
Figure A1.6 Get pallet from conveyor.. A1-7
Figure A1.7 Get pallet from storage... A1-8

Figure A1.8 Get cylinder.. A1-8
Figure A1.9 Place block on pallet.. A1 -9

Figure A1.10 Get cylinder 2... A1-9
Figure A1.11 Place cylinder on pallet.. A1-10

Figure A1.12 Place pallet on conveyor.. A1-11

Figure A1.13 Check storage areas.. A1-12

Figure A1.14 Safety net... A1-13

Figure A2.1 Subnet showing sequence for Pallet Manipulator.. A2-2

Figure A2.2 Subnets for pneumatic cylinders making up the pallet manipulator.............. A2-3
Figure A2.3 Output nets for the pallet manipulator.. A2-4

Figure A3.1 Layout of Flexible Manufacturing System.. A3-2

Figure A3.2 Cell controller hierarchy ... A3-2

Figure A3.3 Lathe Control net.. A3-9

xii

List of Figures

Figure A3.4 Mill Control net... A3-10

Figure A3.5 Robot Control net... A3-11

Figure A3.6 Cell control net for the FMS ... A3-12

XIII

L;sf of Tables

List of Tables

Table 6.1 System tasks of raw materials station...6-2

Table 6.2 Control and feedback signals for the raw materials station6-4

Table 6.3 The subsystems of the raw materials station and their functions6-6

Table 6.4 Task sequences for the raw materials station...6-7

Table 6.5 Paths for the raw materials station..6-9

Table 6.6 Full descriptions of the non-primitive places from Table 6.4...........................6-10

Table 6.7 Place descriptions for the raw materials station control net............................6-10

Table 6.8 Transition labels for control net...6-11

Table 7.1 Distribution of tokens in a single cycle of the Petri net7-16

Table 7.2 Distribution of tokens for the first implementation...7-18

Table 7.3 Distribution of tokens for the second implementation7-18

Table 7.4 Distribution of tokens for the third implementation..7-18

Table A2.1 Task sequences for the pallet manipulator.. A2-1

Table A3.1 PLC output signals... A3-13

Table A3.2 PLC input signals... A3-14

XIV

Chapter 1 - Introduction to the Research

Chapter 1

Introduction to the Research

1.1 Introduction

This work describes a method for the development of manufacturing control software,

based on the Petri net formalism. The method incorporates the principles of

modularity and the stepwise refinement of manufacturing processes, resulting in a

software structure that clearly specifies both the manufacturing process and the

control signals passing between system components.

In addition the software structure provides the necessary information to allow the

detection and diagnosis of a variety of system failures. This information gives an

indication of the origins of such a failure, whether it is caused by a fault in the system

hardware or produced by an error in the software. These diagnosis capabilities are a

by-product of combining the control structure with the structured Petri net formalism.

They are thus inherent to the design process, and not appended as an afterthought.

The work also raises some issues associated with the implementation of Petri nets

and in particular implementation on Programmable Logic Controllers using Ladder

Logic Diagrams.

The method has been applied to two separate manufacturing workstations. The first

workstation, which is part of a larger system, places different types of raw material

onto a conveyor. The second is a self-contained manufacturing cell consisting of a

lathe and a mill, which are loaded and unloaded by a shared robot.

1-1

Chapter 1 - Introduction to the Research

1.2 Objectives of the Research

The purpose of automating the development of manufacturing control software is to

provide a system that allows the process designer to describe the desired process in

a manner that can be easily and unambiguously interpreted by the system, and yet

still be understood by the operator. The transition between process description and

implementation should be transparent to the operator. There should be some means

of verifying the input to ensure it does not violate any basic rules, and the intended

user must be able to understand the results of any such verification. Such a system

should allow the user to test possible configurations, and to reuse manufacturing

information as much as possible. In addition, if the system malfunctions in some

way, for whatever reason, the software system should at a minimum be able to

detect that malfunction and issue a warning. Ideally on malfunction, the system

should be able to take some corrective action itself in order to resolve the malfunction

or minimise its effect to the overall system performance.

1.3 Achieving the Objectives

The work carried out here is an attempt towards achieving the objectives of

automating software development. There are a number of elements of this work that

help towards that achievement.

The proposed design method is based on a modular form of Petri net, which has

been called a structured Petri net. The interface between Petri net modules is well

defined and acts as their only point of communication. This reduces the coupling

between modules, and creates a higher degree of modular cohesion.

A method for designing manufacturing control code is presented. This is then

formalised to make it amenable to automatic generation from the process

1-2

Chapter 1 - Introduction to the Research

specifications, for which there is currently no universally accepted standard notation.

It is a simple step from an elementary process description to a Petri net description

which, having a graphical element, will clearly indicate any concurrency within the

process.

The implementation method for the control software depends heavily on the type of

controller being used. Here the majority of the work has been carried out using

Programmable Logic Controllers (PLC's) for which different methods of

implementation have been compared. Other implementations such as high level

languages have been considered in the literature, which are suited to more general-

purpose controllers such as Personal Computers. Also during the course of this work

an implementation using a Relational Database System has been investigated.

Automation will be more readily achieved if the same formalism can be used for

specification, design and control of a system. This formalism must be simple enough

to permit the implementation on those controllers commonly found in modern

manufacturing systems (such as PLC's, robot controllers, CNC Tools). There must

be a degree of simplicity to the method enabling managers, systems engineers, and

others involved with the implementation of manufacturing systems, to communicate

with each other effectively. However, the formalism must also be expressive enough

to accurately reflect the workings of the system to which it is being applied.

It is for these reasons that the work here proposes a method of designing and

implementing control code for manufacturing systems based on structured Petri nets.

By carefully selecting the interpretations for the basic elements of the formalism,

many of the problems associated with low-level Petri nets, such as state explosion

and complexity, can be reduced. The complexity of the models can be further

reduced by using the same basic elements to describe inter module communication.

1-3

Chapter 1 - Introduction to the Research

It is the use of the Petri net elements for describing communication between the

modules that provides information concerning the nature of the signals passing

between different parts of the control structure. At the lowest level in the control

structure, communication is carried out between the controller and the hardware of

the plant itself. By careful specification of these communications any discrepancies

between the signals that actually pass between the controller and the plant and those

which, from the specification, are expected, can be captured. This information

provides the framework for a novel method of distinguishing between malfunctions

caused by machine hardware and those caused by control software. Such a

distinction has become necessary because of the need to reduce the downtime of

manufacturing facilities when attempting to correct hardware failures caused by

software errors.

The proposed methodology has its origins in the development of manufacturing

control software. However, the Petri net formalism, based on interpretations of its

elements, combined with the general nature of the design method has application to

other types of system.

1.4 Petri Nets

In his thesis (Petri, 1962) Carl Adam Petri describes 'the conceptual foundations of a

theory of communication". His theory concerned the transmission of information

applied to the design and programming of "information-processing machines". Net

theory was adopted by the Information Systems Theory Project and Project MAC at

the Massachusetts Institute of Technology (see (Peterson, 1977)) where it was

developed further into what is today known as Petri net theory. Petri's original net

theory developed into a general net theory (Genrich et al, 1979) which is closely

related to the general systems theory of Ludwig von Bertalanffy (Bertalanffy, 1968).

1-4

Chapter 1 - Introduction to the Research

By 1978, Petri net applications included distributed database systems,

communication protocols, and computer hardware modelling (Agerwala, 1978),

(Agerwala, 1979). The further application of Petri nets to a number of different fields

has been noted in (Peterson, 1981) and (Murata, 1989) including analysis and design

of manufacturing systems.

The first book on Petri nets was published in 1981 and the author described Petri

nets as "a tool for the study of systems" (Peterson, 1981). Another author describes

Petri nets as a tool for modelling communication between parallel processes

(Reutenauer, 1990). Both descriptions are in line with the ideas of systems theory

since systems consist of interacting processes, and those interactions must be

described by some formalism. It makes sense for that same formalism to be used for

the process description and for describing the communications between those

processes (a point of Petri's thesis). This same commonality between the description

of systems and the communications between them is, in part, behind the work of this

thesis.

1.5 Application to Manufacturing Systems

As part of the project MAC a Masters thesis (Hack, 1972) dealt with the analysis of

production systems using free-choice Petri nets (a sub-class of ordinary Petri nets).

It is claimed that this is one of the oldest application areas of Petri nets (Silva and

Valette, 1990). Even so there were very few papers published on the subject until

the late 1970's and early 1980's, with most of that work being carried out in France.

A survey paper (Silva and Valette, 1990) cites a number of papers in French from

1978 and 1979, and another survey (D'Souza and Khator, 1994) cites a paper in

English from 1980 (Chocron and Cerny, 1980). Industrial process control is cited as

one of the applications of Petri nets in (Johnsonbaugh and Murata, 1982) and (Andre

1-5

Chapter 1 - Introduction to the Research

et al, 1980), where much of the effort was in developing hardware implementations of

Petri nets. The mid 1980's saw the publication of more French papers dealing with

Petri net controllers for flexible manufacturing systems (e.g. (Silva and Velilla, 1982)

and (Valette et al, 1985)), and an important paper on the synthesis of FMS models by

merging Petri nets of individual sub-tasks (Narahari and Viswanadham, 1985). Some

work on modified Petri nets was also published around this time (Beck and Krogh,

1986). Many of the approaches described attempted to incorporate a modular

approach in order to reduce the size and complexity of models for large systems.

They also introduced more complex modelling formalisms such as coloured Petri

nets (Gentina, et al, 1988).

The late 1980's saw the introduction of Controlled Petri nets in (Krogh, 1987) and

(Holloway and Krogh, 1990), which were applied to the supervisory control of

discrete event dynamic systems.

In (Zurawski and Zhou, 1994) a tutorial is presented with an introduction to industrial

applications of Petri nets and an up to date bibliography. In the late 1990's there is a

large concentration on more high level Petri net models which incorporate other

techniques such as fuzzy logic (Hanna et al, 1994) or object oriented methods.

One of the important developments to come out of the research was the

development of Grafcet (David and Alia, 1992) or Sequence Function Charts, for

programming Programmable Logic Controllers (PLCs). However, despite the

popularity of Grafcet on the continent, most manufacturing organisations in the UK

and in the USA are still using programming methods such as Ladder Logic, Boolean

Logic, and assembly type languages.

1-6

Chapter 1 - Introduction to the Research

1.6 Petri Nets for Control

A Petri net is an abstract model and only represents a system when some meaning is

ascribed to its elements (Agerwala, 1979). The particular meaning, or interpretation,

is forced upon a net in cases of implementation. The abstract Petri net model is a

parallel system, but it is implemented on a sequential machine. This forced

interpretation will effect the behaviour of the Petri net and its properties to varying

degrees (Grafcet is a prime example).

In (Silva and Velilla, 1982) a comparison was made between Petri net

implementations on different Programmable Logic Controllers. These comparisons

highlight the importance of the interpretation on the behaviour of the (implemented)

net.

1.6.1 Centralised control

Manufacturing control can be either centralised or decentralised. According to (Silva

and Valette, 1990), centralised control requires a co-ordinator (or manager) and a set

of tasks. The co-ordinator plays the 'token game' on the net model. The tasks are

attached to fired transitions.

The problems associated with centralised control are that the co-ordinator is a weak

point for catastrophic failure, and there is an overhead associated with the indirect

communications between tasks (both in execution time and in size of code).

1.6.2 Decentralised control

Again according to (Silva and Valette, 1990) decentralised control requires a set of

sequential processes, and some communication/synchronisation mechanism.

1-7

Chapter 1 - Introduction to the Research

Processes communicate with each other directly rather than through a central co­

ordination system. This does however make communications more complex.

1.6.3 Different levels of control model

Petri nets are applied to modelling manufacturing systems at different levels:

• Structural analysis of a system can be carried out using low level Petri nets, such

as Ordinary Petri nets, Simple Petri nets, Marked graphs (Murata, 1989),

(Peterson, 1981) and free-choice Petri nets (Desel and Esparza, 1995).

• Performance analysis tasks such as measuring throughput or scheduling

exercises are performed using timed Petri nets (Murata, 1989), (Merlin, 1976) or

stochastic Petri nets (Murata 1989), (Marsan, 1989).

• Higher level nets such as coloured Petri nets (Jensen, 1997) and more recently

Object Oriented Petri nets (see (Adamou et al, 1998)) and Fuzzy Petri nets

(Hanna et al, 1994) are now being used for more complex simulation of flexible

manufacturing systems.

1.7 Overview of Thesis

Chapter 2 describes the Petri net structure used as a starting point for the rest of the

work presented in later chapters. The advantages and limitations of the structure are

presented, along with a discussion of the need for its improvement.

Chapter 3 presents the Petri net formalism in more detail and describes a number of

Petri net classes which are related to structured Petri nets. Finally a description of

structured Petri nets is provided.

1-8

Chapter 1 - Introduction to the Research

The structured Petri nets of Chapter 3 provide a formal descriptive device for

modelling manufacturing system elements. Chapter 4 appends this formalism with a

set of interpretations that may be applied to the elements of structured Petri nets.

These interpretations allow a model to be constructed from the basic net elements

that has more meaning to the user of the system. With each of these interpretations

comes a unique graphical descriptor that provides easy understanding of the model.

Finally the chapter discusses the issues behind modularity and how the structured

Petri nets allow such a modular structure to be created.

Chapter 5 presents a method for the development of control code using structured

Petri nets. The method relies heavily on the concepts of modularity, and stepwise

refinement (Wirth, 1971). The chapter also presents similarities with commonly used

systems analysis and design techniques.

Chapter 6 provides an example of where the development method has been applied

to a real system. The system presented is a workstation for supplying raw materials

to a larger manufacturing system. Some of the issues arising from the application of

the development method are also discussed in this chapter.

Chapter 7 discusses some issues arising from the implementation of Petri nets on

sequential machines. It describes some of the problems of interpretation and some

of the techniques used to overcome such problems.

The implementation issues of Chapter 7 provide the groundwork for the ability to use

the control structure as a means of fault detection and diagnosis. In Chapter 8 some

definitions are provided for possible faults and failures in manufacturing systems and

areas where the control structure can be used to detect the existence of such faults

are proposed.

1-9

Chapter 1 - Introduction to the Research

Chapter 9 draws some conclusions from the work described earlier and critically

assesses the practicalities and usefulness of both the structured Petri net formalism

and the control structure development method. The chapter also provides some

pointers for further development of the system, and other related work that could

arise from that described here.

Finally Appendix 4 contains three conference papers which have been produced

during the course of this research, and which are referred to at various points in this

text.

1.8 References

Adamou, M., Zerhouni, S. N. and Bourjault, A., 1998, "Hierarchical modelling and

control of flexible assembly systems using object-oriented Petri nets."

International Journal of Computer Integrated Manufacturing, 11, pp. 18-33.

Agerwala, T., 1978, "Some applications of Petri nets." In Proc. 1978 National

Electronics Conference, Chicago, USA, vol. 12, pp. 88-94.

Agerwala, T., 1979, "Putting Petri nets to work." IEEE Computer, 12, pp. 88-94.

Andre, C., Diaz, M., Girault, C., and Sifakis, J., 1980, "Survey of French research and

applications based on Petri nets." In Proc. Advanced Course on General Net

Theory of Processes and Systems, Berlin, Germany: Springer-Verlag,

pp.321-345.

Beck, C. L. and Krogh B. H., 1986, "Models for simulation and discrete control of

manufacturing systems." In Proc. IEEE International Conference on Robotics

and Automation, San Francisco, CA, USA, pp. 305-310.

1-10

Chapter 1 - Introduction to the Research

Bertalanffy, L. von, 1968, General Systems Theory. New York, USA: Braziller.

Chocron, D. and Cerny E., 1980, "A Petri net based industrial sequencer." In Proc.

Conference on Applications of Mini and Micro Computers, Philadelphia, PA,

USA, pp. 18-22.

David R. and Alia, H., 1992, Petri nets and Grafcet: Tools for modelling discrete

event systems. London, England: Prentice Hall.

Desel, J. and Esparza, J., 1995, Free choice Petri nets. Cambridge, England:

Cambridge University Press.

D'Souza, K. A. and Khator S. K., 1994, "A survey of Petri net applications in modeling

controls for automated manufacturing systems." Computers in Industry, 24,

pp. 5-16.

Genrich, H. J., Lautenbach, K. and Thiagarajan, P. S., 1979, "Elements of General

Net Theory." In Proc. Advanced Course on General Net Theory of Processes

and Systems, Berlin, Germany: Springer-Verlag, pp. 20-163.

Gentina, J. C., Bourey, J. P. and Kapusta, M., 1988, "Coloured Adaptive Structured

Petri Nets." Computer Integrated Manufacturing Systems, 1, pp. 39-47.

Hack, M., 1972, "Analysis of production schemata by Petri nets." Masters Thesis,

Massachusetts Institute of Technology.

Hanna, M., 1994, "Determination of product quality from an FMS cell using Fuzzy

Petri nets." In Proc. IEEE International Conference on Systems, Man and

Cybernetics, San Antonio, TX, USA, pp. 2002-2007.

1-11

Chapter 1 - Introduction to the Research

Holloway, L. E. and Krogh, B. H., 1990, "Synthesis of feedback control logic for a

class of controlled Petri nets". IEEE Transactions on Automatic Control, 35,

pp. 514-523.

Jensen, K., 1997, Coloured Petri-Nets: Basic Concepts, Analysis Methods and

Practical Use, Vol. 1, London: Springer-Verlag.

Johnsonbaugh, R. and Murata, T., 1982, "Petri nets and marked graphs -

Mathematical models of concurrent computation." American Math Monthly,

89, pp. 552-566.

Krogh, B. H., 1987, "Controlled Petri nets and maximally permissive feedback logic."

In Proc. 25th Annual Allerton Conference, University of Illinois, USA, pp. 317-

326.

Marsan, M. A., 1990, "Stochastic Petri nets: An elementary introduction." In

Advances in Petri Nets 1989, G. Rozenberg, Ed., (Lecture Notes in Computer

Science 424). Berlin, Germany: Springer-Verlag, pp. 1-29.

Merlin, P. M., 1976, "A methodology for the design and implementation of

communication protocols." IEEE Transactions on Communications, COM-24,

pp. 614-621.

Murata, T., 1989, "Petri nets: Properties, analysis and applications." Proceedings of

the IEEE, 77, pp. 541-581.

Narahari, Y. and Viswanadham, N., 1985, "A Petri net approach to the modelling and

analysis of flexible manufacturing systems." Annals of Operations Research,

3, pp. 449-472.

1-12

Chapter 1 - Introduction to the Research

Peterson, J. L, 1977, "Petri nets", Computing Surveys. 9, pp. 223-252.

Peterson, J. L., 1981, Petri net theory and the modeling of systems. Englewood

Cliffs, NJ, USA: Prentice Hall.

Petri, C. A., 1966, "Communication with automata", English translation of

'Kommunikation mit Automaten', Griffiss Air Force Base Technical Report

RADC-TR-65-377 Vol. 1 Supplement 1.

Reutenauer, C., 1990, The Mathematics of Petri Nets. Prentice Hall International.

Silva, M. and Valette, R., 1990, "Petri nets and flexible manufacturing." In Advances

in Petri Nets 1989. G. Rozenberg, Ed., (Lecture Notes in Computer Science

424). Berlin, Germany: Springer-Verlag, pp. 374-417.

Silva, M. and Velilla, S., 1982, "Programmable logic controllers and Petri nets: A

comparative study." In Proc. IF AC Conference on Software for Computer

Control, Madrid, Spain, pp. 83-88.

Valette, R., Courvoisier, M., Demmou, H., Bigou, J. M. and Desclaux, C., 1985,

"Putting Petri nets to work for controlling flexible manufacturing systems." In

Proc. International Symposium on Circuits and Systems, Kyoto, Japan, pp.

929-932.

Wirth, N., 1971, "Program development by stepwise refinement." Communications of

the ACM, 14, pp. 221-227.

Zurawski, R and Zhou, M., 1994, "Petri nets and industrial applications: A tutorial."

IEEE Transactions on Industrial Electronics. 41, pp. 567-583.

1-13

Chapter 2 - A Control Structure

Chapter 2

A Control Structure

The Petri net structure described in this chapter represents the starting point of the

research presented in the rest of this thesis. This chapter describes the method by

which the basic Petri net elements were initially used to create a control structure. It

then proceeds to describe the control structure itself and outlines the initial method

by which the control structure was implemented on a PLC using ladder logic. Finally,

the chapter goes on to describe the problems associated with both the structure and

implementation and details the need for a more formal approach to the design and

implementation of manufacturing control code using Petri nets.

2.1 Petri Nets

A basic definition of Petri nets is given here in order that it may be compared with the

Petri net elements described in the following sections.

A Petri net is a 5-tuple, PN = {P,T,I,O,ju0 } where:

P = {pl ,p2 ,...,pm }'\s a finite set of places,

T = {tl ,t2 ,...,tn }\s a finite set of transitions,

PuT = 0 and PnT = 0 (0 is the empty set).

/ :T -> P is the input function mapping from transitions to places,

0 :T -> P is the output function mapping from transitions to places,

fi0 : P -> N is the initial marking (N is the set of non-negative integers).

2-1

Chapter 2-A Control Structure

Places are represented graphically by circles and transitions by bars. Arcs are drawn

as arrows between places and transitions. These represent the input and output

functions. The marking is represented by the distribution of tokens amongst places.

These are represented graphically by dots that appear within places.

2.1.1 Transition firing rule

When all the input places to a transition contain tokens, the transition is enabled. An

enabled transition will fire by removing tokens from its input places and placing

tokens in it output places. A more complete description of Petri nets can be found in

(Peterson, 1981) or (Murata, 1989).

2.2 The Control Structure

For the control structure presented in this chapter, the behaviour and representation

of Petri net elements are very similar to those described above.

2.2.1 Places, transitions, and arcs

Places are represented graphically by circles, and are used to represent non-

primitive actions (e.g. placing an item on a conveyor), or states (e.g., machine is

idle). Places representing non-primitive actions are called non-primitive places, and

places representing states are called primitive places.

Hardware places

In addition, places may be used to represent hardware elements such as switches or

sensors. These are called hardware places. A hardware place will contain a token

when its associated switch/sensor is on and will not contain a token when the

switch/sensor is off. Hardware places therefore represent binary control signals that

can be used to enable or disable transitions. For primitive and non-primitive places,

2-2

Chapter 2 - A Control Structure

the firing rule is the same as that for ordinary Petri nets (as described in section

2.1.1). However, if an enabled transition has a hardware place as one of its inputs,

and the transition subsequently fires, the token in the hardware place is not removed.

The reason for this is that the marking of a hardware place is not dependent on the

action of the Petri net, but is instead dependent on the state of its associated device

(e.g. a limit switch). The Petri net controlling the system may cause the hardware

switch to be shut off when the transition fires. In this case, the hardware place would

lose its token, but this is due to the change in state of the hardware device rather

than the behaviour of the net elements.

Graphical representation

The graphical representations of the Petri net elements used in the control structure

are shown in Figure 2.1.

Non-Primitive Place —— Transition

_ Arc
Primitive Place I

I.. . _. , Inhibitor Arc Hardware Place

Figure 2.1 Symbols used in graphical representation of nets

Places of all types may contain at most one token. For non-primitive places, the

presence of a token indicates that its associated action is currently being carried out.

For primitive places the presence of a token indicates that its associated state holds,

or is true. As noted previously, if a hardware place contains a token (is marked),

then its associated hardware switch is on.

2-3

Chapter 2-A Control Structure

Transitions are drawn as horizontal bars, and represent either the transition between

states or the start, or completion, of an action. In the Petri net model, it is assumed

that all enabled transitions fire simultaneously. A transition's input places have their

tokens removed, and output places receive their tokens at the same instant. In other

words, transitions have no time associated with their firing.

Arcs may be either ordinary arcs or inhibitor arcs that allow testing for zero (see

(Murata, 1989)).

2.3 The Structure

The Petri net structure is designed to reflect the hierarchy inherent in a

manufacturing system. Each net in the structure is drawn from left to right with the

higher levels of the hierarchy to the left (see Figure 2.2 below). The system under

consideration is divided into a set of sub-systems referred to as axes. The co­

ordination of these axes is described by a top level Petri net called the Control Net.

Each axis is itself be described by a Petri net, which is called a subnet. The diagram

in Figure 2.2 shows a system with three axes, each represented by a subnet.

Safety Relatedf
Inputs

Figure 2.2 Petri net structure for a single machine

2-4

Chapter 2- A Control Structure

A third layer of nets, called output nets (because they are linked to the system's

output devices), makes the physical link between the Petri net model and the

machine hardware. Output nets are used to represent solenoids, electric motors etc.

depending on the devices attached to the machine.

Figure 2.2 shows that the link between subnets and output nets is in one direction

only. The subnets cause the output nets to activate or deactivate output devices. To

indicate that actuation has taken place, they receive feedback from hardware places

attached to sensors and limit switches. Thus, the feedback is not directly from the

output nets but is instead from the machine hardware. For an example consider a

subnet that causes an output net to activate a solenoid, which is attached to a

pneumatic cylinder. Once this cylinder has completed actuation, it activates a limit

switch. The limit switch is represented in the subnet as a hardware place.

2.3.1 Safety net

The safety net is used to monitor any safety related inputs attached to the system

and if an unsafe condition is detected, to handle the orderly shutdown of the system.

The safety net is linked to the control net to indicate that the system is safe to start. It

is also linked to the output nets in order to take direct control of all the output devices

if an emergency shutdown is required.

2.3.2 Linking the Control Net and the Subnets

The link between the control net and a subnet is shown in Figure 2.3. All subnets are

linked to the control net in this way. The link works as follows. Transition t, is

enabled by the presence of tokens in places p, and p2 . It will therefore fire, placing

tokens in places p3 and ps . Place p3 is a non-primitive place and thus according to the

definition given previously, represents a non-primitive action or task. As p3 is now

2-5

Chapter 2 - A Control Structure

marked this indicates that the action it represents is being carried out. This action is

described by a subnet, which starts by consuming the token that is now in place ps .

The subnet carries out its action and on completion produces a token at place pf .

This enables the transition t2 (p3 is still marked from the firing of t^, which can now

fire removing tokens from both p3 and pf and placing a token in place p4 .

Figure 2.3 Control net/subnet link

The token remains in place p3 all the while its associated sub-net is carrying out its

operation, and is only removed on completion of that operation. The completion of

the sub-net's operation is indicated directly by the production of a token in place pf

and indirectly by the firing of transition t2 .

2.3.3 Subnet/Output net link

The link between the subnets and the output nets is similar to that shown above for

the control net/subnet link. However, in this case there is no feedback from the

output net indicating completion of its task. Instead, feedback is obtained from

sensors attached to the axis that the subnet represents. This is shown in Figure 2.4,

where pf is no longer associated with the action carried out by the subnet. It is now

linked to a sensor and thus there is no direct feedback from the output net.

2-6

Chapter 2 - A Control Structure

Figure 2.4 Subnet/output net link

2.4 Implementation

The nets are implemented on a PLC in ladder logic. In the ladder logic program, an

output coil is used to represent each place. The reasoning behind the representation

is as follows.

A place becomes marked when one of its input transitions fires. As stated in section

2.2, transitions fire instantaneously, as soon as they are enabled. Therefore, a place

becomes marked when one of its input transitions is enabled.

A transition becomes enabled when all of its input places are marked. Therefore, a

transition's output places become marked when all of its input places are marked.

In this way, the marking of a place can be expressed in terms of the other places in

the net, removing the need to explicitly represent transitions in the ladder logic

program.

In a similar manner, the marking is removed from a place if one of its output

transitions fires. A transition firing can be recognised by all of its output places

becoming marked. There is no need for the explicit representation of transitions.

2-7

Chapter 2-A Control Structure

The example in Figure 2.5 shows the ladder logic representation for place p3

(Stanton et al, 1996).

Pi Pa Ps
I |_|i n M

PS P*H — /J
V I
Ps

H/H

\.r

Figure 2.5 (a) Petri net segment

(b)

(b) Ladder representation for place p3

In Figure 2.5(a), transition ^ is enabled when places p^ and p2 both contain a token.

The transition fires instantaneously and the tokens are removed from places P! and

p2 and a new token is placed in place p3 . This token will remain in place p3 until

transition t2 fires. The arrival of tokens in places p4 and ps can be viewed as an

indication that transition t2 has completed firing, and so when these tokens arrive, the

token can be removed from place p3 .

This behaviour is reflected in the ladder logic rung of Figure 2.5(b). It is assumed

that initially all contacts and coils are de-energised. When contacts p, and p2

become energised, output p3 will then become energised (it is also assumed that

when p3 becomes energised pi and p2 are then de-energised again). Coil p3 will

remain energised since it is acting as a latch. Only when both contacts p4 and p5

become energised will p3 become de-energised again. The remainder of the ladder

logic program is constructed in this way, with one coil for each place in the net.

2-8

Chapter 2 - A Control Structure

Within the ladder program the nets, of which the structure comprises, are ordered

from top to bottom with the control net first, followed by the safety net, then the sub­

nets, and finally the output nets. This reflects the structure of the Petri net

description and provides a structured method for programming PLC's with ladder

logic. The structure of such a ladder logic program is shown in Figure 2.6.

Start of Ladder Logic

:
I

End of Ladder Logic

A

1

A

1

A

1

A

1

A

(

k
Control net

r
L

Safety net
L

r Sub-net 1

L
Sub-net n

r
r Output net 1

r Output net m

Figure 2.6 Structure of the Ladder Logic program

2.5 Fault Monitoring

Using the ladder logic representation described in Figure 2.6, in conjunction with the

Petri net graph from which it is constructed, a certain level of fault diagnosis is

possible. If the machine was to halt during execution of a task, it is possible to

determine, from the ladder logic, which output coils are energised and thus their

respective places in the control net. From the control net, the sub-nets that were

executing when the halt occurred can be identified. In such a manner, the current

2-9

Chapter 2 - A Control Structure

state of the machine can be traced down through the control hierarchy to the output

nets. At this point, the reason for the halt can be determined.

As far as the Petri net is concerned, the only reason for the system to halt is if one or

more transitions are waiting for an input token before they can fire. The reason for

the token being unavailable may be that a sensor has not been activated because,

either it is itself faulty, or an actuator has failed to activate it in the correct manner.

2.6 Limitations of the Current Method

The method for controller design and implementation presented in this chapter is

adequate for relatively small systems with low numbers of actuators. However, its

limitations become apparent when applied to larger systems, with more actuators

and concurrent processes.

2.6.1 The design method

The design approach used for the control software has little structure, aside from the

fact that top down development is used. Also there are no guidelines as to what

constitutes a 'good' design decision, other than those gained by the experience of the

designer. Both of these points cause few problems where small systems are

concerned, but when larger systems are to be controlled, some structure to the

design approach is necessary. A more structured approach to the software design

would allow relatively inexperienced designers to create well constructed code, and

provide more consistency in the approaches taken for different types of controller.

One advantage of using Petri nets for the design and implementation of control

software is that they allow structural analysis of the system in order to detect any

adverse properties such as deadlocks and conflicts. However, standard methods for

2-10

Chapter 2 - A Control Structure

analysis (see (Peterson, 1981) or (Murata, 1989)) are not possible with the structure

presented. This is because the many nets in the control structure interact with each

other changing the behaviour of individual nets. For any such analysis to be possible,

it is necessary to determine the particular class of Petri nets to which those described

here belong. A single net may be taken in isolation and analysed using standard

techniques, but it is necessary to determine what effect hardware places, and link

places from other sub-nets have on the behaviour of that net.

With the structure as described in the current chapter, there are few rules governing

the manner in which nets are linked. For a better modular structure, these links must

be clearly defined and there are criteria for doing so.

2.6.2 Implementation

The implementation method so far described also produces some problems. When

used to control a complex machine, the initial implementation method was found to

be introducing additional tokens into the system. With no means of detecting the

origin of such tokens, the real cause of the problem could not be isolated. Suffice to

say that the implementation of the Petri nets into ladder logic by hand was likely to be

an error prone one anyway. Certainly, the design of the Petri net and the machinery

were not at fault, which left the possible cause as the implementation. The dynamic

nature of the problem meant that the precise moment at which an error occurred

could not be captured. The initial reaction was to develop a new method of

implementation that took into account the way in which the scan cycle of the PLC

worked. It was believed that the order in which the logic was solved affected the

order in which tokens were generated, and that currently tokens where being

generated at the wrong time. A later reaction was to consider how such an error

might be trapped and therefore isolated.

2-11

Chapter 2 - A Control Structure

2.7 Important Properties

The approach to design and implementation described in this chapter possesses a

number of beneficial properties. If alterations are to be made to either the design

approach or implementation approach then these properties must be either

preserved or improved upon. These desirable properties are:

• The size of the control code

• The complexity of the method

• The fault diagnosis capability

2.7.1 Size of the control code

Any translation from Petri nets into an executable language should not result in an

unnecessary increase in the size of the control code. This becomes particularly

important where small, low cost controllers are used, which have a limited memory

capacity. In the particular case of PLC's, the size of the control code will affect the

reaction time of the controller. Therefore, if the size of the code can be kept to a

minimum, then the application domain of the method can be expanded to include

high-speed applications.

2.7.2 Complexity

Ladder logic diagrams are well known for their complexity even for relatively small

applications (Venkatesh et al, 1994). A comparison has been made between the

complexity of Petri nets and ladder Logic programs for applications of varying size.

The complexity measure was limited to the number of nodes (i.e. places and

transitions in the Petri net compared with contacts and coils in the ladder logic). This

is not necessarily the best measure of complexity as the number of arcs in a Petri net

2-12

Chapter 2 - A Control Structure

can cause an increase in its visual complexity. An over complex representation of

the system will act to make its use undesirable and if it is used will affect the

maintainability of the system.

2.7.3 Fault diagnosis

The current level of fault diagnosis provided by the use of the Petri net structure

should be preserved. It should not be more difficult to detect faults if the design and

implementation methods are altered. This does not exclude the possibility that the

fault diagnosis method may become more complex. However, the user must be

shielded from such increases in complexity.

2.8 Areas of Improvement

The areas in which it is necessary to improve the design and implementation

methods are as follows.

2.8.1 Modelling and control of complex concurrent systems

As stated previously, the method as described in this chapter handles relatively small

applications where there is only a minor degree of concurrency. This is clearly not

sufficient if the control structure is to be expanded to higher levels of the

manufacturing environment, or to more complex manufacturing systems such as

Flexible Manufacturing Systems.

2.8.2 Structural analysis

The ability to analyse system models will greatly reduce the amount of time spent on

removing design faults in the system before implementation.

2-13

Chapter 2 - A Control Structure

2.8.3 Enhance fault diagnosis

The fault diagnosis method at present relies on the operator searching through the

ladder logic program with the Petri net graph for guidance. Currently faults can only

be detected if the machine halts. Can the process of fault diagnosis be automated

and extended to situations where the system does not stop? Could it facilitate the

detection of transient faults?

2.8.4 Implementation on other types of controller.

There is a clear need for such a method to be applicable not only to other types of

PLC but to any other controller present in a modern manufacturing facility. It should

also be extensible to general-purpose computer systems, such as PC's.

2.9 Chapter Summary

This chapter has described the starting point of the research work described in the

rest of this thesis. It has presented a method for the design and implementation of

manufacturing system control software, which uses a Petri net based representation.

This method has a number of weaknesses, but also some valuable properties, which

must be preserved if any attempt is made to remove those weaknesses. The attempt

to enhance these properties has been the motivation for the remainder of the work

presented in this thesis.

2.10 References

Murata, T., 1989, "Petri nets: Properties, analysis and applications." Proceedings of

the IEEE, 77, pp. 541-581.

Peterson, J. L, 1981, Petri net theory and the modeling of systems. Englewood

Cliffs, NJ, USA: Prentice Hall.

2-14

Chapter 2 - A Control Structure

Stanton, M. J., 1996, Arnold, W. F. and Buck, A. A., "Modelling and control of

manufacturing systems using Petri nets." In Proc. 13th IFAC World Congress,

San Francisco, USA, vol. J, pp. 324-329.

Venkatesh, K., Zhou, M. and Caudill, R. J., 1994, "Comparing ladder logic diagrams

and Petri nets for sequence controller design through a discrete

manufacturing system." IEEE Transactions on Industrial Electronics, 41, pp.

611-619.

2-15

Chapter 3 - Structured Petri Nets

Chapter 3

Structured Petri Nets

3.1 Introduction

The Petri nets used in Chapter 2 offer a hierarchical approach to the development of

control code for manufacturing systems. Given the problems associated with the use

of these nets and the desire to further automate the software development process,

there is a need to offer a more formal definition. In their current state the nets serve

the purpose of offering a state/transition representation for control code development

but do not offer any means of analysis. Analysis is required in order to ensure that

the code controlling the system does include structural errors that might result in

deadlocks or overflows. In order to develop any analysis techniques, the position of

these nets within the Petri net literature needs first to be established.

This chapter starts by reiterating the Petri net definition given in Chapter 2. It then

goes on to examine a number of other Petri net classes that bear some resemblance

to those described in Chapter 2. By finding such similarities, it is hoped that they wilt

point to analysis techniques that may be applied to these Structured Petri nets.

3.2 A Standard Petri Net Definition

A definition for a safe Petri net is presented here which is essentially the same as

that given in (Peterson, 1981). There are other similar definitions presented

throughout the Petri net literature. This represents the definition for the class of

ordinary Petri nets, and other such classes are described later in this chapter and

also in (Murata, 1989) and (David and Alia, 1992).

3-1

Chapter 3 - Structured Petri Nets

3.2.1 Petri nets

A safe Petri net is a 5-tuple, PN = {P,T,I,O,jU0 } where:

P = {Pi>P2'—>Pm } ' s a finite set of places,

r = {r,,r2 ,...,fn } is a finite set of transitions,

and PnT = 0.

/ '.T —> P is the input function mapping from transitions to places,

O :T —> P is the output function mapping from transitions to places,

//0 :P-»{0,1} is the initial marking.

For the Petri net definition given here, the graphical representation uses a circle to

represent a place and a bar (or sometimes a box (Desel and Esparza, 1995)) to

represent a transition. The input and output mappings are represented by directed

arcs.

3.3 Important Properties

There are many properties of Petri nets some relating to those in Graph Theory (see

(Murata, 1989) for a comprehensive discussion). However as far as the control of

manufacturing systems is concerned there are a few important properties that have a

specific meaning. Those that are considered relevant to this work are presented

here. A few additional properties are described in (Zhou and DiCesare, 1989) and

(Zurawski and Zhou, 1994).

3.3.1 Safeness

A place is said to be /c-bounded when the maximum number of tokens it may contain

from an initial marking is k. Safeness is a special case of the boundedness property.

If a place may only contain at most one token, then it is 1-bounded, also called safe.

3-2

Chapter 3 - Structured Petrl Nets

Thus a safe place is one which is 1-bounded. A Petri net is safe if all of its places are

safe. Safeness is dependent both on the Petri net structure and the initial marking.

Boundedness can be used to indicate if any buffers within a system will overflow

given certain operating conditions. The boundedness of systems is not a

consideration in this work as all systems are assumed to be safe. This is because

the nets described here are used to indicate the availability of resources but do not

explicitly model the resources themselves.

3.3.2 Liveness

A transition, /,, is live if for every reachable marking from the initial marking, //0, there

exists a firing sequence, a, such that transition (, is enabled. A Petri net is live if

every transition in the net is live.

Liveness indicates that the net (and therefore the system under consideration) is free

from deadlocks. It is also, therefore, an indication of the repeatability of system

processes.

3.3.3 Conflicts

Conflict occurs when two processes are competing for the same resources. In a

Petri net conflict is represented by two or more transitions being enabled by shared

input places, such that if any one of the transitions fires, the remainder will no longer

be enabled.

A class of Petri nets called free-choice Petri nets (Desel and Esparza, 1995) permits

conflicts only where there is a single shared input place, with the class of extended

free-choice nets allowing more than one shared input place which must be shared by

all the enable transitions.

3-3

Chapter 3 - Structured Petri Nets

The Petri net formalism used for structured Petri nets must allow the representation

of conflict since these occur naturally in manufacturing systems, and in particular in

the Petri net structure described in Chapter 2.

Example:

Consider a machining station that is capable of more than one type of operation

(three in the example of Figure 3.1), but may only carry out one of those operations

at any given time. When the machine is in its ready state it will be able to accept a

request for one of those actions. Figure 3.1 shows that the transitions labelled t1(t2 ,

and t3 are all enabled when the system is ready and therefore there is structural

conflict in the net. The conflict must be resolved in some way in order to make the

system operational.

(•) Machine Ready

JL____

p2 j Operation 1

t4 ~~

p3 ^J Operation 2 P4 () Operation 3

te 4-
nc [j Task Complete
r o V J

Figure 3.1 A Petri net showing structural conflict when there is a choice of

operations

3-4

Chapter 3 - Structured Petri Nets

Adding mutually exclusive controls as inputs to ti, t2 , and t3 , effectively removes this

conflict. These controls are shown in Figure 3.2, and they represent requests for the

particular operations to start from a supervisory controller. Note that there is also an

additional place at the output of transition t7 . This acts as feedback to the controller

to indicate that the requested task has been completed

(•) Machine Ready

Jl____
'Start task 1 *start task 2 'Start task 3°7*-'

V jf —
p2 f j Operation 1 Pa C J Operation 2 p4 C j Operation 3

u4-
p5 (j Task Complete

Machine ready
(to cell controller

* Signal from cell controller

Figure 3.2 The Petri net of Figure 3.1 with the conflict resolved.

3.4 Analysis

The properties discussed in Section 3.3 can only be determined by performing some

mathematical analysis on the Petri net structure. Traditionally this involves some

form of state enumeration, which for Petri nets is called reachability analysis. The

problem with state enumeration techniques is that, the larger the system, the more

states it can generate, and the number of possible states increases exponentially.

This is due to the distributed state representation of Petri nets, where the addition of

3-5

Chapter 3 - Structured Petri Nets

m places to a Petri net, with n places, will increase the number of possible states by

2m giving a total of 2" * m states.

It has been claimed in (Stanton et al, 1996) that the modular structure of Structured

Petri nets allows analysis of each module independently of the rest of the system.

Since the modules contain a subset of the total number of places in the net, it may

dramatically reduce the effect of the state explosion problem on analysis. Some

questions then arise as to how those elements that are peculiar to Structured Petri

nets influence the analysis being carried out.

The term analysis is used here to describe the means by which the structural

properties of the net may be determined. Since no timing information is explicitly

included in the structured Petri net representation of the system, no performance

analysis will be carried out. The flexibility of the model does allow timing information

to be represented if required and this is therefore not a limitation on the

representation but an enforced condition.

The main difficulty with the analysis of Structured Petri nets is how to deal with the

places that act as exogenous inputs and outputs. Although these places act in the

same way as ordinary places, the arrival of tokens at an input place and the removal

of tokens from an output place has not been dealt with in the definition given above.

A number of questions can be posed concerning these exogenous inputs and

outputs.

• Can these inputs and outputs be excluded from structural analysis?

• If they are excluded, then what class of Petri net is the underlying model?

3-6

Chapter 3 - Structured Petri Nets

• How does their later inclusion effect the structural properties of the underlying

net?

The next few sections of this chapter examine a number of Petri net classes that

have features similar to those of Structured Petri nets. These are considered in order

to uncover the relationship between such Petri net classes and Structured Petri nets.

It will be shown that structured Petri nets do not in fact belong to any one of these

classes but contain features common to many of them.

It should be noted that there are a great many classes and extensions of ordinary

Petri nets, which are usually tailored to an authors particular application. Structured

Petri nets have little in common with such extensions and their simple nature has

been a primary motivation throughout their development.

The classes of net considered are as follows:

• Marked graphs

• Decision free Petri nets

• Free Choice Petri nets

• Petri nets with external inputs and outputs (including Controlled Petri nets)

Each of these is discussed in the following sections highlighting the aspects of each

class that are relevant to the definition of structured Petri nets.

3.5 Marked Graphs

Marked graphs are a sub class of Ordinary Petri nets. The definition given here is

the same as that presented in (Murata, 1989).

3-7

Chapter 3 - Structured Petri Nets

3.5.1 Definition

A Marked Graph is an ordinary Petri net such that each place p has exactly one input

transition and one output transition. Using the dot notation of (Hack, 1972):

• p = p» =1 for all pe P

Marked graphs are decision and conflict free, since each place has only a single

transition and therefore there is no decision to be made as to which output transition

will fire.

As discussed previously, for control purposes it is necessary that all system conflicts

be represented by the model in order that they may be addressed and resolved (i.e.

that the controller is decision free). The marked graph is a restricted class of Petri

net that is unable to model conflicts. Therefore, despite their decision free nature,

they are of little use in the definition of structured Petri nets. This was recognised by

(Krogh and Sreenivas, 1987).

3.6 Decision Free Petri Nets

Decision free Petri nets are introduced in (Dubois and Stecke, 1983). The definition

given was the same as that of marked graphs, as defined in (Peterson, 1981) or

(Murata, 1989) and shown in the previous section. Structured Petri nets need to be

less restrictive than marked graphs, since they must allow the direct representation of

conflicts within the system model. In (Krogh and Sreenivas, 1987) the notion of

Essentially Decision Free (EOF) Places is introduced, in the context of a class of nets

called Operation/Resource Nets. These use a slightly modified graphical notation to

distinguish between operation and resource places, which makes the net appear

more complex. They define a procedure for identifying non-EDF places, which is

3-8

Chapter 3 - Structured Petri Nets

similar to that proposed in Chapter 5 for decision free places in Structured Petri nets.

The method proposed for resolving any conflicts incorporates the use of 'NOT' arcs,

which are a similar concept to inhibitor arcs.

3.6.1 Operation and resource places

The distinction between operation and resource places has also been made in (Zhou

and DiCesare, 1995). Operation places are generally regarded as safe (1-bounded)

places, whereas resource places can contain as many tokens as there are units of

that resource available. In structured Petri nets, such a clear distinction between

resource places and operation places is not made. At the highest level of control

developed so far, the nets respond to:

• Direct commands from a controller (be that man or machine)

• The state of the system hardware in terms of its sensory output

It has already been stated that structured Petri nets model the availability of

resources but not the resources themselves (Section 3.3.1). In Structured Petri nets,

where a sensor is used to indicate the presence of a unit resource in the physical

system, e.g. an item of raw material in a store, then a hardware place which

represents that sensor is used to indicate when that resource becomes available.

Example:

Consider a raw materials store that may contain up to six items. The presence of an

item in the store is indicated by a single sensor, which detects the next available

item. It is tempting to use a place containing up to six tokens to represent the

number of items in the store. This is fine if the behaviour of the system is being

3-9

Chapter 3 - Structured Petri Nets

modelled, but for implementation purposes the controller should only respond to the

sensory input indicating the availability of a single item.

The common implementation for a place with multiple tokens would be to use a

counting device, which decrements every time an item is removed from the store.

This can be problematical if the counter, through error, contains the wrong value, and

potentially dangerous if the counter is erroneously informing the system that the store

is empty. This is one reason why the Structured Petri net approach tries to avoid

such representations and instead depicts the hardware through its sensory output.

3.7 Free-Choice Petri Nets

A Free-Choice Petri net is a sub class of ordinary Petri nets. They have been

extensively covered in (Desel and Esparza, 1995). A Free choice net is a Petri net

such that every arc from a place is either a unique outgoing arc or a unique incoming

arc to a transition (see (Murata, 1989)).

A free choice Petri net contains structural conflicts, but the set of input places to each

transition in the conflict is the same. It therefore allows any of the conflicting

transitions to fire i.e. there is a 'free choice' in which transition can fire. The net

shown in Figure 3.1 is a free choice net because firing one of the transitions in the

conflict will disable all others within the conflict. This is a suitable interpretation for

the uncontrolled structured Petri nets, which may be free choice nets.

The necessary and sufficient conditions for liveness in a free choice Petri net have

been described by (Hack, 1972). If the underlying net of a structured Petri net can be

shown to be a free choice net then there are proofs for properties such as liveness

and safeness.

3-10

Chapter 3 - Structured Petri Nets

In structured Petri nets, the 'uncontrolled' Petri net has structural conflict. This

means that a place may have two (or more) output transitions to which it is the only

input. For example, when a machine is ready to accept work, it may be able to carry

out one of any number of tasks. This represents some form of conflict, and in terms

of the machines behaviour, it doesn't matter which of its actions is requested, since it

is capable of carrying out any one of its tasks. However, since the structured Petri

net is actually being used to control a machine, this conflict must be solved, and this

is done by introducing a set of mutually exclusive control places as inputs to all the

conflicting transitions.

Once a particular task has been started, then the machine should experience no

further conflict until the task has been completed. However, if the machines' sub­

systems are capable of more than one action, then these will naturally contain their

own conflicts, which must be resolved at the level above which they occur. This

leads the definition onto a class of nets called decision free Petri nets.

3.8 Petri Nets with External Inputs and Outputs

Petri nets with external inputs and outputs were defined in (Ichikawa, et al, 1985) and

later redefined in (Ichikawa and Hiraishi, 1988). A set of places was used as inputs,

to control certain transitions in the system and another set of places was used as

outputs. The basis for this development was that in real systems not all the

transitions of the system would be controllable and not all states of the system would

be observable. They where introduced to allow the control of discrete event systems.

They have a similar function to, and were a motivating factor behind the controlled

Petri nets introduced in (Krogh, 1987).

3-11

Chapter 3 - Structured Petri Nets

3.8.1 Controlled Petri nets

Controlled Petri nets were introduced in order to analyse a number of control policies

on a plant model. This is done by describing the states of the plant as a net, and

then introducing a control policy to govern the firing of certain transitions within the

plant in order to achieve the desired behaviour.

A control policy is defined as a sequence of markings on a set of control places.

Such control places give rise to the concept of controlled transitions. A controlled

transition is one that has a control place as one of its input places. Controlled Petri

nets define a control feedback which is simply a function mapping a marking onto the

next control.

Controlled Petri nets have some relation to structured Petri nets as they both have

exogenous inputs. One difference between the controlled Petri nets of (Krogh, 1987)

and those described in (Ichikawa and Hiraishi, 1988) is that controlled Petri nets

assume a certain set of observable places, which is a subset of the set of all places

in the net, whereas the nets of (Ichikawa and Hiraishi, 1988) explicitly define a set of

observable places. It is not clear whether the output places of (Ichikawa and Hiraishi,

1988) are able to consume tokens in the same way as output places do in structured

Petri nets. It is clear that this is not the case for controlled Petri nets. However both

the nets proposed in (Krogh, 1987) and (Ichikawa, et al, 1985) are described as

controlled Petri nets in the survey paper (Holloway, et al, 1997). This would indicate

that their definitions are equivalent.

3-12

Chapter 3 - Structured Petri Nets

3.9 A Definition for Structured Petri nets

The definition for structured Petri nets was first presented in (Stanton and Arnold,

1997) and is similar to that for ordinary Petri nets except that a new distinction is

made between control/feedback places and state/action places.

3.9.1 Definition

A Petri net with external inputs and outputs is a 5-tuple, PNIO = {P,T,I,O,juQ }

where:

P = SuC /"uC°"',

S = {s} ,s2 ,...,si } is a finite set of state places,

C™ ={c™,cjI ,...,cJ1 } is a finite set of input places,

C""" = {<"' ,c°"' ,...,c°ut } is a finite set of output places,

T = {t} ,t2 ,...,tn } is a finite set of transitions,

I :T — > P is the input function mapping from transitions to places,

O :T — > P is the output function mapping from transitions to places,

//0 : P — » {0,1} is the initial marking.

Notes:

Only state places can be initially marked, thus the initial marking of the control

places is always zero.

Output places are never inputs to transitions of the same net and are only outputs

to transitions of one net.

3-13

Chapter 3 - Structured Petri Nets

• Input places are never outputs to transitions of the same net and are only inputs

to the transitions of one net.

• There is no distinction between state and action places. If there were it would be

necessary to indicate that only state places may be initially marked. However,

there are actually no initially marked places, except for hardware places.

The definition of Section 3.9 differs to that given by (Ichikawa and Hiraishi, 1988)

where external outputs are represented as a subset of transitions (and therefore

event signals) rather than explicitly by places (and therefore condition signals). The

use of places as external outputs as well as inputs is the key to the modular structure

presented here and is favoured for its simplicity and because it provides a uniform

method of communication between nets.

Example

Figure 3.3 shows a Petri net with external inputs and outputs.

Figure 3.3 Example Petri net with external inputs and outputs

The net can also be described in terms of the definition given in section 3.9. This is

presented as follows:

3-14

Chapter 3 - Structured Petri Nets

C""' = {<"'},

//0 = {1,0,0,0,0}

3. 10 Implications on Properties

The properties of liveness and safeness have a particular interpretation for

manufacturing systems (Beck and Krogh, 1986). Safeness of an operation place

indicates that there will not be a request for an operation that is already in progress.

Thus there is no conflict in the enabling logic for that operation. Liveness of an input

transition to an operation place indicates that there is no deadlock in the system, and

liveness of output transitions to an operation place indicates that the operation will

always finish.

3.10.1 Liveness

The property of liveness can be applied to individual transitions and to a complete

net. Varying levels of liveness have been defined (see (Murata, 1989)), the work

here requires that the nets are L4 - live i.e. all transitions are infinitely fireable from

any marking of the net. The set of possible marking is restricted because of the

method by which the initial marking is determined.

With the addition of control places, liveness becomes the responsibility of the

controls as well as that of the net structure. The degree of independence of the net

structure must be determined and the effect of adding controls to preserve liveness

must be examined.

3-15

Chapter 3 - Structured Petri Nets

For every allowable path through a net:

• The initial transition of the path must be live

• The path itself must be live

For the initial transition of every path to be live, the enabling state of that path must

always be reachable from any position in a path, and the enabling transitions in the

control net must also be live.

Every transition in a path must be live including the terminating transition.

3.10.2 Safeness

Safeness becomes an important property when places are used to represent tasks.

If a task place contains a token, then that task is currently taking place. If a task

place contains more than one token, there is no sensible meaning. Some meaning

could be ascribed to such a condition, such as the task is taking place and will be

carried out again immediately it has finished. However this increases the complexity

of the implementation and the complexity of the meaning of simple elements of the

net and is thus disallowed in this net structure.

Safeness can be a structural property, but is also closely tied with the initial marking

of a net. By careful control of the initial marking, safeness of action places can be

ensured.

Multiple tokens in resource places are used to represent multiple resources, such as

multiple parts ready for processing. However in the control structure described here,

3-16

Chapter 3 - Structured Petri Nets

such resource places are not used. This removes the need for any places with

multiple tokens.

3.10.3 Conflicts

There are conflicts within a net that could allow a choice of transitions, which can fire

for a particular marking. If the nets were free choice nets then strictly speaking there

would be a free choice as to which transition can fire. However, the nets used here

are at least simple Petri nets.

When a machine is in its ready state there should be a free-choice as to which action

the machine can carry out. However once a choice has been made, the remainder of

the net should be 'decision free' i.e. there should be only one path through the net

and no choice as to which transitions can fire.

The only point at which there may be a choice is where some part of the system is

required to make a decision and the resulting path depends on the outcome of that

decision.

It therefore seems that the nets used here are a hybrid, requiring the properties of

controlled free choice nets in some instances, and decision free Petri nets in other

instances.

Decision free Petri nets are described in (Krogh and Sreenivas, 1987) and (Krogh

and Beck, 1986)

3.11 Chapter Summary

This chapter has looked at a number of Petri net classes, which appear to have a

similar definition to those described in Chapter 2. The particular classes focussed on

are Marked Graphs, Decision Free Petri nets, Free Choice Petri nets, and Petri net

3-17

Chapters- Structured Petri Nets

classes with external inputs and outputs. These all bear some similarities to what are

now described as structured Petri nets (as they can be used to develop a variety of

control structures). The chapter also presents a more formal definition for structured

Petri nets, and discusses the properties of safeness, liveness and conflict-freeness,

in relation to these nets and to the control of manufacturing systems. It appears that

the uncontrolled structured Petri net (that with the exogenous inputs and outputs

removed) is a free-choice Petri net. If this is the case then there are proven results

concerning liveness and safeness of such systems (Hack, 1972).

3.12 References

Beck, C. L. and Krogh, B. H., 1986, "Models for simulation and discrete control of

manufacturing systems." In Proc. IEEE International Conference on Robotics

and Automation, San Francisco, CA, USA, pp. 305-310.

David R. and Alia, H., 1992, Petri nets and Grafcet: Tools for modelling discrete

event systems. London, England: Prentice Hall.

Desel, J. and Esparza, J., 1995, Free choice Petri nets. Cambridge, England:

Cambridge University Press.

Dubois, D. and Stecke, K. E., 1983, "Using Petri nets to represent production

processes." In Proc. IEEE Conference on Decision and Control, San Antonio,

TX, USA, pp. 1062-1067.

Hack, M., 1972, "Analysis of production schemata by Petri nets." Masters Thesis,

Massachusetts Institute of Technology.

3-18

Chapter 3 - Structured Petri Nets

Holloway, L. E., Krogh, B. H., and Giua, A., 1997, "A survey of Petri net methods for

controlled discrete event systems." Discrete Event Dynamic Systems: Theory

and Applications, 7, pp. 151-190.

Ichikawa, A., Yokoyama, K., and Kurogi, S., 1985, "Reachability and control of

discrete event systems represented by conflict-free Petri nets" In Proc. IEEE

International Symposium on Circuits and Systems, Kyoto, Japan, pp. 487-

490.

Ichikawa, A. and Hiraishi, K., 1988, "Analysis and control of discrete event systems

represented by Petri nets." In Discrete Event Systems: Models and

Applications, Berlin, Germany: Springer-Verlag, pp. 115-134.

Krogh, B. H., 1987, "Controlled Petri nets and maximally permissive feedback logic."

In Proc. 25th Annual Allerton Conference. University of Illinois, USA, pp. 317-

326.

Krogh, B. H. and Beck, C. L., 1986, "Synthesis of Place/Transition nets for simulation

and control of manufacturing systems." In Proc. IFIP Symposium on Large

Scale Systems: Theory and Applications, Zurich, Switzerland, pp. 583-588.

Krogh, B. H. and Sreenivas, R. S., 1987, "Essentially decision free Petri nets for real-

time resource allocation." In Proc. IEEE International Conference on Robotics

and Automation, Raleigh, NC, USA, pp. 1005-1011.

Murata, T., 1989, "Petri nets: Properties, analysis and applications." Proceedings of

the IEEE, 77, pp. 541-581.

Peterson, J. L, 1981, Petri net theory and the modeling of systems. Englewood

Cliffs, NJ, USA: Prentice Hall.

3-19

Chapter 3 - Structured Petri Nets

Stanton, M. J. and Arnold, W. F., 1997, "Extension of structured Petri nets for the

control of a conveyor system." In Proc. Factory 2000: IEE 5th International

Conference, Cambridge, England.

Stanton, M. J., Arnold, W. F. and Buck, A. A., 1996, "Modelling and control of

manufacturing systems using Petri nets." In Proc. 13?h IFAC World Congress,

San Francisco, USA, vol. J, pp. 324-329.

Zhou, M., and DiCesare, F., 1989, "Adaptive design of Petri net controllers for error

recovery in automated manufacturing systems." IEEE Transactions on

Systems, Man, and Cybernetics, 19, pp. 963-973.

Zhou, M. and DiCesare, F., 1993, Petri net synthesis for discrete event control of

manufacturing systems, USA: Kluwer Academic Publishers.

Zurawski, R and Zhou, M., 1994, "Petri nets and industrial applications: A tutorial."

IEEE Transactions on Industrial Electronics. 41, pp. 567-583.

3-20

Chapter 4 - Petri Net Modules

Chapter 4

Petri Net Modules

This Chapter takes the structured Petri nets defined in Chapter 3 and from them

creates a Petri net module describing a single element of a manufacturing system.

This element can be combined with other such elements to form a larger

manufacturing sub-system. Likewise subsystems are combined to form entire

systems. Once the creation of a module has been described, the elements of

structured Petri nets are described, along with their interpretations, in some detail.

The first part of the chapter uses a Petri net model of a pneumatic cylinder as an

example to introduce the main elements of each net in the control structure. This

model is then expanded on to show the interaction between a number of such nets.

4.1 Modelling a Pneumatic Cylinder

A Petri net may be used to describe the function of a particular system or sub­

system. This description may be self-contained describing fully the possible changes

of state of the system, and the conditions under which those state changes are

possible. The level of detail used to describe the change of state will vary,

depending on the particular application.

Consider the example of a pneumatic cylinder that moves up and down. A Petri net

describing the possible states of the cylinder and the transitions between those

states is shown in Figure 4.1.

Figure 4.1 shows that the cylinder must be in the up position before it can move to

the down position and vice versa and is thus a complete functional description of the

4-1

Chapter 4 - Petri Net Modules

cylinder. The transitions labelled t t and t2 represent the transitions between the up

and the down positions.

Cylinder Up

i •

6 Pa
Cylinder Down

Figure 4.1 A simple Petri net description of a pneumatic cylinder

Transition t 1 represents movement of the cylinder from the up state to the down state

and thus takes a finite amount of time to occur. During such time the cylinder is in

neither the up state nor the down state. Therefore the presence of a token in either

place would be a misrepresentation of the true state of the system. The same

argument can be applied to transition t2 . A more informative net is shown in Figure

4.2.

The Petri net of Figure 4.2 represents a more complete description of the pneumatic

cylinder, which may now be either up, down or moving in a particular direction. Note

that a single intermediate state could have been used to indicate that the cylinder is

in transition, but by using two additional states we gain more information concerning

the state of the cylinder, namely information concerning the direction of its travel.

Such a description is usually satisfactory for the purposes of modelling and is thus as

far as many Petri net based methods will go in terms of systems descriptions.

4-2

Chapter 4 - Petri Net Modules

A point to note is that having a token in place p, indicates that the initial state of the

model is with the pneumatic cylinder in the up position. This should, of course,

match with initial state of the real system. It will be seen later that it is possible to set

the initial marking of the model to reflect the actual initial state of the system even if

the initial system state is not known until the system is powered up. In fact it is

desirable to check the state of the system on power up and from its initial state make

certain checks to ensure that the system is ready and in a known state before it can

start its operations. This is, in part, the role of the Safety net described in Chapter 2.

O"2
^r/ MOVfi

Cylinder Up

Moving Down

Cylinder Down

Moving Up

Figure 4.2 An extended Petri net description of the pneumatic cylinder

4.2 Monitoring and Control

There are two main reasons for using Petri nets in this work:

1) To monitor the state of real systems

2) To control the action of real systems

4-3

Chapter 4 - Petri Net Modules

The net of Figure 4.2 does not allow for either monitoring or control, as there is no

means by which it can be connected to a real system. The net description thus far

used does not allow for such connections.

It is possible to assign properties or conditions to transitions such as those used in

Grafcet (David and Alia, 1992), however the problem with such extensions is that

they add to the complexity of the system and cause analysis of the system to

become difficult. Also any such extensions will not be explicit in the net

representation and will therefore increase the graphical complexity of the formalism.

4.2.1 Monitoring

In order for the Petri net description shown above to monitor the state of the real

system it must be attached to the real system in some way. With applications where

a PLC is used to control systems, the links between the controlling device and the

machine hardware are made using memory addresses. In particular these

addresses are described as input or output addresses, depending on whether the

controller is receiving or transmitting information. It is these memory addresses that

act as the interface between the machine hardware and the software that is

controlling it. Therefore the same concept will be used here to link the software

(described by a Petri net) to the machine hardware. It will be assumed here that a

Petri net can be implemented on such a controller, leaving a full discussion of

implementation issues until Chapter 7.

A pneumatic cylinder will usually include limit switches to indicate to the controller

that it as reached the end of its actuation. Therefore once the limit switch is

activated, the controller knows that the actuator has finished moving and has

4-4

Chapter 4 - Petri Net Modules

reached one of its fixed states. These limit switches can be shown on the Petri net

description as in Figure 4.3.

Cylinder Up

Moving Down

Down Switch
Ps

p () Cylinder Downw

Moving Up

Up Switch

Figure 4.3 A Petri net with external inputs

Now that the hardware places p5 and p6 have been added the Petri net will be able to

reflect the state of the system that it is monitoring. The description will now, using

the original modelling formalism, permit the monitoring of systems and provide

feedback as to their current state. It is also now possible for the system to reflect the

state of the real system, assuming the limit switches are functioning correctly.

4.2.2 Controlling the hardware

A pneumatic cylinder, as described in the preceding section, will usually be actuated

by one or two solenoids, depending on whether the device is single acting or double

acting. For double acting devices, the control logic must ensure that the solenoid to

move the cylinder down is only actuated when the cylinder is up, and conversely that

4-5

Chapter 4 - Petri Net Modules

the solenoid to move the cylinder up is only activated when the cylinder is down. The

solenoids are here termed output devices, and such devices must be controlled from

the Petri net. To do this control places are connected to the output devices to start

actuation. As discussed previously in this chapter, the control places are actually

attached to the memory addresses that are in linked to the output devices. The

resulting net is shown in Figure 4.4 which has both external inputs and outputs which

allow it to communicate with a real system. This net will allow actuation of the

pneumatic device, and also detection of the actual state of the pneumatic device as

indicated by the limit switches.

Cylinder Up

PT
. r^ —— ̂ ("") Move Down

Moving Down

Down Switch
Ps

n C] Cylinder Down

Figure 4.4 A Petri net with both external inputs and outputs.

4.2.3 Controlling the software

It is unlikely that any machine will consist of only a single pneumatic cylinder that

works in isolation. Therefore it is necessary to introduce some mechanism for co­

ordinating the activities of this device with other such devices attached to system.

4-6

Chapter 4 - Petri Net Modules

The Petri net description of Figure 4.4 can be described as a software module that is

controlling the pneumatic cylinder subsystem. A higher level of control is needed to

instruct the cylinder control module when it is to move up or down in relation to the

actions of other system devices. Such instructions will be sending control signals to

the cylinder module and will in turn require feedback to indicate that the module has

completed its required function. In more complex systems, the function required of a

subsystem will include more actions than a single movement up or down. For the

current example control and feedback places are added to the Petri net module as

shown in Figure 4.5.

Move Down Cylinder Up

P?
Move Down

Moving Down

Down Switch
Ps

Down

Move Up

UP Switch
Pe

Figure 4.5 A full Petri net description of the pneumatic cylinder controller

The description of the pneumatic cylinder shown in Figure 4.5 now has all of the

required elements for the cylinder module. It clearly shows the possible states of the

system and the internal conditions necessary to allow transition between states. It

also incorporates the necessary external conditions necessary for a transition to

4-7

Chapter 4 - Petri Net Modules

occur, which are described using control and feedback places. Control and feedback

is both from the machine hardware, keeping the control software informed of the

state of the real system and updating it as necessary, and from other software

elements, co-ordinating the actions of this module with any others present in the

system.

A net such as this will usually be drawn with the inputs and outputs to the right of the

Petri net representing the interface with the machine hardware. The inputs and

outputs to the left of the net represent the interface between the pneumatic cylinder

control software and some higher-level control software. An important fact

concerning the net representation shown is that despite the slightly different symbols

used for the different types of place, they behave in the same way, there is no hidden

meaning to each different representation. In the next few sections the elements of

these nets are described in some detail along with their graphical representations.

4.3 Elements of Structured Petri Nets

An important aspect of the current work is the practical application of structured nets

and consideration has been given primarily to the control of manufacturing systems.

For the theoretical nets of Chapter 3 to be applied to a practical control problem, the

net elements must be interpreted in a clearly defined and consistent manner. The

graphical symbols used to represent all the elements of a structured Petri net are

shown in Figure 4.6. This figure may be compared to the symbols used in the

original net definition presented in Chapter 2.

4.4 Interpreting Net Elements

Each of the elements shown in Figure 4.6 has a specific interpretation. The

interpretations do not modify the behaviour of the net elements, but instead modify

4-8

Chapter 4 - Petri Net Modules

the meaning of their behaviour. The addition of textual descriptions to places will

provide further interpretations on the meaning of their behaviour. The structured

Petri nets described here are actually a simple form of Petri net, but the

representation gains modelling power by the use of interpretations rather than by the

use of extensions to the formalism, and therefore the modelling power is increased

without increasing the complexity of the formalism.

The implementations of the net elements are described in the following sections.

C J State or Primitive Place

Action or Non-Primitive Place

K'~J) Hardware Control

Q Software Control

—— Transition

1 Arc

1 Inhibitor Arc

Figure 4.6 Symbols used in the graphical representation of Structured Petri

nets

4.4.1 Transitions

Transitions, as their name implies, represent the transition between system states.

They also delimit the start and the finish of non-primitive events. As stated in section

4.1 any event that takes a finite amount of time can be represented as a state (or

sequence of states), so here transitions are interpreted as primitive events, events

that are considered to be instantaneous, therefore taking zero time to occur. The

firing of a transition will thus take zero time, with all input tokens being consumed and

all output tokens being produced simultaneously. The issues arising when

4-9

Chapter 4 - Petri Net Modules

implementing such instantaneous transitions are discussed in Chapter 7, with

particular reference to implementation on a PLC.

4.4.2 Places

Places are subject to a number of interpretations depending on their context. In most

cases they behave in the same way although the meaning ascribed to the presence

of a token in each type of place is different. The various interpretations for places are

listed as follows:

• Primitive Places (also called State Places)

• Non-Primitive Places (also called Action Places)

• Control Places, which consist of three subtypes:

Software Controls

Hardware Controls

Feedback Places

Each of the place types is now described in turn.

Primitive Places (State Places)

Primitive places, or state places, are used to represent conditions or states of the

system. If a primitive place is marked then the state represented by that place holds

(is true). If a primitive place is not marked then the state represented by that place

does not hold (is false). In Figure 4.7 places p 1 and p5 are primitive places or state

places. The token in place p, indicates that the machine is in its ready state. A token

in place p5 would indicate that the machines' task is complete. These are both States

of the system and do not represent any non-primitive action. By its very nature, a

state place may only contain a single token, since it may only have one of two

possible states (true or false).

4-10

Chapter 4 - Petri Net Modules

Non-Primitive Places (Action Places)

Non-primitive places, or action places, are used to represent the actions, or tasks,

that occur during the operation of the system. They are described as non-primitive

places as they represent sequences of non-primitive events occurring in the system

(a non-primitive event being one that does not take zero time, such as a robot placing

a part in a milling machine). These can be likened to the non-primitive transitions

described in (Peterson, 1981). If a non-primitive place is marked it indicates that the

action represented by that place is currently being carried out. If a non-primitive

place is not marked then this indicates that the action represented by that place is not

being carried out. This will be either because the action has not been requested or

the action has been completed. Non-primitive places may contain, at most, one

token, as they may only have one of two possible states (the action is being carried

out, or the action is not being carried out). In Figure 4.7 places p2 , p3 and p4 are non-

primitive places.

Start task 1 Q — N

1
Ma<

(to c

pi MKJ Machine Ready

C2

Start task 2 Q — x

r ^
|) Task 1 P3 fc

L t2 J

PS r
:hine Ready fi J
e\\ controller) Q^ — '

L Start task 3 Q — N

t3 * - ts
r ^^
J Task 2 p4 r"^ Task 3

- t4 ^ te

J Task 2

- t7

Figure 4.7 A primitive place, p^ is used to indicate that the system is ready

4-11

Chapter 4 - Petri Net Modules

Each non-primitive place is associated with a subnet, describing the action that the

place represents. These are discussed in section 4.6.

4.4.3 Control places

Control places are used to control the occurrence of actions and changes of state

within a system. They are the means by which external inputs (hardware and

software controls) and outputs (feedback places) can be added to each Petri net

module. External inputs may be received from a number of sources and thus both

control and feedback places will be linked to a number of different system elements.

These elements include:

• Supervisory controllers, or any other automated system.

• A human operator - via a software interface or through hardware switches and

contacts in the form of a control panel.

• From the hardware of the system under control (as inputs from sensors).

• A safety subsystem, which takes over operation of the system when an unsafe

situation is detected.

Places CL c2 , and c3 in Figure 4.7 are control places, the control signals of which may

originate from any of the above mentioned sources.

4.5 The Controller and its Environment

Figure 4.8 shows the relationship between a manufacturing workstation controller (or

the control software) and the other system elements listed in section 4.4.3.

According to the terminology of system theory these elements constitute the

controller's environment. The direction of the arrows indicates the direction of

information flow between the system elements. The controller may be any kind of

manufacturing controller such as a PLC or a general-purpose computer. In the latter

4-12

Chapter 4 - Petri Net Modules

case, the controller may include output devices such as a printer or monitor and input

devices such as a keyboard or mouse.

Figure 4.8 The relationship between a controller and its immediate

environment

4.5.1 Hardware

This represents the physical machine, or workstation that is to be controlled. As

already described, it contains a variety of output devices which are actuated by the

control software and a number of input devices that are monitored by the control

software.

4.5.2 Safety subsystem

The safety subsystem monitors system hardware in order to detect unsafe

conditions. If such a condition arises it will take control of the system in order to

restore the system to a safe state. This subsystem will include hardware interlocks

and any software routines that may be required to implement safe shutdown. If the

safety subsystem is to take control of the system, then the main controller must be

informed of this occurrence. It is possible that some of the routines carried out by the

safety subsystem are actually carried out through the main controller.

4-13

Chapter 4 - Petri Net Modules

4.5.3 Hardware and software I/O

Hardware I/O represents any devices attached to the system via a hardware control

panel, except for emergency stops and safety interlocks, which are directed through

the safety subsystem. Software I/O represents either I/O from software systems

such as SCADA, or a supervisory controller. This covers any communication over a

network, which must itself originate from some other device or controller attached to

the system.

The variety of sources of control software means that there is some requirement for

variety in the representation of control places.

4.5.4 Hardware controls

Hardware controls were introduced in section 4.2.1 and are linked to the physical

input devices that are attached to the system under control. These control places

provide feedback from the system hardware to indicate the current state of the

system and also whether a requested action has been completed. The input devices

attached to hardware controls will typically be sensors and switches (either closed or

open contacts), which provide a discrete state feedback. Thus when the physical

device is on (either closed or open depending on the type of contact) the hardware

control is marked. Conversely when the physical device is off then the hardware

control is unmarked. The hardware control is the only element presented here which

does not follow the formal Petri net definition. The hardware control is completely

controlled by the device to which it is logically attached. Thus if a hardware control is

the input to a transition which at some instant fires, the token may remain in the

hardware control after firing if the physical device is still on.

4-14

Chapter 4 - Petri Net Modules

Hardware controls are also attached to the controller from hardware I/O systems that

might be present on a control panel (see Figure 4.8). Such devices act in the same

way as switches connected to the system under control, except here they are used to

initiate actions rather that provide feedback as to the state of the system.

In summary, hardware controls both provide feedback on the current state of the

physical system, and are used for the purpose of synchronisation. For example, a

limit switch attached to an actuator provides feedback as to the state of that actuator.

A proximity switch will indicate that there is an item present, which may then permit

another process to start, hence providing synchronisation.

4.5.5 Software controls

A software control represents the transmission of information either by the control

software itself, or by the software I/O described earlier (Section 4.5.3). The

information transmitted by the software control is usually a request for the system or

one of its subsystems to perform an action. As such, software controls are more

commonly used for communication, although in some cases they will be used for

synchronisation between separate systems. Synchronisation within a particular

system is usually carried out by primitive places. If software controls are

implemented in the same way as hardware controls then any mechanism for

detecting errors in the execution of a system by the use of hardware places can also

be applied to the software places (and vice versa). This line of reasoning is

expanded upon in Chapter 8.

4.5.6 Feedback places

In a complex system, which is required to carry out many functions using the same

actuators, simple state feedback is insufficient to provide information on the

4-15

Chapter 4 - Petri Net Modules

progression of the system through a complex sequence of events. Therefore

additional information concerning this progress is required. The advantage of using a

modular scheme to design control software is that once a module has finished

operation, we know that a particular part of the sequence has been carried out. The

mechanism used to indicate that a module has finished its operation is the feedback

place.

In order to monitor the state of the system and to implement handshaking signals, it

is necessary to provide some form of feedback from the controlled system to the

controller. This feedback is also implemented in the form of feedback places.

As indicated in the discussion of hardware controls (section 4.5.4), there is a close

correspondence between feedback places and control places. This is discussed in

more detail in section 4.7.

4.6 Subnets

A non-primitive place will have a subnet associated with it. Each subnet may be

implemented by either a Petri net, or by some other formalism. The term subnet will

be used whatever the actual method of implementation. The link between subnets

and non-primitive places has already been discussed briefly in Chapter 2.

Assuming the method of implementation reflects the behaviour of the Petri net, a

subnet is always running (or, an action is currently being carried out) if there is an

occurrence of a token in its associated non-primitive place. In a hierarchical

structure, this non-primitive place appears in the parent of the subnet (often the

control net). The non-primitive place receives the token by the firing of one of its

input transitions. Therefore the non-primitive event itself is triggered by the input

4-16

Chapter 4 - Petri Net Modules

transition to its associated non-primitive place. This is the case since, as stated in

section 4.4.1, transitions fire instantaneously.

4.7 Creating a Hierarchical Structure

A system can be broken down into its constituent subsystems and each subsystem

can in turn be broken down, until smaller manageable units are obtained. At each

level there is control and co-ordination of the subsystems at the level below. Thus

there is obtained a hierarchical structure starting with the overall co-ordination and

control of the machine at the top level and ending with the co-ordination of the

physical output devices at the bottom level of the structure. The number of levels in

the system is dependant on the system itself and often the particular subsystem

divisions preferred by the designer. An example of a three level control structure is

shown in Figure 4.9 with the control net residing at the top level, various subnets at

the intermediate levels and at the bottom, the output nets, which may be used to

model the output devices.

Control Net

//ZW*t,,/,t fw.Mwv/w/,vf*/ f̂ .,/..>/>» ,*.>„> ,.-.-,. „.....*, i,j^..(J ,v,^v,, .. ,,-..., .../M^/^Mtm

f

L1 Subnet ; L1 Subnet

fZ™

L1 Subnet

^_ ——— | ———— . — «... ..„. — . ————
L2 Subnet

,..„]„..

O/P
net

1_2 Subnet

Control Level

Sub-Control Level 1

|~« ———— | ———————————————————

L2 Subnet

I l _____ __ „. ___ ___ l
t r?. '..........' r•< :....... v

O/P
net

O/P O/P O/P O/P
net net net net

O/P
net

,„

L2 Subnet

-|---4"-
O/P
net

O/P
net

f
O/P
net

Sub-Control Level 2

Output Level

Figure 4.9 A control structure with three levels of control

The structure described in Figure 4.9 is based on that described in Chapter 2,

although a point to note is that there is technically no limit to the number of sub-

4-17

Chapter 4 - Petri Net Modules

control levels that can be used, and not all subsystems must contain the same

number of levels. Guidelines for the development of a control structure are given in

Chapter 5.

4.8 Joining Petri Net Modules

A token appearing in a control place is used to trigger an event or action in a

particular subsystem. The control place appears in the subsystem that describes the

event or action, yet the token that triggers the event originates from another part of

the system. A key factor to the success of the method presented here is the means

by which these modules are joined and the way in which the communication is

represented. A control place receives a token from another part of the system. If the

other part of the system is a Petri net, then how do we transmit the token? The

answer is the use of a shared place such as places pc and pf shown in Figure 4.10.

Module 2!

Figure 4.10 A communicating pair of Petri net modules

Figure 4.10 shows a pair of communicating Petri net modules, with Module-1 acting

as a controller and Module-2 being the controlled subsystem. The figure shows that

4-18

Chapter 4 - Petri Net Modules

places pc and pf actually belong to both nets, and that the function of each is altered

depending on which net is being studied. From the context of the net in Module-2,

place PC is a control place controlling the firing of transition t2 .i, and pf is a feedback

place indicating that the action represented by the net of Module-2 has been

completed. However from the context of the net in Module-1, p, is in fact a control

place controlling the firing of transition t^, and in a more complex system, pc could

easily represent a feedback place allowing perhaps a further action to take place in

Module-2. Any feedback place must act as a return signal to the controlling element

that initiated the action or state change.

This relaxes somewhat the roles of controller and controlled system as described in

(Holloway et al, 1997) since a sub-system may spend some of its time acting as a

controller to another sub-system and the remainder of its time being controlled by

other sub-systems. If two nets with external inputs and outputs are defined, with the

outputs of the first acting as the inputs to the second, and the outputs of the second

acting as the inputs to the first, then the result is a communicating pair, such as those

shown in Figure 4.10. Each net in the pair can be termed a module (in terms of the

modular design of software), as there is a well-defined interface between them.

Each of the nets shown in the control structure of Figure 4.9 would be constructed as

a Petri net module, providing a stronger method for development of the control

structure than that used previously (see Chapter 2). The modular approach also

allows more flexibility in the design of control code for manufacturing systems. There

is a move towards more distributed control in manufacturing systems, and such a

modular representation allows the construction of distributed controllers, without

requiring any modification to the formalism.

4-19

Chapter 4 - Petri Net Modules

The Petri net modules presented in this chapter provide a useful tool for creating

manufacturing control code, but without any method for applying them, they may

easily become as complex and difficult to maintain as an unstructured Ladder Logic

program. Not only is a modular structure needed to provide flexibility, but also a

method and guidelines for software design are necessary to enable those without

vast experience to benefit to some extent from the method. This method is the

subject of the next chapter.

4.9 Chapter Summary

This Chapter described how the structured Petri nets defined in the previous chapter

are used to describe elements of a manufacturing system, which can be considered

as Petri net modules. Each module is then able to communicate with other similar

modules by the use of its control and feedback places. The chapter also more

formally presents the graphical elements of structured Petri nets and describes in

some detail the interpretation of such elements. It is the ability to create self-

contained, communicating modules from structured Petri nets that allows a control

structure to be developed. This control structure is described in the next chapter.

4.10 References

David R. and Alia, H., 1992, Petri nets and Grafcet: Tools for modelling discrete

event systems. London, England: Prentice Hall.

Holloway, L. E., Krogh, B. H., and Giua, A., 1997, "A survey of Petri net methods for

controlled discrete event systems." Discrete Event Dynamic Systems: Theory

and Applications, 7, pp. 151-190.

4-20

Chapter 4 - Petri Net Modules

Ichikawa, A. and Hiraishi, K., 1988, "Analysis and control of discrete event systems

represented by Petri nets." In Discrete Event Systems: Models and

Applications, Berlin, Germany: Springer-Verlag, pp. 115-134.

Krogh, B. H., 1987, "Controlled Petri nets and maximally permissive feedback logic."

In Proc. 25th Annual Allerton Conference. University of Illinois, USA, pp. 317-

326.

Peterson, J. L, 1981, Petri net theory and the modeling of systems. Englewood

Cliffs, NJ, USA: Prentice Hall.

4-21

Chapter 5 - Developing a Control Structure

Chapter 5

Developing a Control Structure

There are a number of methods described in the literature for the synthesis of Petri

net controllers for manufacturing systems. Many of these rely on the experience of

the designer, both in terms of the manufacturing system itself, and the actual use of a

Petri net model. This chapter presents a new method for developing control software

for a manufacturing system based on the Petri net modules that were described in

Chapter 4. The new approach, which is loosely based on structured methods, is

introduced first, and is then compared with approaches based on Petri nets found in

the literature.

5.1 The Aims of the Method

The aims of introducing the design approach were described in Chapter 1, namely to

facilitate the automation of manufacturing control software development. Given an

initial specification, the software designer requires a development system that will

check the specifications, and ultimately produce working, verifiable code. The control

software produced should also allow error detection, diagnosis and recovery.

In order to produce such a development system the method used for software

production must be structured in some way, with each stage in the development

process feeding the next. Even so the structure of the method should not prevent

some feedback and iteration between different stages.

The method proposed here has used a modular programming approach. This allows

each subsystem and its interface with the other parts of the system to be clearly

5-1

Chapter 5 - Developing a Control Structure

defined. Once the interface is defined, the internal behaviour of the subsystems can

be modified, without the need for modifying the rest of the system.

5.2 The Method

Using the experience gained from the development of control software for two

different systems a series of steps has been developed to aid development of future

systems using the structured Petri net modules already discussed in earlier chapters.

These steps are discussed fully in the next few sections and are summarised in

Figure 5.1.

Specification of System Tasks

Definition of System Communications

Decomposition into Subsystems

Mapping Subsystem Actions to Systems Tasks

Development of the Control Net

Subsystem Development

Figure 5.1 Sequence of steps for the Petri net controller development

These steps do not represent a full life-cycle model for the system; instead they

represent a design stage for the software. As previously noted there will be a degree

of iteration between the steps. It should also be noted that the design process is

recursive because each subsystem will be designed in the same way as the system

itself until the are no further subsystems to be developed.

5-2

Chapter 5 - Developing a Control Structure

The advantages of modular design are most apparent when software is being

designed and maintained. These steps represent some of the analysis stages of

systems development but mainly concentrate on the design. A discussion of how the

Petri nets may be implemented will be provided in Chapter 7. The following sections

deal with each of these steps in turn.

5.3 Specification of Systems Tasks

System tasks are those that the system under consideration is required to carry out.

Initially these tasks must be defined from the viewpoint of those environmental

entities that will be requesting them (see Section 5.4.1). These tasks represent an

answer to the question 'What is the system going to do?'.

Each system task is listed and may be given an appropriate abbreviation that will

allow a more concise description of the system during later stages of the software

development.

This may seem an obvious task but it is essential that careful thought be given to

these tasks at an early stage so that the view of the system is not clouded by

implementation detail.

5.3.1 The initialisation task

One system task, which has been used throughout this development and is

considered common to any system, is the Initialisation Task. This task is run when

the system is powered up, possibly being initiated by an instruction from its

supervisor. There are two stages to the Initialisation Task, Software Initialisation and

Hardware Initialisation. Only when the software initialisation has been completed will

the hardware initialisation be carried out.

5-3

Chapter 5 - Developing a Control Structure

Software Initialisation

Software initialisation is carried out to ensure that the software elements of the

system, such as timers and counters, have been set up correctly. The software

initialisation also initialises each of the Petri net modules, placing tokens in their

appropriate places. This means that the initial state of the system can be predicted,

as the system can be placed into any desired state before it becomes available for

operation.

Hardware Initialisation

Hardware initialisation is carried out to ensure that the state of the system hardware

is known and is ready to start any requested actions. The hardware initialisation

stage will require checks on sensors to indicate the current state of the system

hardware and will also include some short sequences that check more complex parts

of the system (e.g. those whose state is not easily detected by feedback from

sensors). These sequences will also drive the hardware of the system to the desired

initial state if it is not found to be in the desired state on start-up.

Once the initialisation task has been completed the system can enter a ready state

indicating that it is ready to receive commands. On entering the ready state the

system will inform its supervisor, or other users that it is able to accept requests for

actions.

5.4 Defining the Communications

The second step in the design process represents one of the key features of the

development method proposed in this thesis. It requires that the communications

5-4

Chapter 5 - Developing a Control Structure

signals between the system and its environmental elements be clearly and precisely

defined.

These communications signals represent the interface between the system and its

environment. This interface will be described without regard to how it will eventually

be implemented, whether it is between hardware elements, software elements or

both hardware and software. Once this interface has been established and agreed,

the internal design of the system can be developed, tested and modified with no

effect on the further development of the wider system. It is therefore essential that

this interface is defined and agreed early in the development process. Clearly this

step cannot be completed to a satisfactory degree until the previous step has been

completed.

Early development of the interface between systems and their wider environment

allows the environmental elements to be developed either concurrently, or by staged

development (Sommerville, 1996). This argument will also apply to the development

of subsystems.

It should be noted that at this stage the implementation details have not been

considered. The first two steps of the process represent the specification of the

system's functional requirements.

5.4.1 Describing the interface

The description of the interface between the system and its environment should

include all the functions that the system is expected to carry out, along with all the

feedback signals that the system will send back out to its environment. It is useful at

this stage to draw a diagram to help visualise these control and feedback signals

5-5

Chapter 5 - Developing a Control Structure

between the system and its environment. An example of such a diagram is shown in

Figure 5.2.

Request 1

Feedback 1

Request 2

Feedback 2

Request 3

Feedback 3

Request 4

Feedback 4

System

Figure 5.2 Control/Feedback Diagram for a system with many environmental

entities

It is likely that there will be more than one potential source for these control and

feedback signals and these should be indicated on the diagram. Such a diagram can

be compared with the use of the context diagram in SSADM (Structured Systems

Analysis and Design Method) (Eva, 1995) which is used to describe the flow of

information between an information system and its environmental elements.

5.4.2 Control/feedback pairs

The communications between the system and its environmental entities are defined

by establishing a set of control/feedback pairs. At this point a rule is introduced for

establishing these control/feedback pairs. This is stated in Rule 5.1 as follows:

5-6

Chapter 5 - Developing a Control Structure

Rule 5.1

For each control signal from a user of the system there must also be a

feedback signal.

The control signal sent to the system can be interpreted as a request for some action

or service. The feedback signal will indicate either that the action or service has

been completed, or that the request has been processed and that the system is able

to receive another request. The feedback signals at this level provide an indication of

the status or state of the system, and may be received by a supervisory controller or

user of the system.

Rule 5.2 describes the relationship between the control and feedback signals that

make up a control/feedback pair.

Rule 5.2

A feedback signal must return to the originator of its associated control

signal.

It is possible that a number of control signals will be paired with the same feedback

signal. For example, consider a system that is able to perform a number of actions

and a different control signal is used to request each action. A single feedback signal

may be used to indicate that the system is ready to receive another request for

action. In order for Rule 5.2 to apply in such a case there would need to be some

broadcast mechanism so that all potential requestors know when the system has

become available. This is again an implementation detail and as such will not affect

the design of the system at this stage.

5-7

Chapter 5 - Developing a Control Structure

5.5 Decomposing the System into its Constituent Subsystems

The system under consideration will usually be made up of a number of subsystems,

each with a particular function of its own. This stage in the software development

identifies those subsystems and the actions that each subsystem will carry out.

The number of subsystems into which the system is decomposed is generally based

on the logical arrangement of system hardware, such as groupings of pneumatic

actuators to form a more complex manipulator. However, there will often be

elements of the system that can be seen as being part of more than one subsystem

or single elements that do not seem to belong in any subsystem. The manner in

which these are dealt with will be based purely on the experience and preference of

the software designer. A few guidelines can be borne in mind based on experiences

gained in developing the test systems presented in Chapter 6 and on relevant

software development literature (Sommerville, 1997), (Pressman, 1998), (Meyer,

1998).

Cost

The number of subsystems chosen will affect the number of modules required for the

software architecture. The cost of the software development and implementation

(certainly in terms of time) increases with the number of modules used in the

software architecture. As the number of modules increases there is a point at which

further modularity becomes uneconomical (Pressman, 1998).

Size

As already mention in Chapter 2, the size of the control code becomes important

when using low cost PLC's. If a system is broken down into a large number of

subsystems, then a large number of modules will be required to represent those

5-8

Chapter 5 - Developing a Control Structure

subsystems. Each module requires state and communication places, and the more

modules, the greater will be the overhead represented by these places. Therefore to

minimise the size of the final code, the number of modules used should be kept to a

sensible minimum.

Complexity

If the graphical nature of the Petri net is to be used to its full potential, then it should

act as an aid to communication. One of the aims of the development method is to

minimise the complexity of the control net thus capitalising on the Petri net's

strengths as a graphical formalism. Therefore, it is not just the control net that must

be kept simple but the whole of the net structure. When considering the number of

levels to be used in the design of the control software hierarchy, some guidance can

be taken from the graphical technique of data flow diagramming as used in SSADM

(Structured Systems Analysis and Design Method). The rule in SSADM is to have no

more than three levels of diagrams representing the system (Eva, 1995). At the

fourth level Data Flow Diagramming uses a textual description of the process, called

an Elementary Process Description. Such a description could be described in the

graphical notation of a Petri net (as could the other levels in a Data Flow Diagram)

see (Eva, 1995). Data flow diagramming also uses a Level 0 diagram, called a

Context Diagram. This is equivalent to the Communications Diagram as described in

section 5.4.

One problem with representing the control structure as a hierarchy, is that the

complexity of the control net increases with the number of concurrent elements in the

system. This is because the control net deals with the co-ordination between the

subsystems, and if the control net is to provide adequate information as to the current

state of the system, it must contain a non-primitive place for each concurrent

5-9

Chapter 5 - Developing a Control Structure

operation. Two or more concurrent processes could be modelled by a single non-

primitive place. But this increases the complexity of analysis when a fault occurs in

the system (see Chapter 8).

5.5.1 Subsystem actions

Once the system has been divided into its constituent subsystems, the actions that

each subsystem will carry out can be described. These actions are listed in the

same way as the System Tasks in the initial stage of the development (see section

5.3), and a descriptive code is given for each. Each subsystem should perform a set

of related actions, and this can be used as a test to ensure a good choice of

subsystems has been made.

5.6 Mapping Subsystem Actions to System Tasks

Having defined the subsystem actions (section 5.5.1), these must now be used to

describe the system tasks (section 5.3). This requires that a sequence of subsystem

actions be used to describe each system task. Each sequence will start with a state

place (representing a control signal from the system's environment) and terminate

with a state place (representing a feedback signal returning to the system's

environment). A number of sequences may share the same subsystem actions, and

the same state places. At this stage any concurrent actions will be identified.

At the end of this step there is now a description of what tasks the system will

perform in terms of its subsystem actions. This now leads directly into the

development of the Petri net model.

5-10

Chapter 5 - Developing a Control Structure

5.7 Constructing the Control Net

The construction of the control net relies on the concept of a path. This is a different

definition to that given in (Krogh and Sreenivas, 1987), which has been used

specifically for the approach presented in this chapter.

Paths

A path is a sequence of alternating places and transitions joined by arcs. The

concept of a path is used in the design process to represent each system task in

terms of the subsystem actions. Thus each net in a control structure will consist of

one or more paths depending on the number of actions described at that level of

abstraction.

A path starts with a controlled transition (one that has at least one control place in its

set of input places), and ends with a feedback transition (one that has at least one

feedback place in its set of output places). The control on the initiating transition and

the feedback from the terminating transition must be linked to the same control net

(i.e. feedback must go to the source of the control). The path may also contain

concurrent activities, these concurrent activities must be initiated by the same

transition (i.e. they do not contain any decisions).

Each path can be represented by a Petri net starting and finishing with a state place.

The initial marking of a path will always cause a token to appear in the starting state

place, and from this initial marking the path will remain live until a token arrives in its

terminating state place.

5-11

Chapter 5 - Developing a Control Structure

5.7.1 Describing the paths

Having described each of the system tasks as a sequence of subsystem actions,

non-primitive places can now be used to represent each action, and primitive places

can be used to represent each state. A path net can therefore be drawn for each of

the system tasks showing the sequence of actions, and any concurrent actions that

occur.

At this point it is possible to identify all the transitions that will appear in the control

net directly from the specifications of path sequences. However the graphical nature

of the Petri nets for each path makes the positions of the transitions relative to the

actions clearer.

An important task here is to identify those transitions that are shared between paths

and those that belong to a single path. Applying Rule 5.3 to each path will identify

these transitions.

This rule works on the basis that when a system moves between two states, then

that movement will be represented by a single transition. If the sets of inputs and

outputs of two transitions are the same then the states represented by those inputs

and outputs are the same, and therefore the transitions are the same.

Rule 5.3

When the pre- and post- places for two or more transitions in different

paths are identical, the transitions are given the same label. This is in

all cases except when the transition is the initial transition in a path.

5-12

Chapter 5 - Developing a Control Structure

5.7.2 Merging the paths

To provide a single graphical representation of the control net (which may be

necessary to construct the control code) the paths must be merged. However, it may

be that the resulting control net is too complex graphically to be of any value as a

systems description, it proving easier to analyse the paths individually. A

mathematical representation of the paths may be equivalent to that of the merged

control net. If the control code can be generated automatically from the

mathematical representation (see (Hanisch et al, 1996a)) then it may not be

necessary to use the control net in its graphical form at all, other than for descriptive

purposes.

One advantage of using the control net is that it clearly highlights the points at which

there are conflicts. It may be possible to determine these from the mathematical

structure of the net, but in that case they cannot be visualised.

5.7.3 Ensuring the net is conflict free

If a single structured Petri net is taken without any of its communications signals then

the net will be seen to contain many conflicts. The communication signals resolve

many of these conflicts, but it is possible that some still remain. Graphically, the

remaining conflicts are highlighted by merging the paths into a control net. These

conflicts may be resolved by the addition of redundant state places in parallel with

those places that are in conflict. These redundant places can be viewed as memory

as they allow the system to remember an earlier firing of a transition which is used

later on in the sequence.

The following algorithm can be used to locate the points in the control net at which

redundant state places are required.

5-13

Chapter 5 - Developing a Control Structure

Algorithm 5.1

For each place with more than one output arc:
For each output arc:

Is there a transition to which this place is the only input?
If yes add a state place in parallel with the current place.
If no then go to next place:

End

Algorithm 5.1 searches for any places that have more than a single output transition.

It is only these places that will be potentially involved in any conflicts. Once this set

of places has been identified, then each output transition of the place is examined to

see if it has only this place as its input. If it does then there is a need for an

additional place in parallel with the place that is currently being examined. An

example of such a conflict is shown in Figure 5.3.

Figure 5.3 Action 2 is shared by both tasks and therefore causes a conflict

between transitions ts and t6.

5-14

Chapter 5 - Developing a Control Structure

The Petri net shown in Figure 5.3 details part of a subsystem that may carry out one

of two tasks. The net shown is the result of merging the paths for each of the two

tasks. Task 1 incorporates Action 1, Action 2, and Action 3. Task 2 incorporates

Action 2 and Action 4. It can be seen that if Task 2 is requested, Action 2 is carried

out followed by Action 4. However, when Task 1 is requested, Actions 1 and 2 are

carried out concurrently, but when they are complete there are two enabled

transitions (namely t3 and t4). To complete Task 1 according to the system

specification, transition t5 should be the next to fire, but this is not the only possible

outcome especially in the light of implementation methods (see Chapter 7). The only

way to ensure that the correct path is followed is to resolve the conflict. This is done

using Algorithm 5.1.

p7(\ Waiting for
Action 2

Figure 5.4 Place p7 now resolves the conflict.

The result of applying Algorithm 5.1 to the net of Figure 5.3 results in a new net,

which is shown in Figure 5.4. It can be seen that place p7 now prevents transition

5-15

Chapter 5 - Developing a Control Structure

from being enabled when Task 1 is requested, thus removing the conflict between

transitions t5 and t6 -

5.8 Subsystem Development

The development method proposed in this work is a recursive process. This is

because once the system itself has been developed according to the method

described above, then the subsystems are developed using the same method. This

is repeated until the required depth has been reached. The lowest level of

description presented here describes the output devices that are attached to the

system. In some cases it may be that a particular subnet will not be described as a

Petri net. In this case there will be no further development of that subsystem using

this approach. However the subsystem is still useable with this method because the

interface between the non-Petri net subsystem and the Petri net description will be

the same.

System elements that are not Petri nets must be taken into account earlier in the

design process. This allows their existing inputs and outputs to be used by the Petri

net description of the system.

5.9 Other approaches to controller design

In the literature there are a number of proposed methods for the design of Petri net

models. Only a few of these are actually used to implement controllers for real

systems. Also there are some other controllers that are implemented for real

systems but there is no design approach other than that using the intuition of an

expert. The next few sections describe these approaches and make some

comparison between them and that proposed here.

5-16

Chapter 5 - Developing a Control Structure

5.9.1 Venkatesh

The method for developing a control structure can be compared directly with that

given in (Venkatesh et al, 1994). The algorithm presented in (Venkatesh et al, 1994))

is based on the design procedure described in (Pessen, 1989) for the design of

Ladder logic programs. This was used despite the apparent lack of any intention to

realise the control code in Ladder Logic.

The design approach here may still be based on the same specifications but that is

where the similarity ends. It is felt that the design of Petri net controllers based on a

method for ladder logic design will unnecessarily restrict the Petri net model and ties

the designer to the more restricted approach required for straight ladder logic design.

5.9.2 Net condition/event systems

Net Condition/Event Systems have been proposed by Hanisch and Rausch (see

(Hanisch et al, 1996a), (Hanisch et al, 1996b), (Rausch et al, 1996), (Rausch and

Hanisch, 1995), (Hanisch and Rausch, 1995)) for the synthesis of controllers for

manufacturing systems. The work is based on the solution of forbidden state

problems, which take the full state representation of the system and synthesise the

controller that will prevent the occurrence of the events, which cause certain

unwanted states, to hold.

The Net Condition/Event Systems is a Petri net like representation, which makes use

of modules to describe different parts of the system. Communication between these

systems parts is carried out using event signals, which force transitions in other parts

of the system to fire, and condition signals, which enable transitions in the same way

as the control places used here.

5-17

Chapter 5 - Developing a Control Structure

Event signals are used to synchronise the occurrence of different events in the

system, something which is achieved here using control places. The authors have

also managed to develop an automatic code generator based on their nets, which

produces code for limited systems, which conforms to the IEE 1131 standard.

The main drawback of these systems is the complexity of the model, along with the

complexity of the graphical notation. The need for both condition and event signals is

questionable since the occurrence of an event can be indicated by a condition signal.

Another limitation of the Net Condition/Event systems is the types of system to which

they have been applied. The examples provided are all of small parts of a larger

system, with limited complexity. Even though some idea of possible sequences of

events is provided, there is, as yet, no information as to how these systems are

linked with larger super-systems, and no information on the initialisation of such

systems.

Forbidden state problems rely on state feedback from the plant model and this is

obtained using structured Petri nets by the state feedback of the hardware places. It

would be interesting to develop an example of a forbidden state problem using the

notation presented here. It is believed that analysis of the system would be a lot

simpler, due to the presence of only one type of communication signal, which is the

same as the formalism for the state representation.

5.9.3 Zhou and DiCesare

The synthesis method proposed in (Zhou and DiCesare, 1993) uses both a top down

and a bottom up approach. The top down approach is used to define the Petri net

model of the system without regard to any shared resources. The bottom up

approach is used to define the interaction between the Petri net model and the

5-18

Chapter 5 - Developing a Control Structure

shared resources whilst ensuring that the system model is live, bounded and

reversible.

The development of the model is started in a top down manner using stepwise

refinement and standard Petri net 'modules' to construct a 'free-choice' Petri net

model of the system. The modules described are really simple Petri net structures

representing sequence, choice, decision-free choice, and parallelism. The refined

places are replaced with these structures, increasing the size of the net, but

preserving the free-choice property of the net. The operation places, which are used

to describe the top level net, are also termed A-Places. Once the Petri net structure

has been laid down, the non-shared resources are added (also called B-Places).

Non-shared resources are those that are used by a single operation place. Buffer

places are also added at this stage (whose definition is similar to the non-shared

resource places). Finally shared resources are modelled using parallel and

sequential mutual exclusions. Using the mutual exclusion theories presented in

(Zhou and DiCesare, 1993) ensures that the properties of liveness boundedness and

reversibility are preserved.

Once again the problem of graphical complexity of the final net is not adequately

handled. An example provided in the work of a FMS is very complex and this makes

the use of the net as a graphical tool virtually useless. Also the method itself has a

high degree of complexity which may eventually be hidden by a suitable automation

tool, but relies heavily on the engineer having knowledge of both the complexities of

Petri nets and how they may be applied to a particular problem. The method also

separates the issues of modelling, implementation and fault monitoring, which need

to be handled simultaneously.

5-19

Chapter 5 - Developing a Control Structure

As shown in the method proposed in this work, the development of control software

needs to be related to the system being developed at an early stage. Otherwise it

will be seen as too complex and will not be used. Any complexity in the development

method must be hidden from the user of the method.

5.9.4 Resource Control Nets

A more recent synthesis method has been proposed by Mu Der Jeng in (Jeng,

1997a) and (Jeng, 1997b). This is a modular composition method using a bottom up

approach. The modules are named Resource Control Nets (RCN) and are actually

state machines, although they are described by Petri nets. The generation of a Petri

net model is achieved by merging the RCN's along common transition subnets (those

paths that share completely a set of transitions).

Again a problem with the approach is its formality and the complexity of the graphical

description of the system. There is no indication of how each RCN is modelled, it is

just assumed that the engineer will be able to carry out such a task.

5.10 Chapter Summary

At each phase in the design procedure the most important aspect is the

communications between the different levels of the system controller. All the signals

that pass between the different levels of the system must be defined early in the

process. Once these have been defined the rest of the details can then be included

and, as long as the communications are unaffected, they can also be modified with

no effect on the rest of the system. In this way the communication signals play an

important role in the modularity of the system, but they also provide the means by

which fault monitoring can be implemented.

5-20

Chapter 5 - Developing a Control Structure

Another important aspect of the method shown here is its lack of complexity. This

may cause the loss of some of the benefits of more formal approaches (Zhou and

DiCesare, 1993) (Jeng, 1997a), but it does provide a solid foundation upon which

more formal approaches can be built. The next chapter describes an application of

the design method to a manufacturing workstation of reasonable complexity, which is

part of a larger manufacturing system. This will clarify the design steps as outlined in

this chapter.

5.11 References

Eva, M., 1995, SSADM Version 4: A User's Guide (2e), McGraw Hill.

Hanisch, H.-M., Kolbel, S. and Rausch, M., 1996, "A modular modelling, controller

synthesis and automatic control code generation framework." In Proc. IFAC

World Congress, San Francisco, CA, USA, pp. 495-500.

Hanisch, H.-M., Luder, A. and Rausch, M., 1996, "Controller synthesis for Net

Condition/Event systems with incomplete state observation." In Proc.

Computer Integrated Manufacturing and Automation Technology (CIMAT),

Grenoble, France.

Hanisch, H.-M. and Rausch, M., 1995, "Synthesis of supervisory controllers based on

a novel representation of Condition/Event Systems." In Proc. IEEE

International Conference on Systems, Man and Cybernetics, Vancouver,

British Columbia, Canada.

Jeng, M. D., 1997, "A Petri net synthesis theory for modeling Flexible Manufacturing

Systems." IEEE Transactions on Systems, Man, and Cybernetics - Part B

Cybernetics, 27, pp. 169-183.

5-21

Chapter 5 - Developing a Control Structure

Jeng, M. D., 1997, "Petri nets for modeling automated manufacturing systems with

error recovery." IEEE Transactions on Robotics and Automation. 13, pp. 752-

760.

Krogh, B. H. and Sreenivas, R. S., 1987, "Essentially decision free Petri nets for real-

time resource allocation." In Proc. IEEE International Conference on Robotics

and Automation, Raleigh, NC, USA, pp. 1005-1011.

Meyer, B., 1998, Object Oriented Software Construction, Upper Saddle River, NJ,

USA: Prentice Hall PTH.

Pessen, D. W., 1989, "Ladder diagram design for programmable controllers."

Automatica, 25, pp. 407-412.

Pressman, R. S., 1998, Software Engineering: A Practitioners Approach, New York,

USA: McGraw Hill.

Rausch, M. and Hanisch, H.-M., 1995, "Net condition/event systems with multiple

condition outputs." In Proc. INRIA/IEEE Symposium on Emerging

Technologies and Factory Automation, Paris, France, pp. 592-600.

Rausch, M., Luder, A. and Hanisch, H.-M., 1996, "Combined synthesis of locking and

sequential controllers." In Proc. IEE International Workshop on Discrete Event

Systems; Edinburgh, UK, pp. 133-138.

Sommerville, I., 1996, Software Engineering. Addison-Wesley.

Venkatesh, K., Zhou, M. and Caudill, R. J., 1994, "Automatic generation of Petri net

models from logic control specifications" In Proc. International Conference on

5-22

Chapter 5 - Developing a Control Structure

Computer Integrated Manufacturing and Automation Technology. Rensselaer

Polytechnic Institute, Troy, NY USA, pp. 242-247.

Zhou, M., McDermot, K. and Patel, P. A., 1993, "Petri net synthesis and analysis of a

flexible manufacturing system." IEEE Transactions on Systems, Man and

Cybernetics, 23, pp. 523-531.

Zhou, M. and DiCesare, F., 1993, Petri net synthesis for discrete event control of

manufacturing systems, USA: Kluwer Academic Publishers.

5-23

Chapter 6 - Application of the Control Structure

Chapter 6

Application of the Control Structure

The Petri net modules described in Chapter 4, and the method of controller design

described in Chapter 5 are, in this chapter, applied to a real system. The system

presented here was used as a basis for development of both the control structure

and the design method. The end result would be a software control structure that

enabled fault monitoring at a variety of levels, both in hardware and software. Details

of the fault monitoring work are presented in Chapter 8.

6.1 Example: A Raw Materials Station

Figure 6.1 Layout of raw materials station

A Raw Materials station consisting of in total 15 pneumatic actuators will be used as

an example of how the control structure for a single machine is developed. This

particular system was used as a test bed throughout the development of the design

6-1

Chapter 6 - Application of the Control Structure

method and the fault monitoring method described later. The layout of the raw

materials station is shown in Figure 6.1.

6.1.1 Function of the raw materials station

The station provides, on demand, requested items of raw material to a larger

manufacturing system. The particular types of raw material provided are a Perspex

block, of fixed dimensions, and aluminium cylinders with one of two different

diameters. Each of these three raw materials has its own storage position on the

station. The raw materials are transported around the system on pallets, which are

designed to take any of the three raw materials present. These pallets are also

stored on the raw materials station, and each raw material is loaded onto a pallet

before being despatched onto the conveyor. Pallets may also be despatched with no

raw material on them.

Empty pallets may also be removed from the conveyor and loaded with raw

materials, before being replaced on the conveyor again. Such pallets cannot be

placed in the pallet storage area, and must be used before any other operation is

carried out.

6.2 System Requirements of the Raw Materials Station

Description of System Tasks

1. Provide a Perspex block and a pallet from store.

2. Provide a cylinder from slope 1 and a pallet from store.

3. Provide a cylinder from slope 2 and a pallet from store.

4. Provide an empty pallet from store.

5. Provide a Perspex block and a pallet from the conveyor.

6. Provide a cylinder from slope 1 and a pallet from the conveyor.

7. Provide a cylinder from slope 2 and a pallet from the conveyor.

Abbreviation

Get block (+ store)

Get cyll (+ store)

Get cy!2 (+ store)

Get pallet (store)

Get block (+ conv)

Get cyll (+ conv)

Get cy!2 (+ conv)

Table 6.1 System tasks of raw materials station

6-2

Chapter 6 - Application of the Control Structure

Initially, a top down approach is taken to the station controller design thus ensuring

that all the functions of the station are designed to fulfil the goals of the system as a

whole. At the highest level of the software design the main tasks of the raw materials

station are described. These descriptions must initially be stated in terms of the

requirements of the super-system, that is the manufacturing system as a whole.

Each of the tasks is assigned an abbreviation that will be used as its identifier

throughout the remainder of the design process. The descriptions of the system

tasks and their associated abbreviations are shown in Table 6.1.

6.3 Defining the Communications

The next step in the design process is to clearly define the communications signals

that pass between the raw materials station and its environment. The environment of

the raw materials station includes the safety subsystem as well as a supervisory

controller, and a hardware control panel. For this example only the communications

with the supervisory control unit will be examined and these are shown in Figure 6.2.

The supervisory controller informs the raw materials station of the type of part that is

required by sending a part code. This code is interpreted by the controller of the raw

material station and initiates a particular action. Other communication signals are

used to inform the raw materials station that an item can be placed on the conveyor

or removed from the conveyor. Each communication from the supervisory controller

to the raw materials station initiates some action. A feedback signal is sent to the

supervisory controller indicating the successful completion of each requested task.

Also signals indicating the station is ready to start an action, and is ready to place an

item on the conveyor are present.

6-3

Chapter 6 - Application of the Control Structure

Cylinder 1 + Pallet

Cylinder 2 + Pallet

Block + Pallet

Pallet

Cylinder 1

Cylinder 2

Block

Initialise

Put enable

Get enable

I____Ready

l| Ready to Put

IL Done

Raw Materials
Station

Figure 6.2 Communications between the raw materials station and its
supervisory controller

It can be seen here that the number of control signals from the supervisory controller

is different to the number of feedback signals from the raw materials station. This is

because some of the actions share the same feedback signal. Such cases are

shown in Table 6.2 where the control/feedback pairs for the raw materials station are

presented.

Control

1.

2.

3.

4.

5.

6.

7.

8.

9.

Initialise

Get Pallet

Get Cylinder 1 + Pallet

Get Cylinder 2 + Pallet

Get Block + Pallet

Get Cylinder 1 + Get Enable

Get Cylinder 2 + Get Enable

Get Block + Get Enable

Put Enable

Feedback

Ready

Ready to Put

Ready to Put

Ready to Put

Ready to Put

Ready to Put

Ready to Put

Ready to Put

Done

Table 6.2 Control and feedback signals for the raw materials station

6-4

Chapter 6 - Application of the Control Structure

The controls shown in Table 6.2 will be represented in the control net as control

places and the feedback signals will be represented as feedback places. One

advantage of the approach developed here is that it doesn't matter whether the

supervisory controller is used to make requests for action via these controls, or

whether some other system is used to make the requests (e.g. hardware or

software), the interface remains the same. This means that the software constructed

for the raw materials station can be tested without the aid of the supervisory

controller, or any other part of the real manufacturing system. This approach was

used to great effect in developing the control code for another system (to be

described somewhere else). The software for this new system was designed and

tested on a standalone PLC using SCADA (Supervisory Control And Data

Acquisition) software to act as controller and to respond to signals sent to the

manufacturing hardware.

6.4 Breakdown of Subsystem Components

The raw materials station is made up of a number of subsystems, each of which will

be responsible for carrying out a part of the different functions described in Table 6.1.

Again using a top down approach, these subsystems are identified along with the

tasks each subsystem can perform. The number of subsystems identified will

depend on the system under consideration, and on the preferences of the individual

designing the controller.

6.4.1 Effect of number of subsystems on the control net

The discussion in Chapter 5 states that the control net needs to be kept as simple as

possible and that the more subsystems used the larger will be the resulting control

code. The number of subsystems into which the system breaks down and the

6-5

Chapter 6 - Application of the Control Structure

number of actions each component can perform will dictate the total number of non-

primitive places in the control net. For this example the station is broken down into

three subsystems. These subsystems and the tasks that each will carry out are

described in Table 6.3. A descriptive code is used for each of the tasks allowing a

more concise representation for the later stages of the design process. These codes

should be unique for each task so as to avoid any confusion.

The hierarchical structure of the control code for the raw materials station is shown in

Figure 6.3. It can be seen that below the control net there are three subnets, each

representing one of the subsystems (or axes). The subsystems respond directly to

sensory data received from the hardware of the workstation, and produce actions by

sending signals to the output nets shown below them.

Sub-system

A) Pallet Manipulator

B) Loading Bay

C) Cylinder Storage

Function

1. Get pallet from conveyor

2. Put pallet on conveyor

3. Get pallet from storage

4. Put block onto pallet

5. Get cylinder from slope 1

6. Get cylinder from slope 2

7. Put cylinder onto pallet

Code

PM_get_pallet

PM_put_pallet

LB_get_pallet

LB_put_block

CS_get_cyll

CS_get_cyl2

CS_put_cyl

Table 6.3 The subsystems of the raw materials station and their functions.

It can be seen that in this case there is no 'multiple ownership' of the output nets by

subsystems. That is, each subsystem sends signals to a unique set of output nets.

This will not necessarily be the case for all systems and depends on the manner in

which the system is hierarchically decomposed.

The seven tasks shown in Table 6.3 will be represented in the raw material station

control net as non-primitive places.

6-6

Chapter 6 - Application of the Control Structure

i Requests !*—-
jfor ActionsU---»i

Subnet Level

j Sensors !---

«•••••{ Safety \
*•••••! Related!
«*•••••j Inputs !;

Figure 6.3 Petri net structure for the Raw Materials Station.

6.5 Mapping System and Subsystem Tasks

The system tasks developed in Section 6.2 must now be described in terms of the

subsystem actions of Table 6.3. This requires the development of a sequence of

actions for each of the system tasks, which may include intermediate states. The

system tasks and their associated sequences are now shown in Table 6.4.

System Task

1.

2.

3.

Get block (+ store)

Get cyll (+ store)

Get cy!2 (+ store)

4. Get pallet (store)

5.

6.

7.

Get block (+ conv)

Get cyll (+ conv)

Get cy!2 (+ conv)

Sequence

ready -> LB_get_pallet -> LB_put_block
PM_put_pallet -» ready

ready -» (LB_get_pallet // CS_get_cyll)
put -» PM_put_pallet -» ready

ready -> (LB_get_pallet // CS_get_cyl2)
put -> PM_put_pallet -> ready

-» ready to put

-> CS_put_cyl -

-> CS_put_cyl -

ready -> LB_get_pallet -> ready to put -> PM_put_pallet

ready -> PM_get_pallet -^ LB_put_block
PM_put_pallet -> ready

ready -*(PM_get_pallet // CS_get_cyll)
put -> PM_put_pallet -> ready

ready -»(PM_get_pallet // CS_get_cyl2)
put -> PM_put_pallet -> ready

-> ready to put

— >

^ ready to

^ ready to

-> ready
->

-> CS_put_cyl -> ready to

-> CS_put_cyl --> ready to

all b indicates that tasks a and b occur concurrently
3-> £ represents a transition from task a to task A and indicates that task 3 occurs before task b

Table 6.4 Task sequences for the raw materials station

6-7

Chapter 6 - Application of the Control Structure

Each sequence in Table 6.4 starts and ends with a ready state. These indicate that

the subsystem must be ready before an operation can be started and will return to

the ready state on completion of that task. The ready state in each case will be

represented by a primitive place in the control net. Note that the ready state in each

sequence represents the same state (i.e. system ready). This means that the system

can only carry out one of these tasks at a time, and must wait for completion of the

currently active task before the next requested task can start.

This represents an initial specification of the top-level system tasks and provides the

full sequences for each possible task of the system. In the next few stages these

tasks will be broken down into sub-sequences that are each initiated by a control

signal.

The actions PM_get_pallet and CS_get_cyll have been designed as concurrent

actions in the design of the task sequences of Table 6.4. This is means that the

process of getting a cylinder and placing it on a pallet in the loading bay has been

split into two actions. This is an example of where the use of concurrent operations

increases the complexity of the control net, since now both parts of the single

process of placing a cylinder on a pallet must be represented as non-primitive places.

An argument can be made for the actions PM_get_pallet and CS_get_cyl2. Part of

the rationale for dividing such actions is to prevent the repetition of non-primitive

places in the control net.

6.6 Creating the Petri net

6.6.1 Describing the paths

The initial stage of Petri net construction involves creating paths for each subsystem.

As described in Chapter 5, each path is initiated by a control signal and ends with a

6-8

Chapter 6 - Application of the Control Structure

feedback signal. Table 6.2 can now be altered to describe the paths of the raw

materials station's control net. The resulting set of paths is shown in Table 6.5.

Station Task (Path)

1.

2.

3.

4.

5.

6.

7.

8.

9.

Initialise Station

Get block (+ store)

Get cyll (+ store)

Get cy!2 (+ store)

Get pallet (store)

Get block (+ conv)

Get cyll (+ conv)

Get cy!2 (+ conv)

Put Pallet

Sequence

Ready_to_init -> Init_software -> Init_hardware -> RM_ready

RM_ready -> LB_get_pallet -> LB_put_block -

RM_ready -> (LB_get_pallet // CS_get_cyll) -
Ready_to_put

RM_ready -> (LB_get_pallet // CS_get_cyl2) -
Ready_to_put

> Ready_to_put

> CS_put_cyl ->

> CS_put_cyl ->

RM_ready -> LB_get_pallet -> Ready_to_put

RM_ready -> PM_get_pallet -> LB_put_block -

RM_ready -> (PM_get_pallet // CS_get_cyll) -
Ready_to_put

RM_ready -^ (PM_get_pallet // CS_get_cyl2) -
Ready_to_put

-> Ready_to_put

^ CS_put_cyl ->

-> CS_put_cyl -^

Ready_to_put -> PM_put_pallet -> RM_ready

Table 6.5 Paths for the raw materials station

This set of paths differs from that given in Table 6.4 in that there is a completely new

task included to initialise the station (Initialise Station) and that the path Put Pallet has

now been separated from the other tasks. This is because it starts with a control

place and ends with a feedback place, which elevates its status to that of a complete

path. This will also reduce the complexity of the final net since the single path can be

followed once all the previous tasks have been completed.

6.6.2 Mapping tasks to places

The tasks shown in Table 6.4 can now be mapped onto a set of non-primitive places

for the control net. There are also three primitive places indicated by the tasks of

Table 6.4. These are described in Table 6.6.

All the places and their descriptions are shown in Table 6.7, along with a descriptive

caption that will be used on the Petri net graph.

6-9

Chapter 6 - Application of the Control Structure

Name

Ready_to_init

RM_Ready

Ready_to_put

Meaning

Indicates that the raw materials station is ready to accept an initialisation
order from its supervisory controller.

Indicates that the raw materials station is ready to accept a task from the
supervisory controller.

Indicates that the station is ready and waiting to place its loaded (or
empty) pallet onto the conveyor.

Table 6.6 Full descriptions of the non-primitive places from Table 6.4

Place label

Pi

P2

P3

P4

Ps

P6

P?

Ps

P9

PlO

Pll

Pl2

Caption

Ready_to_init

Init_SW

InitJHW

RM_Ready

PM_get_pallet

LB_get_pallet

LB_put_block

CS_get_cyll

CS_get_cyl2

CS_put_cyl

Ready_to_Put

PM_put_pallet

Description

Ready to initialise station

Initialise the station software

Initialise the station hardware

Raw materials station ready

Get pallet from conveyor

Get pallet from storage

Put block onto pallet

Get cylinder from slope 1

Get cylinder from slope 2

Put cylinder onto pallet

Station ready to place pallet on conveyor

Put pallet on conveyor

Table 6.7 Place descriptions for the raw materials station control net

6.6.3 Describing the transitions for the Petri net

The transitions for the Petri net should all be identifiable from the sequences

described in Table 6.5. Each unique transition is identified using the rules defined in

Chapter 5. Each path described in Table 6.5 will start and end with a transition. In

such cases the transition will be described in terms of the place controlling it. There

will also be a transition for each arrow shown in the table indicating the start and

completion of the subsystem actions. Often the transition will represent both the

completion of one action and the start of the next action. Note that any concurrent

6-10

Chapter 6 - Application of the Control Structure

operations require a single transition to initiate them and a single transition to

synchronise their completion.

The transitions for the control net and their descriptions are shown in Table 6.8.

Rules concerning the merging of transitions when separate paths are merged are

described in Chapter 5. These rules are applied later on in the design process. The

table also provides a brief description that is used in the Petri net. Using the

sequence information of Table 6.4, the paths of the control net can be generated.

These are shown in Figure 6.4 to Figure 6.8.

Transition label

ti

tz

t3

t4

ts

te

t7

ts

t9

tio

tn

tl2

tl3

tl4

tis

tie

tl7

tl8

t»

tzo

t21

Description

Ready to initialise station

Software initialisation complete

Hardware initialisation complete

Get block + pallet from storage

Get block + pallet from conveyor

Get empty pallet

Get cylinder 1 + pallet from storage

Get cylinder 1 + pallet from conveyor

Get cylinder 2 + pallet from storage

Get cylinder 2 + pallet from conveyor

Got pallet from store

Got pallet from store (block)

Got pallet from store + cylinder 1

Got pallet from store + cylinder 2

Got pallet from conveyor (block)

Got pallet from conveyor + cylinder 1

Got pallet from conveyor + cylinder 2

Block put

Cylinder put

Ready to put

Pallet put

Table 6.8 Transition labels for control net

6-11

Chapter 6 - Application of the Control Structure

Initialise
p, C J Ready to initialise

Ps _sw

Qlnit_HW

Station Ready (
p4 QRM_ready

Figure 6.4 Initialisation path for the raw materials station

p4 (>RM_Ready
Get Block PV__/V

(+ store) ^ ~\ r
Get Block

(+ conv)

p4 ()RM_Ready

Ready to put

p7 r J LB_put_block

Ready to put
P11 (\Ready_to_put Ready_to_put

Figure 6.5 Paths describing the function of getting a block and pallet

Get CyM
(+ store)

p4 f)RM_Ready

Pa W)CS_get_cyl1 Pe (**) LB_get_pallet P8rncs_get_cyl1 Ps rj PM_get_pallet

Ready to put
„ Pn Ready_to_put

Ready to put

Pn Ready_tojDUt

Figure 6.6 Paths describing placing a cylinaerirom siope i ana a

6-12

Chapter 6 - Application of the Control Structure

Get Cyl2
(+ store)

p4 ()RM_Ready

p9 r ;j CS_get_cyl2 Psf) LB_get_pallet P9 () CS_get_cyl2 Ps (<) PM_get_pallet

Ready to put

Get Cyl2
(+ conv)

RM-Ready

Ready to put
Ready_to_put

Figure 6.7 The paths describing placing a cylinder from slope 2 and a pallet

Get pallet

Ready to put (

p4 ^JRM_Ready

te

1 r
p6 C~} LB_get_pallet

Ready_to_put

Can Put
Pl , () Ready_to_put

Station Ready (

Piz () PM_put_pallet

tzi

P4

Figure 6.8 Paths that describe getting an empty pallet and placing a loaded

(or empty) pallet onto the conveyor

The next task is to merge the paths from Figure 6.4 to Figure 6.8 along common

places and transitions to form the control net.

6.7 Merging the Paths

The paths shown in the previous section contain many common places and

transitions. The most obvious common place is that indicating the raw materials

station is in its ready state (place p4) which appears in the majority of paths.

6-13

Chapter 6 - Application of the Control Structure

Power up

L9»t_cyl1 p,CS_g8l_cyl2 p6 »4LB_gBl_pallel

Figure 6.9 Control net for the raw materials station.

Rules for merging places and transitions were described in Chapter 5. By applying

these rules, the control net is obtained and this is shown in Figure 6.9.

6.7.1 Removing decisions from the net

During the process of merging the subnets, the transitions need to be analysed to

ensure that the control net is decision-free. This is done by applying Algorithm 5.1

from Chapter 5, it can be seen that transitions t 12 and t 15 have the same set of input

places. This is also the case for transitions t17 and t20 . The paths produced by

removing these decisions are shown in Figure 6.10 and Figure 6.11.

6-14

Get Block
(+ store)

Ready to put

p4 () RM_Ready

PH C j Ready-to-put

Chapter 6 - Application of the Control Structure

Get Block
(+ conv)

Ready to put

RM_Ready

PM_get_pallet

Pn

Figure 6.10 The paths of Figure 6.5 with added state places

Get pallet

Ready to put £)

RM_Ready

Awaiting p6 fo LB_get_pallet

Pn Ready_to_put

Figure 6.11 The path for getting an empty pallet with additional state place

The final control net, including the additional state places is shown in Figure 6.12.

6.8 Generating the Subnets

The interface between the control net and the subnets has been developed during

the preceding stages of the software development. These subnets can now be

developed in a similar manner to that of the control net development process. The

majority of the subnets carry out simple sequences and generally there will be little

concurrent activity carried out in the subnets as this will mostly be covered by the

actions at the control net level.

6-15

Chapter 6 - Application of the Control Structure

Power up

Empty pallet

L8_get_pallel p,j(~) Awaiting pallil P, S (~)AW<

Ready to fig

Figure 6.12 Control net including additional state places

6.8.1 The pallet manipulator subsystem

The pallet manipulator is used to transfer loaded (or unloaded) pallets from the

loading bay and place them onto the conveyor. It may also remove empty pallets

from the loading bay and replace them on the conveyor once they have been loaded.

The actions of the pallet manipulator can therefore be described in terms of two

sequences, namely Get_Pallet and Put_Pallet. These sequences will be initiated by

signals from the control net. Get_Pallet is carried out when transitions ts , t8 , and t10

fire, and Put_Pallet will be carried out when transition t20 fires.

Brief descriptions of the remaining subsystems are provided in this section. Subnets

describing the operation of the pallet manipulator can be found in Appendix 2. This

6-16

Chapter 6 - Application of the Control Structure

can be compared with nets used to control the system before the application of the

design process of Chapter 5, which are presented in Appendix 1.

6.8.2 The loading bay subsystem

The loading bay contains the pallet and block storage units where supplies of pallets

and block raw materials are stored. On request a pallet is placed onto the loading

area from the store, which is then ready for loading. Also on request a block may be

placed onto a pallet that is in position on the loading area. The loading bay therefore

has two tasks, namely Get_Pallet and Get_Block.

6.8.3 The cylinder storage subsystem

This subsystems deals with the storage of cylindrical raw materials and the

transportation of those raw materials to the pallet. This subsystem may have been

split into two, the cylinder store and the Raw materials manipulator. However it was

decided that this would give no added advantage to the operation of the system and

would increase the complexity of the control software. In order to gain the fastest

possible throughput of the raw materials station the further division of the system

might be necessary - but this is not a significant factor in the requirements of the

current development. The Cylinder storage subsystem has three possible

operations, Get_Cylinder1, Get_Cylinder2 and Put_Cylinder.

6.9 Designing the Output Nets

The raw materials station has 15 pneumatic cylinders in all - each of which is

actuated by a solenoid. The state of each solenoid is described by an output net

which contains two possible states - On, or Off. Output net examples are also

shown in Appendix 2. It should be noted that there is no direct feedback from the

solenoids to their Petri net description as there are no sensors to perform such a

6-17

Chapter 6 - Application of the Control Structure

task. The only feedback that the controller has from these devices is gained when

their associated actuator meets one of its limit switches. Only then does the

controller have any indication that the solenoid has responded as required by the

control software. However if the actuator was to fail in reaching a limit switch, then

there is no way of determining whether this is due to a solenoid fault, an actuator

fault, or a limit switch fault. It is also possible that a controller error has caused the

failure of the solenoid to actuate. Such faults may be detected using the process

described in Chapter 8.

6.10 Software Design for a Manufacturing Cell

In the same way that a workstation such as the raw materials station can be broken

down into subsystems and the software designed independently of the rest of the

manufacturing system, so can a system be broken down into a number of stations.

The control structure for a manufacturing cell may appear as that shown in Figure

6.13.

In Figure 6.13 each of the machines A, B and C could be described with a control

structure such as that shown for the raw materials station in Figure 6.3.

Requests J;;jf
for Actions <-- 4

c
Cell Control Net k»

r i

>
Machine

A

(
' !'

>
Machine

B

f ^
Machine

C

Cell
Safety

Net

,.. Cell Safety
*-- Related
*" Inputs

Figure 6.13 Control structure for a manufacturing cell.

6-18

Chapter 6 - Application of the Control Structure

One of the major advantages of the approach used in this work for controller design

is that it doesn't rely on a purely Petri net approach to controller design. Other types

of controller may be found in manufacturing systems whose control languages are

not suitable for direct translation into a Petri net. An example would be a CNC

machine tool. The sequence of events that occur in CNC operation can still be

modelled as a Petri net but even this is not necessary for the control structure to be

used.

The Petri net structure has been successfully applied to a manufacturing cell

consisting of two industrial CNC machine tools and a robot, which is used to load the

machines. The overall cell is supervised by a PLC. The layout of the cell is shown in

Figure 6.14.

6.10.1 Development of the manufacturing cell control code

The code for the PLC, which sits at the top of the controller hierarchy, was developed

using the Petri net structure described earlier in this work. The method used was

less formal than that developed and presented in Chapter 5 and used for the raw

materials station example in this chapter. The main point of interest for the

manufacturing cell was the fact that it had a number of different controllers which all

needed to be integrated before the cell could be automated. The controllers included

were:

• Two CNC controllers (one for each machine tool)

• A robot controller

• A PLC, which was to co-ordinate the activities of the whole cell.

6-19

Chapter 6 - Application of the Control Structure

Controller

1...

CNC
MILL

.................//
1 2

CNC
LATHE

^-^
...../ i.......

Controller

...........I

Slider Robot
Raw

materials
buffers

Assembly
buffer

PLC

Figure 6.14 Layout of the Manufacturing Cell

6.10.2 Designing the cell control net

The cell control net was designed and implemented on the PLC using the Petri net

structure described in Chapter 2 and the implementation method as described in

Chapter 7. One of the advantages of the structured Petri net approach was that the

code could be written and tested on a PLC that was completely unconnected to the

Manufacturing Cell. In fact the code was written and tested at a completely different

location.

6.10.3 Designing the robot control net

The part of the system with the most complex task was the robot. This was used to

remove raw materials from the input buffers and assemble a finished product at the

output buffer. The control language for the robot is very similar to BASIC, and is

therefore unable to represent the Petri net structure directly. However, the Petri net

could still be used for the design, with each subnet being implemented as a

subroutine.

6-20

Chapter 6 - Application of the Control Structure

Again the code for the robot controller could be tested before being implemented on

the real system.

6.10.4 CMC control code

The CNC control code was developed by another individual during the same time as

the robot code and PLC code were being developed. Again this was made possible

by the Petri net method, since all communications were described early on in the

development process. Again this software was tested in isolation to the rest of the

system software before putting it all together.

6.10.5 Implementation

The software was implemented in stages, with the PLC code and the Robot code

being installed and tested together first. The signals from the CNC machines were

simulated by forcing the inputs to the PLC. The only problems encountered at this

stage were that the robot needed to be moved to a number of intermediate positions

due to space limitations during certain operations, such as inserting raw materials

into the CNC mill. It was a relatively simple exercise to implement these omissions,

and it required no extensive rework of either the PLC code or the robot code.

6.10.6 Further developments and enhancements

The owners of the machine cell wish to develop the system further by adding

additional stations. In particular they wish to add a visual inspection station, which

examines the machined parts before assembly, and either accepts of reject them.

At present the system will only produce one product at a time, due to the physical

layout of the system. It would be desirable for the system to be able to produce a

number of parts in the fastest possible time.

6-21

Chapter 6 - Application of the Control Structure

There is also the desire to have the option of different programs and part types being

developed.

6.11 Further Developments for the Control Structure

6.11.1 Shop floor controller

In the same way that separate machines have been grouped into a manufacturing

cell, such cells along with other standalone machines can be grouped into complete

flexible manufacturing systems. An example of such a system is shown in Figure

6.15 and more details of its possible development are given in (Stanton and Arnold,

1997).

Buffers

Figure 6.15 Example of a Conveyor System

Developing control code for such a complex system would be a challenge to the

software development method proposed here. At present control of such a system

would depend on clear specification of the desired sequences of operation.

However, for the system to be truly flexible it would be desirable for previously

unused sequences and processes to be used, perhaps for a single batch of products.

6-22

Chapter 6 - Application of the Control Structure

There is a similar need in the case of the manufacturing cell discussed in section

6.10.

There is also debate as to whether the control structure should have a hierarchical

architecture, as described for the raw materials station, or a distributed architecture.

Another advantage of the modular approach used in this work is that the modules

can be used either in a hierarchical architecture or a distributed architecture. The key

is in defining the communications between modules. Taking the raw materials

station as an example, it does not matter where the requests for actions originate,

they will all be treated in exactly the same way. Therefore a particular raw material

can be requested by a supervisory controller, a manual request from an operator, or

by another system workstation, such as a CNC machine tool. The internal working of

the raw materials station will not need to be modified in any way to allow such a

variety of requests.

6.11.2 Computer Integrated Manufacture

MIS

/-N

/<

w

It
FMS

•f > t ' k

V

Control Net

It It
RMS AS/RS

<> * - <> * '

i i
Scheduler

t

k

It
CONV.

0 * '
I

T

L

4—*

4 ——

Safety
Net

Figure 6.16 Proposed architecture for Computer Integrated Manufacture

6-23

Chapter 6 - Application of the Control Structure

The structure described in the preceding sections can be expanded further to include

other functions often found in Computer Integrated Manufacturing (CIM). These

include Manufacturing Information Systems, Scheduling software, and fault

monitoring and diagnosis. A possible architecture for CIM is shown in Figure 6.16.

6.12 Chapter Summary

This chapter has presented a manufacturing example of the application of the design

method described in Chapter 5. The raw materials station used to provide the

example has been used during the development of the control structure and for the

implementation methods described in Chapter 7. The Petri nets used to control the

station are shown in the Appendices, and represent a number of different stages of

development for the design method, culminating in the method presented in Chapter

5. Compared to other more formal approaches, the method presented here may lack

some formal proofs of certain properties, such as liveness and boundedness - but

with all the examples used so far, the preservation of such properties can be seen by

examining the nets.

By far the greatest advantage of this method is its clear design process that is closely

linked to the actual manufacturing process at an early stage. Coupled with the

modularity of the Petri nets used this forms a firm basis for a more formal analysis of

the nets, which may be hidden from the engineer designing the system. The later

parts of the chapter show where the future of the method lies, such as in the

development of more complex and flexible manufacturing controllers that provide

more challenges as far as formal Petri net properties are concerned.

6-24

Chapter 6 - Application of the Control Structure

6.13 References

Stanton, M. J. and Arnold, W. F., 1997, "Extension of structured Petri nets for the

control of a conveyor system." In Proc. Factory 2000, Cambridge, England.

6-25

Chapter 7 - Implementation

Chapter 7

Implementation

If Petri nets are to be used as controllers for the systems they model then an

accurate method of implementation is vital. Also, in order to perform any analysis on

even relatively small Petri nets they must be implemented on a computer. It is the

ability to implement a Petri net on a number of different types of computer in a variety

of different ways that enables the integration of separate systems into a single

integrated manufacturing system. If Petri nets can be used for such integration then

they may form the basis of the common distributed control language proposed in

(Naylor and Volz, 1987).

A method of implementing Petri nets on a PLC has been discussed in Chapter 2.

When this method was applied to the control of a relatively complex manufacturing

workstation, problems arose which warranted a re-evaluation of the implementation

method.

This chapter examines the earlier implementation method and looks at some

alternative approaches, and their behaviour when running on a PLC. It also looks at

how Petri net implementation has been dealt with on a robot controller, which uses a

high level control language similar to BASIC, and then finally describes an

implementation of a Petri net on a relational database.

7.1 Interpretation and Implementation

A Petri net is a theoretical structure exhibiting a high degree of parallelism in the form

of transition firings and token movements. Implementation of such a structure

requires translation into the programming language of the controlling device, which

7-1

Chapter 7 - Implementation

will usually be a sequential machine and will therefore not explicitly represent the

parallelism in the net structure. Translation of the mathematical net structure is

therefore a form of interpretation. This interpretation may be performed at different

levels. For example, a low-level interpretation might attempt to implement the places

and transitions of a net as a data structure, whereas a higher level interpretation

might implement transitions or places as subroutines, with no explicit representation

of the Petri net structure.

Interpretation is also related to the level of abstraction at which a system is

described. Higher levels of abstraction deal with interpretations such as 'get pallet' or

'Move robot to lathe', whilst lower levels of abstraction deal with interpretations such

as 'Switch on' or 'activate solenoid'. Interpretation in this sense was discussed in

Chapter 4.

7.2 Methods of Implementation

Petri nets are generally implemented in one of two ways, both of which have been

employed during the course of this work. One method is that of the 'token player',

and the other is the implementation of the net in the form of a structured program

such that the flow of events in the net is emulated by the logical structure of the

program. Many authors concentrate on the implementation of Petri nets using high

level languages. In (Colom et al, 1986) centralised, decentralised and hybrid

schemes are presented for the implementation of Petri nets in ADA, or other similar

concurrent programming languages, whereas in (Taubner, 1988) the chosen

language is Occam.

In (Venkatesh et al, 1994) a comparison in made between Petri nets and ladder logic

diagrams for sequence control in manufacturing systems. Such a comparison was

based on the complexity of the ladder logic program compared with that of the Petri

7-2

Chapter 7 - Implementation

net. The main complexity measure was taken as the number of nodes in the

graphical representation of the programs (places and transitions in the case of the

Petri net, and coils and relays in the case of the ladder logic program). However, the

ladder logic program is directly implemented whereas the Petri net must first be

converted into some form of executable code. In fairness the comparison should

have included some aspect of the implementation as well as taking the arcs into

account for measuring the graphical complexity of a Petri net. The implementation of

Petri nets in ladder logic is discussed in more detail in section 7.3.

A Petri net controller which operates mainly with a software interface (not directly

interacting with the hardware signals) was proposed in (Crockett et al, 1987) and the

work was extended to the use of coloured Petri nets in (Kasturia et al, 1988). This is

another example of a system that relies on a complex general-purpose computer to

act as a controller. The implementations described in this work concentrate on those

controllers commonly found in automated manufacturing systems (e.g. PLC's, robot

controllers, CNC). The languages in which the programs for these controllers are

written do not contain the expressive power of high level languages, and it is

therefore impractical to use such complex formalisms as coloured Petri nets for

sequence control. Implementation methods can be divided into two classes, either

employing the 'token player' or the structured program approach.

7.2.1 The Token Player'

The 'token player' is a program that uses data structures to represent the Petri net

and its dynamic behaviour. An algorithm is used which carries out the firing of

transitions according to the distribution of tokens amongst places (Taubner, 1988).

In (Silva and Velilla, 1982) a number of implementation techniques are compared all

of which are token players. Some of these implementations use matrices as the

7-3

Chapter 7 - Implementation

fundamental data structure, others use lists. For control purposes these are usually

augmented with some mechanism for communicating the state of the net with the

outside world.

7.2.2 Structured program approach

The structured program approach uses the Petri net model to describe the structure

of the overall program, but the actual behaviour of the net is not implemented.

Instead each action represented in the net is described by a procedure or function,

which must be completed before those following in the net can be started. This

method uses the Petri net as a control flow-charting tool rather than implementing a

data structure. Therefore the structured program approach is likely to result in more

compact control code.

The token player allows both the structure and the dynamic behaviour of the Petri net

to be analysed. Once the behaviour of the program has been verified, it may then be

implemented as a set of subroutines. Thus the two approaches can be used to

complement each other.

7.3 Implementation on a PLC

When implementing a net on a PLC the token player method has been favoured.

The token player works by scanning the transitions in the net to determine which are

enabled. On a general-purpose controller, such as a personal computer, this scan is

implemented as a software loop. A programmable logic controller operates by

scanning its inputs, and solving the logic program in a cyclic manner. It is therefore

unnecessary to implement this scan as a software loop because it occurs during the

normal operation of the PLC.

7-4

Chapter 7 - Implementation

The main choice to be made when implementing a Petri net on a PLC (in particular

as a Ladder Logic Program) is how to represent the Petri net elements (places,

transitions and arcs). In the implementation method of Chapter 2, places were

implemented as output coils and transitions were implemented as the logical

combination of their input places. This method was favoured over others in the

literature (e.g. (Satoh et al, 1992)) as it produced a relatively compact program and

facilitated simple manual fault diagnosis. One of the distinguishing features of this

implementation method was the absence of any properties or logic associated with

transitions other than that represented by their input places (this is not the case with

Grafcet or Sequence Function Charts (David and Alia, 1992)).

The types of controllers present in modern manufacturing systems are relatively

simple sequential devices (such as programmable logic controllers, CMC controllers,

robot controllers) which are in many cases designed specifically for the machine to

which they are attached. General-purpose controllers include PLC's and

Microcomputers and are applicable to a variety of applications. Due to their

popularity the work here has concentrated its efforts on implementing controllers on

PLC's. There are a number of requirements for an implementation when using such

controllers.

1. The control code must be as small as possible.

There is usually a limit to the scan time of a PLC and thus there is a maximum

length of the control program. Small memory sizes of many PLC's also limit the

size of program that can be implemented.

2. The implementation must be an accurate representation of the Petri net

Any inaccuracies in the conversion from Petri net to controller code will invalidate

the use of Petri nets as a specification tool. If the behaviour of the net is to be

7-5

Chapter 7 - Implementation

taken as the desired behaviour of the controller then the behaviour of the

theoretical net must be matched by the implementation.

If the controller cannot be programmed to behave in the same manner as the net

then an approximation must be used. This raises the issue of how correct an

implementation needs to be.

If either of these two factors is unachievable for a particular controller then the Petri

net still finds some application as a design tool. In such a case the net can be used

to provide the general structure of a program and to identify its communication

channels with the other parts of the system. This was the case when using the net to

describe the control program for a robot controller (see Chapter 6) and also to

describe the communication between the PLC program and the CNC machine tools.

7.4 Representation of a Petri Net by Ladder Logic

The conversion of Petri nets to ladder logic has been dealt with previously in (Henry

and Webb, 1988), (Cutts and Rattigan, 1992), and (Satoh et al, 1992). A comparison

between the Petri nets and ladder logic programs was presented in (Venkatesh et al,

1994). More recently a method for representing timed and coloured Petri nets has

been proposed for implementation on a Siemens PLC (see (Uzam and Jones, 1996)

and (Jones and Uzam 1996)). This method relies heavily on function blocks that are

specific to Siemens PLC's and therefore the method is not sufficiently general. The

approach presented in Chapter 2 is similar to that used by (Henry, R. M. and Webb,

M., (1988)) and was originally adopted as it preserves both the structure and the

diagnostic capability of the Petri net.

7-6

Chapter 7 - Implementation

7.4.1 Implementation using Ladder Logic

In (Stanton et al, 1996) a method is proposed for implementing Petri nets as a ladder

logic program which gives no explicit representation for transitions. Instead all

transitions are implicitly represented by their sets of input places. This representation

is favoured because:

• The size of the program is dramatically reduced.

• The program becomes less complex for the purposes of fault diagnosis.

The implementation is expressed in Boolean algebra using Rule 7.1 and Rule 7.2.

Rule 7.1

A place, p, is marked if any of its input transitions, tin, are enabled or it is

marked and none of its output transitions, tout, are enabled.

where:

(1)

T — it v t V t }
OUl \ OUt] OUt 2 " • • • mtn 1

Rule 7.2

A transition, t, is enabled if all of its input places, pin, are marked

(2)

where:

7-7

Chapter 7 - Implementation

Since all transitions are expressed in terms of their input places (equation (2)), there

is no need for their explicit representation in the ladder logic program. The above

rules can therefore be expressed in terms of places:

(3)

7.5 The Need for a New Approach

Analysis of these equations reveals a major assumption of this approach. The

assumption is that all of the output places of any one transition will never become

marked except by the firing of that transition. This method is therefore only valid if it

can be shown that such a condition will always hold for the system modelled. If this

can be shown, then there is a structural property of the nets that may be used to

define the class of nets.

An example is shown in Figure 7.1 and Figure 7.2 where equation (3) is used as the

firing rule for the implemented Petri net.

In Figure 7.1 only transition t2 is enabled. When transition t2 fires it removes the

token from place p3 (its input place). However, it also removes the token from place

p 1 because the token appearing in place p4 is the only output place of transition tv

Figure 7.1 Example net before the firing of transition t2

7-8

Chapter 7 - Implementation

Figure 7.2 Example net after the firing of transition t2

In the definition of a decision free Petri net as used here, there is only one possible

path through a net from any single initial transition. At any point during the course of

a path's execution, the only enabled transitions will be those that belong to that path.

However, each path is not necessarily disjoint. Therefore each complete set of

output places from each transition in the path may not be marked by only their

preceding transitions within the path.

7.5.1 Defining a 'correct' implementation

The implementation can be viewed as being correct if the sequence of Petri net

markings is matched by the sequence of implementation markings. For a more

'correct' representation of the net in Ladder Logic, it is necessary to represent both

Places and Transitions in the program. If a flag is used to represent a transition, then

when that flag is set the transition is enabled, and when the flag is reset it is disabled.

If a flag is used to represent a place then when the flag is set, the place is marked

(we assume a safe Petri net) and when the flag is reset, the place is unmarked.

This notion of correctness is different from that of functional correctness, where the

behaviour of the implementation may not match exactly the behaviour of the net, but

the external behaviour of the system matches that required by the system

specification. The notion of a correct implementation has been discussed in

7-9

Chapter 7 - Implementation

(Agerwala and Flynn, 1973) where the behaviour of the 'interpreted' Petri net

implementation is used, rather than the 'standard' Petri net definition, to verify the

correct behaviour of system.

There are two sides to the issue of correctness. One deals with the correctness of

an implementation, which must match as closely as possible the mathematical

behaviour of the Petri net. The other deals with adequate implementations and how

they cause the system to behave according to its specification. The Petri net

implementations used here are not correct in the first sense but need to be proven to

be correct in the second sense. Therefore the criteria used for testing each

implementation is whether or not the machine being controlled operates correctly to

its specification. If the implementation doesn't work in exactly the same way as the

Petri net would, but the end effect of its operation is the same as that which the Petri

net would produce, then functionally there is no error. The machine is performing to

its required specification, whether or not the Implementation of the Petri net is

'correct'. Surely, then, the two implementations (that of the theoretical Petri net and

that of the Ladder Logic program) are equivalent under the circumstances in which

the machine is to operate.

7.6 Testing the Implementation Methods

An example Petri net has been used to test the differences between the various

ladder logic implementations of Petri nets that are described in this chapter. The

tests were used to observe the behaviour of the PLC when running ladder logic to

check whether the order in which the logic is solved has a significant effect on the

behaviour of the program, and hence the Petri net implementation.

Figure 7.3 shows a control net with a single action place (non-primitive place p3).

This is linked to the action's corresponding subnet, which comprises p5 , p6 , Pa, and

7-10

Chapter 7 - Implementation

pB . The control net and the subnet share places p4 and p7 . When transition \, fires,

the subnet is initialised and the control net is placed in its 'ready' state (represented

by place p2). Place p 10 represents an exogenous input from either another system, or

a control panel switch indicating that a request has been made to start the action of

place p3 . Place p8 represents a call to either a lower level subnet, or an output net.

Place p9 is a software link used to indicate that the action represented by the lower

level subnet has finished. It may also model the behaviour of a sensor, which would

be present if the subnet was connected to a hardware system, via an output net.

Figure 7.3 Sample net used to test implementation methods

Figure 7.4 shows the ladder logic program used to represent the Petri net of Figure

7.3. This program was written using the original implementation method as

described in Rules 7.1 and 7.2 and in section 7.4.1. In addition to allowing an

examination of the behaviour of various implementations, the experiment also

demonstrates how the Petri net can be tested before it is attached to the hardware.

7-11

Chapter 7 - Implementation

P1H/l —— i
-M —— I

H/l ——
pa p?

HHH
PS P3

HhH/h
pe

H/H
P2 Pl0

II II

II II

P3 P2

HH/H
P4 P3

II I /I
Ill/I

PS

H/h
pa p«
II II
II II
ps p2

HH/h

n

P2

P3

I "
P«

I "
Ps

————————— *

P2 p« peHHh ——————— ()-
P6 pa

II I/IJ

I I I/I

PI P7H/l —— . ——————— (}-
PS P9

HHh
p? pa

HH/H
pe p? pe
III HIII U
PB P7

I I I/I
I I I/I

PS

H/H
P9 p? PB

HhrH/h ————————— ()-
PSH/hJ

Figure 7.4 Ladder logic program for Petri net of Figure 7.3 using the original

implementation method

7.6.1 Results of applying this implementation method

When controlling a large system with this implementation method there seemed to be

some spurious generation of tokens during the operation of the system (the particular

system being controlled was the raw materials station described in Chapter 6). It

was initially believed that these additional tokens arose when there was no feedback

from the controlled sub-net (such as when the software initialisation stage was run).

Also there seemed to be a problem with the subnet/control net links where transitions

took more than one PLC cycle to complete firing.

7-12

Chapter 7 - Implementation

It can be seen from the ladder logic program, in Figure 7.4 that place p8 has been

programmed to lose its token at the same time as place pg, that is, when transition ts

has completed firing.

7.6.2 A more 'correct' implementation

A modified version of the implementation shown in Figure 7.4 was proposed in

(Stanton et al, 1996) as a solution to the problems of the original implementation

method. This time the actual firing of transitions was focused upon, since it was

believed that this was where the previous problems had arisen. The new

implementation method ensured that the subnet had started operation (and therefore

received its token) before the token appeared in its associated non-primitive place in

the control net. This implementation was considered to be more correct because it

followed accurately the interpretation of the non-primitive places which is as follows

(see also Chapter 2):

If a non-primitive place is marked then it indicates that its associated

subnet is in operation.

Therefore, if the distribution of tokens after a transition firing was to be spread over a

number of PLC cycles, then it should be ensured that this definition holds by causing

the subnet to receive its token before its associated non-primitive place. The ladder

logic program for the second method of implementation is shown in Figure 7.5.

The method of implementation shown in Figure 7.5 was used to develop a working

controller for the raw materials station described in Chapter 6. It was also used for

the development of the PLC code or the manufacturing cell, also described in

Chapter 6. These systems were tested and found to operate without error, thus

7-13

Chapter 7 - Implementation

proving that the method for control code design was satisfactory. However, a case

was discovered for which neither this method, nor the previous one, would work.

PI P2

I/I I I
I/I I I

P'HI ——
PI

-I/I ————

PS P?

HHh
P2 P3

II I 'I

I I I/I

P.

H/h
P2 PIO

II II
II II
P3 P2

HH/h
P2 P10

I I I
I I I
P4 P6

HH/h
Pa

H/H
PI-I/I —— i
P6 P9

HHh
PS PS

HhH/h
Pe

H/H

PS pi

Hh ————— (}-

P2

1 ———————————————————————————————————— (Y

p3

————————— ^
P4

1 ——————————————————————————————————————— ̂

PS

————————————————————————————————————— ()-

P4 PS

HHf
pa ps

HhH/h
p?

H/H
Pe p9

HHt
Pl P2

HH/f

HHh
PS P9

HH/h

PS

HhH/h
P7

H/h
plO P4

pa

ps

pio

Figure 7.5 Second ladder logic implementation of the Petri net of Figure 7.3

If place p9 were removed from the Petri net of Figure 7.3, the subnet would model the

situation that arises in an output net (i.e. there is no feedback place to prevent

transition t5 from firing immediately). This problem prompted a re-evaluation of the

logic for the Petri net implementation, and resulted in the findings shown earlier in

7-14

Chapter 7 - Implementation

section 7.5. In turn these findings resulted in a third implementation method which is

shown in Figure 7.6.

Pi-w
t,

P2

b

PS

-\\

PS

~\\

pe

-\t

-H-

ti

Hh
PI

1 1

H
H

L
H
H

^
n

/h
/h
/h
DiO

h

P4

/h

i
P4

PS

/h

/h

PS

P7

/h

PS

/H

t,

b

b

"

t4

(5

Pi

t,-i
b

H
P2

H b
H

P3

H
b

H PI
H t,\
H

PS

H
u

H
P6

H
ts

H p?
H

t4

H
pa

H
P9

H
pio

I

P2

I ———————————————————— (>

(2

H/H
P3

——————————————————————— ()- "

H/H
P*

——————————————————————— (> ''

H/H
PSI — I ————— (>

t4

H/H
PS————— (>*

H/H
p?

————————— (> *
H/H

pa

——————————————— ()-P^

H/H
ts PS

H/ ———————— (>•
b P'o

L i /i ri

Figure 7.6 Third ladder logic implementation of the Petri net of Figure 7.3

This implementation method includes transitions as well as places, using an output

coil to represent both. This is a similar approach to that adopted in (Satoh et al,

7-15

Chapter 7 - Implementation

1992), and suffers from the same problems as their implementation method (as

described in (Stanton et al, 1996)), namely the size of the control code generated.

This is a problem highlighted in (Ferrarini, 1994) where it is proposed that once the

Petri net has been converted into a suitable form for implementation, the code should

then be optimised. The requirement for more compact code has been expressed

throughout the discussion on implementation in this work and there is a trade-off

between compact, optimised code and readable code.

7.7 Testing the Implementations

The Petri net shown in Figure 7.3 was converted into ladder logic, which was run on

a Modicon 985-145 PLC. The PLC was run in single step mode, and therefore made

a single sweep of the logic program and then paused. This allowed the 'marking'

shown by the ladder logic implementations to be recorded for each sweep of the

PLC. The sequence of marking vectors for each implementation could then be

compared to that which one would expect from the Petri net were it able to run

autonomously. The sequence of marking vectors that would be obtained from the

autonomous Petri net is shown in Table 7.1.

1. m0

2. fireti

3- Pio*

4. firet2

5. firet,

6. p9*

7. firetj

8. firet3

Place Number

Pi
-

•

4

•

•

•

•
1 *•

Pz

-

•

+

-

-

-

-

+

P3

-

-

-

•

•

4

•

-

P4

-

-

-

•

-

-

-

-

Ps

-

+

+

+

-

-

+

•

Pe

-

-

-

-

+

•

-

-

P?

-

-

-

-

-

-

•

-

Ps

-

-

-

-

+

-

-

-

P9

-

-

-

-

-

*

-

-

PlO

-

-

•

-

-

-

-

-

Table 7.1 Distribution of tokens in a single cycle of the Petri net

7-16

Chapter 7 - Implementation

The '*' by places p9 and p 10 indicate that they are marked by exogenous inputs. It is

assumed that the token in place p8 is consumed by the time place pg receives a

token. This reflects the behaviour of a net running a real system where p8 would start

a task and its token would be removed before the task is complete, i.e. before pg

becomes marked. The marking m0 is the initial marking, and is always assumed to

be zero (or the vector whose elements are all zero).

Time is not represented explicitly in the net but it is clear that the net will wait an

arbitrary length of time for tokens to arrive in places p9 and p 10 . It should also be

noted that when t3 fires (row 8) the marking returns to the start of a repeatable

sequence. The marking of rows 2 and 8 can therefore be viewed as the 'home state'

of the system (Murata, 1989).

7.7.1 Experiment 1

The Petri net of Figure 7.3 was converted to ladder logic using the updated method

of (Stanton et al, 1996). The resulting ladder logic program is that shown in Figure

7.5. Again only the places are explicitly represented and the order in which they

appear in the ladder logic program is related to their order in the Petri net. This

ordering of places within the Ladder (and also the net) is representative of the flow of

events in the system over time.

The marking vectors, recorded at each sweep of the PLC, are shown in Table 7.2

below. The state of the system after sweep no. 2 is the ready state of the system

and it is assumed that once the program returns to this state, no further new states

will be entered. The test therefore represents a single cycle of the control net of

Figure 7.3.

7-17

Chapter 7 - Implementation

Sweep

1.
2.

3.

4.

5.

6.

7.

8.

9.

10.

Pi

•

•

•

•

•

•

•

•

•

P2

•

•

•

•

•

•

P3

•

•

•

•

•

Pi

•

Place Number

Ps
•
•
•
•
•

•
•

Ps

•
•
•
•
•

P7

•

Ps

•

•

•

P9

•

•

Table 7.2 Distribution of tokens for the first implementation

Sweep
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

Place Number
Pi

A

A
A

A

A

A
A

A
A

P2

A

A

A

A

A

A

P3

A

A

A

A

A

P4

A

Ps
A

A

A

A

A

A

A

Ps

A

A

A

A

P7

A

Ps

A

A

A

A

P9

A

Pio

A

Table 7.3 Distribution of tokens for the second implementation

Sweep

1.
2.

3.

4.

5.

6.

7.

8.

9.

10.

Place Number

Pi
•
•
•
•
•
•
•

•
•
•

P2

•

•

•

•

•

P3

•

•

•

•

•

P«

•

Ps

•

•

•

•

•

•

•

Ps

•
•
•

p?

•

Ps

•
•
•

P9

•

Pio

•

Table 7.4 Distribution of tokens for the third implementation

7-18

Chapter 7 - Implementation

The state of the PLC after the second sweep is that of the home state identified in the

autonomous net. It can be seen that there is now an intermediate state before the

home state is reached.

7.7.2 Experiment 2

Experiment 2 was used to examine the relationship between the marking produced

by the ladder logic implementation of the Petri net and the position in which the

places are written in the logic program.

The program used for the experiment was the same as that in Figure 7.5, except that

place p7 was shifted to an earlier position in the logic program. This shift represented

the inclusion of place p7 as part of the control net rather than the sub-net as in the

previous example. The resulting markings were observed and are presented in

Table 7.3.

By comparing Table 7.3 with Table 7.2, it can be seen that by moving a single place

to a different position in the ladder logic program, a different set of markings will be

obtained. This has implications for deciding which of the control/feedback places

belong to which nets in the control structure.

7.7.3 Experiment 3

In this experiment a different implementation method was adopted. As a result of the

analysis of the logical behaviour of the Petri net, it was decided that to truly represent

the dynamic behaviour of the net, both places and transitions would have to be

represented. The resulting program for the Petri net of Figure 7.3 is shown in Figure

7.6. Here place p7 is returned to its original position and the logic for places and

transitions are grouped. This was done to reduce difficulties in finding the rung for

individual places.

7-19

Chapter 7 - Implementation

The resulting markings for the net were observed as shown in Table 7.4. The

experiment was repeated with place p7 moved to an earlier position in the net and the

resulting markings were found to be unchanged.

7.8 Comparing the Results

The markings generated in the three experiments can be compared with each other

and with the desired behaviour of the system, which is represented by the

autonomous behaviour of the Petri net (see Table 7.1 on page 7-16).

A method developed to provide a graphical comparison is shown in Figure 7.7. The

graph is generated by assigning a numerical value to each system state. Since the

places may contain, at most, one token, the total state of the system can be

represented by a binary value, which in turn can be converted into its decimal

equivalent. Each separate state of the system will therefore have a unique value,

which can be represented on the y-axis of a graph.

The initial observations show that all the implementations lag behind the desired

behaviour, with the closest being the implementation of experiment 3. This is

because a single transition takes a number of PLC sweeps to complete firing.

Another consequence of this is that there are intermediate states generated by most

of the implementations. These intermediate states will be influenced by the order in

which the places appear in the rungs of the ladder logic program, hence the

difference between the implementations of experiments 1 and 2, which used the

same implementation method but with different a rung position for place p7 .

Experiment three is considered to be the closest to the desired behaviour having two

intermediate states, which do not appear in the desired behaviour. The first occurs

during the firing of the power-up transition t1? and is the result of the number of

7-20

Chapter 7 - Implementation

sweeps taken by the firing of transition ^ The second occurs whilst waiting for the

simulated 'hardware place', pg to become marked. The marking of place pg and the

removal of the token from p8 were considered to be simultaneous in the autonomous

Petri net, but this behaviour was not possible in any of the implementations.

The graph also shows that experiments one and two contain states that do not

appear anywhere in the desired behaviour, and omit some of the desired states. It

was initially assumed, when using these implementation methods, that all the desired

states would eventually be achieved despite the presence of some intermediate

states. This is clearly not the case.

7-21

C
o

m
p

ar
in

g
 D

if
fe

re
n

t
Im

p
le

m
e
n

ta
ti

o
n

s

60
0

50
0

<D

40
°

"D co

30
0

i_ D 2

20
0

10
0

2
3
4
5
6

7
S

w
ee

p
N

um
be

r

sr
im

en
-

••
 -

10

Fi
gu

re
 7

.7

C
om

pa
ri

so
n

be
tw

ee
n

m
ar

ki
ng

s
of

 d
iff

er
en

t
im

pl
em

en
ta

tio
ns

7-
22

Chapter 7 - Implementation

7.9 Implementation in Higher Level Languages

Integrated manufacturing systems usually employ a variety of controllers, which must

communicate over some form of channel. The implementation of Petri nets on

programmable controllers in the form of ladder logic has been dealt with above.

They have also during the course of this work been implemented on a robot

controller, whose control language is similar to the BASIC programming language,

and as a 'token player' on a Relational Database using Structured Query Language

to effect the firing of transitions. These two implementations are discussed below.

7.9.1 Robot controller

The development of the manufacturing cell, described in Chapter 6, required the

integration of a number of different controllers. One of these was the controller for a

Mitsubishi Movemaster robot. The control language used by the robot is very similar

to the BASIC general purpose programming language, with respect to the control

structures provided. For example, the implementation of subroutines using GOSUB

and RETURN constructions.

In addition to these BASIC like features, the robot controller hides much of the

complexity associated with controlling multiple robot joints from the user by providing

commands such as MOVE, X which moves the arm to specified position X. The

position X must be defined previous to the command being issued by the use of a

handheld teach pendant.

Due to its simplicity, the control language is not able to describe complex data

structures and therefore it is not possible to implement a token player on such a

controller. Instead, the Petri net is used as a control flow diagram with a main routine

calling various subroutines, depending on the control signals received.

7-23

Chapter 7 - Implementation

This has been termed the structured program approach and it allows a uniform

design process to be carried out and is easily integrated with token player based

controllers.

7.9.2 Relational database

As part of the development work on the fault monitoring system (Chapter 8), there

was a requirement to implement a Petri net that would communicate with software

running on a Personal Computer running Microsoft Windows. As an experiment a

relational database system was used for the following reasons.

• To investigate the possibility of setting up a database to represent Petri net

elements as a group of relations.

• To develop an application quickly that could respond to signals from a PLC

The first of the above was achieved by creating a relation for each of the four main

elements of the net as follows:

• Places - Describing each place in the net and its marking

• Transitions - describing each transition in the net

• Input Arcs - describing the arcs from places to transitions

• Output Arcs - describing the arcs from transitions to places

The dynamic behaviour of the net is implemented by executing a series of SQL

queries, which run Algorithm 7.1.

This algorithm assumes that there will be at most a single arc between a particular

place and transition. It may be generalised by providing a weighting to each arc, and

7-24

Chapter 7 - Implementation

this would require modifications to the queries that test for enabled transitions and

remove and update the tokens in input and output places.

Algorithm 7.1

1. Find all the marked Places

2. Test the transitions linked to them to see which are enabled

3. Set the enabled field in those transitions that are enabled

4. Add tokens to all the output places of those transitions that are enabled

5. Remove a token from all the input places of the enabled transitions

6. Reset the enabled field for all transitions

This implementation is a version of the token player as there is a direct

representation of the net and its dynamic behaviour. The use of a relational

database to implement Petri nets opens up new avenues for the development of

automated manufacturing control software. It is envisaged that this will be a useful

tool for the further development of the design approach described in this work, as it

should be possible to automatically generate the net from sequence specifications if

they are used to create the net as a set of tables. There is further work to be carried

out in this area and this is described in more detail in Chapter 9.

The ability to implement a Petri net in a relational database highlights the relationship

between Petri nets and relational databases. This relationship is seen as a valuable

topic for future research.

7.10 Chapter Summary

This chapter has discussed the work carried out on the implementation of structured

Petri nets on a number of controllers. In particular the implementation on PLC's has

7-25

Chapter 7 - Implementation

been considered because of their wide usage for sequence control in manufacturing

systems. A number of implementations methods have been proposed in the

literature but these have either been implemented in high level languages, or have

not taken into consideration the differences in behaviour between a Petri net and its

implementation. The results presented show that there are differences in behaviour

with only slight changes in the implementation, and point to the implementation

incorporating places and transitions as being the most accurate method. One reason

for this is that, unlike the others shown, the implementation may be forced to contain

all the states present in the desired system behaviour.

Another issue considered here has been the size of the code generated. This will be

larger for the implementation with places and transitions than it would for those

containing just places. However it may be possible to use the earlier

implementations as a basis for a reduced Petri net representation which may be

applicable in certain cases. The structured program approach to implementation is

also a means of reducing the size of a program.

The chapter ends with a description of a new implementation using a relational

database to describe the Petri net structure and a set of SQL queries to execute the

dynamic behaviour of the net. This implementation may prove useful for the rapid

development of Petri net controllers and, through a well designed user interface, may

facilitate the automatic generation of the net structure from the process plans and

criteria input by the user.

7.11 References

Agerwala, T. and Flynn, M., 1973, "Comments on capabilities, limitations and

'correctness' of Petri nets." In Proc. 1 st ACM Annual Symposium on

Computer Architecture, New York, USA, pp. 81-90.

7-26

Chapter 7 - Implementation

Colom, J. M., Silva, M., and Villarroel, J. L, 1986, "On software implementation of

Petri nets and coloured Petri nets using high-level concurrent languages." In

Proc. 7th European Workshop on the Application and Theory of Petri Nets,

Oxford, UK, pp. 207-241.

Crockett, D., Desrochers, A. A., DiCesare, F., and Ward, T., 1987, "Implementation

of a Petri net controller for a machining workstation." In Proc. IEEE

International Conference on Robotics and Automation, Raleigh, NC, USA, pp.

1861-1867.

Cults, G. and Rattigan, S., 1992, "Using Petri nets to develop programs for PLC

systems." In LNCS 616, Proc. 13?h International Conference on the

Application and Theory of Petri Nets, Sheffield, UK, pp. 368-372.

David R. and Alia, H., 1992, Petri nets and Grafcet: Tools for modelling discrete

event systems. London, England: Prentice Hall.

Ferrarini, L., Maffezzoni, C., and Giua, A., 1994, "Design and implementation issues

in the control of Discrete Event Systems." In Proc. IEEE International

Conference on Industrial Electronics, Control and Instrumentation. Bologna,

Italy, pp. 1515-1520.

Henry, R. M. and Webb, M., 1988, "Ladder logic for sequence generation - A

methodology." Measurement and Control, 21, pp. 11 -13.

Jones, A. and Uzam, M., 1996, "Towards a unified method for converting coloured

Petri net controllers into ladder logic using TPL: Part 2 - An Application." In

Proc. IEE International Workshop on Discrete Event Systems, Edinburgh,

Scotland, UK, August, pp. 314-319.

7-27

Chapter 7 - Implementation

Kasturia, E., DiCesare, F., and Desrochers, A. A., 1988, "Real time control of

multilevel manufacturing systems using coloured Petri nets." In Proc. IEEE

International Conference on Robotics and Automation, Philadelphia, PA,

USA, pp. 1114-1119.

Murata, T., 1989, "Petri nets: Properties, analysis and applications." Proceedings of

the IEEE, 77, pp. 541-581.

Naylor, A. W. and Volz, R. A., 1987, "Design of integrated manufacturing control

software." IEEE Transactions on Systems, Man, and Cybernetics, SMC-17,

pp. 881-897.

Satoh, T., Oshima, H., Nose, K., and Kumagai, S., 1992, "Automatic generation

system of ladder list program by Petri net." In Proc. IEEE International

Workshop on Emerging Technologies and Factory Automation, pp. 128-133.

Silva, M. and Velilla, S., 1982, "Programmable logic controllers and Petri nets: A

comparative study." In Proc. IFAC Conference on Software for Computer

Control. Madrid, Spain, pp. 83-88.

Stanton, M. J., Arnold, W. F. and Buck, A. A., 1996, "Modelling and control of

manufacturing systems using Petri nets." In Proc. 13th IFAC World Congress,

San Francisco, USA, vol. J, pp. 324-329.

Taubner, D., 1988, "On the implementation of Petri nets." In: Rozenberg, G., ed.

Advances in Petri nets 1988 (Lecture Notes in Computer Science 340),

Berlin, Germany: Springer-Verlag, pp. 418-439.

Uzam, M. and Jones, A., 1996, "Towards a unified method for converting coloured

Petri net controllers into ladder logic using TPL: Part 1 - Methodology." In

7-28

Chapter 7 - Implementation

Proc. IEE International Workshop on Discrete Event Systems, Edinburgh,

Scotland, UK, pp. 178-183.

Venkatesh, K., Zhou, M. and Caudill, R. J., 1994, "Comparing Ladder Logic diagrams

and Petri nets for sequence controller design through a discrete

manufacturing system." IEEE Transactions on Industrial Electronics, 41, pp.

611-619.

7-29

Chapter 8 - Fault Monitoring

Chapter 8

Fault Monitoring

The Petri net modules discussed in Chapter 4, along with the control structure which

may be applied to them, provide the opportunity for a fault monitoring scheme that

will allow not only detection of faults in the machine hardware, but also any errors

that occur in the control software. The consistent use of Petri net elements to

represent both the modules and the communication between those modules, and for

representing both hardware and software communications, also allows for the

monitoring of those communications.

This chapter will initially provide definitions for several classes of system failure,

which will be based on the apparent source of the failure. It will then discuss the

main considerations to be taken into account in a fault monitoring system and then

finally describe some development work on the fault-monitoring scheme based on

Structured Petri nets and the control structure described in Chapter 4.

8.1 Faults and Failures

The words fault and failure are often used interchangeably. In (Lala, 1985) the

distinction between faults and failures in digital circuits is stated in as follows:

'A failure is said to have occurred in a circuit or system if it deviates from its

specified behaviour. A fault on the other hand is a physical defect which

may or may not cause a failure.'

A software failure occurs when the software is executing (Sommerville, 1996).

Software faults are programming or design errors that prevent the delivered program

from conforming to the system specification. They can also be specification or

8-1

Chapter 8 - Fault Monitoring

documentation errors. Software faults are discovered by either static testing or by

software failures occurring when the system is running.

In both of the above cases, faults can therefore be described as defects, either in

system hardware or system software, that may or may not result in a failure.

8.2 Hard and Soft Faults

The notion of hard and soft faults has also been considered. These are described as

follows:

Hard faults are considered to be those that prevent a system element from carrying

out its predefined action.

Soft faults are those that inhibit the action of system components but do not prevent

them from carrying out their predefined actions.

An example of a soft fault could be a dirty or worn actuator whose action is slowed

down by the fault. Such a soft fault does not prevent actuation but inhibits actuation

to a limited extent. Such a soft fault, if left untended, could eventually give rise to a

hard fault - e.g. the actuator ceases functioning altogether.

According to the definition of faults and failures given in section 8.1, a fault may or

may not cause a system to fail. Thus a hard fault is one which causes the system to

fail. A soft fault on the other hand may not actually cause the system to fail unless,

referring to the earlier example, there is a specified time limit for actuation. In this

case the fault has again caused a failure, as the system is unable to perform

according to its specification.

The distinction between hard and soft faults is therefore dependent on the degree to

which the performance of a system has been specified. It is a useful distinction since

8-2

Chapter 8 - Fault Monitoring

the detection of a soft fault may indicate the potential failure of a device before its

actual occurrence.

8.3 Classifying Failures

The common failures occurring in manufacturing systems can be grouped into three

main classes:

• Hardware failures

• Software failures

• Product failures

It will be seen that there is some interdependence between these classes, which

causes difficulties in their diagnosis.

8.3.1 Hardware failures

Hardware failures exhibit themselves as failures in the manufacturing system

hardware. There are a number of potential causes of hardware failures and these

are categorised as follows:

Sensor fault

A sensor is damaged in some way preventing it from carrying out its required task.

The sensor may have failed completely and thus have a 'stuck at' type fault (either

stuck on or stuck off) or, in the case of more complex sensors, may be giving an

erroneous output.

Actuator fault

An actuator is damaged in some way preventing it either from acting at all, or from

acting within a prescribed period of time. Again the actuator fault could be described

as a 'stuck at' fault if it is either permanently actuated or permanently not actuated.

Alternatively there may be a gradual degradation of actuator performance caused by

8-3

Chapter 8 - Fault Monitoring

wear or dirt, preventing actuation within the required period of time, as such the

actuator would be said to have a soft fault.

Software failure

As well as being a class of failures in their own right, software failures may be the

cause of an apparent hardware failure. If a failure occurs in the manufacturing

system software then this will only be recognised when the manufacturing hardware

fails to act in the expected manner. Thus any failure in the system software will

result in a hardware fault of some description. Software failures are described in

more detail in section 8.3.2.

Using purely sensory data, it is very difficult, and often impossible to distinguish

between any of these three types of fault.

8.3.2 Software failures

A software failure results from a fault that exhibits itself in the system control

software. Software failures arise due to the complexity of most modern software, and

are caused by faults in various stages of software development. These are

described as follows:

Design fault

A design fault occurs when the software design does not properly conform to the

specification. Deadlock or overflow may occur in manufacturing systems using

shared resources if there are errors in the design of the control code. Deadlocks and

overflows would, of course, not form part of the specification, although it may be

assumed by a specification that these would not be desirable and therefore

overlooked during the design. This would then be a specification error.

8-4

Chapter 8 - Fault Monitoring

A design error in manufacturing control software will often exhibit itself as a system or

component failure. For example an actuator may not actuate at the correct time, or

the system may not initialise.

Implementation fault

An implementation fault occurs when there is an error translating the system design

into control code. An error made during implementation of the control software

results in an apparent system or component failure. Such implementation errors will

be common when using languages such as ladder logic where there is no static

testing software available and where the syntax is limited and the symbols used in

that syntax are very similar.

Controller failure

A controller failure occurs when part of the controller hardware, such as the

microprocessor, or memory, fails. This could result in the control unit failing

altogether, or will result in the corruption of software or data. With industrial

programmable logic controllers the design is robust and such failures will rarely be

allowed to propagate down to the working manufacturing system. However with the

increasing interest in Personal Computers as general-purpose controllers this will

become more of an issue. If a controller fails it will adversely affect the control

software, which will result in an apparent system or component failure in the

manufacturing system under control.

Network failure

A network failure is the result of an error in the communication of data between

different controllers. When the data/computer network in place in the manufacturing

system fails or produces errors, the result is a data error. Such a data error could

result in an apparent software fault, which again will exhibit itself as a hardware

8-5

Chapter 8 - Fault Monitoring

failure. A more general case is described in (Adlemo and Andreasson, 1993) which

may be classed as communication failures rather than network failures. These point

to failures in the data network and the materials network of the system.

8.3.3 Product faults

A product fault exhibits itself in the actual product being manufactured. Such a fault

could be caused by low quality in materials/components, but may also be caused by

a hardware fault in the manufacturing system. (Hardy et al, 1989) discuss a class of

faults called task faults, which are the same as product faults. These task faults

include problems such as the arrival of a faulty component or a component being

dropped.

One class of product faults is that of product quality. If the product quality at some

stage is not to the specified standard (assuming that there is some specified

standard of quality in the product specification) then, although a fully functioning

product has been produced, there is still a fault that effects the quality of the product.

This would be regarded as a soft fault in the definitions given above.

8.3.4 The need to reduce software faults

The more complex the control software of the system the increased likelihood of a

software error in the design/implementation stage. Some of the design faults may be

detected if the system is run on a simulation, but this will not detect implementation

errors. The only way to prevent implementation errors in this case is to use the same

formalism/language for both simulation and control.

In general, all the software faults described above will exhibit themselves as

hardware or product faults. This can cause many failures in manufacturing systems

to be mistakenly diagnosed as hardware failures when in fact the software has

8-6

Chapter 8 - Fault Monitoring

caused them. This situation is hinted at in (Adlemo and Andreasson, 1995) but is not

expanded and there are currently no statistics indicating the level of misdiagnosis.

In order to diagnose faults in manufacturing systems more accurately, there must be

some means of distinguishing between the types of fault that have been described

thus far. The rest of this chapter looks at some considerations when carrying out

fault diagnosis and then goes on to describe a method of diagnosis based on the

Petri net controller design method described in Chapter 5.

8.4 Fault Prevention

There are a number of methods for preventing errors from being introduced into

software (see (Adlemo and Andreasson, 1995)). Some of these are detailed here

with reference to the Petri net method applied in this thesis.

8.4.1 Structured Programming

Structured programming languages are used in general software development

because they are written in some form of sequential manner that is easier to read

and therefore errors are more easily detected. Most sequential programming

languages incorporate a set of control structures that clearly indicate the flow of

control through the software. Structured programming encourages the use of

subroutines. These allow the control flow of the software to jump to other parts of the

program and return to the initial point once the subroutine has completed. Therefore

the use of constructs such as the GOTO statement in BASIC are discouraged

because they do not allow the return of the control flow to the point at which the jump

occurred. This causes the program to take the form of 'spaghetti code' which is

difficult to read and therefore to debug and maintain.

8-7

Chapter 8 - Fault Monitoring

Ladder Logic is a far from structured approach to software development, yet, some

form of logic programming is necessary in manufacturing systems to define the

sequences and conditions under which events can occur. The introduction of the

IEC1131 standard is intended to encourage a more structured approach to

manufacturing software design, using languages such as structured text (see (Juer

and Oliver, 1993)).

Chapter 7 described how the Petri net is implemented in Ladder Logic and described

the order in which the places are implemented within the Ladder logic program. By

structuring the program in this way, it is easy to follow the program and to locate a

section of code relating to a particular net. Therefore the problems of readability

have been greatly reduced.

8.4.2 Parallelism

Parallelism is one construct that is likely to introduce errors into system software

because of its complexity. Yet the use of parallel processes is an important aspect of

manufacturing systems. The use of a Petri net method can reduce the complexity of

parallel systems. It allows analysis of such systems and therefore may prevent many

of the complexities associated with such a construct.

8.4.3 Modularity

The structured approach presented here provides many of the advantages of

modular design. Each subsystem is described in terms of its interface with other

elements of the system and thus there is a well-defined means by which access is

granted to that subsystem. This prevents the multiple access of many resources in

the system and thus prevents many possible errors. The requirements for a modular

approach are described in (Meyer, 1988).

8-8

Chapter 8 - Fault Monitoring

8.5 Considerations for Monitoring

In (Holloway and Chand, 1994) a fault monitoring method is presented that will 'trace'

entities through the system. They present a list of requirements for such a system,

which has been used as a benchmark for the system described here. The list of

requirements they give is as follows:

• Low Processor requirements

• Easily distributed

• Applicable to modelled and observed behaviours (i.e. the system will run on real

and modelled systems)

• Functional under unknown start-up conditions and improper observations

• Suitable for highly concurrent systems

The example system used in (Chand. 1993) and (Holloway and Chand, 1994), looks

at a conveyor system with a number of elements moving along the conveyor in order.

Each element is given a time signature and is traced through a number of stages in

the manufacturing process. The authors concentrate on the ability to distribute the

control code for the monitoring system over a number of processors.

The requirement given for unknown start up conditions is necessary in the case of

conveyor systems because there may be occurrences during production of faults that

may not be immediately detectable using sensors. This would particularly be the

case where the quality of a product is the source of a failure.

8.5.1 Initial state

Where the hardware or software faults in a machine are being monitored, the initial

state of the machine must be known (in both hardware and control software terms).

8-9

Chapter 8 - Fault Monitoring

Many Petri net methods ignore the initial state of the system as an issue assuming

the state is known. However when controlling a real device, its initial state must be

set, for safety as well as operational purposes - and certainly with CNC machines

there are a variety of initial states that can be used depending on the particular job.

Using the Petri net method described in this thesis the initial state of the system can

be determined according to the sensory data available. The hardware and software

initialisation stages described in Chapter 6 are used specifically for this purpose. The

hardware initialisation stage checks the sensory data and if necessary actuates parts

of the system to ensure that any areas undetectable by sensors are clear. The

software initialisation stage sets any counters and timers and modules to their

required initial states.

Thus the initial state of the system is always known after power up since it has been

designed into the control logic (the initial state of the system is not known at power

up, but the system is placed into the required state before processing can start).

8.5.2 Timing information

Any method for fault monitoring must accurately characterise the behaviour of the

system, both in the sequencing of events and in the timing relationships between

events. Any discrepancy in the sequence of events will indicate the presence of a

hardware failure of some kind, or perhaps a controller failure. A discrepancy in

timing will indicate a less serious failure - perhaps a faulty but not failed actuator,

perhaps a sensor that has moved slightly, or perhaps a problem with the product

itself being not arriving when it is supposed to.

In fault monitoring a great deal of interest is placed on the timing characteristics of

system events.

8-10

Chapter 8 - Fault Monitoring

Timing becomes important initially when there are no sensors in place to detect an

event, for such cases it is common to insert a timer to indicate that such an event has

occurred. In fact even with a timer in place there is still a lack of information

concerning the event in question. When the controller receives a time-out, the only

real information conveyed is that the timer has timed out. There is no direct

information concerning the state of the system hardware. The potential danger of

such a use of timers is quite clear. Therefore, any timer used in place of a sensor

cannot be relied upon, certainly for safety reasons, but also for the purposes of fault

monitoring.

Where timing is useful for fault monitoring is in timing the actions of events and

making some comparison between the actual event time and the expected event

time. This will indicate the presence of wear or some other fault on an actuator or

sensor. Such timing information has also been used to indicate the loss of a product

during conveyance (Holloway and Chand, 1996).

The initial work on the fault monitoring scheme presented in the next section has

concentrated on sequence information in order to look at the initial feasibility of the

system.

8.6 A Fault Monitoring Architecture

H/W
Interlocks

Hardware I/O

Software I/O

Figure 8.1 Relationship between a manufacturing station and the elements

in its environment

8-11

Chapter 8 - Fault Monitoring

The work here is interested in detecting faults in manufacturing software and

preventing the effects of such faults from propagating through to the hardware and

the product. Software faults will originate in the controller for a variety of reasons

(see section 8.3.2). Figure 8.1 is a slightly modified version of that shown in Chapter

4 (Figure 4.8). It not only shows the controller and its immediate environment but

also details the environment of the hardware of the system. The lighter grey box

indicates the workstation, which consists of the safety subsystem (relating only to this

particular workstation) the controller, and the machine hardware (consisting of

actuators and sensors). Note that the product itself is not considered part of the

workstation, even though in some cases it may be a raw material that is stored in a

part of the machine hardware.

It can be seen from this figure that any error occurring in the controller may

propagate through the hardware to the product itself. It is therefore proposed that if a

software fault can be trapped before it has a chance to propagate then its effects on

the hardware and the product can be prevented, or at least reduced.

The top level design for such a fault monitoring architecture is described in Figure

8.2. The figure shows separate computers monitoring the control signals and the

feedback signals passing between the machine's hardware and its controller. These

tasks may in fact be carried out by a single device.

The logic behind the fault monitoring mechanism detailed in Figure 8.2 is as follows:

If the Petri net representation can be used as a specification for the working of the

manufacturing system then, providing the current state of the system is known, then

the next states or possible states are also known. Therefore the actual next state of

the system can be compared with the desired next state (which is taken from the

8-12

Chapter 8 - Fault Monitoring

specification) and any discrepancy between the two will indicate the presence of a

fault.

Error
Signals

-*•

Controller

Error
Signals

»\
Error

Message

1

<
Control Signals

Feedback Signals
Hardware

Error
"Message

Figure 8.2 Architecture of the proposed fault monitoring system

This is the standard approach (if there is any standard approach) for a 'state follower'

type fault monitoring system, as it simply compares the current state with the

expected state of the system. The point at which this arrangement differs is that it

not only monitors feedback in terms of the state of the system, but also monitors the

control sequences being sent to the system. Thus any errors caused by failures

within the controller (be they software or hardware) can be detected as they are sent

to the machinery that is under control. If they can be detected, then they can be

trapped and their propagation down through the manufacturing hardware to the

product can be prevented.

The ability to trap software error does not stop at the interface between the controller

and machine hardware. The modular structure of the software design and the use of

places as a communication medium between modules will allow errors to be trapped

8-13

Chapter 8 - Fault Monitoring

earlier on in the software process (at higher levels in the software hierarchy). Figure

8.3 shows, in a simplified form, the communication messages passing between

software modules in the control structure.

A software error in the control net will propagate down to the subnet level, which in

turn will propagate down to the output net level. It is from this level that the

communication signals are passed to the system hardware. Therefore when an error

occurs, the output net must first be analysed and then the subnet that controls the

output net (there may be a number of these) and then finally the control net must be

examined. If the error can be detected passing between the layers in the control

hierarchy, much time and effort can be saved in detecting and correcting the error.

Again, since the means of communication is the same in all cases, the monitoring of

individual software modules can be carried out in the same way if the software

modules are implemented on the same controller as it would if they were distributed

over a number of controllers.

———————O—————————

Control
Net

Subnet
#1

Output
net#1

Output
net#1

Subnet
#2

Subnet
#3

Safety
Net

Figure 8.3 General Petri net structure used for the control of manufacturing

systems including communications signals

8-14

Chapter 8 - Fault Monitoring

8.7 Monitoring a Sequence

In Chapter 5, the control net was constructed using a set of paths. Given such a

control net, the paths can be described as the set of possible sequences that might

occur, given a particular request from the system's environment. Therefore the

arrival of a request can be used to trigger the monitoring of a particular subset of all

the possible control signals generated by the system. Once a sequence starts, its

sub-operations (represented by the subnets) will be called upon. Each of these sub-

operations will also be represented by a sequence and monitoring of these

sequences will be triggered by their initiating control place being asserted. Once a

sequence has been completed it will cease to be monitored until its initiating place is

asserted once more.

8.8 Space Cost of the Method

The proposed fault monitoring method will not monitor every possible state of the

system. It simply monitors which sequences are triggered and in which order.

Therefore the only places that need to be included in the monitoring exercise are the

control and feedback places.

The space cost of the monitoring method can be estimated by calculating the number

of possible sequences that can occur. There will be a control place and a feedback

place for each possible sequence. Added to this will be the control and feedback

pairs for each subnet that is present in the control structure.

This systems therefore offers a reduced size compared to a standard state follower

as there is not a requirement to monitor every state, rather the requirement is to

monitor every change of state necessitating communication.

8-15

Chapter 8 - Fault Monitoring

A reduction in the size of the data being monitored has an important implication on

the speed of the system. The comparison between the current state and the desired

state can be achieved more quickly with less data involved in the comparison.

8.9 Fault Monitoring Mechanism

The test bed for the fault monitoring system was the raw materials station described

in Chapter 6. The Station is controlled by an AEG Modicon 984 PLC which is

attached by a serial port to a Microcomputer, which is running the Microsoft Windows

3.1 operating system.

Initial investigations into the feasibility of the approach to fault monitoring were

carried out using the Modicon Programming Panel software (Modsoft) to monitor the

addresses of the PLC.

8.10 Implementation Issues

The Petri net design method provides a clear description of the sequence of events

through which the system will pass. However it has been noted in Chapter 7, that the

method of implementation although it achieves the same result as the Petri net

description, may not go through exactly the same sequence of steps. Therefore a

number of questions need to be answered.

1. What are the differences between the implementation and the expected

behaviour of the system, in terms of PLC addresses being set or reset?

2. Are the differences predictable between different runs of the same portion of

code?

3. Are the differences predictable between different PLC's?

Once these questions have been answered, the sequence of events that should

occur in the system, as seen by the PLC, can be determined. The experiment

8-16

Chapter 8 - Fault Monitoring

carried out in Chapter 7 on various implementations show that for a small Petri net

the sequences generated by the PLC are repeatable. The method used to

enumerate the sequences may be used to create a fast numerical comparison

between the desired behaviour of the system and its actual behaviour.

8.11 Dealing With Choices

Often there will be a choice of possible events that could occur within the system.

For example where a test is being carried out and the system is awaiting one of a

number of outcomes, or where another subsystem is instructing a station to produce

one of a range of possible parts. In these cases the sequence of events is not known

in advance. However once the request for a particular part has occurred the

sequence becomes known and therefore can be followed. Here the result of the test

is used as the trigger for the remainder of the sequence.

This has implications for the design of control nets and subnets, as a question arises

concerning the subsystem that is actually determining the outcome of such a choice.

Can it be treated in the same way as an external agent making a request of the

system?

8.11.1 Concurrency

When concurrent operations are being carried out, it does not matter which one

finishes first. In fact either of two concurrent operations may finish first on different

occasions. Any fault monitoring system must be able to handle such concurrent

operations and the uncertainty associated with them.

8.12 Monitoring

Now that the sequences of events can be determined they need to be compared to

the real events that occur in the system during run time. The events being monitored

8-17

Chapter 8 - Fault Monitoring

are the occurrences of the control signals that pass between the different modules in

the control structure (and also the signals that pass to the hardware). These signals

are not associated directly with any action by the hardware and therefore they will

often occur during only a single cycle of the PLC, which has at most a 25ns duration

for the PLC used. Therefore some automatic mechanism for capturing the events

must be used.

8.13 Diagnosis and Containment

As already mentioned the control signals are transient and may occur in a very short

period of time. If an error is detected, then its effect must be prevented before it has

the opportunity to propagate too far down the control structure. Therefore the

diagnosis approach must be completed in a short period of time - ideally in a single

cycle of the PLC. It may be necessary to suspend the action of the PLC or the

control code in some way so that the error can be diagnosed. This will not usually

adversely effect the operation of the manufacturing hardware except to slow down

the process that is being carried out at the time of detection. If the time taken to

diagnose the error is sufficiently small, then the process will not suffer any noticeable

adverse effects. This is an option described in (Hardy et al, 1989) where the time

critical element is described as

data collection -> detection -> catastrophe avoidance

and also in (Hasegawa et al, 1990) where a 'layered' Petri net is used for exception

handling.

8.14 Using standard software

The software used to capture the events as they occur in the PLC is a specialised

piece of software that will allow information from the PLC to be handled by any

8-18

Chapter 8 - Fault Monitoring

Windows application. The use of off the shelf software aids more rapid development

of the system, but it is expected that software would be able to react faster if it is

written specifically for the purpose.

8.15 Chapter Summary

This chapter has presented a new taxonomy for manufacturing system faults and

failures in which they are classified by their apparent source. It points out that there

will usually be a cause and effect relationship between classes of failure and

proposes that a number of hardware failures in manufacturing systems may actually

be caused by failures in the software.

A method is presented for the detection and diagnosis of faults that is based on the

Petri net design method of Chapter 5. The ability to automatically detect and

diagnose faults in manufacturing systems and to attempt automatic recovery not only

saves manufacturing system down-time but will also prevent a number of accidents

involving manufacturing systems operators or maintainers (Jarvinen and Karwowski,

1995). This method allows the distinction between a fault caused by faulty hardware

and one caused by an error in the software. It should also be possible to detect

which part of the software caused the error. In addition, this diagnostic ability is a

product of the software development process and is not appended to the software.

This means that there is close integration between the control software and the

monitoring software, and that fault diagnosis is not merely considered as an

afterthought in the software development process.

8.16 References

Adlemo, A. and Andreasson, S., 1995, "A dependability taxonomy for flexible

manufacturing systems." International Journal of Computer Integrated

Manufacturing, 8, pp. 189-196.

8-19

Chapter 8 - Fault Monitoring

Adlemo, A. and Andreasson, S., 1993, "Failure Semantics in Intelligent

Manufacturing Systems." In Proc. IEEE International Conference on Robotics

and Automation, Atlanta, USA, vol. 2, pp. 166-173.

Chand, S., 1993, "Discrete-event based monitoring and diagnosis of manufacturing

processes." In Proc. American Control Conference, San Francisco, CA, USA,

pp. 1508-1512.

Hardy, N., Barnes, D., and Lee, M., 1989, "Automatic Diagnosis of task faults in

flexible manufacturing systems." Robotica, 7, pp. 25-35.

Hasegawa, M., Takata, M., Temmyo, T, and Matsuka, H., 1990, "Modelling of

exception handling in manufacturing cell control and its application to PLC

programming." In Proc. IEEE International Conference on Robotics and

Automation, pp. 514-519.

Holloway, L. E. and Chand, S., 1994, "Fault monitoring in manufacturing systems

using concurrent discrete event observations." In Proc. AAAI Spring

Symposium on Detecting and Resolving Errors in Manufacturing Systems,

Stanford University, CA, USA, pp. 65-69.

Holloway, L. E. and Chand, S., 1996, "Distributed fault monitoring in manufacturing

systems using discrete event observations." Integrated Computer-Aided

Engineering, 3.

Jarvinen, J. and Karwowski, W., 1995, "Analysis of self-reported accidents attributed

to advanced manufacturing systems." International Journal of Human Factors

in Manufacturing, 5, pp. 251-266.

8-20

Chapter 8 - Fault Monitoring

Juer, J. and Oliver, J., 1993, "Building and using graphical programming tools for the

I EC 1131-3 standard." In Proc. IEE Colloquium on Advances in Software

Engineering for PLC Systems. Savoy Place, London.

Lala, P. K., 1985, Fault Tolerant and Fault Testable Hardware Design. London,

England: Prentice Hall International.

Meyer, B., 1998, Object Oriented Software Construction, Upper Saddle River, NJ,

USA: Prentice Hall.

Sommerville, I., 1996, Software Engineering, Addison-Wesley.

8-21

Chapter 9 - Conclusions and Further Research

Chapter 9

Conclusions and Further Research

This thesis details how a Petri net design method has been taken and formalised with

the aim of automating the development of manufacturing control code. The original

Petri net definition has been used to provide a modified interpretation, which has

been called structured Petri nets. The elements upon which the structure is built are

Petri net modules, which differ from those found in the literature as they use places

for inter-module communication. This can be seen to simplify the complexity of the

control structure, and as such will allow the use of standard Petri net analysis

techniques that can be applied to individual modules, or even to the whole system.

The thesis also deals with important issues of implementation, which seem to be

missing from much of the literature, especially that dealing with implementation on

Programmable Logic Controllers. It also presents a new method of implementation

on a Relational Database.

The thesis then goes on to develop a fault monitoring method which is made possible

by the modular structure and the use of places as communication 'agents'. This fault

monitoring method has the potential to distinguish between faults that occur in the

hardware of a manufacturing system and the faults that occur in the manufacturing

control software. It is also, by the same reasoning, possible to locate the particular

software module where the error occurred before it propagates down to the

manufacturing hardware.

9-1

Chapter 9 - Conclusions and Further Research

9.1 Structured Petri Nets

Chapter 3 dealt with the development of structured Petri nets as a more formal

modelling approach to that presented in Chapter 2. Each module in the structure is

built up from these Petri nets with external inputs and outputs, which are represented

by places. This more formal approach also attempts to classify Structured Petri nets

in relation to other classes present in the literature. The chapter shows that they are

very closely related to controlled Petri nets, a Petri net variant that is commonly used

for solving forbidden state problems (Krogh, 1987). They may also be compared with

decision free nets, as proposed by (Krogh and Sreenivas, 1987).

9.1.1 Relationship with Free Choice Petri nets

There also appears to be a relationship between the general structure of each Petri

net module and Free-Choice Petri nets. All the systems to which the nets have been

applied can be described by Free-Choice Petri nets, and this is ether due to the class

of system to which the method is being applied or due to restrictions placed on the

system description by the modelling formalism. If it is due to restrictions of the

formalism then such restrictions are acceptable and do not affect the performance of

the systems being controlled. If it is due to the class of systems being modelled then

these systems can be classified as free choice systems, and Structured Petri nets as

controlled Free-Choice Petri nets. Such a classification would give many

advantages, as free Free-Choice nets are more general than other more complex

classes of Petri net. Such a relationship appears to be borne out by other related

work (Proth et al, 1997).

9.2 Petri Net Modules

The idea of Petri net modules, as developed in Chapter 4, is not in itself a new

approach. However, the explicit nature of each module as a stand-alone entity is not

9-2

Chapter 9 - Conclusions and Further Research

found in other supposedly 'modular' methods. For example, in (Proth et al, 1997) the

modules used are not self-contained and are more like the paths described in

Chapter 5. It is this modular cohesion that allows the reuse of modules, the extent of

which will depend on the flexibility of the controller being programmed. At the very

least, the design and implementation of a module may be reused.

It is also the true modular nature of the Petri nets and the simple communications

between the modules that allows the fault monitoring method of Chapter 8 to be

possible. In (Hansich and Rausch, 1995) a more complicated communication

mechanism uses both condition and event signals between modules. Also the

modular construction provides more consistency than that described by (Hansich and

Rausch, 1995) since when the modules are constructed into a full system the system

is still described by a Petri net and can conceivably be analysed using standard Petri

net analysis methods.

The advantages of the modular approach adopted in this work are as follows.

1. Once the external interface has been finalised, the internal behaviour of the

module and any sub-modules can be altered without the need to modify the

whole system.

2. A module can be tested in isolation of the real system and then be combined with

the remainder of the system after it has been shown to behave correctly. The

testing does not have to take place on line on the intended system - it can be

carried out at a completely separate location. This is essential for manufacturing

applications.

3. The modular structure of the system can potentially reduce the complexity of any

analysis that needs to be done on the system. Each module can be analysed

9-3

Chapter 9 - Conclusions and Further Research

and its own properties recorded. In this way a set of standard modules may be

developed with pre-defined properties and behaviour.

4. The modular structure also reduces the perceived graphical complexity of the

system to the user/developer/manager. It is believed that the complexity of most

Petri net methods prevents their being adopted by practitioners, and that a less

complex appearance would encourage more widespread adoption.

9.2.1 Centralised and distributed systems

The work carried out here concentrates on a centralised control structure and

describes a controller hierarchy from a control net down to output nets. Another

advantage of a modular approach to software design is that it enables a more

distributed approach to controller design. Manufacturing systems require a hybrid of

both centralised and distributed design because an individual workstation's hardware

is broken down in a stepwise hierarchical manner and its 'dumb' elements need to be

controlled centrally. However, to achieve greater flexibility it may be more desirable

to give greater autonomy to individual workstations in the system allowing them to

make their own decisions based on knowledge of their current state.

Using a modular Petri net approach allows both centralised and distributed control

code to be developed without the need for multiple formalisms or complex extensions

to existing formalisms. It is conceivable that the same module may be used in both a

centralised control system and a distributed control system.

9.2.2 Systems integration

The work of Chapter 6, on the manufacturing cell shows that systems programmed

using structured Petri nets can be easily combined by systems programmed using

other methods. The example given shows that the Petri net implemented on a PLC

9-4

Chapter 9 ~ Conclusions and Further Research

can communicate effectively with a structured program (which used the Petri net as a

basis for its structure) running on a robot controller. The Petri net was also able to

communicate with programs designed without the use of Petri nets running on the

CNC machine tools. The combination of Petri nets with other programming

techniques stems from the simple communication mechanism, and enables the

integration of a variety of manufacturing controllers, possibly over communications

networks. This is something rarely considered in the development of Petri net

controllers.

9.3 The Design Method

One of the objectives set out in the introduction (Chapter 1) was to automate the

development of manufacturing control code. The design method developed is

structured in such a manner that it is amenable to automation, and in fact would

greatly benefit from automation.

There is however an issue of designing not purely software components but

hardware/software components as described in (Naylor and Volz, 1987). This is

where the hardware behaviour and software signals from a component are both used

to describe the interface between a component and its environment. This ideal has

still not been obtained and requires a language in which to express this interface.

This work has shown that structured Petri nets are capable of describing the interface

for components, such as pneumatic actuators, and subsystems made up of a number

of such components.

There is also a related issue in the design of manufacturing hardware. Many

hardware systems are developed without regard to the control software that will be

running on them. In some cases this is due to the general-purpose nature of many of

the controllers. It is the view of this work that hardware and software should be

9-5

Chapter 9 - Conclusions and Further Research

developed in tandem to produce the most efficient combination of the two. If a

hardware component has a particular fixed set of tasks then there is no need for a

general-purpose controller, but if it is required that the hardware is flexible and may

perform a variety of tasks, then its incorporated software should also be capable of

such flexibility.

9.4 Implementation

Work on the implementation of Petri nets on PLC's has shown that there is no agreed

method, and that many authors do not treat the issue with the necessary caution. It

is not enough to simply create a rough parallel to the Petri net in the language of the

particular controller. If the Petri net is to be used to compare that actual behaviour of

the system to a specification, then the implementation must be predictable and

execute in the same manner as the Petri net 'model'. If there is a difference between

the manner in which the implemented Petri net runs and the way in which the Petri

net model behaves then this should be predictable and should be accounted for in

any automated monitoring system.

The implementation method used for the third experiment in Chapter 7 follows

closely the behaviour of the Petri net, and can be used as a satisfactory model for

Petri net behaviour for the example given. The markings given by the

implementation have been shown to be repeatable, and therefore may be used as a

template for monitoring sequences of events in a manufacturing system. The

method used for enumerating the states of the system may also be beneficial to that

purpose.

In (Hanisch and Rausch, 1995), the control code has actually been implemented

automatically on a test system. In this research, however, the implementation has

been carried out manually. It is suspected that further detailed investigation would

9-6

Chapter 9 - Conclusions and Further Research

show a greater similarity between the algorithm used by (Hanisch and Rausch, 1995)

and that used here.

9.4.1 Implementation on a relational database

The implementation on a relational database is new and offers many possibilities as

far as rapid development of systems is concerned. The necessary information to

generate each path may be requested by the system and once a set of paths has

been completed the associated Petri net can be produced using the rules presented

in Chapter 5.

At present only a small, single path example has been programmed into the

database, and it is expected that if another path is to be entered, then this will require

the generation of a completely new database. With a number of paths per control

net, and one database per path, the resulting set of databases will become quite

large. It is therefore expected that this would not be an ideal final solution, but would

certainly aid further development of the automatic control code generation. The

drawbacks of the database approach are therefore the size of the final system and

that the system incorporating a database might be slower than one using a specially

designed file system for the storage of the Petri net structure. Its advantages are that

it can be used as an inexpensive development system to test ideas, and generate

prototypes, from which more compact representations may be developed.

9.5 Fault Monitoring

The fault monitoring system proposed in Chapter 8 appears to be a promising

development. It differs form other monitoring systems proposed as it captures a

failure at its origin, be it in software or hardware. The main contribution of the

method is on the software side where the module in which the error occurred can be

9-7

Chapter 9 - Conclusions and Further Research

isolated. This will lead to a more focussed diagnosis of the fault, which in turn will

increase the speed of diagnosis.

Chapter 8 also presents a new taxonomy for failures in manufacturing systems,

based on the apparent origins of the failures. Failures will propagate, and therefore it

is difficult to know whether a hardware failure was due to a hardware fault or was

perhaps caused by a software fault. The monitoring method proposed will remove

some of this doubt at the start of diagnosis by indicating that the failure was either

initiated in the hardware or the software of the system.

The work carried out so far on fault monitoring indicates the potential of structured

Petri nets in this area. There is still more work required to show that the approach

will work on a real system and to what extent the problems highlighted in Chapter 8

can be overcome. One major concern over the work carried out to date is that there

is no published information on failures in manufacturing systems and their origins,

and so it is difficult to evaluate the usefulness of the fault monitoring system. There

is a need for a system that distinguishes between the failures arising from hardware

faults and failures arising from software faults. Recognition of this need comes from

the well documented problems of generating error free software (Jagdev et al, 1995)

and, more specifically, the lack of formal approaches in manufacturing control

software development. Also specific cases from the manufacturing literature point to

the need for such a system (see (Adlemo and Andreasson, 1995) and (Jarvinen and

Karwowski, 1995)).

9.6 Further Research

Further work needs to be carried out in order to develop the work of this thesis into a

commercially viable solution. In addition the work carried out thus far points to new

areas of research that have not yet been specifically addressed here.

9-8

Chapter 9 - Conclusions and Further Research

9.6.1 Structured Petri nets

Analysis

One aspect of the ultimate objectives of this work (see Chapter 1) is the ability to

analyse the control code to ensure that certain properties are maintained. This

becomes even more important when looking at the co-ordination level of

manufacturing systems. Further work needs to be carried out on the analysis of

structured Petri net models. Analysis of individual nets may be done using

reachability techniques, however this is only suitable for small problems. So far in

this work all modules have been small enough for such analysis. If a distributed

approach is adopted then it is feasible that all modules will be relatively small and

therefore reachability analysis is a viable means of analysing the properties of the

nets. However, with a centralised system the control nets become relatively complex

and therefore other analysis techniques may be required. Some enumeration of the

amount of time saved by analysing individual nets over that used for analysing the

whole model would give some indication of the advantage of a distributed model over

a centralised model.

Further work also needs to be carried out on the suitability of structured Petri nets for

the co-ordination level of manufacturing systems. This would require extending the

work to other workstations in the Mechatronics Research Centre (as described in

(Stanton and Arnold, 1997)) in addition to that of the raw materials station. This

could lead to the use of structured Petri nets for performance analysis by

incorporating time into the formalism.

9.6.2 Forbidden state problems

The work carried out in this thesis does not deal specifically with forbidden state

problems although there is some relationship between the nets proposed here and

9-9

Chapter 9 - Conclusions and Further Research

those developed by authors such as (Hanisch and Rausch, 1995) and (Holloway and

Krogh, 1990). As a separate piece of research it would be interesting to apply the

structured Petri nets to a forbidden state problem, and make comparisons between

the structured Petri net approach to that of controlled Petri nets and Net

Condition/Event systems. It would appear that the nets used here are less complex

than Net Condition/Event systems, but this needs to be shown more formally.

9.7 The Design Method

Some further research needs to be carried out on the specification of manufacturing

processes and how they are broken down into sub-processes, and sequences of

events. It is believed that there is currently no universal standard for such

representations and this is borne out by the variety of such representations used in

the Petri net literature (for example, (Proth et al, 1997) and (Hanisch and Rausch,

1995). If these sequences can be entered into a computer in such a manner that

their sequence and parallelism can be described, then the Petri nets could be

generated automatically. Once the Petri nets have been generated, the control code

can then be generated, using either the algorithms presented in Chapter 7 or

something similar to that used in (Hanisch and Rausch, 1995). The advantage of the

work in (Hanisch and Rausch, 1995) is that the control code has actually been

implemented automatically on a test system, whereas in this research the

implementation has been carried out manually. It is suspected that further detailed

investigation would show a greater similarity between the algorithm used by (Hanisch

and Rausch, 1995) and that used here, than is currently understood.

9.8 Implementation

The implementation method used for the third experiment in Chapter 7 follows

closely the behaviour of the Petri net, and can be used as a satisfactory model for

9-10

Chapter 9 - Conclusions and Further Research

Petri net behaviour for the small example given. Work needs to be carried out to

ensure that this will still be the case for a larger system, such as the raw materials

station. Also the state enumeration technique of Chapter 7 needs to be examined

further, and used on a larger system to see whether it will provide any advantages for

fault monitoring.

9.8.1 Analysis of a PLC

Another avenue of further research is to analyse the behaviour of PLC's to see if they

fall into a particular class of computing machinery. If they do, then the task of

modelling this class of machine with a Petri net can be attempted. This is an issue

for formal languages, checking whether a Petri net can generate the formal language

that describes the behaviour of a PLC. This would give a better insight into the

behaviour of programs that run on a PLC and make them more predictable.

9.8.2 Relational Database and CASE

At present only a small, single path example has been programmed into the

database. The use of the database needs to be extended to allow the user to

describe the manufacturing process for which code is to be generated. Also an

automatic code generator needs to be produced to ensure that there are no

implementation errors in the system.

This leads to the notion of CASE tools for manufacturing software and systems

design. The existence of manufacturing specific CASE tools would make an

interesting study, along with comparisons between this for manufacturing systems

and those used for purely software systems. Since there is considerable overlap

between the two it may be possible to exploit similarities, and transfer techniques

from one area to the other.

9-11

Chapter 9 - Conclusions and Further Research

9.8.3 Fault monitoring

The fault monitoring system requires a large amount of work to become a fully

implemented system. The ideas of the system seem very promising, but certain

problems will only arise when the system is closer to running on a complex system.

Initially work will be carried out on monitoring simple sequences, which will then be

followed by investigation of the behaviour of concurrent processes. The fault

monitoring system is the culmination of all the other ideas in this work, and thus the

further work suggested for some of these ideas will also need to be carried out before

the fault monitoring system can be completed.

Systems described by high level languages

Some development work needs to be done on representing more complex message

passing between Petri net modules. If more complex messages can be represented

in a relatively simple manner then there is scope for the fault monitoring system to be

developed for systems described using high level programming languages. This

would provide application areas wider than manufacturing systems. It may be that

higher level Petri nets are required for this and there is probably a suitable class in

existence, however the communications is central to the ability to monitor different

parts of the system, and so care needs to be taken over any possible extensions.

9.9 Work on Safety Systems

The Petri net structure first described in Chapter 2 and then extended in Chapter 3,

includes a safety subsystem, called the safety net. Initially the role of the safety net

has been to monitor the system for an unsafe condition to arise and then to perform a

safe shutdown of the system. This was implemented in the initial control code design

for the raw materials station of Chapter 6.

9-12

Chapter 9 - Conclusions and Further Research

A more complete role of the safety subsystem could include fault diagnosis software

and also failure recovery software. It has been shown in (Liu and Chiou, 1997) and

(Yang and Liu, 1997) that fault trees can be produced using Petri nets, and indeed

they show that there are some advantages to doing so. This would be an ideal way

of appending the task of the safety subsystem to not only detect failures but also to

diagnose them, and produce the appropriate error signals indicating such failures. In

this role the safety subsystem is not purely acting as a safety system but also a

general failure diagnosis system.

It is also planned that the safety subsystem may incorporate the necessary code for

recovery from certain failures, Petri nets have been used in many cases for error

recovery (e.g. (Zhou and DiCesare, 1989)) but a satisfactory method has yet to be

devised.

9.10 Chapter Summary

This chapter summarises the work presented in the body of the thesis. It highlights

the contribution made by the work and makes a number of conclusions based on the

experiences gained whilst carrying out the work. A summary of the areas of

contribution is as follows.

• The extension of a Petri net formalism to introduce true modularity and introducing

a more formal definition of the nets. This formalism has been called Structured

Petri nets.

• The development of a more formal design method for sequence controllers, which

is currently lacking in the Petri net literature. Most synthesis methods currently

involve an ad hoc approach to system design.

9-13

Chapter 9 - Conclusions and Further Research

• A new appraisal of Petri net implementation methods, with particular attention

being paid to ladder logic programs. Petri nets have until now been used for

ladder logic code generation, but not with a eye on the accuracy and behaviour of

the implementation.

• A new implementation of a Petri net on a relational database, using SQL queries

to carry out transition firings. This potentially leads to many applications for the

analysis of Petri nets, the automatic generation of control code, and manufacturing

CASE tools.

• A new method of enumerating the possible states in a system which may have

application in the fault monitoring scheme.

• A new taxonomy of manufacturing failures, which highlights the chain of failures

that may exist.

• A new approach to fault monitoring based on Structured Petri nets, which allows

the distinction between hardware and software faults and even potentially traces a

software fault to a particular module.

The chapter also raises a number of issues for further examination in order to

achieve the objectives set out in Chapter 1, and highlights a number of possible

extensions to the work. The most important of these are as follows:

• Automating the generation of the Petri net and then the control code.

• Further understanding of the structured Petri net to other classes of nets, with

some attempt to solve different classes of problem.

• Developing the net structure to incorporate planning and scheduling systems.

• Developing the safety subsystem to incorporate fault monitoring and diagnosis.

9-14

Chapter 9 - Conclusions and Further Research

The objectives set out in Chapter 1 are an ideal that many authors aspire to.

Although, along with others, this work is yet to achieve those objectives, it has

certainly taken a number of significant steps that make the achievement of those

objectives more of a reality. With each of these steps comes a new area of work

which, it is hoped, will be pursued to completion.

9.11 References

Adlemo, A. and Andreasson, S., 1995, "A dependability taxonomy for flexible

manufacturing systems." International Journal of Computer Integrated

Manufacturing, 8, pp. 189-196.

Hanisch, H.-M. and Rausch, M., 1995, "Synthesis of supervisory controllers based on

a novel representation of Condition/Event Systems." In Proc. IEEE

International Conference on Systems, Man and Cybernetics, Vancouver,

British Columbia, Canada.

Holloway, L. E. and Krogh, B. H., 1990, "Synthesis of feedback control logic for a

class of controlled Petri nets". IEEE Transactions on Automatic Control, 35,

pp. 514-523.

Jagdev, H., Browne, J., and Jordan, P.,, 1995 "Verification and validation issues in

manufacturing models." Computers in Industry, 25, pp. 331-353.

Jarvinen, J. and Karwowski, W., 1995, "Analysis of self-reported accidents attributed

to advanced manufacturing systems." International Journal of Human Factors

in Manufacturing, 5, pp. 251-266.

Krogh, B. H., 1987, "Controlled Petri nets and maximally permissive feedback logic."

In Proc. 25th Annual Allerton Conference. University of Illinois, USA, pp. 317-

326.

9-15

Chapter 9 - Conclusions and Further Research

Krogh, B. H. and Sreenivas, R. S., 1987, "Essentially decision free Petri nets for real-

time resource allocation." In Proc. IEEE International Conference on Robotics

and Automation, Raleigh, NC, USA, pp. 1005-1011.

Liu, T. S., and Chiou, S. B., 1997, "The application of Petri nets to failure analysis."

Reliability Engineering and System Safety, 57 pp. 129-142

Naylor, A. W. and Volz, R. A., 1987, "Design of integrated manufacturing control

software." IEEE Transactions on Systems, Man, and Cybernetics, SMC-17,

pp. 881-897.

Proth, J. M., Wang, L. and Xie, X., 1997, "A class of Petri nets for manufacturing

system integration." IEEE Transaction on Robotics and Automation, 13, pp.

317-326.

Stanton, M. J. and Arnold, W. F., 1997, "Extension of structured Petri nets for the

control of a conveyor system." In Proc. Factory 2000, Cambridge, England.

Yang, S. K. and Liu, T. S., 1997, "Failure analysis for an airbag inflator by Petri nets."

Quality and Reliability International, 13, pp. 139-151

Zhou, M., and DiCesare, F., 1989, "Adaptive design of Petri net controllers for error

recovery in automated manufacturing systems." IEEE Transactions on

Systems, Man, and Cybernetics, 19, pp. 963-973.

9-16

Appendix 1 • Petri Nets for the Raw Materials Station

Appendix 1

Petri Nets for the Raw Materials Station

The Petri nets shown in Appendix 1 are those that were originally developed for the

raw materials station. They include a control net, much simpler than that given in

Chapter 6, but with less functionality, and containing a larger number of places.

There was no method to the design process, and little consideration of the other

functions that the system might be asked to perform. It did however provide a good

platform on which to build a more structured design process.

A1-1

Appendix 1 - Petri Nets for the Raw Materials Station

PH. (} hardware initialisation

(J*——— sate to start

get enable p3 () waiting for pallet

get oylinder 2

place cylinder on pallet

tis

check storage areas

tl9

Figure A1.1 Control net

A1-2

Appendix 1 - Petri Nets for the Raw Materials Station

ready to init. hardware

p2S ^ J ready to check MR

MR ready

ready to check
P2.12 () storage areas

batch ready

p217 () storage areas ready

t2 ,9

Figure A1.2 Hardware initialisation

A1-3

Appendix 1 - Petri Nets for the Raw Materials Station

timer 1 finished

ready to check
loading area

P2.21 (J ready to check
chute

solenoid 13 ON

solenoid 13 OFF

ok

Figure A1.3 Hardware initialisation continued...

A1-4

Appendix 1 - Petri Nets for the Raw Materials Station

Figure A1.4 Hardware initialisation continued

A1-5

Appendix 1 - Petri Nets for the Raw Materials Station

P2.84 I 1 MP moving left

t2.89 ^^ solenoid 1 OFF

P2.84 ^) lowering MP

LS2/MP-D

solenoid 4 ON

P2.85 (J opening MP grippers

2 91 /^-^ solenoid 1 ON

P2.86 () raising MP

^———(T}> LS1/MP-U

•^'fl ^92 ^~^. solenoid 4 OFF^—-*r)—>>
I ^-^x-x solenoid 2 OFFx—>. soiencv—o-*<

solenoid 1 OFF

P2.87 O moving MP right, down,
closing grippers

P2.89

LS2/MP-D

f\ ready to check
LSPLT Vy loading area

O>

ok

finished

Figure A1.5 Hardware initialisation continued

A1-6

Appendix 1 - Petri Nets for the Raw Materials Station

solenoid 4

LS5/MP-F

solenoid 4 OFF

open gnppers

t« s~^ solenoid 3

P43 () extend arm

P4.4 () close gnppers

(4.4 s-^ solenoid 1 ON

P4.s I I raise arm

Q) LS1/MP-U

solenoid 3 OFF

Q) LS6/MP-B

solenoid 2

Q) LS4/MP-L

solenoid 1 OFF

p48 () lower arm

LS2/MP-D

solenoid 4 ON

p4 .9 () open gnppers

P4.,o I I raising arm

LS1/MP-U

solenoid 4 OFF
solenoid 2 OFF

solenoid 2 OFF

4 " { j moving right, down, closed

X=N
LS3/MP-R

Figure A1.6 Get pallet from conveyor

A1-7

Appendix 1 - Petri Nets for the Raw Materials Station

Q)
t41 ^^ solenoid 15 ON

LSPLT

Figure A1.7 Get pallet form storage

LS/S1

solenoid 10 ON

p7 2 (j apply brake 1

t7 . 2 ^-^ solenoid 9 ON

solenoid 13 ON

p7 3 () open gate 1

solenoid 10 OFF

solenoid 13 OFF<J-
p74 () close gate 1

t7 4 x-^ solenoid 9 OFF

Figure A1.8 Get cylinder 1

A1-8

Appendix 1 - Petri Nets for the Raw Materials Station

t9 start

LSBATCH
Ps.2 (J waiting to start

placing block on pallet

timer 2 finished

solenoid 14 ON

Figure A1.9 Place block on pallet

) LS/S2
solenoid 12 ON

solenoid 11 ON

Ps 2 () open gate 2 wait for part
———————C3*—— timer 3 finished

solenoid 13 ON

Ps 3 () Sidin9 Part a'or|9 chute

" LSCH

solenoid 12 OFF

solenoid 13 OFF

solenoid 11 OFF

tl3 finished

Ps 5 C) release brake 2

Figure A1.10 Get cylinder 2

A1-9

Appendix 1 - Petri Nets for the Raw Materials Station

solenoid 4

LS5/MP-F

solenoid 4 OFF

solenoid 1 ON

P45 () raise arm

LS1/MP-U

(4.5 x—v solenoid 3 OFF

p4.s I) retract arm

"O) LS6/MP-B

solenoid 2

P4.s () turn left

LS4/MP-L

t47 f ̂ solenoid 3 ON—+L
pi 7 () extend arm

p4.s () lower arm

P4.9 () open gnppers

solenoid 3 OFF

retract arm

LS6/MP-B

(4.11 x — s solenoid 4 OFF

solenoid 2 OFF

LS3/MP-R

Figure A1.11 Place cylinder on pallet

A1-10

Appendix 1 - Petri Nets for the Raw Materials Station

x—v solen\y-%

solenoid 1
——+

LS1/MP-U

solenoid 2

solenoid 14 OFF

solenoid 15 OFF

LS2/MP-D

ilenoid 4 OFF

LS1/MP-U

solenoid 2 OFF
~^>

Pio? (J turn right

~" LS3/MP-R

tioa s~*. solenoid 3 ON

Q) LS5/MP-F

tics ^^ solenoid 1 OFF

Q) LS2/MP-D

tio 10 .^-^ solenoid 4 ON

solenoid 3 OFF

LS6/MP-B

solenoid 4 OFF

Figure A1.12 Place pallet on conveyor

A1-11

Appendix 1 • Petrl Nets for the Raw Materials Station

P2.22 () sensor blocked

0
LSCH

Figure A1.13 Check storage areas

A1-12

Appendix 1 - Petri Nets for the Raw Materials Station

solenoid 3 OFF

solenoid 4 OFF

solenoid 5 OFF

solenoid 5 OFF

solenoid 7 OFF

emergrency stop

solenoid 11 OFF

solenoid 15 OFF

solenoid 1 OFF

solenoid 2 OFF

emergrency stop

Figure A1.14 Safety net

A1-13

Appendix 2 - Updated Net for the Pallet Manipulator

Appendix 2

Updated Net for the Pallet Manipulator

The nets presented in Appendix 1 are those that have been developed for the raw

materials station described in Chapter 6. Appendix 2 describes the Petri net module

for the pallet manipulator and the output nets designed to work with it.

Gets a pallet from the conveyor or puts a pallet to the conveyor. Consists of 4 single

acting pnuematic cylinders each working in a different degree of freedom. Thus the

manipulators two tasks consist of the actions described in .

Task

Get_Pallet

Put_Pallet

Sequence

Open_Grip -> Move_Out -» Grip_Pallet -» Raise_Pallet -» Move_In ->
Lower_Pallet -» Release_Pallet -> Move_Up -> Swing_Right ->
(Move_Down//Close_Grip)

Swing_Left ->

Move_Up -> (Swing_Left//Open_Grip) -> Move_Down -> Grip_Pallet -> Raise_Pallet
-> Swing_Right -> Move_0ut -> Lower_Pallet -> Release_Pallet -» Move_In -»
Close_Grip

a// Vindicates that tasks a and b occur concurrently

3 -» 6 represents a transition from task a to task b and indicates that task a occurs before task A

Table A2.1 Task sequences for the pallet manipulator

These task sequences have been used to create the Petri net of Figure A2.1. Also

included here are subnets created for each pneumatic cylinder and output nets for

each of the solenoids used to activate them.

A2-1

Appendix 2 - Updated Net for the Pallet Manipulator

Siwng left + Open grip

O "

*0cout4

p 1 i i Move down + Close grip
c'ns Pi

C 4

Figure A2.1 Subnet showing sequence for Pallet Manipulator

A2-2

Appendix 2 - Updated Net for the Pallet Manipulator

Figure A2.2 Subnets for pneumatic cylinders making up the pallet

manipulator

A2-3

Appendix 2 - Updated Net for the Pallet Manipulator

Solenoid OFF

Solenoid ON

Solenoid OFF

Solenoid ON

Solenoid OFF

Solenoid ON

Solenoid OFF

Solenoid ON

Figure A2.3 Output nets for the pallet manipulator

A2-4

Appendix 3 - Documentation for the Manufacturing Cell

Appendix 3

Documentation for the Manufacturing Cell

The documentation presented here contains details of the manufacturing cell

described in Chapter 6, and its operation. It includes the Petri nets used to describe

the control software for the PLC, the robot and the CMC machine tools. It is not in

precisely the same form as that presented with the working version of the software as

the ladder logic program and some other elements have not been included here.

The nets were designed using the design approach described in Chapter 2, and the

experience gained during this project were in part the motivation behind development

of the new, more formal design approach.

A3-1

Appendix 3 - Documentation for the Manufacturing Cell

System Description
System Layout

The layout of the Flexible Manufacturing System is shown in Figure A3.1. A robot is

situated on a sliding track, which enables it to feed both a CNC mill and a CNC lathe

from the two input buffers placed between the CNC machines. When parts have

been processed they can be assembled in the assembly buffer situated opposite the

input buffers.

Controller
CNC
MILL

/
J...,

2

1

CNC
LATHE

..../ I.....

Controller

Slider

Input Buffers Robot
Assembly

Buffer

Figure A3.1 Layout of Flexible Manufacturing System

Robot
Controller

i

1

k

r
Slider PLC

Figure A3.2 Cell controller hierarchy

A3-2

Appendix 3 - Documentation for the Manufacturing Cell

Controller Hierarchy

The hierarchy of the controllers in the cell is shown in Figure A3.2. The PLC

synchronises the machines within the cell, whose actions are described by their own

controllers. The robot controller must also synchronise its actions with those of the

slide controller. The cell is instructed to carry out tasks via a Personal Computer,

which is linked to the PLC.

System Operation

Powering up the system

There are two steps in the powering up procedure:

1. Power up the main control system using the switch situated on the wall box.

2. Power up the mill, lathe, and robot using their respective power switches.

Running the Software

PLC Software

Once the system has been powered up, the operator should ensure that the PLC

program is running. This can be determined by checking that the LED's on the PLC

are lit and the YELLOW run light is on. If the program is not running it has not been

downloaded or the PLC has stopped. In both these cases the operator should refer

to the MODSOFT instruction manual for instructions on how to download and start

the PLC.

Robot Software

The robot software is run by pressing the GREEN start button on the front of the

robot controller. The program should run from the EPROM situated inside the door

on the side of the controller. Before starting the program the operator should ensure

A3-3

Appendix 3 - Documentation for the Manufacturing Cell

that the correct EPROM has been placed in the controller and that the switches in the

controller are in the correct position (refer to the Robot Manual for the correct

settings).

VUNIQ Software

The operator should switch on the attached PC and run the VUNIQ software

accompanying the system. It is Important that this is done before starting the system

initialisation because this software is used to prompt the operator during the

initialisation procedure and provide any necessary error messages.

Initialisation

When the system is powered up, the PC software will indicate that the system is

ready to start initialisation. In order to increase the flexibility of the system, four

different initialisation options are provided, these correspond to the machining

options described in see section 0.

1. Full Initialisation - Initialises the mill, lathe and robot, thus allowing all of the

machining options to be carried out.

2. Initialisation for Cylinder Production - Initialises only the robot and lathe, and

therefore only allows the cylinder production or assembly tasks to be carried out.

3. Initialisation for Block Production - Initialises only the robot and mill, and therefore

only allows the block production or assembly tasks to be carried out.

4. Initialisation for Assembly- Initialises the robot only. This allows only the

assembly task to be carried out.

Having different options for initialisation allows the system to still be useable

(although not for full production) when one or more of the system elements is faulty.

A3-4

Appendix 3 - Documentation for the Manufacturing Cell

However if the robot is not functioning then none of the systems tasks can be

completed, except by manual intervention, in which case initialisation is also carried

out manually. The initialisation procedure for each machine is now described in

detail:

Robot Initialisation

Before the robot can start automatic initialisation the operator is prompted to ensure it

is clear of any machinery or object with which it might collide during nesting (see

Robot Manual for details). If it is unable to nest freely it must be manually jogged to a

safe position using the Teach Pendant. The system will wait for a signal from the

operator indicating that the robot is clear to nest before beginning its automatic

initialisation sequence.

Mill and Lathe Initialisation

Both the mill and the lathe must be placed in their reference positions, and their chip

guards and chucks must be in the OPEN position before they are initialised fully.

The PC software will prompt the operator to ensure that this has been carried out and

wait for a signal from the operator on completion of these settings.

Running the system

Once the system is initialised, it will wait for a request from the operator to indicate

that a particular operation is required. It should be noted that if an operation is

selected for which the required machines have not been initialised, then the cell will

be unable to carry out that operation correctly. Once a particular cycle has been

completed, the system will wait for the operator to input another instruction, telling it

to perform another cycle.

A3-5

Appendix 3 - Documentation for the Manufacturing Cell

Machining Operations

The system is able to carry out one of four machining options, which are described

as follows:

1. Full Production Cycle - A block and a cylinder are taken from the input buffers,

machined concurrently and then assembled at the output buffer.

2. Cylinder Production Cycle - A cylinder is taken from the input buffer, machined

and then placed in the output buffer.

3. Block Production Cycle - A block is taken from the input buffer, machined and then

placed in the output buffer.

4. Assembly Cycle - A machined block and cylinder are taken from the input buffers

and assembled at the output buffer.

Each of these cycles is described in the following sections in more detail.

Full Production Cycle

If the full production cycle is selected, the robot will first take the block from the input

buffer (buffer 1) and place it in the mill. The mill will start processing the block as

soon as the robot has moved clear. The robot will then proceed to the cylinder input

buffer (buffer 2) and move the cylinder to the lathe. The lathe will also start

processing as soon as the robot has moved clear. The robot will wait until the block

has finished being processed, at which point it will collect it from the mill and place it

in the assembly buffer. Once the cylinder processing has completed then the robot

will the proceed to collect the finished cylinder from the lathe and place it in the

appropriate position in the assembly buffer.

A3-6

Appendix 3 - Documentation for the Manufacturing Cell

Block Production Cycle

For this cycle the robot simply takes an unmachined block from buffer 1, and places it

in the mill. The mill starts processing the block as soon as the robot has moved clear.

Once the block is completed the robot collects it from the mill and places it in the

output buffer.

Cylinder Production Cycle

This cycle is similar to the block production cycle except that a cylinder is collected

from buffer 2. The operator should ensure that a suitable receptacle is place in the

output buffer to receive the completed cylinder (e.g. a machined block).

Assembly Cycle

In order to successfully perform the assembly cycle, the operator should ensure that

components suitable for assembly are placed in the input buffers. The robot places

the components in the assembly buffer starting with that from input buffer 1, followed

by that from buffer 2.

Software Description

Lathe Cycle

The cycle for the lathe is described in the following paragraph with reference to the

Petri net in Figure A3.3.

Lathe initialisation is started by the main control software. Once initialised, the lathe

waits for a part to be delivered, and when this is done the chuck is closed. The lathe

then awaits a signal form the main control net indicating that the robot has moved

clear of the door. Once the robot has moved clear, the lathe door is then closed and

A3-7

Appendix 3 - Documentation for the Manufacturing Cell

the machining process is started. The end of the machining process is signalled by

the door opening.

WARNING - // the machining cycle is interrupted and the door opened by an

operator, the control software will think that the cycle has finished normally and

will instruct the robot to fetch the part. In order to prevent this from happening,

both the robot controller AND the PLC should be stopped if there is any

interruption to the machining process.

When the door has opened, lathe waits until it is told to release the part (i.e. when the

robot has gripped the part) and then opens the chuck. Once the chuck is open, and

the part has been removed the lathe cycle is complete.

Mill Cycle

This is similar to that described above for the lathe. The Petri net description of this

cycle is shown in Figure A3.4.

WARNING - /'/ the machining cycle is interrupted and the door opened by an

operator, the control software will think that the cycle has finished normally and

will instruct the robot to fetch the part. In order to prevent this from happening,

both the robot controller AND the PLC should be stopped if there is any

interruption to the machining process.

Robot Cycle

The robot cycle is described by the Petri net in Figure A3.5. There are a number of

tasks that the robot must perform and each of these is shown. Combinations of

these tasks are used to carry out different actions within the system cycles.

A3-8

Appendix 3 - Documentation for the Manufacturing Cell

Petri net descriptions of software

Lathe Control net

lathe power up

Figure A3.3 Lathe Control net

A3-9

Mill Control net

Appendix 3 - Documentation for the Manufacturing Cell

mill initialisation complete
00213

secure mill part
00214

part secured
00215

start mill process
00216

mill part finished
00217

release mill part
00218

Part released
00219

mill power up

mill ready to initialise

ill safe to start

P2os (J mill securing part
00205 ^^

part secured
00220

p2oe () mill ready to start process
00206

closing mill door

mill door closed

00221

p2oa () mill processing part

mill finished process

xxxxx

P2M () mill ready to release part
00209

p2io f) mill releasing part

00210 ^T _ mill part rsleased

p2i, f) mill cycle finished
00211

Figure A3.4 Mill Control net

A3-10

Appendix 3 - Documentation for the Manufacturing Cell

Robot Control net

E s
QJ «_, * E
S IS 3 = ro 8(£ CL p p OJ <n
(1J __ C o TO
ffi f 2 16 oj
ro j^jtjijlj

Figure A3.5 Robot Control net

A3-11

Appendix 3 - Documentation for the Manufacturing Cell

Cell control net

Figure A3.6 Cell control net for the FMS

A3-12

PLC I/O LISTS

Appendix 3 - Documentation for the Manufacturing Cell

Outputs

Address

00001

00002

00003

00004

00005

00006

00007

00008

00009

00010

00011

00012

00013

00014

00015

00016

00017

00018

00019

00020

00021

00022

00023

00024

00025

00026

00027

00028

00029

00030

00031

00032

Description

TB-ROB/33 (IN 0)

TB-ROB/17 (IN 1)

TB-ROB/32 (IN 2)

TB-ROB/16 (IN 3)

TB-ROB/31 (IN 4)

TB-ROB/15 (IN 5)

TB-ROB/30 (IN 6)

TB-ROB/29 (IN 8)

TB-ROB/13 (IN 9)

TB-ROB/28 (IN 10)

TB-ROB/12 (IN 11)

TB-ROB/27 (IN 12)

TB-ROB/11 (IN 13)

TB-ROB/26 (IN 14)

TB-ROB/10 (IN 15)

START "BLOCK FROM BUFFER TO MILL"

START "BLOCK FROM MILL TO ASSEMBLY"

START "CYL FROM BUFFER TO LATHE"

START "CYL FROM LATHE TO ASSEMBLY"

START "ASSEMBLY FROM BUFFERS"

MILL PART SECURED

LATHE PART SECURED

MILL PART RELEASED

LATHE PART RELEASED

START ROBOT INITIALISATION

CLEAR TO NST

OPEN CHUCK (LATHE)

CLOSE CHUCK (LATHE)

OPEN TAILSTOCK (LATHE)

CLOSE TAILSTOCK (LATHE)

START CYCLE (LATHE)

CLOSE DOOR/OPEN DOOR (LATHE)

READ IN PROGRAM (LATHE)

ALARM (LATHE)

REF/AUTO FUNCTION (LATHE)

OPEN VICE (MILL)

CLOSE VICE (MILL)

CYCLE START (MILL)

CLOSE DOOR/OPEN DOOR (MILL)

READ IN PROGRAM (MILL)

ALARM (MILL)

REF/AUTO FUNCTION (MILL)

A3-13

Inputs

Appendix 3 - Documentation for the Manufacturing Cell

Address

10001

10002

10003

10004

10005

10006

10007

10008

10009

10010

10011

10012

10013

10014

10015

10016

10017

10018

10019

10020

10021

10022

10023

10024

10025

10026

10027

10028

10029

10030

10031

10032

Description

TB-ROB/2 (OUT 0)

TB-ROB/3 (OUT 2)

TB-ROB/4 (OUT 4)

TB-ROB/5 (OUT 6)

TB-ROB/21 (OUT 7)

TB-ROB/19 (OUT 1)

TB-ROB/8 (OUT 12)

TB-ROB/9 (OUT 14)

TB-ROB/25 (OUT 15)

TB-ROB/34 (OUT 3)

TB-ROB/20 (OUT 5)

TB-ROB/24 (OUT 13)

REQ MILL TO SECURE PART

REQ LATHE TO SECURE PART

REQ MILL TO RELEASE PART

REQ LATHE RELEASE PART

ROBOT CLEAR OF MILL

ROBOT CLEAR OF LATHE

ROBOT INITIALISED

ASSEMBLY COMPLETE

CYLINDER CYCLE COMPLETE

BLOCK CYCLE COMPLETE

REQ MOVE ROBOT CLEAR OF MACHINERY

CYCLE START STATUS (LATHE)

DOOR OPEN (LATHE)

CHUCK OPEN (LATHE)

TAILSTOCK OPEN (LATHE)

DRIVE STOPPED (LATHE)

ALARM (LATHE)

CYCLE START STATUS (MILL)

DOOR OPEN (MILL)

DRIVE STOPPED (MILL)

ALARM (MILL)

SENSOR 1 (OUTPUT BUFFER)

SENSOR 2 (LATHE INPUT BUFFER)

SENSOR 3 (MILL INPUT BUFFER)

A3-14

Appendix 4 - Papers

Appendix 4

Papers

Appendix 4 contains copies of all published papers taken from this research. They

are summarised as follows:

Stanton, M. J., Arnold, W. F. and Buck, A. A., "Modelling and control of

manufacturing systems using Petri nets." In Proc. 13?h IFAC World Congress,

San Francisco, USA, 1996, vol. J, pp. 324-329.

Stanton, M. J., and Arnold, W. W. "Implementation of Petri nets for the control of

manufacturing systems." 5th UK Mechatronics Forum International

Conference, University of Minho, Portugal, 1996, vol. 1, pp. 373-378.

Stanton, M. J. and Arnold, W. F. "Extension of structured Petri nets for the control of

a conveyor system." In Proc. Factory 2000: IEE 5th International Conference,

Cambridge, England, 1997, pp 472-478.

A4-1

Appendix 4 - Papers

MODELLING AND CONTROL OF MANUFACTURING SYSTEMS USING PETRI
NETS

M. J. Stanton, W. F. Arnold, A. A. Buck

Mechatronics Development Centre,
Faculty of Technology,

University of Wales College Newport,
Newport, Gwent, Wales, U.K.

e-mail: mstanton@gwent.ac.uk

Abstract: The Petri net graph is a powerful tool for the specification, control and analysis of
discrete event systems. A well structured Petri net will provide a clear description of how a
system functions. This paper describes the development of structured Petri nets for
specification and design of control code for manufacturing systems, and discusses the
implementation of such Petri nets on various controllers present in modern manufacturing
systems. The usefulness of structured Petri nets for system modelling and analysis is also
discussed with two practical examples where they have been used to design and implement
control code on real systems.

Keywords: Petri-nets, programmable controllers, manufacturing systems, software
specification, implementation.

1. INTRODUCTION

Petri nets are being used increasingly as tools for modelling
and control in manufacturing. They have also proven to be
ideal for specification, design and analysis of systems
(Willson and Krogh, 1990; Ferrarini, 1992). Many authors
propose extensions to Petri nets which provide increased
modelling power but at the expense of clarity and simplicity
of the analysis tasks (Jafari, 1990). If the extensions
become too complex, it can result in the loss of the Petri
nets properties that make their use attractive in the first
place (David and Alia, 1992) and complicate the task of
converting the Petri nets into control code.

Some authors have developed hardware controllers
specifically designed to implement a form of Petri net
(Murata, et al, 1986; Dohi, et al., 1992). However, if the
Petri net is to be implemented on a variety of existing

programmable controllers, some important factors should be
considered:

i) There are a number of advantages in using the same
formalism for specification, modelling and control of the
system.

ii) If the Petri nets are to be converted into control code,
the method of conversion should preserve the structure
and properties of the Petri net.

To ensure that the control code will behave in accordance
with the specification, the important properties of the Petri
net must be clearly defined and must be preserved in the
implementation. The Petri nets described in this paper are
structured to simplify the task of control code design and to
provide clear views of the system at different levels of
abstraction. They also have other advantages to be

A4-2

Appendix 4 - Papers

described later on in the paper. The next section briefly
describes the basic Petri net definition highlighting the
important features, and is followed by a more detailed
description of the structure imposed on them. This is
followed by a discussion of the problems faced when
converting the Petri nets into control code with reference to
programmable logic controllers (PLCs) using ladder logic
diagrams (LLDs) as their control language. Also discussed
is the use of high level programming languages and other
programming methods encountered in manufacturing
systems. Finally some practical implementation examples
will be described and the conclusions which have been
drawn from these will be presented along with possibilities
for future work.

2. PETRI NET DEFINITION

The Petri net used here has a similar definition to that of the
ordinary Petri nets described in (Peterson, 1981) and (David
and Alia, 1992). The use of inhibitor arcs has also been
included and some authors refer to these as extended Petri
nets.

An important aspect of the representation used here is the
firing of transitions. Transitions fire instantaneously as
soon as they are enabled and therefore unlike those in
Timed Petri Nets or Stochastic Petri Nets (Murata, 1989)
they have no time associated with them. Any time delays
present in the net are associated with places rather than
transitions. This distinction is important here because it is
linked to the use of the nets as a diagnostic tool described
later. It is also assumed that when a transition fires, all of
it's output places receive their tokens simultaneously.
When a transition has more than one output place this
simultaneous generation of tokens represents a concurrent
operation. This can pose some difficulties where the target
controller is a sequential machine.

There are design issues which must be taken into account
when using the Petri nets described here for the control of
discrete manufacturing systems.

i) Care must be taken to avoid conflicts between
transitions. This is done by ensuring that all concurrent
operations originate from a transition rather than a place.
The class of conflict-free nets is described in (David and
Alia, 1992). However the nets used here do not fall into
this class because places can have more than one output
transition. The conflict is removed in this case by
having another place attached to each of the output
transitions acting as a guard by preventing more than
one transition from being enabled at any time.

ii) The Petri net must be safe. This property (see
(Peterson, 1981)) requires that each place in the Petri
net may contain a maximum of one token. This is a

Fig. 1. Petri net structure for workstation.

structural property of the Petri net and is desirable as it
again effects the usefulness of the Petri net as a
diagnostic tool.

3. PETRI NET STRUCTURE

In order to clearly specify a system using ordinary Petri
nets, a rigid structure is applied. This structure has the
following benefits:

• Gives a generic structure which can be used to describe
any manufacturing system.

• Provides a clear graphical representation of the specified
system.

• Gives a hierarchical structure to control code design.

• Ensures a modular structure allowing individual
modules to be augmented without affecting the rest of
the system.

• Provides enhanced diagnostic ability by leading the user
to the point of error through the different levels in the
hierarchy.

The term workstation is used here to describe the basic units
of the manufacturing system. The Petri net describing the
operation of each workstation is structured as shown in Fig.
1. The elements of this structure are described below:

3.1 Control net

The control net describes the basic actions of the
workstation at the highest level of abstraction. Each action
is shown as a place in the control net. The places of the
control net are divided into primitive places and non-
primitive places. Non-primitive places are simply the

A4-3

Appendix 4 - Papers

places which represent more complex actions at lower
levels in the control code hierarchy. An example of a non-
primitive place would be that representing the action
"placing pallet on conveyor" Primitive places are those
which do not represent complex actions. An example of a
primitive place would be that representing the state "station
ready".

3.2 Subnets

Each non-primitive place in the control net represents a
more complex set of actions at lower levels in the hierarchy.
Each of these actions is described in detail by a subnet. The
subnets are initialised by the control net when the
workstation is powered up. They are then ready to start
their actions on request from the control net at the correct
points in the machine cycle. Feedback from the sensors
attached to the workstation indicate, within the subnets,
whether the desired actions have taken place. When they
have finished execution, the subnets return to their initial
state and send a signal to the control net to indicate
completion of their task. This behaviour can be seen in Fig.
2, where ps starts the already initialised subnet and pF
represents the finish signal.

3.3 Output nets

In order to translate the actions described in the subnet into
physical events, the subnets invoke output nets. These
control the physical devices attached to the workstation
such as solenoids or electric motors. An particular output
net may be invoked by a number of different subnets at
different points in the execution of the workstation's tasks.
Communication between the subnets and the output nets is
only in one direction. Any feedback from the execution of
the output nets is monitored by the sensors attached to the
system and signalled in the subnet requesting the action.

3.4 Safety net

The safety net sits at the same level in the hierarchy as the
control net. It monitors the safety related inputs attached to
the workstation, such as emergency stop conditions or
machine guard status signals. If an unsafe state is detected
the safety net invokes the output nets as required to either
shut the machine down in a safe manner, or where possible,
perform automatic recovery from such situations. There is
also a link between the safety net and the control net which,
on powering up, prevents the machine from carrying out any
physical tasks until it is in a safe state.

The link between the control net and a subnet, detailed in
Fig. 2, shows that when the transition t, fires, a token is
placed both in the non-primitive place p3 (shaded grey) and
in the place p$. Place ps starts the subnet, from its initial
state, and on completion of the its task returns to the initial

Fig. 2. Detail of link between control net and subnet.

state and generates a token in place pF. This will enable
transition t2 to fire thus removing the tokens from place p3
and pF . Thus a token will remain in the place p3 until its
associated subnet has finished its task. Since the presence of
a non-primitive place implies that there are links to a
subnet, these links need only be shown on the Petri net
graph of the subnet to which they belong. This increases
the clarity of the control net, enhancing its use as a
specification tool.

Where an output net is invoked by a subnet, there is only a
single link requesting an action from the output net (e.g.
switch solenoid on). There will be no return signal from the
output net itself, but as mentioned previously feedback form
sensors on the machine will indicate in the subnet whether
the desired event has taken place. The signals from these
sensors are implemented as places in the subnet from which
the request originated.

4. IMPLEMENTATION

If the Petri net is to be implemented on programmable
controllers, it is essential that all properties of the net are
preserved in the translation into the languages used by those
controllers. The problems faced in developing such a
translation are discussed here with reference mainly to a
PLC using ladder logic as its control language. These
problems, however, are not exclusive to such an
implementation. To aid the discussion of such problems, a
more detailed description of how a Petri net is implemented
as a Ladder Logic Diagram (LLD) is required.

4.1 Ladder representation of a Petri net

The conversion of Petri nets to ladder logic has been dealt
with previously in (Henry and Webb, 1988; Cutts and
Rattigan, 1992; Satoh, et al, 1992) and a comparison
between the two was presented in (Venkatesh, et al, 1994).

A4-4

Appendix 4 - Papers

P4

Pi P2

P3 P4

{>

(a)

Ps

H/H
(b)

Fig. 3. (a) Petri net segment, (b) Ladder representation for
place p3 .

An approach similar to that used by (Henry and Webb,
1988) has been adopted which preserves both the structure
and the diagnostic capability of the Petri net. Each place in
the Petri net is represented by an output coil in the LLD (see
Fig. 3). When the output coil is set, it indicates that its
corresponding place contains a token. Transistions are not
directly implemented but each is represented by its set of
input places. This is a different approach to that used in
(Satoh, et al., 1992) where transitions are also represented
as outputs which are set when the transition is enabled.
Their approach does reduce the number of relays used in
each rung but the overall number of outputs required is
greatly increased, as is the size of the LLD. This would be
unacceptable in cases where small low-cost controllers are
being used due to the memory requirements of large LLDs.
For a discussion of efficient LLD design see (Pessen, 1989).

In Fig. 3(a), transition t(is enabled when places pi and p2
both contain a token. When the transition fires, a token
appears in place p3 . This token can only be removed when
transition t2 fires i.e. when places p4 and p$ have received
their tokens. It can be seen that this behaviour is reflected
in the LLD rung of Fig. 3(b) representing the set and reset
logic for output p3 . The entire LLD representation of the
Petri net is constructed in this way, with one rung for each
place in the net.

The Petri net structure is preserved, by positioning the
places of the control and the safety nets at the top of the
LLD. These are followed by those of the subnets and then
finally the output nets (see Fig. 4). The advantages of using
Petri nets, as presented here, for design and maintenance of
LLDs is clear. By preserving the net structure and
representing only places as outputs in the LLD, structured
control code is produced which is more easily maintained
and provides a clearer diagnosis of fault conditions.

Control net

Safety net

Subnet 1

Subnet n

Output net 1

Output net n

Fig. 4. Organisation of nets within LLD.

4.2 Token generation

A number of factors must be taken into account when
implementing the net on a sequential machine. Concurrent
behaviour such as the simultaneous generation of tokens
cannot be directly implemented and the method used to
simulate this behaviour is crucial to the correct operation of
the Petri net. The way in which a program runs on a
particular type of controller also bears heavily on how the
net is implemented. In order to ensure correct operation of
the Petri net when represented as an LLD, each transition
must be kept enabled until all of its output places have
received their tokens, i.e. for more than one scan cycle of
the PLC. This requires that all the input places keep their
tokens until the output places have received theirs. This is
implemented as shown in Fig. 3(b), where the output coil
representing place p3 remains set until the relays
representing places p4 and p5 are set (i.e. places p4 and p5
have received their tokens).

When implementing Petri nets in a high level programming
language, such as C++, a method must be applied which
allows all currently enabled transitions to be fired before
checking the net for any further enabled transitions. This
has been implemented as a list of currently enabled
transitions, which is generated on each scan through the
Petri net. All transitions in this list are fired before
commencing the next scan of the Petri net.

A4-5

Appendix 4 - Papers

Pi P2 Ps1

H
Ps P4

W

{}

(a) (b)

Fig. 5. Place pa receives its token after the subnet is started.

4.3 Error diagnosis

If it is to be useful as a diagnostic tool, the Petri net should
be able to indicate where a machine has failed. If the
machine stops, due to a fault during normal operation, the
control net can be examined and the positions of any tokens
present will indicate where in the machines cycle a problem
has occurred. If these tokens are present in non-primitive
places then the problem can be traced down through the
Petri net structure to the appropriate subnets and output
nets, and the cause of the stoppage can be located precisely.
It is clearly important that in any translation of the Petri nets
that this ability to trace faults in the machine cycle is
preserved and it is for this reason that the timed place
representation of the Petri nets was highlighted in section 2.
The LLD generated from the Petri net specification in the
manner shown here is equally ideal for locating the point at
which the machine has stopped which is indicated by
outputs being set.

4.4 Limitations of current approach

The method discussed previously for conversion to LLDs
was found to pose a few problems when used to control
complex systems with a large number of actuators. The
problem exhibited itself as the multiple firing of a transition,
causing multiple generation of tokens, and the non-removal
of tokens from input places once a transition had fired.
These errors were found to occur at the link between the
control net and subnets where the control net place was
receiving its token before the subnet places. An improved
method was developed and is detailed in Fig. 5. Here the
place p3 now only receives a token after place psl has
received its token and thus starts the subnet. This doesn't
alter the accuracy of the Petri net representation in the LLD
since it only affects the order in which the transition's
output places receive their tokens. It can be seen in Fig.
5(b), that the reset logic now only needs to contain the
control net place p4 . This is because it is known that p4 can
only be set if ps2 is already set. This gives us the added

advantage of clearer LLDs and adds a certain amount of
decoupling of the subnets from the control net. It also
makes the LLD more deterministic because if a non-
primitive place contains a token, then its associated subnet
will have started its operation.

5. PRACTICAL EXAMPLES

The Petri nets shown here have been successfully used in
the specification and design of control code for two separate
systems. These systems are briefly described.

5.1 Raw Materials Handling Station

A raw materials handling station, which is part of a larger
automated manufacturing system based in the Mechatronics
Research Centre, has been used to develop the system of
translation from Petri nets into LLDs. The station uses in
total, fifteen single acting pneumatic cylinders to perform
the task of loading pallets with different types of material
and then placing these pallets on a conveyor. Any requests
for raw materials are issued by a PLC which acts as the
main controller for the whole system. It is also possible to
use the workstation as a standalone unit with requests being
generated by an attached PC. Structured Petri nets have
been used to add greater functionality to the station and also
allow increased flexibility.

5.2 Flexible Manufacturing Cell

Work has also been carried out to integrate two industrial
CNC machines and a robot to form a flexible manufacturing
cell. The cell was required to take two different types of
raw material, process each according to a specified program
and then assemble the processed parts. The main control of
the cell is carried out by a PLC which co-ordinates the
actions of a robot, a CNC lathe and a CNC mill. The robot
is used for loading and unloading the CNC machines and
for the simple assembly task. The main actions of the
machines were specified using the structured Petri nets
described in this paper (The specification was examined and
finalised by the owners of the system, most of whom had no
prior knowledge of Petri nets.). It was then converted into
control code for the PLC. The control code for the robot
was specified using Petri nets but the conversion into the
language used by the robot controller, which is very similar
to BASIC, was not quite as detailed as that carried out for
PLCs. Since the actions of the robot were purely sequential
it was sufficient to structure the code in the same way as the
Petri nets are structured but there was no need to attempt to
directly represent the Petri net in the control language. This
allowed the production of well structure code for the robot
controller which was found to be easily maintained and
updated.

A4-6

Appendix 4 - Papers

6. CONCLUSIONS

It has been shown that it is possible to use ordinary Petri
nets, with a hierarchical structure to specify and design
control code for discrete manufacturing systems. Using
these nets gives the advantage of using the same formalism
for the specification, design, modelling and control of the
system. Directly implementing the Petri net specifications
as control code enables well structured and maintainable
control code to be produced. The need for careful analysis
of the net structure, the way in which the net is represented
within the controller, and also the way in which the
controller operates have been highlighted. Current work
has mainly concentrated on the implementation of Petri nets
on PLCs using LLDs. Work is being carried out to develop
their implementation in other languages and is continuing
on an implementation in C++ for controlling workstations
directly using personal computers. The safety net is to be
expanded as the need for integrated safety systems becomes
more important due to the complexity of modern
manufacturing systems. If a variety of controllers are
modelled and controlled using the same technique then
integration of these controllers into a coherent, flexible
system becomes possible.

REFERENCES

Cults, G. and S. Rattigan (1992). Using Petri nets to
develop programs for PLC systems. In: Proc. 1992
International Conference on Application and Theory
of Petri Nets, Sheffield, UK.

David, R. and H. Alia (1992). Petri nets and Grafcet:
Tools for modelling discrete event systems, Prentice
Hall, London.

Dohi, Y., M. Sugiyama, H. Murakoshi, T. Sekiguchi, Y.
Cai, I. Yomiya and D. Taufana (1992). Error
detection scheme for Petri net sequence controller. In:
Proc. 1992 IEEE international Symposium on
Industrial Electronics, 45-48. Xian, China.

Ferrarini, L., (1992). An incremental approach to logic
controller design with Petri nets. IEEE Transactions
on Systems, Man and Cybernetics, 22, 461-473.

Henry, R.M. and M. Webb, (1988). Ladder logic for
sequence generation - A methodology. Measurement
and Control, 21, 11-13.

Jafari, M.A. (1990). Petri net based shop floor controller
and recovery analysis. In: Proc. 1990 IEEE
International Conference on Robotics and
Automation, 532-537. Cincinnati, Ohio, USA.

Murata, T., N. Komoda, K. Matsumoto and K. Haruna,
(1986). A Petri net-based controller for flexible and
maintainable sequence control and its applications in
factory automation. IEEE Transactions on Industrial
Electronics, IE-33, 1-8.

Murata, T., (1989). Petri Nets: Properties, Analysis and
Applications. Proceedings of the IEEE, 77, 541-581.

Pessen, D.W., (1989). Ladder diagram design for
programmable controllers. Automatica, 25, 407-412.

Peterson, J.L. (1981). Petri Net Theory and the Modeling of
Systems, Prentice Hall, Englewood Cliffs, NJ, USA.

Satoh, T., H. Oshima, K. Nose and S. Kumagai (1992).
Automatic generation system of ladder list program by
Petri net. In: Proc. 1992 IEEE International
Workshop on Emerging Technologies and Factory
Automation, 128-133. Melbourne, Victoria,
Australia.

Venkatesh, K., M. Zhou and R. J. Claudill, (1994).
Comparing ladder logic diagrams and Petri nets for
sequence controller design through a discrete
manufacturing system. IEEE Transactions on
Industrial Electronics, 41, 611-619.

Willson, R.G. and B.H. Krogh, (1990). Petri net tools for
the specification and analysis of discrete controllers.
IEEE Transactions on Software Engineering, 16, 39-
50.

A4-7

Appendix 4 - Papers

IMPLEMENTATION OF PETRI NETS FOR THE CONTROL OF MANUFACTURING
SYSTEMS

M. J. Stanton, BSc, AMIEE.
Mechatronics Research Centre, University of Wales College, Newport, UK.
email: mstanton@newport.ac.uk

W. F. Arnold, BSc, MSc, CEng, MIEE.
University of Wales College, Newport, UK.

ABSTRACT

A simple Petri net definition is described which by applying appropriate design guidelines and
a rigid structure is transformed into a powerful methodology for the design and implemtation
of control code for discrete manufacturing systems. A description of how this methodology has
been applied to real systems is presented along with a discussion of the issues arising from such
an application and the advantages gained by its use.

1. INTRODUCTION

Petri nets provide a graphical and mathematical
tool for the modelling, analysis and control of
discrete event systems [1]. They have been
found to decrease the development time of
complex sequence controllers [2], and,
graphically, provide an ideal communication
tool for specification purposes.

There has been a great deal of interest in the use
of Petri nets for the sequence control of discrete
manufacturing systems and a number of
different methods have been proposed. A
hierarchical shop floor controller based on
coloured Petri nets is presented in [3]. Here,
the complexity of system analysis is reduced by
the use of a modular structure, as each module
can be analysed in isolation. Even so the
analysis of coloured Petri nets is still complex
and in this particular application important
properties, such as liveness, are difficult to
establish. There is little mention of how, or on
what type of controller such a system would be
implemented.

In [2] a Petri net based sequence controller is
implemented on a number of real systems. This
method uses an extension of Petri nets called C-
net which provides a graphical representation
for the system description which is interpreted
to provide direct control of the system. The
development time of the control software is
reported to be shorter using this method than
when compared with development times using
Ladder Logic Diagrams (LLDs).

A more detailed comparison between Petri nets
and LLDs can be found in [4]. The difficulties
faced when designing and maintaining control
code using LLDs are highlighted and it is
suggested that Petri nets overcome such
problems. A simple Petri net extension called
Real Time Petri Nets is proposed. This
extension is deliberately kept simple because it
is intended that it should directly control their
example system.

In [5] synthesis techniques for Petri net
controllers are presented which guarantee
certain structural properties of the net. The
implementation of such nets is also discussed.
This relies on a Petri net description language
which is then compiled into the working code
for a token player. The token player runs on a
Personal Computer (PC) which acts as
supervisory controller for the cell.

It has been noted in [6] that the use of complex
extended Petri nets may result in the loss of
some useful properties. This complexity will
also affect the ease with which the Petri net can
be implemented on the controllers present in
modern manufacturing systems. Most of the
methods described here for sequence control
are implemented on PCs. Traditionally
manufacturing systems are controlled using
Programable Logic Controllers (PLCs) which
are programmed using low level languages such
as Ladder Logic Diagrams (LLDs) or Boolean
Logic. A system for conversion of Petri nets
into (LLDs) is described in [7]. In order to
facilitate such conversion, the nets presented in
this work are intentionally simple.

A4-8

Their modelling power is increased, however,
by the application of a hierarchical structure.
This provides a number of advantages some of
which are listed here:

• Gives a generic structure for describing any
hierarchical manufacturing system.

• Provides a clear graphical representation of
the specified system.

• Ensures a modular structure allowing
individual modules to be augmented without
effect on the remainder of the control code.

• Separates the sequence control code from the
hardware model.

• Allows simple and effective diagnosis of
system failiures.

The following section describes the Petri nets
used in this work and highlights the important
aspects of their definition. This is followed in
Section 3 by a description of the structure
applied to the Petri nets in order to increase
their ability to accurately model hierarchical
manufacturing systems. Section 4 describes
some practical examples of real systems on
which the Petri nets have been implemented. It
describes first the implementation for a single
machine, and then goes on to describe that for
larger systems, consisting of a number of
individual machines. Finally Section 5
provides details of continuing work using the
nets system.

2. PETRI NET DEFINITION

The basic definition of Petri nets can be found
in many texts (for example [6], [8]). The Petri
nets used in this work are ordinary Petri nets
but the use of inhibitor arcs is also permitted.
The Petri nets must be safe (i.e. each place may
only hold a single token at any time). This is
particularly important when using the net for
fault diagnosis, and where places are used to
represent non-primitive events.

2.1 Primitive and non-primitive places
In [8] transitions are used to represent events
and the notion of primitive and non-primitive
events is discussed, A primitive event is one
which occurs instantaneously whereas a non-
primitive event takes time to occur. The non-
primitive event can also be represented as two
primitive events and a place. The primitive
events can be described as "non-primitive event
starting" and "non-primitive event finishing"

Appendix 4 - Papers

with the place representing the condition "non-
primitive event occurring". In this work, such a
non-primitive event is used to describe complex
actions which may be viewed as a sequence of
primitive events. However, the place
representing the condition "non-primitive event
occurring" is referred to as a non-primitive
place.

The places of a Petri net can therefore be
divided into two separate classes.

i) Primitive places - ordinary places which
represent states of the system (e.g. robot
ready).

ii) Non-primitive places - representing system
actions (e.g. lathe processing part). Non-
primitive places usually have a subnet
associated with them. A token in a non-
primitive place indicates that its associated
subnet or task is active. This is described in
more detail in section 3.

Note that there is only one type of transition in
the Petri net, which is that representing non-
primitive events. This means that all transitions
fire instantaneously as soon as they are enabled
removing tokens from input places and
generating tokens in output places as they do
so. Thus, unlike the transitions in Timed Petri
nets or Stochastic Petri nets they have no time
associated with them.

2.2 Hardware places
For implementation purposes, another type of
place has been included in the definition.
These represent the physical sensors and
switches attached to the system and are referred
to as hardware places. A token in a hardware
place indicates that its associated switch is on.

The operation of all places is exactly the same
as that defined for places in ordinary Petri nets.
The distinction between types of place becomes
useful in the graphical representation of the
system, clearly indicating the purpose of each
place.

3. PETRI NET STRUCTURE

The structure imposed on the Petri net is shown
in Figure 1. The nets used in each level of the
hierarchy have the same definition as described
in the previous section and all communication
between the nets is carried out via shared
places. The direction of communication is
indicated by the arrows. The dotted lines
represent communication with devices attached

A4-9

to the machine (sensors and safety related
inputs) or with an attached user interface (e.g. a
control panel or Personal Computer).

Requests for Action—?———?———i——

Control Net

i '

Subnet]
1 1 J

A

1 '

(Output
[Net1

t

t i

i •

Subnet] Su
2 J I

t
1 Output]
! Net2j
1 t

A h

1 r

bnet]
3 J

i '

Output]
NetsJ

1L

........... .. —— .-••"

Safety
Net

Sensors Safety Related Inputs

Figure 1. Petri net structure for a single
machine.

3.1 Control net
The control net provides the sequence control
for all specified machine actions. This includes
details of any concurrency present in the system
and any prioritisation specified by the system
requirements. It must describe fully all
requirements for correct system operation. As
shown in Figure 1, the control net sits at the top
of the control structure. It coordinates the
actions taken by the subnets below it.

3.2 Subnets
The hardware of the system is represented by
the subnets, with a single subnet describing
each axis (or device). All states of the system
must be described in the subnets. Subnets are
invoked by the control net and will operate
when invoked if able to do so. It is for this
reason that the sequence information provided
by the control net is complete and correct.

3.3 Output nets
Any output devices causing physical events in
the system (such as solenoids or motors) are
modelled using output nets. There is no direct
feedback from the output nets to the subnets.
Instead feedback is provided by sensors
attached to the system. These sensors are
represented in the subnets as Hardware Places
(see Section 2.2).

Appendix 4 - Papers

3.4 Safety net
The safety net sits at the same level in the
control structure as the control net. When a
machine is switched on, it is assumed to be in
an unsafe state. Only when the safety net has
verified that it is safe to do so will the machine
be allowed to start operating. During operation,
the safety net monitors both the state of the
system and any safety related inputs (sensors
attached to chip guards etc.). If an unsafe state
is detected, it will take control of the output
nets and initiate safe shutdown of the machine.
There is also scope for implementing some
automatic fault detection and recovery
procedures within the safety net.

3.5 Initialisation
When a machine is powered up, its current state
must be examined and, once known, the
machine must be safely moved into a position
where it is ready carry out its required
operations. Such an initialisation is catered for
by the inclusion of two additional places at the
start of the control net. These places invoke
subnets which carry out software and hardware
initialisation of the system. Only when these
subnets have finished executing will the
machine be in a state where it may carry out
operations. Ideally initialisation is carried out
automatically, however, with the modularity of
this control structure, it is possible, and
perfectly reasonable to include steps which
require feedback from a human operator.

4. IMPLEMENTATION

It is important for any control software to be
implemented on existing systems as well as
new installations. Existing systems may be
adapted to increase flexibililty or augmented by
the introduction of additional resources. This
section decribes the implementation of the Petri
net structure described in Section 3 on real
systems. The first example is a single machine
supplying raw materials to a larger working
system and the second is a newly installed
Flexible Manufacturing Cell.

4.1 Raw Materials Station
A raw materials handling station provides raw
materials to a small manufacturing system
based in the Mechatronics Research Centre. It
consists of, in all 15 single acting pneumatic
cylinders, which are controlled by a small PLC.
The PLC is linked via a token ring network to
other PLCs on the system and to a PC via an
RS232 link. A diagram of the Raw Materials
Station is shown in Figure 2. Pallets are stored
on the station which are loaded with different

A4-10

Appendix 4 - Papers
raw materials and placed on the conveyor when
a wagon is present to take it.

•\uuuu

Figure 2. Layout of raw materials station

A Petri net controller was designed according to
the structure presented in Section 3. The
method used employs both a bottom up and top
down approach. The top down approach is
used to design the control net as follows:

1. The separate tasks required of the machine
are identified.

2. The tasks are decomposed into a number of
subtasks, each of which represents an action
by an individual axis.

The bottom up approach is applied to the
hardware model of the system. Each axis is
modelled by a subnet, and the output devices
are modelled by output nets. The actions
required of these axes are initiated by the
control net. The link between the control net
and the subnets is shown in Figure 3.

Places ps and pa both receive a token when
transition ti fires. Place ps starts the execution
of the subnet, the details of which are not
shown in the figure. The subnet completes its
task by placing a token in place pF. This allows
transition t2 to fire thus removing the tokens
from places pp and ps. As stated previously,
there is no time associated with the firing of
transisitions, they fire instantaneously as soon
as they are enabled. However, since the subnet,
which is causing the movement of physical
devices, will take time to complete, the token in
place pa will remain in there until transition t2 is
enabled (by the arrival of a token in place pF).
Therefore place pa can be viewed as a timed
place with time T (where T is the time taken for
the subnet to execute).

Figure 3. Detail of link between control net and
subnet

In the particular case of the raw materials
station, there are a large number of actuators
which are grouped to form different devices. In
order to simlify the control structure an
additional control level was added to the system
between the control net and the subnets. This
means that the control net co-ordinates the
different devices and the new "sub"-control
nets co-ordinate the actuators comprising these
devices. If each device is viewed as a machine
in its own right, this then leads to a control
structure for a group of individual machines.
Such a control structure is discussed in the
follwing section.

4.2 Flexible Manufacturing Cell
A Flexible Manufacturing Cell consisting of a
CNC mill and a CNC lathe serviced by a robot
which is mounted on a slide mechanism is
shown in Figure 4. The robot and both CNC
machines have their own controllers and the
overall supervisory control of the cell is carried
out by a PLC. Unlike the machine described in
Section 4.1, this system was a new installation
and so the control code was to designed from
scratch.

Conlrollcr
CNC
MILL

------ 5

1
4

/
/• -

2

CNC
LATHE

id U-]

Slider

Raw materials \
buffers Assembly

Buffer

Robot _

Figure 4. Layout of the Flexible Manufacturing
Cell

A4-11

One of the main challenges of such a system, is
that it contains a variety of controllers on which
the Petri net structure is to be implemented.
Also, the control net is, in this case, co­
ordinating a number of self contained machines
rather than elements of a single machine. This
resulted in a structure similar to that shown in
Figure 5.

Requests for Action

Cell Control Net }\
Machine

A
Machine

B
Machine

C

Cell Safety Related Inputs

Cell
Safety

Net

Figure 5. Petri net structure for a
manufacturing cell.

The cell control net co-ordinates the activities
of the machines by requesting actions from
them. This is done in much the same way as
the control panel or PC was used to invoke the
actions of a single machine (Figure 1). The
blocks marked A, B, and C in the figure may
each contain the full structure detailed in Figure
1. The cell control net communicates directly
with the machine control nets and the cell
safety net communicates directly with the
machine safety nets.

4.3 Further Developments
A larger system consisting of a machining cell
similar to that described in Section 4.2, the raw
materials station discussed in section 4.1, an
Automated Storage and Retrieval System
(ASRS), and a conveyor system for the
transportation of materials is currently housed
in the Mechatronics Research Centre. Other
workstations attached to the system may be
incorporated in the project at a later date. Such
a system presents an opportunity to develop the
Petri net control structure further to;

1. Incorporate a higher level of control.

Appendix 4 - Papers

2. Describe a system with a greater amount of
concurrency.

3. Investigate the modelling of a conveyor
system.

At this level there are also other implications,
such as interfacing with Management
Information Systems and Databases for batch
information of particular products. Some
inclusion for a scheduling strategy must also be
incorporated into the system. All these
additions to the current system are made
possible by the modular structure and as shown
in section 4.2.

5. CONCLUSIONS

A method of generating Petri net controllers for
discrete manufacturing systems has been
presented and the benefits of such a method are
detailed. The Petri nets have a simple
definition but their power as a tool for
modelling and control is increased by the
structure imposed on them. For testing and
maintaining control code they provide all the
advantages of modular design techniques. This
has the added bonus of enabling other types of
controller, which are not described by Petri
nets, to be included in the system and therefore
this method is ideal for the integration of
manufacturing systems. Further development
of the safety subsystem, represented by the
safety net (see Figure 1) is required to produce
a fully integrated manufacturing safety system.

ACKNOWLEDGEMENTS

The authors would like to thank Arthur Buck
for his continued support, advice and
constructive criticism.

REFERENCES

[1] Zurawski, R., and Zhou, M., Petri Nets
and Industrial Applications: A Tutorial, IEEE
Transactions on Industrial Electronics Vol. 41
No. 6 pp 567-583, 1994.

[2] Murata, T., Komoda, N., Matsumoto,
K., and Haruna, K. A Petri Net-Based
Controller for Flexible and Maintainable
Sequence Control and Its Applications in
Factory Automation, IEEE Transactions on
Industrial Electronics Vol. EE-33 No. 1 pp 1-8,
1986.

A4-12

[3] Jafari, M.A., An Architecture for a
Shop-Floor Controller Using Colored Petri
Nets, International Journal of Flexible
Manufacturing Systems No. 4 pp 159-181, 1992. FF

[4] Venkatesh, K., Zhou, M., and Caudill.
R.J., Comparing Ladder Logic Diagrams and
Petri Nets for Sequence Controller Design
Through a Discrete Manufacturing System,
IEEE Transactions on Industrial Electronics
Vol. 41 No. 6 pp 611-619, 1994.

[5] Zhou, M., and DiCesare F., Petri Net
Synthesis for Discrete Event Control of

Appendix 4 - Papers

Kluwer AcademicManufacturing Systems,
Publishers, USA 1993.

[6] David, R., and Alia, H., Petri Nets and
Grafcet: Tools for Modelling Discrete Event
Systems Prentice Hall, London 1992.

[7] Stanton, M.J.,Amold, W.F., and Buck.,
A.A., Modelling and Control of Manufacturing
Systems Using Petri Nets to be presented at the
12th EFAC World Congress July 1996.

[8] Peterson, J.L. Petri Net Theory and the
Modeling of Systems. Prentice Hall, Englewood
Cliffs, NJ, US A 1981.

A4-13

Appendix 4 - Papers

EXTENSION OF STRUCTURED PETRI NETS FOR THE CONTROL OF A CONVEYOR SYSTEM

M. J. Stanton, W. F. Arnold

University of Wales College, Newport, Wales, UK

ABSTRACT

This paper describes the extension of a manufacturing
control structure for the control of a closed loop
conveyor which delivers parts and raw materials to a
number of workstations. The control structure is based
on ordinary Petri nets which have been extended to
allow the addition of external inputs and outputs. These
nets are designed as modules which can be linked, via
condition signals, to form the control structure of more
complex systems. The possibilities of further expansion
of the control structure to include scheduling systems
and manufacturing information systems is also
described. Finally the proposed application of such
controllers to fault monitoring and diagnosis is
discussed.

INTRODUCTION

The application of Petri nets for modelling and control
of manufacturing systems has been studied by many
authors. They are favoured for their simple graphical
representation and their ability to be used in the
specification, design and implementation of systems,
Zurawski and Zhou (1).

Many extensions to Petri nets have been proposed for
the control of manufacturing systems, although not all
give an indication of how they would be implemented.
Those that do usually rely on a token player running on
a Personal Computer (PC) which is used to control a
manufacturing cell, Zhou and DiCesare (2). However it
is more common to find Programmable Logic
Controllers (PLCs), than Personal Computers used on
the shop floor because of their rugged design and ability
to handle a large amount of I/O. It is therefore
necessary to design a Petri net controller that can be
implemented on these and other common types of shop
floor controller.

In order facilitate its implementation on controllers such
as PLCs, the particular form of Petri net used should be
as simple as possible. A robust method for the
implementation of ordinary Petri nets in the form of a
Ladder Logic Diagram has been developed in Stanton
and Arnold (3). The modelling power of ordinary Petri
nets may be greatly increased by the application of a
modular structure to the nets. This is achieved by the
addition of a simple extension to ordinary Petri nets
which allows the inclusion of external inputs and

outputs. The resulting structure provides the following
among a number of benefits:

• It allows control modules to be developed and tested
independently

• It allows simple and effective fault diagnosis during
both development and operation of the system

These particular benefits are the subject of the work
described in this paper

Use of Petri Nets for Manufacturing

In recent years a number of authors have published work
on the specification, modelling, simulation and control
of conveyor systems. Cruette et al, (4) describe a
method for specifying the operating sequences of
produced parts. Each operating sequence is described
using an Object Petri net, which uses different tokens to
represent each instance of the part being produced. By
decomposing the system hierarchically they can make
each transition in the operating sequence represent either
a change of state or a change of position within the
system. Although they apply their method to a conveyor
system, the operating sequences they generate do not
seem to depend on the type of materials handling system
they are modelling, thus a conveyor belt, or an AGV
system can be modelled in the same way.

In Lin and Lee (5) Timed Petri nets are used to model a
zone-control conveyor which only allows certain
numbers of wagons (loaded or unloaded) into each type
of zone. The different zone types are modelled
independently as transition bordered subnets which are
analysed for desirable properties (boundedness,
liveness, conservativeness, etc.). These zone modules
are then selected to from the model of the conveyor
system.

Cohen (6) describes the implementation of an Expert
System to control a conveyor system. The Expert
System acts as an event driven system which simply
stores all possible states of the system in the knowledge
base and uses rules to determine the possible next-state.

Moore and Gupta (7) describes an Stochastic Coloured
Petri Net modelling method for flexible manufacturing
systems. Subsystems are developed individually and
merged at transitions. The preservation of properties of
each subsystem net is used to ensure those same

A4-14

Appendix 4 - Papers

properties for the whole system. They present as an
example the modelling of a conveyor belt which is
divided into segments. This is a similar approach to that
of (5) in that the conveyor itself is modelled by splitting
it into a number of zones.

Yeung and Moore (8) introduces the concept of, and the
requirement for, Flexible Conveyor Systems and
presents an object oriented model for the control of such
complex systems. To accommodate such a model,
rather than using interconnected PLCs to control the
system, the method proposed uses microcomputers
interconnect using a version of fieldbus.

The contribution of this work is in the control of
automated manufacturing systems. Many of the Petri
net methods described in the literature present complex
extensions to Petri nets which can only be implemented
using high level languages on relatively powerful
computers. This is also true for the methods described
in (6) and (8). However the most common computer
used for the control of manufacturing systems is the
Programmable Logic Controller (PLC), favoured for its
robust design and large amount of expandable I/O.
Such controllers are usually programmed using Ladder
Logic Diagrams (LLDs) or more recently Sequence
Function Charts (SFCs). Other methods such as
structured text are also in use but they are all very much
low level programming languages and therefore do not
allow the complexity of high level languages such as
C/C++, or PASCAL.

It is with this in mind that the method of control code
design presented here was developed. The Petri nets
used are slightly modified, ordinary, safe Petri nets
which are readily translated into LLDs or SFCs. Their
modelling power is increased by imposing a structure on
the nets which allows the development of system
modules, and stepwise refinement of the control code
for the various machines of the system. The next section
describes ordinary safe Petri nets and then goes on to
detail the extension to allow for external inputs and
outputs. The general control structure is the defined,
detailing the communications between the various
modules. The application of this structure to the control
of a conveyor system is then presented followed by
description of the further extension of the structure.
Finally a proposed method for fault monitoring is
presented which uses the Petri net structure as a
specification of expected system behaviour.

STRUCTURED PETRI NETS

A structured Petri net is defined here as an ordinary safe
Petri net with external inputs and outputs, Ichikawa and
Hiriashi (9). The external inputs and outputs are binary
places, where the inputs act as binary control places,
much like those introduced in Krogh (10), and the
outputs act as binary feedback places giving the

controller information about the state of the net. In this
section a definition of ordinary safe Petri nets is
presented followed by the extension required to describe
Petri nets with external inputs and outputs.

Petri nets

A Safe Petri net is a 5-tuple,
PN = {P,T,I t O,/i Q }w\\ere:

P ={p\, PI ,..., pm } is a finite set of places,
T={ti,t2,...,tn }is a finite set of transitions,

/ : T — > P is the input function mapping from transitions
to places,
O : T — > P is the output function mapping from
transitions to places,
HQ-.P-* (0,1) is the initial marking.

Petri net with external inputs and outputs

A Petri net with external inputs and outputs is a 5-tuple,
PNIO ={P,T,I,O,f* 0 } where:

S = { jj , $2 , . . . , s,- } is a finite set of state places,

Cin = {c[n , 4" , . .. , c f } is a finite set of input places,
cout = {cou, ^oui (^p } Js a finite s

places,
T =• {fj,r2 , ...,?„} is a finite set of transitions,

/ : T —> P is the input function mapping from transitions
to places,
O : T — » P is the output function mapping from
transitions to places,
jU 0 : P — > {0,1} is the initial marking.

• Only state places can be initially marked, thus the
initial marking of the control places is always zero.

• Output places are never inputs to transitions of the
same net and are only outputs to transitions of one
net.

• Input places are never outputs to transitions of the
same net and are only inputs to the transitions of
one net.

This definition differs to that given by (9) where
external outputs are represented as a subset of
transitions, (and therefore event signals) rather than
explicitly by places (and therefore condition signals).
The use of places as external outputs as well as inputs is
the key to the modular structure presented here and is

A4-15

Appendix 4 - Papers

favoured for its simplicity and because it provides a
uniform method of communication between nets.

Figure 1. Example of a Petri net with external inputs
and outputs

Example 1. Figure 1 shows a Petri net with external
inputs and outputs with:

S = {s l ,s2 },Cin = {cj" , cf}, C OM = {cj"" },

HQ = {1,0,0,0,0}

Petri net properties

There are several Petri net properties which have
specific implications when applied to manufacturing
systems. These are boundedness, liveness, and
reversibility. Those most relevant to the work presented
here is boundedness which is described as follows:

Boundedness. This property describes the maximum
number of tokens present in the net for a given initial
marking. A place is said to be ^-bounded if the
maximum number of tokens it will hold is k, where k is a
positive integer. If all the places in the net are k-
bounded then the Petri net is said to be ^-bounded. In
manufacturing terms, boundedness is used to ensure that
there is no overflow of buffers of queues.

Safeness. The special case of boundedness is where the
net is 1-bounded or safe. In structured Petri nets,
safeness is used to indicate that a particular action is
taking place, and to ensure that the same machine is not
asked to carry out two tasks simultaneously.

CONTROL STRUCTURE

The basic control structure for simple systems is shown
in Figure 2. The characteristic feature of this
hierarchical structure is the control net which co­
ordinates the activities of the subnets, and through which
the subnets communicate. This type of centralised
control structure has been applied to both a

manufacturing cell and to a single machine. For a more
detailed description see (3) and (11).

Requests for Action

Control Net

Safety Related Inputs

Safety
Net

Figure 2: General Petri net structure used for the control
of manufacturing systems.

Communication between nets

One of the important aspects of the Petri net structure is
the communication between the nets. As described
previously, communications are carried out using
external inputs and outputs and along with the sequence
control of the system define the structure and properties
of the nets.

Example 2. Consider a machine which is capable of
performing two separate tasks, but may only perform
them one at a time. A controller must not request the
machine to carry out these tasks simultaneously. The
request signals are represented as output places from the
controller and input places to the machine. The design
of the controlling Petri net is thus constrained by the fact
that it cannot allow the transitions that generate the
request signals to be enabled simultaneously. This
problem is similar to the mutual exclusion problem
described in (2).

Pi

P2

lr-0-

Module 1 Module 2

Figure 3. Example of two communicating Petri nets

Example 3. A simple example of two communicating
Petri nets is shown in Figure 2. Transition tj is state
enabled (see (10)) by place pi and will fire when control
place Ci becomes marked. This control place may be
linked to an external device, or be the output place of

A4-16

Appendix 4 - Papers

another Petri net. When transition t, fires, tokens will
be generated in state place p2 and control place c2 . It
can be seen that transition t3 is now enabled and will fire
placing a token in place p4 . When control place c4
becomes marked, again due to an external device or
Petri net, the transition t4 will fire thus enabling
transition t2 . Once t2 fires the net will return back to its
initial state.

It follows that a number of communicating nets such as
these can be used to build a larger control structure of
interacting systems.

CONTROL OF CONVEYOR SYSTEM

Previously, structured Petri nets have been used to
control a single machine (11) and a Manufacturing Cell
(3). They are now extended to provide a framework for
the control of a more complex system.

Robot Lathe Mill
Buffers

Figure 4: Layout of conveyor system

The system, shown in Figure 4, consists of a closed loop
conveyor belt around which are positioned a number of
workstations. The workstations included in the system
are:

1. A Raw Materials Station (RMS) - provides two
types of raw material for the manufacture of
products.

2. An Automated Storage and Retrieval System
(ASRS) - Storage area for completed products and
as a temporary buffer for parts awaiting production.

3. Manufacturing Cell (MC) - consists of a milling
machine and a lathe, each of which are loaded and
unloaded by a single robot. The mill and lathe may
operate simultaneously if there are parts available to
be processed.

Parts are transported between the workstations on
wagons which reside permanently on the conveyor belt.
At each workstation, the conveyor has a buffer which

stops the wagon and reads an identification (ID) number
from it. This ID can be stored in a database with an
entry describing the type of part, if any, the wagon is
carrying. If the part matches that required by the
workstation then the workstation will remove the part
and update the state of the wagon.

Sequence for Part A

Get Part
A

———— > Process
Part A

———— > Store Part
A

Sequence for Part B

Get Part
B

———— > Process
Part B

———— >• Store Part
B

Figure 5: Production sequences for Part A and Part B

The system produces two types of part. Part A is
processed in the milling machine, and Part B is turned in
the lathe. The production sequence for each part is
shown in Figure 5.

Each workstation on the system has it own controller, as
does the conveyor system. In the case of the MC the
robot controller is used as the cell controller. The other
workstations and the conveyor are controlled by PLCs.
The first stage in designing the control code for the
system is to define the communications between each
module (at this level of control, each controller is
encapsulated in a single module). The communications
for each module are shown in Table 1.

RMS. The RMS will indicate that it is ready to place
materials on the conveyor and the type of material it is
ready to put. When an empty wagon arrives, the
conveyor controller informs the RMS that it can put, and

TABLE 1 - Communications between modules of the
conveyor system

RMS
Ready to Put Part A
Ready to Put Part B
Ready to Put Pallet
Wagon Move Enable

Can Put/Get

Ready for Part A
Ready for Part B
Ready to Put Part A
Ready to Put Part B
Wagon Move Enable
ASRS
Ready to Put
Ready to Get
Wagon Move Enable

Can Put
Can Get Part A
Can Get Part B

Can Put/Get

A4-17

Appendix 4 - Papers

once it has done so, the RMS informs the conveyor that
the wagon can move away (with the Wagon Move
Enable signal) and the wagon state is updated.

MC. The MC informs the conveyor of its ready status
(i.e. which type of part it is ready to process). Once the
part is processed the MC informs the conveyor of the
type of part it is ready to put. Once it has done so the
wagon is allowed to move away and its state is updated.

ASRS. The ASRS waits for a finished item to arrive
which is then removed from the system and the wagon
state updated.

Conveyor
A

it
RMS

•t

Jt
MC
't

It
ASRS

U
Production Requests

4-»

Safety
Net

Figure 6. Control structure for conveyor system

The extended control structure for the conveyor system
and workstations is shown in Figure 6. The major
difference between this structure an the one shown in the
previous section is that the conveyor controller seems to
have taken over the role of control net. However this is
not strictly the case because the conveyor is not co­
ordinating the actions of the machines within the system.
All the machines are instead autonomous units and their
individual actions are prescribed by the Production
Requests. The system now has a more distributed
architecture rather than the centralised architecture of
the previous section.

FURTHER EXTENSIONS TO THE CONTROL
STRUCTURE

Due to the modular composition of the control structure
presented here, it is possible to extend the existing
structure to include such modules as scheduling systems
and manufacturing information systems (see Figure 7 at
the end of the paper). Such extensions are motivated by
the need for automatic schedule generation and a
database for wagon status and work in progress data.
Also fault monitoring data as described in the next
section can be stored in such a database. Such
extensions represent a step towards a Computer
Integrated Manufacturing (CIM) architecture.

FAULT MONITORING

This section will describe some development work on a
fault monitoring scheme based on the Petri net control
structure described previously.

Hardware faults

The Petri net control code provides information about
the desired sequence of sensory information. By
monitoring the hardware places (places in the Petri net
which are linked directly to the system's sensors) and
comparing them to the expected sensory footprint of the
system at a given time, we can detect a hardware fault in
the system. A hardware fault is defined here as one
which exhibits itself in the system hardware (as
distinguished from a production fault which exhibits
itself as an error in the product). Such faults may be
caused by one of the following:

• Sensor failure - A sensor is damaged in some way
preventing it from carrying out its required task.

• Actuator failure - An actuator is damaged in some
way preventing it either from acting all of acting
within a prescribed period of time.

• Software fault - Defined as a fault which exhibits
itself in the system software, possibly caused by a
controller or network error.

Using purely sensory data, these failures are
indistinguishable.

Software faults

The Petri net description of the control code also
provides information about the control signals, which
should be generated by the controller, given a particular
sensory footprint. This control footprint can be
provided by the output places of each Petri net module.
Using this control footprint, any erroneous request for
action by the controller can be detected and thus trapped
before the system hardware acts on it allowing some
form of recovery to take place. Thus allowing software
faults can be removed from the list of indistinguishable
faults described above.

CONCLUDING REMARKS

A Petri net structure has been described which has been
applied to a single machine, a machining cell and now a
more complex conveyor system. The modular
representation of the system eliminates the state
explosion problems usually faced when describing a
system with ordinary Petri nets. Also the simplicity of
the formalism used allows it to be faithfully reproduced
on the types of low level controller found in modern
manufacturing systems, such as PLCs. The use of

A4-18

Appendix 4 - Papers

modules allows the potential expansion of the structure
towards a CIM architecture. Finally a proposed method
of fault detection which allows the distinction between
hardware and software faults is described. Such a
distinction is made possible by the use of the
communication places in the nets. Work is continuing
on the implementation of such a fault monitoring
system. Development work has also been started on a
PC based software package to aid the design, testing and
implementation of the net structure described in this
paper.

ACKNOWLEDGEMENTS

The Authors would like to thank Mr A. A. Buck for his
advice and continuing support.

REFERENCES

1. Zurawski, R. and Zhou, M.-C., 1994 "Petri Nets and
Industrial Applications: A Tutorial", IEEE
Transactions on Industrial Electronics. Vol. 41. 567-
583.

2. Zhou, M.-C. and DiCesare, F, 1993 "Petri Net
Synthesis for Discrete Event Control of
Manufacturing Systems", Kluwer Academic
Publishers, USA.

3. Stanton, M. J. and Arnold, W. F., 1996,
"Implementation of Petri nets for the control of
manufacturing systems", Proc. Mechatronics'96 with
M2VIP'96. Vol. 1. Guimaraes, Portugal, 373-378.

4. Cruette, D., Bourey, J. P. and Gentina, J. C, 1991,
"Hierarchical specification and validation of
operating sequences in the context of FMSs",

Computer Integrated Manufacturing Systems. Vol. 4.
140-156.

5. Lin, J. T. and Lee, C.-C., 1992, "A modular
approach for the modelling of a class of zone-control
conveyor system using timed Petri nets",
International Journal of Computer Integrated
Manufacturing, Vol. 5. 277-289.

6. Cohen, G., 1994, "Expert system to control and to
design closed loop conveyor systems", Expert
Systems With Applications. Vol. 7. 483-494.

7. Moore, K. E. and Gupta, S. M., 1995, "Stochastic
coloured Petri net models of flexible manufacturing
systems: Material handling systems and machining",
Computers Ind. Engng. Vol. 29. 333-337.

8. Yeung, W. H. R. and Moore, P. R., 1996, "Object-
oriented modelling and control of flexible conveyor
systems for automated assembly", Mechatronics.
Vol. 6. 799-815.

9. Ichikawa, A. and Hiriashi, K., 1987, "Analysis and
control of discrete event systems represented by
Petri nets", Discrete Event Systems: Models and
Applications , Springer Verlag, Berlin, Germany.

10.Krogh, B. H., 1987, "Controlled Petri nets and
maximally permissive feedback logic", Proc. 25th
Allerton Conference, University of Illinois, 317-326.

11. Stanton, M. J., Arnold, W. F. and Buck A. A.,
"Modelling and Control of Manufacturing Systems
Using Petri Nets", Proc. 12th IF AC World Congress
San Francisco, USA.

MIS

sv

/I —s —

W

Conveyor

It It H *
MC1 RMS ASRS

<> * " <> * - <f * '•
.

* * * * '
Scheduler

t

i

Safety
Net

Figure 7. Proposed structure for Computer Integrated Manufacturing System

A4-19

