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We propose a new deadlock prevention policy for an important class of resource allocation systems (RASs) that appear in the
modeling of flexible manufacturing systems (FMSs). The model of this class in terms of generalized Petri nets is, namely, S4PR. On
the basis of recent structural analysis results related to the elementary siphons in generalized Petri nets on one hand and an efficient
deadlock avoidance policy proposed for the class of conjunctive/disjunctive (C/D) RASs on the other hand, we show how one can
generate monitors to be added to a net system such that all its strict minimal siphons are max󸀠-controlled and no insufficiently
marked siphon is generated.Thereby, a new, simple, and more permissive liveness-enforcing supervisor synthesis method for S4PR
is established.

1. Introduction

A flexible manufacturing system (FMS) is characterized by
flexibility, concurrent operations, and mainly automated ele-
ments, such as production controllers, machines, automated
guided vehicles, and conveyors. In an FMS, raw parts are
processed in a preestablished sequence to compete for a
limited number of system resources. Deadlocks may occur
when some processes keep waiting indefinitely for other
processes to release resources, which can lead to catastrophic
results in highly automated systems. One way of dealing with
deadlock problems is to model an FMS with Petri nets [1].
Deadlock prevention is considered to be one of the most
effective methods in deadlock control [2–9], which is usually
achieved by either designing an effective system or using an
off-line mechanism to control the requests for resources to
ensure that deadlocks never occur in a system. To achieve
this purpose, monitors and related arcs are added to the net
system. One of the most interesting past developments is the
use of structural objects to design liveness-enforcing Petri
net supervisors [10–16]. Above all, the concept of elemen-
tary siphons provides an efficient and effective avenue for

designing structurally simple supervisors [17, 18]. Elementary
siphons have been maturely applied for a class of ordinary
Petri nets such as S3PR [19], as well as some classes of
generalized ones [16]. Since a siphon is a set of places that does
not carry the weight information and the complex allocations
of shared resources in a generalized Petri net, elementary
siphons in [17] are not well suitable for generalized Petri
nets. By fully investigating the topological structure and the
requirements of multiple resource types of S4PR [20–22], the
concept of augmented siphons is recently proposed in [23,
24]. Indeed, since the role of weight of arcs in determining
the liveness of generalized Petri nets cannot be neglected,
the notion of elementary siphons is redefined by considering
augmented siphons, from which a compact and suitable set
of elementary siphons can be obtained.

For automated operation of modern technological sys-
tems that involve resource sharing, deadlock avoidance is
also an essential control requirement. Broadly speaking, a
deadlock avoidance policy tries to restrict the operation of
an FMS to its reachable and safe sub-state-space. It is worth
noting that we can translate the enforcement of liveness into
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a forbidden state problem in essence. Mutual exclusion con-
straints are a natural way of expressing the concurrent use of a
finite number of resources, shared among different processes.
In the framework of Petri nets formalisms, the work in [25]
defines a generalizedmutual exclusion constraint (GMEC) as
a condition that limits a weighted sum of tokens contained
in a subset of places. Based on this concept, the problem of
forbidden state specification can be represented by GMECs.
Many constraints that deal with exclusions between states and
events can be transformed into the form of GMECs.

The work in [26] generalizes the deadlock avoidance
policy (DAP) of conjunctive/disjunctive resource upstream
neighbourhood (C/D RUN) for resource allocation systems
with multiple resource acquisitions and flexible routings,
namely, S4PR, and this policy is of polynomial complexity.
Motivated by the DAP of C/D RUN policy, a deadlock
prevention policy is developed in this work by combining
this method with the concept of augmented and elementary
siphons in S4PR net. First, the concept of augmented siphons
is proposed. Among augmented siphons, a set of improved
elementary siphons can be derived. After that, we obtain
a set of linear inequality constraints expressed by state
vectors from elementary siphons. After modifying them by
the proposed policy, we find a set of GMECs expressed
by marking vectors. Then monitors are added to the plant
model such that the elementary siphons in S4PR are all max󸀠-
controlled and no insufficiently marked siphon is generated
due to the addition of themonitors. Finally, it can usually lead
to a highly permissive liveness-enforcing supervisor by using
the elementary siphon-based deadlock control policy.

The rest of the paper is organized as follows. Section 2
introduces the definition of S4PR. Section 3 elaborates the
concept of augmented siphons and the method of deriving
a set of elementary siphons in S4PR. The deadlock control
policy for S4PR is proposed in Section 4, and a typical
example is introduced to show the applicability and efficiency
of the proposedmethod, while Section 5 concludes the paper.
Some basics of Petri nets and elementary siphons used
throughout this paper are listed in the Appendix.

2. S4PR

This section gives the definition of a class of generalized
Petri nets, namely, S4PR [13, 26, 27]. Note that, in [26], an
S4PR is called S3PGR2: the definition of these two subclasses
of nets are in fact identical. S4PR nets include some well
known classes of Petri nets such as S3PR, ES3PR, andWS3PR.
Indeed, an S4PR concerns themodeling of concurrently cyclic
sequential processes sharing common resources where an
operation place can use simultaneously multiple resources
of different types. Also sequential processes (state machines)
mean that an operation place can be shared (flexible routings)
but assembly and disassembly operations, for which synchro-
nization is required, cannot be considered.

Definition 1. An S4PR net is a generalized and self-loop free
net𝑁 = ⃝

𝑛

𝑖=1
𝑁

𝑖
= (𝑃, 𝑇, 𝐹,𝑊), where

(1) 𝑁
𝑖
= (𝑃

𝐴𝑖
∪ {𝑝

0

𝑖
} ∪ 𝑃

𝑅𝑖
, 𝑇

𝑖
,𝑊

𝑖
), 𝑖 ∈ N

𝑛
= {1, . . . , 𝑛};

(2) 𝑃 = 𝑃
𝐴
∪ 𝑃

0
∪ 𝑃

𝑅
is a partition such that (i) 𝑃

𝐴
=

⋃
𝑛

𝑖=1
𝑃

𝐴𝑖
is called the set of operation places, where

𝑃
𝐴𝑖

̸= 0 and 𝑃
𝐴𝑖
∩ 𝑃

𝐴𝑗
= 0, ∀𝑖 ̸= 𝑗 (𝑖, 𝑗 ∈ N

𝑛
); (ii) 𝑃

𝑅
=

{𝑟
1
, 𝑟

2
, . . . , 𝑟

𝑚
| 𝑚 ∈ N+

} is called the set of resource
places; (iii) 𝑃

0
= ⋃

𝑛

𝑖=1
{𝑝

0

𝑖
} is called the set of idle

places; and (iv) the output transitions of idle places
are called source transitions;

(3) 𝑇 = ⋃
𝑛

𝑖=1
𝑇

𝑖
is called the set of transitions, where

∀𝑖, 𝑗 ∈ N
𝑛
, 𝑖 ̸= 𝑗, 𝑇

𝑖
̸= 0, and 𝑇

𝑖
∩ 𝑇

𝑗
= 0;

(4) 𝑊 = 𝑊
𝐴
∪ 𝑊

𝑅
, where𝑊

𝐴
: ((𝑃

𝐴
∪ 𝑃

0
) × 𝑇) ∪ (𝑇 ×

(𝑃
𝐴
∪ 𝑃

0
)) → {0, 1} such that ∀𝑖, 𝑗 ∈ N

𝑛
, 𝑗 ̸= 𝑖, ((𝑃

𝐴𝑗
∪

{𝑝
0

𝑗
}) × 𝑇

𝑖
) ∪ (𝑇

𝑖
× (𝑃

𝐴𝑗
∪ {𝑝

0

𝑗
})) → {0}, and 𝑊

𝑅
:

(𝑃
𝑅
× 𝑇) ∪ (𝑇 × 𝑃

𝑅
) → N;

(5) ∀𝑖 ∈ N
𝑛
, the subset 𝑁

𝑖
generated by 𝑃

𝐴𝑖
∪ {𝑝

0

𝑖
} ∪ 𝑇

𝑖

is a strongly connected state machine such that every
cycle contains 𝑝0

𝑖
;

(6) ∀𝑟 ∈ 𝑃
𝑅
, there exists a unique minimal 𝑃-invariant

𝐼
𝑟
∈ N|𝑃| such that {𝑟} = ‖𝐼

𝑟
‖ ∩ 𝑃

𝑅
, 𝑃

0
∩ ‖𝐼

𝑟
‖ = 0,

𝑃
𝐴
∩ ‖𝐼

𝑟
‖ ̸= 0, and 𝐼

𝑟
(𝑟) = 1, where N|𝑃| is a set of

𝑃-dimensional nonnegative integer vectors. Further-
more, 𝑃

𝐴
= ⋃

𝑟∈𝑃𝑅
(‖𝐼

𝑟
‖ \ {𝑟});

(7) 𝑁 is strongly connected.

In the special case where S4PR net corresponds to an
asymmetric-choice (AC) net with non-blockingness (∀𝑝 ∈

𝑃, min
𝑡∈
∙𝑝{𝑊(𝑡, 𝑝)} ≥ min

𝑡∈𝑝
∙{𝑊(𝑝, 𝑡)}) and homogeneous

valuation (∀𝑝 ∈ 𝑃, ∀𝑡, 𝑡󸀠 ∈ 𝑝∙,𝑊(𝑝, 𝑡) = 𝑊(𝑝, 𝑡󸀠)), then it is
well known that liveness property is equivalent to controlled-
siphon property [2]. In this paper we extend this structural
liveness characterization by dealing with S4PR nets in the
general case.

Definition 2. Let𝑁 = (𝑃
𝐴
∪ 𝑃

0
∪ 𝑃

𝑅
, 𝑇, 𝐹,𝑊) be an S4PR net.

An initial marking 𝑀
0
is acceptable for 𝑁 if (1) ∀𝑖 ∈ N

𝑛
,

𝑀
0
(𝑝

0

𝑖
) > 0, (2) ∀𝑝 ∈ 𝑃

𝐴
, 𝑀

0
(𝑝) = 0, and (3) ∀𝑟 ∈ 𝑃

𝑅
,

𝑀
0
(𝑟) > max

𝑝∈‖𝐼𝑟‖
𝐼
𝑟
(𝑝).

Example 3. The net (𝑁,𝑀
0
) shown in Figure 1(a) is an S4PR

(it is also an AC net but with no homogeneous valuation),
where 𝑃

𝐴
= {𝑝

2
–𝑝

6
, 𝑝

8
–𝑝

12
} is the set of operation places,

𝑃
0
= {𝑝

1
, 𝑝

7
} is the set of idle places, and 𝑃

𝑅
= {𝑝

13
–𝑝

16
}

is the set of shared resource places. Each operation place in
S4PR can simultaneously require multiple units of different
resource types. For instance, operation place 𝑝

2
needs one

unit in place 𝑝
13

and two in place 𝑝
14

simultaneously for its
operation. And the S4PR net model consists of two parallel
sequential processes as shown in Figure 1(b), that is, process
1: 𝑃

𝐴1
= {𝑃

2
–𝑃

6
} and process 2: 𝑃

𝐴2
= {𝑃

8
–𝑃

12
}. These

two parallel sequential processes compete for the limited
resources represented by four resource places 𝑝

13
–𝑝

16
. For

example, the operation place 𝑝
2
in process 1 requests one unit

in resource place 𝑝
13
, whereas the resource units may be held

by operation place 𝑝
12

in process 2. The competition of the
limited resources may lead to deadlocks of the net model,
which is an undesired phenomenon and must be prevented
by some effective instruments.
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Figure 1: (a) An S4PR model (𝑁,𝑀
0
); (b) Processes 1 and 2.

𝐼
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= 𝑝

1
+𝑝

2
+𝑝

3
+𝑝

4
+𝑝

5
+𝑝

6
and 𝐼

𝑝7
= 𝑝

7
+𝑝

8
+𝑝

9
+𝑝

10
+

𝑝
11
+ 𝑝

12
are the minimal 𝑃-semiflows associated with idle

places𝑝
1
and𝑝

7
. 𝐼

𝑝13
= 𝑝

2
+𝑝

3
+2𝑝

12
+𝑝

13
, 𝐼

𝑝14
= 𝑝

3
+𝑝

4
+𝑝

11
+

𝑝
14
, 𝐼

𝑝15
= 2𝑝

4
+3𝑝

5
+𝑝

9
+𝑝

10
+𝑝

15
, and 𝐼

𝑝16
= 𝑝

6
+2𝑝

8
+2𝑝

9
+

𝑝
16

are the minimal 𝑃-semiflows associated with resources
𝑝

13
, 𝑝

14
, 𝑝

15
, and 𝑝

16
, respectively. Let us consider the follow-

ing acceptable initial marking 𝑀
0
= 50𝑝

1
+ 50𝑝

7
+ 4𝑝

13
+

3𝑝
14
+ 3𝑝

15
+ 4𝑝

16
. The net has seven strict minimal siphons

(SMSs): 𝑆
1
= {𝑝

3
, 𝑝

4
, 𝑝

12
, 𝑝

13
, 𝑝

14
}, 𝑆

2
= {𝑝

5
, 𝑝

11
, 𝑝

14
, 𝑝

15
},

𝑆
3
= {𝑝

5
, 𝑝

9
, 𝑝

10
, 𝑝

15
}, 𝑆

4
= {𝑝

6
, 𝑝

9
, 𝑝

10
, 𝑝

15
, 𝑝

16
}, 𝑆

5
=

{𝑝
5
, 𝑝

12
, 𝑝

13
, 𝑝

14
, 𝑝

15
}, 𝑆

6
= {𝑝

6
, 𝑝

9
, 𝑝

11
, 𝑝

14
, 𝑝

15
, 𝑝

16
}, and

𝑆
7

= {𝑝
6
, 𝑝

9
, 𝑝

12
, 𝑝

13
, 𝑝

14
, 𝑝

15
, 𝑝

16
}. The strict minimal

siphons are closely related to the deadlocks of a net model.
Once an SMS is insufficiently marked in an S4PR, the net
model will trap into deadlock.

3. Elementary Siphons in Generalized
Petri Nets

3.1. Augmented and Elementary Siphons in S4PR. Theconcept
of elementary siphons was originally proposed in [17] for
a class of ordinary Petri nets, S3PR, and has been widely
applied in ordinary Petri nets for designing liveness-
enforcing supervisors. For more details, please refer to
Appendix B: Elementary siphons. However, it still needs to
be improved when a generalized Petri net is considered. In
order to differentiate from the improved elementary siphons
in this work, in what follows, let Π

𝐸𝑂
(resp., Π

𝐷𝑂
) denote

elementary (resp., dependent) siphons defined in [17], which
is called original elementary (resp., dependent) siphons in the
rest of this paper.

For the S4PR in Figure 1(a), by utilizing the concept of
elementary siphons in [17], we have [𝜆] and [𝜂] shown as
follows:

[𝜆] =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0

0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0

0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1

0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0

0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1

0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (1)

[𝜂] =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−1 0 1 0 0 0 0 0 0 −1 0 1

0 −1 −2 1 2 0 0 −1 0 1 0 0

0 0 −2 0 2 0 0 0 0 0 0 0

0 0 −2 −1 3 0 −2 0 2 0 0 0

−1 −1 −1 1 2 0 0 −1 0 0 0 1

0 −1 −2 0 3 0 −2 0 1 1 0 0

−1 −1 −1 0 3 0 −2 0 1 0 0 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (2)

It is easy to verify that Rank([𝜂]) = 5, 𝜂
𝑆5
= 𝜂

𝑆1
+ 𝜂

𝑆2
, and

𝜂
𝑆7
= 𝜂

𝑆1
+ 𝜂

𝑆6
. It means that there are 5 original elementary

siphons Π
𝐸𝑂
= {𝑆

1
–𝑆

4
, 𝑆

6
} and 2 original strongly dependent

siphons Π
𝐷𝑂
= {𝑆

5
, 𝑆

7
}.
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For an S4PR, the weight of an arc may be greater than
one and an operation place can use simultaneously multiple
types of resources. In this subsection, augmented siphons
and improved elementary ones proposed for S4PR in [23]
are introduced. Since the weights information of arcs is vital
for the liveness of generalized Petri nets and the permissive
behavior of their corresponding liveness-enforcing supervi-
sors, the notion of elementary siphons is redefined for S4PR
nets on the basis of augmented siphons. Consequently, the
improved elementary siphons are compact and well suitable
for S4PR, which can lead to a structurally simple controlled
system.

Definition 4 (see [23]). Let𝑁 = (𝑃
𝐴
∪ 𝑃

0
∪ 𝑃

𝑅
, 𝑇, 𝐹,𝑊) be an

S4PR. For 𝑟 ∈ 𝑃
𝑅
, 𝐻(𝑟) = {𝑝 | 𝑝 ∈ ‖𝐼

𝑟
‖ ∩ 𝑃

𝐴
}, the operation

places that use 𝑟, is called the set of holders of 𝑟. Let place
set ℎ

𝑖
(𝑟) ⊆ 𝐻(𝑟) be a subset of holders of 𝑟 and ⋃ℎ

𝑖
(𝑟) =

𝐻(𝑟). If ∀𝑝 ∈ ℎ
𝑖
(𝑟), ∃𝑡 ∈ (ℎ

𝑖
(𝑟))

∙ and 𝑝󸀠
∈ ℎ

𝑖
(𝑟), such that

𝑝
∙
∩

∙
(𝑝

󸀠
∪ 𝑟) = 𝑡 ̸= 0, where 𝑖 ∈ N+. Then ℎ

𝑖
(𝑟) is called a

subset of sequential holders of 𝑟, denoted as ℎ𝑠

𝑖
(𝑟).

Definition 5 (see [23]). Let 𝑆 be a siphon in an S4PR𝑁 = (𝑃
𝐴
∪

𝑃
0
∪ 𝑃

𝑅
, 𝑇, 𝐹,𝑊) with 𝑆 = 𝑆𝑃

∪ 𝑆
𝑅, where 𝑆𝑅

= 𝑆 ∩ 𝑃
𝑅
and

𝑆
𝑃
= 𝑆 \ 𝑆

𝑅. A multiset 𝑆̃ = ∑
𝑝∈𝑆
𝑙(𝑝)𝑝 is called an augmented

version of 𝑆, where (1) ∀𝑝 ∈ 𝑆𝑅, 𝑙(𝑝) = 1 and (2) ∀𝑝 ∈ 𝑆𝑃:
(a) 𝑝 ∈ ℎ𝑠

(𝑟), if 𝑝∙
= 𝑡, 𝑡 ∈ ∙

𝑟, then ∃𝐴 = {𝑝
𝑖
| 𝑝

𝑖
≺

𝑁
𝑝, 𝑝

𝑖
∈

ℎ
𝑠
(𝑟), 𝑝

𝑖
∈ 𝑆

𝑃
} ∪ {𝑝}, ∀𝑝 ∈ 𝐴, 𝑙𝑡

𝑟
(𝑝) = 𝑊(𝑡, 𝑟); and (b) 𝑙

𝑟
(𝑝) =

∑
𝑡∈
∙𝑟
𝑙
𝑡

𝑟
(𝑝), 𝑙(𝑝) = ∑

𝑟∈𝑆𝑅
𝑙
𝑟
(𝑝).

Note that a siphon 𝑆 and its augmented version 𝑆̃ are in
one-to-one correspondence. In an S4PR net, by considering
the simultaneous requirements of multiple resources of dif-
ferent types by an operation place 𝑝, multiset 𝑆̃ is introduced
to represent the weighted relationship of 𝑝 of holding and
releasing resources in 𝑆. From Definition 5, 𝑆̃ = ∑

𝑝∈𝑆
𝑙(𝑝)𝑝,

∀𝑝 ∈ 𝑆, 𝑙(𝑝) denotes the coefficient of the places in an
augmented siphon 𝑆̃, which means that the support set of 𝑆̃
is 𝑆; that is, ‖𝑆̃‖ = 𝑆. ∀𝑝 ∈ 𝑆

𝑅, 𝑙(𝑝) always equals one; and
∀𝑝 ∈ 𝑆

𝑃; the coefficient 𝑙(𝑝) is determined by the number of
resource units held by the operation place 𝑝.

Example 6. For the net in Figure 1(a), take 𝑆
2
= {𝑝

5
, 𝑝

11
,

𝑝
14
, 𝑝

15
} as an example. For 𝑆

2
, note that 𝐻(𝑝

14
) = {𝑝

3
,

𝑝
4
, 𝑝

11
}with ℎ𝑠

1
(𝑝

14
) = {𝑝

3
, 𝑝

4
} and ℎ𝑠

2
(𝑝

14
) = {𝑝

11
};𝐻(𝑝

15
) =

{𝑝
4
, 𝑝

5
, 𝑝

9
, 𝑝

10
} with ℎ𝑠

1
(𝑝

15
) = {𝑝

4
, 𝑝

5
} and ℎ𝑠

2
(𝑝

15
) = {𝑝

9
,

𝑝
10
}. Thus, we have the following: (1) For 𝑝

14
, 𝑝

15
∈ 𝑃

𝑅
,

𝑙(𝑝
14
) = 𝑙(𝑝

15
) = 1 and (2) for𝑝

5
∈ 𝑃

𝐴
,𝑝

5
∈ ℎ

𝑠

1
(𝑝

15
), and𝑝∙

5
=

𝑡
5
∈

∙
𝑝

15
, then 𝑙𝑡5

𝑝15
(𝑝

5
) = 𝑊(𝑡

5
, 𝑝

15
) = 3. For 𝑝

11
∈ 𝑃

𝐴
, 𝑝

11
∈

ℎ
𝑠

2
(𝑝

14
) and 𝑝∙

11
= 𝑡

11
∈

∙
𝑝

14
, then 𝑙𝑡11

𝑝14
(𝑝

11
) = 𝑊(𝑡

11
, 𝑝

14
) = 1.

Hence, 𝑙(𝑝
5
) = 𝑙

𝑝15
(𝑝

5
) = 𝑙

𝑡5

𝑝15
(𝑝

5
) = 3 and 𝑙(𝑝

11
) = 𝑙

𝑝14
(𝑝

11
) =

𝑙
𝑡11

𝑝14
(𝑝

11
) = 1. As a result, we obtain 𝑆̃

2
= {3𝑝

5
, 𝑝

11
, 𝑝

14
, 𝑝

15
}.

Similarly, we have 𝑆̃
1
= {2𝑝

3
, 𝑝

4
, 2𝑝

12
, 𝑝

13
, 𝑝

14
}, 𝑆̃

3
= {3𝑝

5
,

𝑝
9
, 𝑝

10
, 𝑝

15
}, 𝑆̃

4
= {𝑝

6
, 3𝑝

9
, 𝑝

10
, 𝑝

15
, 𝑝

16
}, 𝑆̃

5
= {3𝑝

5
, 2𝑝

12
, 𝑝

13
,

𝑝
14
, 𝑝

15
}, 𝑆̃

6
= {𝑝

6
, 2𝑝

9
, 𝑝

11
, 𝑝

14
, 𝑝

15
, 𝑝

16
}, and 𝑆̃

7
= {𝑝

6
, 2𝑝

9
,

2𝑝
12
, 𝑝

13
, 𝑝

14
, 𝑝

15
, 𝑝

16
}.

Definition 7 (see [23]). Let 𝑆 = 𝑆𝑅
∪𝑆

𝑃 be a siphon in an S4PR
𝑁 and let 𝑆̃ be its augmented version. [𝑆] = {𝑝 | 𝑝 ∈ ‖𝐼

𝑆
‖ \ 𝑆}

is called the complementary set of siphon 𝑆 and [𝑆̃] = 𝐼
𝑆
− 𝑆̃ is

called the augmented complementary set of siphon 𝑆, where
𝐼
𝑆
= ∑

𝑟∈𝑆
𝑅 𝐼𝑟.

Example 8. Take 𝑆
2
in the net𝑁 in Figure 1(a) as an example.

Note that 𝐼
𝑆2
= 𝐼

𝑝14
+ 𝐼

𝑝15
= 𝑝

3
+ 3𝑝

4
+ 3𝑝

5
+ 𝑝

9
+ 𝑝

10
+ 𝑝

11
+

𝑝
14
+ 𝑝

15
. Thus, [𝑆̃

2
] = 𝐼

𝑆2
− 𝑆̃

2
= 𝑝

3
+ 3𝑝

4
+ 𝑝

9
+ 𝑝

10
.

Definition 9 (see [23]). Let 𝑆 ⊆ 𝑃 be a subset of places in an
S4PR 𝑁 = (𝑃, 𝑇, 𝐹,𝑊). 𝑃-vector 𝜆

𝑆̃
is called the augmented

characteristic 𝑃-vector of 𝑆̃ if ∀𝑝 ∈ 𝑆, 𝜆
𝑆̃
(𝑝) = 𝑙(𝑝); other-

wise 𝜆
𝑆̃
(𝑝) = 0. 𝜂

𝑆̃
= [𝑁]

𝑇
𝜆

𝑆̃
is called the augmented charac-

teristic 𝑇-vector of 𝑆̃.

Definition 10 (see [23]). Let 𝑁 = (𝑃, 𝑇, 𝐹,𝑊) be an S4PR
with |𝑃| = 𝑚 and |𝑇| = 𝑛, and let Π = {𝑆

1
, 𝑆

2
, . . . , 𝑆

𝑘
} be a

set of siphons of 𝑁, where 𝑚, 𝑛, 𝑘 ∈ N+. Let 𝜆
𝑆̃𝑖
(𝜂

𝑆̃𝑖
) be the

augmented characteristic 𝑃(𝑇)-vector of siphon 𝑆
𝑖
, 𝑖 ∈ N

𝑘
.

[𝜆̃]
𝑘×𝑚

= [𝜆
𝑆̃1
| 𝜆

𝑆̃2
| ⋅ ⋅ ⋅ | 𝜆

𝑆̃𝑘
]
𝑇 and [𝜂̃]

𝑘×𝑛
= [𝜆̃]

𝑘×𝑚
×

[𝑁]
𝑚×𝑛

= [𝜂
𝑆̃1
| 𝜂

𝑆̃2
| ⋅ ⋅ ⋅ | 𝜂

𝑆̃𝑘
]
𝑇 are called the augmented

characteristic 𝑃- and 𝑇-vector matrices of the siphons in 𝑁,
respectively.

Definition 11 (see [23]). Let [𝜂̃] be augmented characteristic
𝑇-vector matrix of the set of siphons Π = {𝑆

1
, 𝑆

2
, . . . , 𝑆

𝑘
} in

an S4PR𝑁 = (𝑃, 𝑇, 𝐹,𝑊):

(1) Π
𝐸𝐴

= {𝑆
𝛼
, 𝑆

𝛽
, . . . , 𝑆

𝛾
} is called a set of augmented

elementary siphons in𝑁 if 𝜂
𝑆̃𝛼
, 𝜂

𝑆̃𝛽
, . . ., and 𝜂

𝑆̃𝛾
({𝛼, 𝛽,

. . . , 𝛾} ⊆ N
𝑘
) is a linearly independent maximal set of

matrix [𝜂̃].
(2) 𝑆 ∉ Π

𝐸𝐴
is called a strongly augmented dependent

siphon if 𝜂
𝑆̃
= ∑

𝑆𝑖∈Π𝐸𝐴

𝑎
𝑖
𝜂

𝑆̃𝑖
, where 𝑎

𝑖
≥ 0; 𝑆 ∉ Π

𝐸𝐴

is called a weakly augmented dependent siphon if
∃𝐴, 𝐵 ⊂ Π

𝐸𝐴
such that 𝐴 ̸= 0, 𝐵 ̸= 0, 𝐴 ∩ 𝐵 = 0,

and 𝜂
𝑆̃
= ∑

𝑆𝑖∈𝐴
𝑎

𝑖
𝜂

𝑆̃𝑖
− ∑

𝑆𝑗∈𝐵
𝑎

𝑗
𝜂

𝑆̃𝑗
, where 𝑎

𝑖
, 𝑎

𝑗
≥ 0.

(3) LetΠ (resp.,Π
𝐷𝐴
) be the set of strict minimal siphons

(resp., augmented dependent siphons); we have Π =

Π
𝐸𝐴
∪ Π

𝐷𝐴
.

Example 12. The net 𝑁 in Figure 1(a) has 7 strict minimal
siphons; we have obtained augmented versions of all 7 SMS
by Definition 5. Accordingly, the corresponding [𝜆̃] and [𝜂̃]
are shown as follows:

[𝜆̃] =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 2 1 0 0 0 0 0 0 0 2 1 1 0 0

0 0 0 0 3 0 0 0 0 0 1 0 0 1 1 0

0 0 0 0 3 0 0 0 1 1 0 0 0 0 1 0

0 0 0 0 0 1 0 0 3 1 0 0 0 0 1 1

0 0 0 0 3 0 0 0 0 0 0 2 1 1 1 0

0 0 0 0 0 1 0 0 2 0 1 0 0 1 1 1

0 0 0 0 0 1 0 0 2 0 0 2 1 1 1 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,
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[𝜂̃] =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−1 1 0 0 0 0 0 0 0 −1 1 0

0 −1 −2 3 0 0 0 −1 0 1 0 0

0 0 −2 2 0 0 0 0 0 0 0 0

0 0 −2 −1 3 0 −2 2 0 0 0 0

−1 −1 −1 3 0 0 0 −1 0 0 1 0

0 −1 −2 0 3 0 −2 1 0 1 0 0

−1 −1 −1 0 3 0 −2 1 0 0 1 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(3)

It is easy to verify that Rank([𝜂̃]) = 5, 𝜂
𝑆̃6
= 𝜂

𝑆̃2
+𝜂

𝑆̃4
−𝜂

𝑆̃3
,

and 𝜂
𝑆̃7
= 𝜂

𝑆̃4
+𝜂

𝑆̃5
−𝜂

𝑆̃3
. Itmeans that 5 augmented elementary

siphons Π
𝐸𝐴
= {𝑆

1
–𝑆

5
} and 2 augmented dependent siphons

Π
𝐷𝐴

= {𝑆
6
, 𝑆

7
} can be obtained based on the concept of

augmented siphons.

Definition 13 (see [23]). LetΠ
𝐸𝑂

(resp.,Π
𝐷𝑂

) be a set of origi-
nal elementary (resp., dependent) siphons and letΠ

𝐸𝐴
(resp.,

Π
𝐷𝐴
) be a set of augmented elementary (resp., dependent)

siphons in an S4PR 𝑁. Π
𝐸
= Π

𝐸𝑂
∩ Π

𝐸𝐴
(resp., Π

𝐷
=

Π
𝐷𝑂
∪Π

𝐷𝐴
) is called the set of elementary (resp., dependent)

siphons of𝑁.

Lemma 14 (see [23]). Let Π be a set of SMS in an S4PR. Then
Π = Π

𝐸
∪ Π

𝐷
and Π

𝐸
∩ Π

𝐷
= 0, where Π

𝐸
= Π

𝐸𝑂
∩ Π

𝐸𝐴
and

Π
𝐷
= Π

𝐷𝑂
∪ Π

𝐷𝐴
.

Example 15. For the net in Figure 1(a), we haveΠ
𝐸𝑂
= {𝑆

1
–𝑆

4
,

𝑆
6
}, Π

𝐷𝑂
= {𝑆

5
, 𝑆

7
}, Π

𝐸𝐴
= {𝑆

1
–𝑆

5
}, and Π

𝐷𝐴
= {𝑆

6
, 𝑆

7
}.

By Definition 13, Π
𝐸
= Π

𝐸𝑂
∩ Π

𝐸𝐴
= {𝑆

1
–𝑆

4
} and Π

𝐷
=

Π
𝐷𝑂
∪ Π

𝐷𝐴
= {𝑆

5
–𝑆

7
} can be obtained. It is obvious that

Π
𝐸
∪Π

𝐷
= Π = {𝑆

1
–𝑆

7
} is true.We have 4 elementary siphons

and 3 dependent siphons finally.

3.2. Controllability of Siphons. The cs-property [2] is an
important concept in liveness-enforcement for a generalized
Petri net. The work in [2] provides the max-controlled
condition of siphons that may overly restrict the permissive
behavior of the supervisor. In order to reduce this restriction,
a max󸀠-controlled condition of siphons for generalized Petri
net was first proposed in [28]. In this subsection, the formal
definitions of max󸀠-controlled siphons and the controllability
of siphons are presented.

Definition 16 (see [28]). Let (𝑁
1
,𝑀

01
) be a subnet of (𝑁,𝑀

0
)

with𝑁
1
= (𝑃

1
, 𝑇

1
, 𝐹

1
,𝑊

1
) and𝑁 = (𝑃, 𝑇, 𝐹,𝑊). Place 𝑝 ∈ 𝑃

is called an input place of 𝑁
1
if 𝑝 ∉ 𝑃

1
and ∃𝑡 ∈ 𝑇

1
, 𝑝 ∈ ∙

𝑡

(i.e., 𝑝 ∈ ∙
𝑇

1
).

Let𝑁 = (𝑃, 𝑇, 𝐹,𝑊) be a PN and let 𝑆 ⊆ 𝑃 be a subset of
places. The subnet generated by𝑋 = 𝑆 ∪

∙
𝑆 is denoted by𝑁

𝑆
,

where𝑁
𝑆
= (𝑆,

∙
𝑆, 𝐹𝑋

,𝑊
𝑋
). For convenience, the set of input

places of 𝑁
𝑆
is called the set of input places of 𝑆, denoted as

𝑃
in
𝑆
.
For the net in Figure 1(a), take 𝑆

2
= {𝑝

5
, 𝑝

11
, 𝑝

14
, 𝑝

15
} as

an example. 𝑋 = 𝑆
2
∪

∙
𝑆

2
; for the subnet 𝑁

𝑆2
, we have 𝑃in

𝑆2
=

{𝑝
2
, 𝑝

8
}.

Definition 17 (see [23]). Let 𝑆 be a siphon of a well initially
marked S4PR (𝑁,𝑀

0
). 𝑆 is said to be max󸀠-marked at mark-

ing 𝑀 ∈ 𝑅(𝑁,𝑀
0
) if (1) ∃𝑝 ∈ 𝑆

𝑃 such that 𝑀(𝑝) ≥ 1 or
(2) ∃𝑝 ∈ 𝑆

𝑅 such that𝑀(𝑝) ≥ max
𝑡∈(𝑝
∙
∩([𝑆]∩𝑃

in
𝑆

)
∙
)
{𝑊(𝑝, 𝑡)}.

Lemma 18 (see [23]). Let 𝑆 be a siphon in an S4PR (𝑁,𝑀
0
)

and let𝑀 ∈ 𝑅(𝑁,𝑀
0
) be a marking. 𝑆 is max󸀠-marked at𝑀

if𝑀(𝑆) > 𝜛(𝑆), where 𝜛(𝑆) = ∑
𝑝∈𝑆
𝑅(max

𝑡∈(𝑝
∙
∩([𝑆]∩𝑃

in
𝑆

)
∙
)
{𝑊(𝑝,

𝑡)} − 1).

Definition 19. Let 𝑆 be a siphon of awell initiallymarked S4PR
(𝑁,𝑀

0
). 𝑆 is said to be max󸀠-controlled if 𝑆 is max󸀠-marked

at any reachable marking𝑀, ∀𝑀 ∈ 𝑅(𝑁,𝑀
0
).

Example 20. For the net shown in Figure 1(a), take 𝑆
4
= {𝑝

6
,

𝑝
9
, 𝑝

10
, 𝑝

15
, 𝑝

16
} as an example. Note that [𝑆

4
]
∙
= {𝑡

4
, 𝑡

5
,

𝑡
8
}; we have 𝑝∙

15
∩ ([𝑆

4
] ∩ 𝑃

in
𝑆4
)
∙
= {𝑡

8
} and 𝑝∙

16
∩ ([𝑆

4
] ∩ 𝑃

in
𝑆4
)
∙
=

{𝑡
5
}. Thus 𝜛(𝑆

4
) = ∑

𝑝∈𝑆4𝑅
(max

𝑡∈(𝑝
∙
∩([𝑆]∩𝑃

in
𝑆

)
∙
)
{𝑊(𝑝, 𝑡)} − 1) =

0; that is, 𝑆
4
is max󸀠-controlled if ∀𝑀 ∈ 𝑅(𝑁,𝑀

0
),𝑀(𝑆

4
) >

0.

Theorem 21 (see [28]). Let (𝑁,𝑀
0
) be a well initially marked

S4PR.𝑁 is live if every siphon in𝑁 ismax󸀠-controlled.

4. Deadlock Prevention Policy for S4PR

An S4PR is a subclass of sequential resource allocation sys-
tems, which can be defined by a set of resource types 𝑃

𝑅
=

{𝑟
𝑖
| 𝑖 ∈ N

𝑚
} and a set of job processes 𝐽 = {𝐽

𝑗
|

𝑗 ∈ N
𝑛
}. Each resource 𝑟

𝑖
is characterized by its capacity

𝐶
𝑟𝑖
, a finite positive integer, which stands for the maximum

number of parts that can contemporaneously hold in 𝑟
𝑖
.

Each job type 𝐽
𝑗
is defined by a set of operations 𝐽

𝑗
= {𝑝

𝑗,𝑘
|

𝑘 ∈ N
𝑙𝑗
, 𝑙

𝑗
∈ N+

}, which is partially ordered through a set of
precedence constraints. 𝑙

𝑗
is the number of operation places

in 𝐽
𝑗
.
An algebraic polynomial deadlock avoidance policy is

proposed by Park and Reveliotis [26] for the class of
conjunctive/disjunctive RASs, which can be represented as
a polynomially sized set of linear inequalities in the state
vector:

𝐴
𝑝
⋅ 𝑞 ≤ 𝑓

𝑝
, (4)

where 𝐴
𝑝
is an incidence matrix. Each row of 𝐴

𝑝
can be

associated with a subset of process stages 𝐽𝑇(𝑖)
= {𝐽𝑇

𝑗𝑘
|

𝐴
[𝑖,(𝑗,𝑘)]

= 1}. 𝐴
[𝑖,⋅]

⋅ 𝑞 counts the number of operations in
state 𝑞, which execute stages in 𝐽𝑇(𝑖). An algebraic policy can
be expressed by the condition that a state 𝑞 is admissible if the
number of operations in state 𝑞 in process stage 𝐽𝑇(𝑖) does not
exceed the policy-defined bound𝑓

𝑝
[𝑖] for every process stage

subset 𝐽𝑇(𝑖). Hence, the sequential resource allocation can be
managed reasonably to guarantee the absence of deadlock
states and processes by considering the RUN policy; that is, it
requires that a state is admissible if the number of jobs in the
upstream neighbourhood of each resource 𝑟

𝑖
does not exceed

its buffering capacity 𝐶
𝑟𝑖
.
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Definition 22 (see [25]). Let (𝑁,𝑀
0
) be a net system with

place set 𝑃. A GMEC (𝑙, 𝑏) defines a set of legal markings:
M(𝑙, 𝑏) = {𝑀 ∈ N|𝑃|

| 𝑙
𝑇
𝑀 ≤ 𝑏}, where 𝑙 : 𝑃 → N is a

weighting vector,N|𝑃| is a set of |𝑃|-dimensional nonnegative
integer vectors, and 𝑏 ∈ N+

= {1, 2, . . .} is called the constraint
constant.

The markings in N|𝑃| that are not in M(𝑙, 𝑏) are called
forbidden markings with respect to constraint (𝑙, 𝑏).

Definition 23. A set of GMEC (𝐿, 𝐵) with 𝐿 = [𝑙
1
| 𝑙

2
| ⋅ ⋅ ⋅ |

𝑙
𝑚
] and 𝐵 = (𝑏

1
, 𝑏

2
, . . . , 𝑏

𝑚
) defines a set of legal markings

M(𝐿, 𝐵) = {𝑀 ∈ N|𝑃|
| 𝐿

𝑇
𝑀 ≤ 𝐵} = ⋂

𝑚

𝑖=1
M(𝑙

𝑖
, 𝑏

𝑖
).

Definition 24. Let (𝑁,𝑀
0
) be an S4PR with 𝑁 = (𝑃

0
∪

𝑃
𝐴
∪ 𝑃

𝑅
, 𝑇, 𝐹,𝑊) and let (𝑙, 𝑏) be a GMEC; the monitor that

enforces this constraint is a new place𝑉 to be added to the net
system (𝑁,𝑀

0
). The resulting system is denoted as (𝑁𝑐

,𝑀
𝑐

0
)

with additional structure 𝑁
𝑉
= (𝑉, 𝑇

𝑉
, 𝐹

𝑉
,𝑊

𝑉
). We assume

that there are no self-loop containing𝑉 in𝑁
𝑉
, and the initial

marking𝑀
0
satisfies the constraint (𝑙, 𝑏). Then 𝑁

𝑉
will have

incidence matrix: [𝑁
𝑉
] = −𝑙

𝑇
⋅ [𝑁]. 𝐹

𝑉
can be uniquely

determined by𝑁
𝑉
, and𝑀

0𝑉
(𝑉) = 𝑏 − 𝑙

𝑇.

Definition 25. Let 𝑟 ∈ 𝑃
𝑅
be a resource in 𝑁. 𝐻(𝑟) = {𝑝 |

𝑝 ∈ ‖𝐼
𝑟
‖ ∩ 𝑃

𝐴
} is the set of holders of 𝑟. Then ∀𝑟

𝑖
∈ 𝑃

𝑅
,

∑
𝑝∈{𝑟𝑖}∪𝐻(𝑟𝑖)

𝐼
𝑟𝑖
(𝑝)𝑀(𝑝) = 𝑀

0
(𝑟

𝑖
) ≡ 𝐶

𝑟𝑖
.

Theorem 26. Let (𝑁,𝑀
0
) be an S4PR with 𝑁 = (𝑃

𝐴
∪ 𝑃

0
∪

𝑃
𝑅
, 𝑇, 𝐹,𝑊) and let 𝑆 be a strict minimal siphon of 𝑁. Siphon

𝑆 ismax󸀠-marked if ∀𝑀 ∈ 𝑅(𝑁,𝑀
0
), where𝑀(𝑆) ≥ 𝜉

𝑆
, 𝜉

𝑆
>

𝜛(𝑆).

Proof. From Lemma 18, 𝑆 is max󸀠-controlled if ∀𝑀 ∈

𝑅(𝑁,𝑀
0
),𝑀(𝑆) > 𝜛(𝑆). As a result, it is easy to see if ∀𝑀 ∈

𝑅(𝑁,𝑀
0
), 𝑀(𝑆) ≥ 𝜉

𝑆
, where 𝜉

𝑆
> 𝜛(𝑆), 𝑆 is max󸀠-

marked.

In order to develop a liveness-enforcing supervisor for
any given S4PR (𝑁,𝑀

0
) = (𝑃

𝐴
∪ 𝑃

0
∪ 𝑃

𝑅
, 𝑇, 𝐹,𝑊,𝑀

0
), we

can add a monitor for every elementary siphon 𝑆 of𝑁, which
imposes the linear inequality:

𝜆
𝑇

𝑆
⋅ 𝑀 ≥ 𝜉

𝑆
, (5)

where 𝜆
𝑆̃
is an augmented characteristic vector of 𝑆̃,𝑀 is the

marking of net𝑁, and 𝜉
𝑆
is a control depth variable such that

𝜛(𝑆) < 𝜉
𝑆
< 𝑀

0
(𝑆). Since 𝑆̃ + [𝑆̃] = 𝐼

𝑆
is the support of a 𝑃-

invariant of𝑁, we can conclude that𝑀(𝑆̃)+𝑀([𝑆̃]) = 𝑀
0
(𝑆̃).

From Definition 5, 𝑀
0
(𝑆) = 𝑀

0
(𝑆̃) = 𝑀(𝑆̃) + 𝑀([𝑆̃]) ≥

𝑀(𝑆)+𝑀([𝑆̃]); that is,𝑀
0
(𝑆)−𝑀([𝑆̃]) ≥ 𝑀(𝑆). As a result, the

satisfaction of (5) can be ensured by satisfying the following
inequality:

𝑙
𝑇

𝑝
⋅ 𝑀 ([𝑆]) ≤ 𝑀

0
(𝑆) − 𝜉

𝑆
, (6)

where ∀𝑝 ∈ [𝑆
𝑗
], 𝑙

𝑝
(𝑝) := [𝑆̃

𝑗
](𝑝); otherwise 𝑙

𝑝
(𝑝) := 0.

According to Theorem 26 and Definition 24, an elemen-
tary siphon 𝑆 of an S4PR cannot be insufficientlymarked after
the addition of its corresponding monitor based on (6). The
controllability of dependent siphons of 𝑁 can be ensured by
changing the control depth variables of its related elementary
siphons. That is to say, all strict minimal siphons in 𝑁 can
be controlled. However, this can generate new insufficiently
marked control-induced siphons. It is necessary for us to
modify (6) to get somenew constraints. Consequently, we can
find that (6) is of the same type as (4). Hence the RUN policy
[26] is considered, and the sequential resource allocation
can be managed reasonably to guarantee the absence of
deadlock states in the resulting net. In what follows, we
utilize the polynomial-complexity DAP, which is an effective
modification to C/D-RAS of the RUN DAP. Some notations
are defined as follows.

Definition 27. Let (𝑁,𝑀
0
) = (𝑃

𝐴
∪𝑃

0
∪𝑃

𝑅
, 𝑇, 𝐹,𝑊,𝑀

0
) be an

S4PR. Suppose that amonitor𝑅∗

𝑖
is added for each elementary

siphon 𝑆
𝑖
with 𝑀

0
(𝑅

∗

𝑖
) = 𝑀

0
(𝑆

𝑖
) − 𝜉

𝑆𝑖
; then 𝑅∗

𝑖
is called a

virtual resource of (𝑁,𝑀
0
).

Definition 27 defines the right-hand side of (6) by a
virtual resource 𝑅∗

𝑖
. Each virtual resource relates to the

resources included in its corresponding elementary siphon 𝑆
𝑖

but does not exist in net 𝑁 actually. The number of virtual
resources is equal to that of elementary siphons. Virtual
resources 𝑅∗

𝑖
can serve as the temporary buffer in a system,

and a state is admissible if the number of jobs in the upstream
neighborhood of virtual resources 𝑅∗

𝑖
(denoted as 𝑃un(𝑅

∗

𝑖
))

does not exceed its buffering capacity𝑀
0
(𝑅

∗

𝑖
), where𝑃un(𝑅

∗

𝑖
)

is defined below.

Definition 28. Let 𝑅∗
(𝑝

𝑗,𝑘
) be the virtual resource that sup-

port the execution of operation 𝑝
𝑗,𝑘

and let EP(𝑝
𝑗,𝑘−𝑞

, 𝑝
𝑗,𝑘
) be

an elementary path from𝑝
𝑗,𝑘−𝑞

to𝑝
𝑗,𝑘
, where 𝑗 ∈ N

𝑛
, 𝑘 ∈ N

|𝐽𝑗|
,

𝑞 = {1, 2, . . . , 𝑘 − 1}, and 𝐽 is the set of job processes in an
S4PR. 𝑃un(𝑅

∗

𝑖
) = {𝑝

𝑗,𝑘
| 𝑅

∗

𝑖
∈ 𝑅

∗
(𝑝

𝑗,𝑘
)} ∪ {𝑝

𝑗,𝑘−𝑞
| 𝑅

∗

𝑖
∈

𝑅
∗
(𝑝

𝑗,𝑘−𝑞+1
) ∧ 𝑂[𝑅

∗
(𝑝

𝑗,𝑘−𝑞
)] ≤ 𝑂(𝑅

∗

𝑖
)} is called a set of job

operations in the upstream neighborhood of resource place
𝑅

∗

𝑖
, where𝑂(⋅) : 𝑅∗

→ N
𝑚
is any partial order defined on 𝑅∗,

and 𝑖 ∈ N
𝑚
.

Definition 29. Let 𝑜
𝑖
≡ 𝑂(𝑅

∗

𝑖
), 𝑂 : 𝑅

∗
→ N

𝑚
, be any partial

order imposed on the virtual resource set 𝑅∗. Given an
operation place 𝑝 ∈ 𝑃

𝐴
, let

𝜌
max
𝑝

=
{

{

{

max {𝑜
𝑖
| 𝑎

𝑝
[𝑖] > 0, 𝑖 ∈ N

𝑚
} if ∃𝑟 ∈ 𝑅∗

, 𝑝 ∈ ‖𝐻 (𝑟)‖

0, otherwise,

𝜌
min
𝑝

=
{

{

{

min {𝑜
𝑖
| 𝑎

𝑝
[𝑖] > 0, 𝑖 ∈ N

𝑚
} if ∃𝑟 ∈ 𝑅∗

, 𝑝 ∈ ‖𝐻 (𝑟)‖

0, otherwise.

(7)
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Also, let 𝐿
𝑝
= {𝑞 | 𝑞 ∈ 𝑝

∙∙
∩𝑃

𝐴
∧𝜌

max
𝑞

= minV∈𝑝
∙∙

∩𝑃𝐴
𝜌
max
V }.

By convention, 𝐿
𝑝
= 0 if 𝑝∙∙

∩ 𝑃
0

̸= 0. Then we have the
following:

(1) The neighborhood set𝑁
𝑝
of 𝑝 ∈ 𝑃

𝐴
is defined recur-

sively by the following equation:

𝑁
𝑝
= {𝑝} ∪

{

{

{

𝑞 | 𝑞 ∈ ⋃

V∈𝐿𝑝

𝑁V ∧ 𝜌
min
𝑝

≤ 𝜌
max
𝑞

}

}

}

. (8)

(2) ∀𝑝 ∈ 𝑃
𝐴
, the adjusted resource allocation require-

ment 𝑎̂
𝑝
, is a 𝑚-dimensional nonnegative vector

under partial order𝑂(⋅) (resource ordering), which is
given by the following expression:

𝑎̂
𝑝
[𝑖]

=
{

{

{

max {𝑎
𝑞
[𝑖] | 𝑞 ∈ 𝑁

𝑝
} , if 𝑜

𝑖
≥ 𝜌

min
𝑝
, 𝑖 ∈ N

𝑚

0, otherwise.

(9)

The policy-imposed constraint on the system operation
is expressed by the requirement that no virtual resource is
overallocated with respect to the adjusted operation require-
ments specified by (9). Actually, the set of linear inequality
constraints of elementary siphons can be written in the
following matrix form:

𝐴̂
𝑝
⋅ 𝑀

𝑃
≤ 𝑓

𝑝
, (10)

where the columnvector in 𝐴̂
𝑝
corresponding to an operation

place 𝑝 is 𝑎̂
𝑝
, vector 𝑀

𝑃
is the restriction of marking 𝑀

to operation places, and 𝑓
𝑝
is the capacity vector of virtual

resources; that is, 𝑓
𝑝
[𝑖] = 𝑀

0
(𝑅

∗

𝑖
), 𝑖 ∈ N

𝑚
.

Theorem 30. Let (𝑁,𝑀
0
) be an S4PR and let (𝑁𝑐

,𝑀
𝑐

0
) be

the net resulting from adding monitors for elementary siphons
only by Definition 24. (𝑁𝑐

,𝑀
𝑐

0
) is a live controlled system if

the following linear programming problem (LPP) has a feasible
solution:

min ∑

𝑆𝑖∈Π𝐸

𝜉̂
𝑆𝑖

s.t. 𝑀 ([𝑆̃
𝑗
]) > 𝑀

0
(𝑆

𝑗
) − 𝜛 (𝑆

𝑗
) , ∀𝑆

𝑗
∈ Π

𝐷
;

𝐴̂
𝑝
⋅ 𝑀

𝑃
≤ 𝑓

𝑝
− 𝜉̂

𝑝
, ∀𝑆

𝑖
∈ Π

𝐸
;

𝐼
𝑇

𝑟
𝑀 = 𝐼

𝑇

𝑟
𝑀

0
= 𝑀

0
(𝑟) , ∀𝑟 ∈ 𝑃

𝑅
,

(11)

where 𝜉̂
𝑝
[𝑖] + 𝜛(𝑆

𝑖
) + 1 = 𝜉

𝑆𝑖
and 𝐼

𝑟
is the 𝑃-invariant of 𝑟.

Proof. From Theorem 26 and Definition 29, all elementary
siphons are max󸀠-controlled and no control-induced siphon
is generated due to the addition of monitors. If the LPP has
a feasible solution, it means that all dependent siphons are
controlled by properly setting the control depth variables of
the elementary siphons. As a result, all siphons are max󸀠-
controlled, which indicates that the controlled system
(𝑁

𝑐
,𝑀

𝑐

0
) is live.

Based on the discussion above, an algorithm of designing
liveness-enforcing supervisor for S4PR based on improved
elementary siphons is developed as in Algorithm 1.

Theorem 31. Let (𝑁,𝑀
0
) be a marked S4PR net and let 𝑆

𝑖
be

an elementary siphon of 𝑁. 𝑆
𝑖
is max󸀠-controlled after adding

monitor 𝑉
𝑖
by Algorithm 1 (line (14)).

Proof. For Algorithm 1 (line (14)), the monitor 𝑉
𝑖
adding

for siphon 𝑆
𝑖
is according to the Definition 24. And by

Theorem 30, 𝑆
𝑖
is max󸀠-controlled by the control of 𝑆

𝑖
.

Theorem 32. Let (𝑁,𝑀
0
) be a marked S4PR net and letΠ

𝐸
be

the set of elementary siphons of𝑁. (𝑁𝑐
,𝑀

𝑐

0
) is live if the set of

monitors 𝑉 is added by Algorithm 1.

Proof. This result follows from the fact that all siphons are
max󸀠-controlled and no new non-max󸀠-controlled siphon is
generated in (𝑁𝑐

,𝑀
𝑐

0
). By Theorem 21, (𝑁𝑐

,𝑀
𝑐

0
) is live.

For Algorithm 1, a complete siphon enumeration is
needed, and the time complexity of computing all SMSs in
the worst case is exponential with the number of nodes of the
net system, that is,𝑂(𝑎2𝑛

), where 𝑎 is the number of arcs and
𝑛 = |𝑃| + |𝑇| is the number of nodes of the nets. Therefore,
the temporal complexity of Algorithm 1 is exponential with
the scale of the Petri net model in the worst case.

Example 33. For the net in Figure 1(a), we have four elemen-
tary siphons: 𝑆

1
= {𝑝

3
, 𝑝

4
, 𝑝

12
, 𝑝

13
, 𝑝

14
}, 𝑆

2
= {𝑝

5
, 𝑝

11
, 𝑝

14
,

𝑝
15
}, 𝑆

3
= {𝑝

5
, 𝑝

9
, 𝑝

10
, 𝑝

15
}, and 𝑆

4
= {𝑝

6
, 𝑝

9
, 𝑝

10
, 𝑝

15
, 𝑝

16
}.

Their augmented versions are 𝑆̃
1
= {2𝑝

3
, 𝑝

4
, 2𝑝

12
, 𝑝

13
, 𝑝

14
},

𝑆̃
2
= {3𝑝

5
, 𝑝

11
, 𝑝

14
, 𝑝

15
}, 𝑆̃

3
= {3𝑝

5
, 𝑝

9
, 𝑝

10
, 𝑝

15
}, and 𝑆̃

4
=

{𝑝
6
, 3𝑝

9
, 𝑝

10
, 𝑝

15
, 𝑝

16
}. Moreover, their augmented comple-

mentary sets are as follows: [𝑆̃
1
] = 𝑝

2
+𝑝

11
, [𝑆̃

2
] = 𝑝

3
+ 3𝑝

4
+

𝑝
9
+ 𝑝

10
, [𝑆̃

3
] = 2𝑝

4
, and [𝑆̃

4
] = 2𝑝

4
+ 3𝑝

5
+ 2𝑝

8
.

Then we can find the virtual resources for this system:
𝑀

0
(𝑅

∗

1
) = 𝑀

0
(𝑆

1
) − 2 = 5, 𝑀

0
(𝑅

∗

2
) = 𝑀

0
(𝑆

2
) − 1 = 5,

𝑀
0
(𝑅

∗

3
) = 𝑀

0
(𝑆

3
) − 1 = 2, and 𝑀

0
(𝑅

∗

4
) = 𝑀

0
(𝑆

4
) −

1 = 6. Therefore we obtain the initial set of linear inequality
constraints expressed by state vector 𝑞:

(

1 0 0 0 0 0 0 0 1 0

0 1 3 0 0 0 1 1 0 0

0 0 2 0 0 0 0 0 0 0

0 0 2 3 0 2 0 0 0 0

) ⋅𝑀 ≤(

5

5

2

6

), (12)

where 𝑀 denotes the state vector defined by the operation
place set, 𝑃

𝐴
, expressed by the following vector:

[𝑀 (𝑝
2
) 𝑀 (𝑝

3
) ⋅ ⋅ ⋅ 𝑀 (𝑝

6
) 𝑀 (𝑝

8
) ⋅ ⋅ ⋅ 𝑀 (𝑝

12
)]

𝑇

. (13)

We consider the net in Figure 1(a) under the virtual
resource orders 𝑜

1
= 𝑂(𝑅

∗

1
) = 2, 𝑜

2
= 𝑂(𝑅

∗

2
) = 1, 𝑜

3
=

𝑂(𝑅
∗

3
) = 1, and 𝑜

4
= 𝑂(𝑅

∗

4
) = 1. From Definition 29,

the neighborhood sets associated with the operation places
𝑝 ∈ 𝑃

𝐴
can be computed starting from the terminal operation

places according to the partial order mentioned above.
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Input: an S4PR (𝑁,𝑀
0
) = (𝑃

𝐴
∪ 𝑃

0
∪ 𝑃

𝑅
, 𝑇, 𝐹,𝑊,𝑀

0
)

Output: a live controlled system (𝑁
𝑐
,𝑀

𝑐

0
)

(1) begin;
(2) Compute the set of SMS and their corresponding augmented siphons
(3) Find the set of elementary siphons Π

𝐸
= {𝑆

1
, 𝑆

2
, . . . , 𝑆

𝑚
}, dependent siphons Π

𝐷
= {𝑆

𝑚+1
, . . . , 𝑆

𝑛
}, and the set of virtual

resources 𝑅∗
= {𝑅

∗

1
, 𝑅

∗

2
, . . . , 𝑅

∗

𝑚
}.

(4) for (𝑗 = 1 to𝑚) do
(5) Compute the augmented complementary set of elementary siphonsΠ𝑐

𝐸
fl {[𝑆̃

1
], [𝑆̃

2
], . . . , [𝑆̃

𝑚
]},.

(6) end for
(7) Compute the set of linear inequality constraints expressed by state vectors from Π

𝑐

𝐸
according to (4), where 𝐴

𝑝
is an incidence

an incidence matrix, binary matrix 𝑞 restricts the PN marking vector to its components corresponding to places 𝑝 ∈ 𝑃
𝐴
, and

∀𝑝 ∈ [𝑆̃
𝑖
], 𝑎

𝑝
[𝑖] fl [𝑆̃

𝑖
](𝑝), otherwise 𝑎

𝑝
[𝑖] fl 0; 𝑓

𝑝
[𝑖] fl𝑀

0
(𝑅

∗

𝑖
) = 𝑀

0
(𝑆

𝑖
) − 𝜉

𝑆𝑖
, 𝜉

𝑆𝑖
fl 𝜛(𝑆

𝑖
) + 1.

(8) According to Definition 29, modify the matrix 𝐴
𝑝
to be matrix 𝐴̂

𝑝
.

(9) Get the set of GMEC expressed by the marking vector according to (10), that is, 𝐴̂
𝑝
⋅ 𝑀

𝑃
≤ 𝑓

𝑝
, where vector𝑀

𝑃
is the restriction

of marking𝑀 to operation places.
(10) if (Π

𝐷
̸= 0) then

(11) Find a set of 𝜉
𝑆1
, . . . , 𝜉

𝑆𝑚
for elementary siphons by solving the LPP according toTheorem 30, where 𝜉

𝑆𝑖
= 𝜉̂

𝑝
[𝑖] + 𝜛(𝑆

𝑖
) + 1.

(12) Get the adjusted GMEC 𝐴̂
𝑝
⋅ 𝑀

𝑃
≤ 𝑓̂

𝑝
, where 𝑓̂

𝑝
[𝑖] fl𝑀

0
(𝑆

𝑖
) − 𝜉

𝑆𝑖
.

(13) end if
(14) According to Definition 24 and the above set of GMEC, add the set of monitors for the corresponding Π

𝐸
to the net𝑁, and the

obtained controlled system is denoted by (𝑁𝑐
,𝑀

𝑐

0
).

(15) output (𝑁𝑐
,𝑀

𝑐

0
)

(16) end.

Algorithm 1: A deadlock prevention policy for S4PR based on improved elementary siphons.

For job 𝐽
1
= {𝑝

2
, 𝑝

3
, 𝑝

4
, 𝑝

5
, 𝑝

6
}, we have

𝜌
max
𝑝6

= 𝜌
min
𝑝6

= 0, 𝐿
𝑝6
= 0 by (𝑝∙

6
)
∙
∩𝑃

0
̸= 0, and𝑁

𝑝6
=

{𝑝
6
};

𝜌
max
𝑝5

= 𝜌
min
𝑝5

= 1, 𝐿
𝑝5
= {𝑝

6
}, and𝑁p5 = {𝑝5

};

𝜌
max
𝑝4

= 𝜌
min
𝑝4

= 1, 𝐿
𝑝4
= {𝑝

5
}, and𝑁

𝑝4
= {𝑝

4
, 𝑝

5
};

𝜌
max
𝑝3

= 𝜌
min
𝑝3

= 1, 𝐿
𝑝3
= {𝑝

4
}, and𝑁

𝑝3
= {𝑝

3
, 𝑝

4
, 𝑝

5
};

𝜌
max
𝑝2

= 𝜌
min
𝑝2

= 2, 𝐿
𝑝2
= {𝑝

3
}, and𝑁

𝑝2
= {𝑝

2
}.

For job 𝐽
2
= {𝑝

8
, 𝑝

9
, 𝑝

10
, 𝑝

11
, 𝑝

12
}, we have

𝜌
max
𝑝12

= 𝜌
min
𝑝12

= 0, 𝐿
𝑝12
= 0, and𝑁

𝑝12
= {𝑝

12
};

𝜌
max
𝑝11

= 𝜌
min
𝑝11

= 2, 𝐿
𝑝11
= {𝑝

12
}, and𝑁

𝑝11
= {𝑝

11
};

𝜌
max
𝑝10

= 𝜌
min
𝑝10

= 1, 𝐿
𝑝10
= {𝑝

11
}, and𝑁

𝑝10
= {𝑝

10
, 𝑝

11
};

𝜌
max
𝑝9

= 𝜌
min
𝑝9

= 1, 𝐿
𝑝9
= {𝑝

10
}, and 𝑁

𝑝9
= {𝑝

9
, 𝑝

10
,

𝑝
11
};

𝜌
max
𝑝8

= 𝜌
min
𝑝8

= 1, 𝐿
𝑝8
= {𝑝

9
}, and 𝑁

𝑝8
= {𝑝

8
, 𝑝

9
, 𝑝

10
,

𝑝
11
}.

The adjusted virtual resource allocation requirements can
be found as follows: 𝑎̂

𝑝2
= (1, 0, 0, 0)

𝑇, 𝑎̂
𝑝3
= (0, 3, 2, 3)

𝑇,
𝑎̂

𝑝4
= (0, 3, 2, 3)

𝑇, 𝑎̂
𝑝5

= (0, 0, 0, 3)
𝑇, 𝑎̂

𝑝6
= (0, 0, 0, 0)

𝑇,
𝑎̂

𝑝8
= (1, 1, 0, 2)

𝑇, 𝑎̂
𝑝9

= (1, 1, 0, 0)
𝑇, 𝑎̂

𝑝10
= (1, 1, 0, 0)

𝑇,

𝑎̂
𝑝11
= (1, 0, 0, 0)

𝑇, and 𝑎̂
𝑝12
= (0, 0, 0, 0)

𝑇. Thus the modified
set of linear inequality constraints expressed by state vector
𝐴̂

𝑝
⋅ 𝑀

𝑃
≤ 𝑓

𝑝
is shown below:

(

1 0 0 0 0 1 1 1 1 0

0 3 3 0 0 1 1 1 0 0

0 2 2 0 0 0 0 0 0 0

0 3 3 3 0 2 0 0 0 0

) ⋅𝑀 ≤(

5

5

2

6

). (14)

According to Algorithm 1, a feasible solution of the LPP
according to Theorem 30, 𝜉̂

𝑝
[1] = 𝜉̂

𝑝
[2] = 𝜉̂

𝑝
[3] = 𝜉̂

𝑝
[4] =

0, can be found and 𝜉
𝑆𝑖
= 𝜛(𝑆

𝑖
) + 1. The adjusted GMEC is

consistent with 𝐴̂
𝑝
⋅ 𝑀

𝑃
≤ 𝑓

𝑝
.

Four constraints need to add four monitors 𝑉
1
, 𝑉

2
, 𝑉

3
,

and 𝑉
4
to the original net system. It can be indicated that

all siphons are max󸀠-controlled. The resulting net system
(𝑁

𝑐
,𝑀

𝑐

0
) is live after adding four monitors as shown in

Table 1.
The example is also studied by applying control polices

reported in other papers. Table 2 shows their comparison
that is done in terms of resultant supervisor’s structural
complexity and behavior permissiveness by using policies
among [13, 23] and the proposed method.

Next, another S4PR example shown in Figure 2, which
is not an AC net and without homogeneous valuation, is
used to further illustrate the applicability and efficiency of
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Table 1: Monitors 𝑉
𝑖
added for the net shown in Figure 1(a).

𝑉
𝑖

∙
𝑉

𝑖
𝑉

∙

𝑖
𝑀

𝑐

0
(𝑉

𝑖
)

𝑉
1

𝑡
2
, 𝑡

11
𝑡
1
, 𝑡

7
5

𝑉
2

3𝑡
4
, 𝑡

10
3𝑡

2
, 𝑡

7
5

𝑉
3

2𝑡
4

2𝑡
2

2
𝑉

4
3𝑡

5
, 2𝑡

8
3𝑡

2
, 2𝑡

7
6

Table 2: The performance comparison of supervisors for the S4PR
in Figure 1(a) due to different policies.

Parameter The method
in [13]

The method
in [23]

The proposed
method

Permissive
behavior 676 1723 2032

Number of
monitors 5 4 4

Number of arcs 19 14 14

Table 3: Monitors 𝑉
𝑖
added for the net shown in Figure 2.

𝑉
𝑖

∙
𝑉

𝑖
𝑉

∙

𝑖
𝑀

𝑐

0
(𝑉

𝑖
)

𝑉
1

3𝑡
3
, 3𝑡

5
, 𝑡

11
3𝑡

1
, 𝑡

9
4

𝑉
2

𝑡
6
, 𝑡

11
𝑡
5
, 𝑡

9
4

𝑉
3

2𝑡
7
, 𝑡

10
2𝑡

6
, 𝑡

9
3

Table 4: The performance comparison of supervisors for the S4PR
in Figure 2 due to different policies.

Parameter The method
in [13]

The method
in [23]

The proposed
method

Permissive
behavior 456 1158 1453

Number of
monitors 5 3 3

Number of arcs 26 13 13

the proposed method. By using Algorithm 1, the resulting
live controlled system (𝑁

𝑐
,𝑀

𝑐

0
)with three monitors is shown

in Table 3. Similarly, Table 4 shows the comparison of con-
trol performances among [13, 23] and the proposed method.

From this two case studies, it can be concluded that the
liveness-enforcing supervisors synthesised by the proposed
method are more structurally simple, and the final controlled
net system can be obtained with more permissive behavior
than some other elementary siphon-based approaches. Trac-
ing to the essential reasons, the advantage of the proposed
method is that the number of the elementary siphons explic-
itly controlled is more smaller by introducing the concept
of augmented siphons, which can significantly reduce the
structural complexity of the supervisors. Meanwhile, the
constraints imposed by the monitors are less restrictive on
account of combining the DAP of RUN policy with improved
elementary siphons in an S4PR net.

3

4

2

3

1

50

50

t13

p12

p14

p15

p3 p5

p16

p17

p2

t12

p11

p4 p6

p7

t11

t1

t3

t4
t7

t8

t2 t5

t6

p10

p13

p8

p1

t10

t9

p9

2

2

2

2

2

2

2

2

3

Figure 2: An S4PR net system (𝑁,𝑀
0
).

5. Conclusion

This paper presents an elementary siphon-based deadlock
prevention method for a class of generalized Petri nets,
called S4PR that can deal with the modeling of concurrently
cyclic sequential processes sharing common resources, where
deadlocks are caused by the insufficiently marked siphons in
their Petri net models. Generally, all insufficiently marked
siphons are divided into elementary siphons and dependent
ones by using the concept of augmented siphons in this
work. From the former, a set of linear inequality constraints
expressed by state vectors is obtained. Then we utilize a
deadlock control method that combines the DAP of RUN
policy with elementary siphons theory to ensure that all
siphons are max󸀠-controlled after adding a monitor for each
elementary siphon. Consequently, the resulting net system
by using the proposed method is live. The major advantage
of this new Petri nets based deadlock prevention method
as a liveness-enforcing supervisor synthesis is that a small
number of monitors are added leading to a more permissive
behavior. Since a complete siphon enumeration is computa-
tionally expensive, our future work will be guided to develop
an approach without a complete siphon enumeration.

Appendices

In this part, the fundamental concepts and some of the
notations of Petri nets and the definitions of elementary
siphons involved in this work are recalled to make paper self-
contained. For more details, please refer to [17, 29].

A. Basics of Petri Nets

A Petri net, as a graphical and mathematical model, is a
directed bipartite graph, which consists of a net structure
and an initial marking. A formal definition is given as follows
[29].
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Definition 34. Ageneralized Petri net structure is a four-tuple
𝑁 = (𝑃, 𝑇, 𝐹,𝑊), where 𝑃 and 𝑇 are finite and nonempty
sets. 𝑃 is the set of places and 𝑇 is the set of transitions with
𝑃 ∩ 𝑇 = 0. 𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) is called flow relation
of the net, represented by arcs with arrows from places to
transitions or from transitions to places. 𝑊 : 𝐹 → N is a
mapping that assigns a weight to any arc: 𝑊(𝑥, 𝑦) > 0 if
(𝑥, 𝑦) ∈ 𝐹, and𝑊(𝑥, 𝑦) = 0, otherwise, where 𝑥, 𝑦 ∈ 𝑃 ∪ 𝑇
and N = {0, 1, 2, . . .}. 𝑁 = (𝑃, 𝑇, 𝐹,𝑊) is called an ordinary
net, denoted as𝑁 = (𝑃, 𝑇, 𝐹), if ∀(𝑥, 𝑦) ∈ 𝐹, 𝑊(𝑥, 𝑦) = 1.

A net 𝑁 = (𝑃, 𝑇, 𝐹,𝑊) is pure (self-loop free) if ∀𝑥, 𝑦 ∈
𝑃 ∪ 𝑇, 𝑊(𝑥, 𝑦) > 0 implies 𝑊(𝑦, 𝑥) = 0. A pure net 𝑁
can be alternatively represented by its incidence matrix [𝑁],
which is a |𝑃| × |𝑇| integer matrix with [𝑁](𝑝, 𝑡) = 𝑊(𝑡, 𝑝) −
𝑊(𝑝, 𝑡). For a place𝑝 (resp., transition 𝑡), its incidence vector,
a row (resp., column) in [𝑁], is denoted as [𝑁](𝑝, ⋅) (resp.,
[𝑁](⋅, 𝑡)).

A marking 𝑀 of 𝑁 is a mapping from 𝑃 to N. 𝑀(𝑝)
denotes the number of tokens contained in place 𝑝, which
is marked by 𝑀 if 𝑀(𝑝) > 0. Let 𝑆 ⊆ 𝑃 be a set of places.
𝑀(𝑆) denotes the sum of tokens contained in 𝑆 atmarking𝑀,
where𝑀(𝑆) = ∑

𝑝∈𝑆
𝑀(𝑝). (𝑁,𝑀

0
) is called a net system, and

𝑀
0
is called an initial marking of 𝑁. For economy of space,

we use ∑
𝑝∈𝑃

𝑀(𝑝)𝑝 to denote vector𝑀.
Let 𝑥 ∈ 𝑃 ∪ 𝑇 be a node of net 𝑁 = (𝑃, 𝑇, 𝐹,𝑊). The

preset of 𝑥 is defined as ∙
𝑥 = {𝑦 ∈ 𝑃 ∪ 𝑇 | (𝑦, 𝑥) ∈ 𝐹}, while

the postset of 𝑥 is defined as 𝑥∙
= {𝑦 ∈ 𝑃 ∪ 𝑇 | (𝑥, 𝑦) ∈ 𝐹}.

This notation can be extended to a set of nodes as follows:
given𝑋 ⊆ 𝑃 ∪ 𝑇, ∙

𝑋 = ⋃
𝑥∈𝑋

∙
𝑥, and𝑋∙

= ⋃
𝑥∈𝑋

𝑥
∙.

A transition 𝑡 ∈ 𝑇 is enabled at a marking 𝑀 if ∀𝑝 ∈
∙
𝑡, 𝑀(𝑝) ≥ 𝑊(𝑝, 𝑡), which is denoted as 𝑀[𝑡⟩; when fired
in a usual way, it gives a new marking 𝑀󸀠 such that ∀𝑝 ∈

𝑃,𝑀󸀠
(𝑝) = 𝑀(𝑝) − 𝑊(𝑝, 𝑡) + 𝑊(𝑡, 𝑝), which is denoted as

𝑀[𝑡⟩𝑀
󸀠. Marking𝑀󸀠 is said to be reachable from𝑀 if there

exists a sequence of transitions 𝜎 = 𝑡
0
𝑡
1
⋅ ⋅ ⋅ 𝑡

𝑛
and markings

𝑀
1
,𝑀

2
, . . ., and𝑀

𝑛
such that𝑀[𝑡

0
⟩𝑀

1
[𝑡

1
⟩𝑀

2
⋅ ⋅ ⋅𝑀

𝑛
[𝑡

𝑛
⟩𝑀

󸀠

holds.The set of markings reachable from𝑀 in𝑁 is denoted
as 𝑅(𝑁,𝑀). The set of all reachable markings for a Petri net
𝑁 with initial marking𝑀

0
is denoted by 𝑅(𝑁,𝑀

0
).

A transition 𝑡 ∈ 𝑇 is live under𝑀
0
if ∀𝑀 ∈ 𝑅(𝑁,𝑀

0
),

∃𝑀
󸀠
∈ 𝑅(𝑁,𝑀), 𝑀󸀠

[𝑡⟩. (𝑁,𝑀
0
) is live if ∀𝑡 ∈ 𝑇, 𝑡 is live

under𝑀
0
. (𝑁,𝑀

0
) is deadlock-free if ∀𝑀 ∈ 𝑅(𝑁,𝑀

0
), ∃𝑡 ∈

𝑇, and𝑀[𝑡⟩ hold. A Petri net𝑁 contains a deadlock if there
is amarking𝑀 ∈ 𝑅(𝑁,𝑀

0
) at which no transition is enabled.

Such amarking is called a deadmarking. Deadlock situations
are a result of inappropriate resource allocation policies or
exhaustive use of some or all resources. Liveness of a Petri net
means that, for each marking𝑀 ∈ 𝑅(𝑁,𝑀

0
) reachable from

𝑀
0
, it is finally possible to fire any transition 𝑡 in the Petri

net through some firing sequence.This means if a Petri net is
live, then it has no deadlock. (𝑁,𝑀

0
) is bounded if ∃𝑘 ∈ N+,

∀𝑀 ∈ 𝑅(𝑁,𝑀
0
), ∀𝑝 ∈ 𝑃, and𝑀(𝑝) ≤ 𝑘 hold. Boundedness

is used to identify the existence of overflows in the modeled
system. (𝑁,𝑀

0
) is said to be reversible, if, for each marking

𝑀 ∈ 𝑅(𝑁,𝑀
0
),𝑀

0
is reachable from𝑀. A marking𝑀󸀠 is

said to be a home state, if, for each marking𝑀 ∈ 𝑅(𝑁,𝑀
0
),

𝑀
󸀠 is reachable from𝑀.

A 𝑃-vector is a column vector 𝐼 : 𝑃 → Z indexed by 𝑃
and a 𝑇-vector is a column vector 𝐽 : 𝑇 → Z indexed by 𝑇,
whereZ is the set of integers. 𝐼𝑇 and [𝑁]𝑇 are the transposed
versions of a vector 𝐼 and a matrix [𝑁], respectively. 𝑃-vector
𝐼 is a 𝑃-invariant (place invariant) if 𝐼 ̸= 0 and 𝐼𝑇

[𝑁] = 0𝑇.
𝑃-invariant 𝐼 is said to be a 𝑃-semiflow if no element of 𝐼 is
negative. ‖ 𝐼‖+

= {𝑝 | 𝐼(𝑝) > 0} denotes the positive support
of 𝑃-invariant 𝐼, while ‖ 𝐼 ‖−

= {𝑝 | 𝐼(𝑝) < 0} denotes
the negative support of 𝐼. An invariant is called minimal
when its support is not a strict superset of the support of
any other, and the greatest common divisor of its elements
is one. If 𝐼 is a 𝑃-invariant of (𝑁,𝑀

0
) then ∀𝑀 ∈ 𝑅(𝑁,𝑀

0
),

𝐼
𝑇
𝑀 = 𝐼

𝑇
𝑀

0
.

A nonempty set 𝑆 ⊆ 𝑃 is a siphon if ∙
𝑆 ⊆ 𝑆

∙. 𝑆 ⊆ 𝑃 is
a trap if 𝑆∙

⊆
∙
𝑆. A siphon (resp., trap) is minimal if there

is no siphon (resp., trap) contained in it as a proper subset.
A minimal siphon 𝑆 is said to be strict if ∙

𝑆 ⊂ 𝑆
∙. A siphon

remains empty once it loses all tokens. A trap remainsmarked
once it is marked. Let 𝑆 be a siphon in a net (𝑁,𝑀

0
). 𝑆 is said

to bemax-marked at amarking𝑀 ∈ 𝑅(𝑁,𝑀
0
) if ∃𝑝 ∈ 𝑆 such

that𝑀(𝑝) ≥ max
𝑝
∙ . A siphon is said to be max-controlled if

it is max-marked at any reachable marking.

B. Elementary Siphon

Elementary and dependent siphons were first proposed in
[17] and are essential to the development of a structurally
simple liveness-enforcing monitor-based supervisor.

Let 𝑆 ⊆ 𝑃 be a subset of places of Petri net 𝑁 =

(𝑃, 𝑇, 𝐹,𝑊). 𝑃-vector 𝜆
𝑆
is called the characteristic 𝑃-vector

of 𝑆 if ∀𝑝 ∈ 𝑆, 𝜆
𝑆
(𝑝) = 1; otherwise 𝜆

𝑆
(𝑝) = 0. 𝜂

𝑆
= [𝑁]

𝑇
𝜆

𝑆

is called the characteristic 𝑇-vector of 𝑆, where [𝑁]𝑇 is the
transpose of incidence matrix [𝑁].

Let 𝑁 = (𝑃, 𝑇, 𝐹,𝑊) be a net with |𝑃| = 𝑚, |𝑇| =
𝑛, and let Π = {𝑆

1
, 𝑆

2
, . . . , 𝑆

𝑘
} be a set of siphons of 𝑁,

where 𝑚, 𝑛, 𝑘 ∈ N+
= {1, 2, 3, . . .}. Let 𝜆

𝑆𝑖
(resp. 𝜂

𝑆𝑖
) be the

characteristic 𝑃-vector (resp., 𝑇-vector) of siphon 𝑆
𝑖
, where

𝑖 ∈ N
𝑘
= {1, . . . , 𝑘}. [𝜆]

𝑘×𝑚
= [𝜆

𝑆1
| 𝜆

𝑆2
| ⋅ ⋅ ⋅ | 𝜆

𝑆𝑘
]
𝑇 and

[𝜂]
𝑘×𝑛

= [𝜆]
𝑘×𝑚

× [𝑁]
𝑚×𝑛

= [𝜂
𝑆1
| 𝜂

𝑆2
| ⋅ ⋅ ⋅ | 𝜂

𝑆𝑘
]
𝑇 are called

the characteristic 𝑃- and 𝑇-vector matrices of the siphons in
𝑁, respectively.

Definition 35 (see [17]). Let 𝜂
𝑆𝛼
, 𝜂

𝑆𝛽
, . . ., and 𝜂

𝑆𝛾
({𝛼, 𝛽, . . .,

𝛾} ⊆ N
𝑘
) be a linearly independent maximal set of matrix

[𝜂]. Then Π
𝐸
= {𝑆

𝛼
, 𝑆

𝛽
, . . . , 𝑆

𝛾
} is called a set of elementary

siphons in 𝑁. 𝑆 ∉ Π
𝐸
is called a strongly dependent siphon

if 𝜂
𝑆
= ∑

𝑆𝑖∈Π𝐸
𝑎

𝑖
𝜂

𝑆𝑖
, where 𝑎

𝑖
≥ 0. 𝑆 ∉ Π

𝐸
is called a weakly

dependent siphon if ∃𝐴, 𝐵 ⊂ Π
𝐸
such that 𝐴 ̸= 0, 𝐵 ̸= 0,

𝐴∩𝐵 = 0, and 𝜂
𝑆
= ∑

𝑆𝑖∈𝐴
𝑎

𝑖
𝜂

𝑆𝑖
−∑

𝑆𝑗∈𝐵
𝑎

𝑗
𝜂

𝑆𝑗
, where 𝑎

𝑖
, 𝑎

𝑗
≥ 0.

Elementary and dependent siphons defined in Defini-
tion 35 are originally proposed in [17] and further clarified in
[18]. In order to differentiate from the augmented elementary
ones proposed in [23], elementary siphons defined in [17] are
called the original elementary siphons (dependent siphons)
in this paper and denoted asΠ

𝐸𝑂
(resp.,Π

𝐷𝑂
), which is called

the set of original elementary (resp., original dependent)
siphons.
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