523 research outputs found

    Efficient algorithm for solving semi-infinite programming problems and their applications to nonuniform filter bank designs

    Get PDF
    An efficient algorithm for solving semi-infinite programming problems is proposed in this paper. The index set is constructed by adding only one of the most violated points in a refined set of grid points. By applying this algorithm for solving the optimum nonuniform symmetric/antisymmetric linear phase finite-impulse-response (FIR) filter bank design problems, the time required to obtain a globally optimal solution is much reduced compared with that of the previous proposed algorith

    Optimal Spatial Matrix Filter Design for Array Signal Preprocessing

    Get PDF
    An efficient technique of designing spatial matrix filter for array signal preprocessing based on convex programming was proposed. Five methods were considered for designing the filter. In design method 1, we minimized the passband fidelity subject to the controlled overall stopband attenuation level. In design method 2, the objective function and the constraint in the design method 1 were reversed. In design method 3, the optimal matrix filter which has the general mean square error was considered. In design method 4, the left stopband and the right stopband were constrained with specific attenuation level each, and the minimized passband fidelity was received. In design method 5, the optimization objective function was the sum of the left stopband and the right stopband attenuation levels with the weighting factors 1 and Îł, respectively, and the passband fidelity was the constraints. The optimal solution of the optimizations above was derived by the Lagrange multiplier theory. The relations between the optimal solutions were analyzed. The generalized singular value decomposition was introduced to simplify the optimal solution of design methods 1 and 2 and enhanced the efficiency of solving the Lagrange multipliers. By simulations, it could be found that the proposed method was effective for designing the spatial matrix filter

    Development of a Resource Manager Framework for Adaptive Beamformer Selection

    Get PDF
    Adaptive digital beamforming (DBF) algorithms are designed to mitigate the effects of interference and noise in the electromagnetic (EM) environment encountered by modern electronic support (ES) receivers. Traditionally, an ES receiver employs a single adaptive DBF algorithm that is part of the design of the receiver system. While the traditional form of receiver implementation is effective in many scenarios it has inherent limitations. This dissertation proposes a new ES receiver framework capable of overcoming the limitations of traditional ES receivers. The proposed receiver framework is capable of forming multiple, independent, simultaneous adaptive digital beams toward multiple signals of interest in an electromagnetic environment. The main contribution of the research is the development, validation, and verification of a resource manager (RM) algorithm. The RM estimates a set of parameters that characterizes the electromagnetic environment and selects an adaptive digital beam forming DBF algorithm for implementation toward all each signal of interest (SOI) in the environment. Adaptive DBF algorithms are chosen by the RM based upon their signal to interference plus noise ratio (SINR) improvement ratio and their computational complexity. The proposed receiver framework is demonstrated to correctly estimate the desired electromagnetic parameters and select an adaptive DBF from the LUT

    Super-resolved localisation in multipath environments

    Get PDF
    In the last few decades, the localisation problems have been studied extensively. There are still some open issues that remain unresolved. One of the key issues is the efficiency and preciseness of the localisation in presence of non-line-of-sight (NLoS) path. Nevertheless, the NLoS path has a high occurrence in multipath environments, but NLoS bias is viewed as a main factor to severely degrade the localisation performance. The NLoS bias would often result in extra propagation delay and angular bias. Numerous localisation methods have been proposed to deal with NLoS bias in various propagation environments, but they are tailored to some specif ic scenarios due to different prior knowledge requirements, accuracies, computational complexities, and assumptions. To super-resolve the location of mobile device (MD) without prior knowledge, we address the localisation problem by super-resolution technique due to its favourable features, such as working on continuous parameter space, reducing computational cost and good extensibility. Besides the NLoS bias, we consider an extra array directional error which implies the deviation in the orientation of the array placement. The proposed method is able to estimate the locations of MDs and self-calibrate the array directional errors simultaneously. To achieve joint localisation, we directly map MD locations and array directional error to received signals. Then the group sparsity based optimisation is proposed to exploit the geometric consistency that received paths are originating from common MDs. Note that the super-resolution framework cannot be directly applied to our localisation problems. Because the proposed objective function cannot be efficiently solved by semi-definite programming. Typical strategies focus on reducing adverse effect due to the NLoS bias by separating line-of-sight (LoS)/NLoS path or mitigating NLoS effect. The LoS path is well studied for localisation and multiple methods have been proposed in the literature. However, the number of LoS paths are typically limited and the effect of NLoS bias may not always be reduced completely. As a long-standing issue, the suitable solution of using NLoS path is still an open topic for research. Instead of dealing with NLoS bias, we present a novel localisation method that exploits both LoS and NLoS paths in the same manner. The unique feature is avoiding hard decisions on separating LoS and NLoS paths and hence relevant possible error. A grid-free sparse inverse problem is formulated for localisation which avoids error propagation between multiple stages, handles multipath in a unified way, and guarantees a global convergence. Extensive localisation experiments on different propagation environments and localisation systems are presented to illustrate the high performance of the proposed algorithm compared with theoretical analysis. In one of the case studies, single antenna access points (APs) can locate a single antenna MD even when all paths between them are NLoS, which according to the authors’ knowledge is the first time in the literature.Open Acces

    Characterisation of MIMO radio propagation channels

    Get PDF
    Due to the incessant requirement for higher performance radio systems, wireless designers have been constantly seeking ways to improve spectrum efficiency, link reliability, service quality, and radio network coverage. During the past few years, space-time technology which employs multiple antennas along with suitable signalling schemes and receiver architectures has been seen as a powerful tool for the implementation of the aforementioned requirements. In particular, the concept of communications via Multiple-Input Multiple-Output (MIMO) links has emerged as one of the major contending ideas for next generation ad-hoc and cellular systems. This is inherently due to the capacities expected when multiple antennas are employed at both ends of the radio link. Such a mobile radio propagation channel constitutes a MIMO system. Multiple antenna technologies and in particular MIMO signalling are envisaged for a number of standards such as the next generation of Wireless Local Area Network (WLAN) technology known as 802.1 ln and the development of the Worldwide Interoperability for Microwave Access (WiMAX) project, such as the 802.16e. For the efficient design, performance evaluation and deployment of such multiple antenna (space-time) systems, it becomes increasingly important to understand the characteristics of the spatial radio channel. This criterion has led to the development of new sounding systems, which can measure both spatial and temporal channel information. In this thesis, a novel semi-sequential wideband MIMO sounder is presented, which is suitable for high-resolution radio channel measurements. The sounder produces a frequency modulated continuous wave (FMCW) or chirp signal with variable bandwidth, centre frequency and waveform repetition rate. It has programmable bandwidth up to 300 MHz and waveform repetition rates up to 300 Hz, and could be used to measure conventional high- resolution delay/Doppler information as well as spatial channel information such as Direction of Arrival (DOA) and Direction of Departure (DOD). Notably the knowledge of the angular information at the link ends could be used to properly design and develop systems such as smart antennas. This thesis examines the theory of multiple antenna propagation channels, the sounding architecture required for the measurement of such spatial channel information and the signal processing which is used to quantify and analyse such measurement data. Over 700 measurement files were collected corresponding to over 175,000 impulse responses with different sounder and antenna array configurations. These included measurements in the Universal Mobile Telecommunication Systems Frequency Division Duplex (UMTS-FDD) uplink band, the 2.25 GHz and 5.8 GHz bands allocated for studio broadcast MIMO video links, and the 2.4 GHz and 5.8 GHz ISM bands allocated for Wireless Local Area Network (WLAN) activity as well as for a wide range of future systems defined in the WiMAX project. The measurements were collected predominantly for indoor and some outdoor multiple antenna channels using sounding signals with 60 MHz, 96 MHz and 240 MHz bandwidth. A wide range of different MIMO antenna array configurations are examined in this thesis with varying space, time and frequency resolutions. Measurements can be generally subdivided into three main categories, namely measurements at different locations in the environment (static), measurements while moving at regular intervals step by step (spatial), and measurements while the receiver (or transmitter) is on the move (dynamic). High-scattering as well as time-varying MIMO channels are examined for different antenna array structures
    • …
    corecore