Super-resolved localisation in multipath environments

Abstract

In the last few decades, the localisation problems have been studied extensively. There are still some open issues that remain unresolved. One of the key issues is the efficiency and preciseness of the localisation in presence of non-line-of-sight (NLoS) path. Nevertheless, the NLoS path has a high occurrence in multipath environments, but NLoS bias is viewed as a main factor to severely degrade the localisation performance. The NLoS bias would often result in extra propagation delay and angular bias. Numerous localisation methods have been proposed to deal with NLoS bias in various propagation environments, but they are tailored to some specif ic scenarios due to different prior knowledge requirements, accuracies, computational complexities, and assumptions. To super-resolve the location of mobile device (MD) without prior knowledge, we address the localisation problem by super-resolution technique due to its favourable features, such as working on continuous parameter space, reducing computational cost and good extensibility. Besides the NLoS bias, we consider an extra array directional error which implies the deviation in the orientation of the array placement. The proposed method is able to estimate the locations of MDs and self-calibrate the array directional errors simultaneously. To achieve joint localisation, we directly map MD locations and array directional error to received signals. Then the group sparsity based optimisation is proposed to exploit the geometric consistency that received paths are originating from common MDs. Note that the super-resolution framework cannot be directly applied to our localisation problems. Because the proposed objective function cannot be efficiently solved by semi-definite programming. Typical strategies focus on reducing adverse effect due to the NLoS bias by separating line-of-sight (LoS)/NLoS path or mitigating NLoS effect. The LoS path is well studied for localisation and multiple methods have been proposed in the literature. However, the number of LoS paths are typically limited and the effect of NLoS bias may not always be reduced completely. As a long-standing issue, the suitable solution of using NLoS path is still an open topic for research. Instead of dealing with NLoS bias, we present a novel localisation method that exploits both LoS and NLoS paths in the same manner. The unique feature is avoiding hard decisions on separating LoS and NLoS paths and hence relevant possible error. A grid-free sparse inverse problem is formulated for localisation which avoids error propagation between multiple stages, handles multipath in a unified way, and guarantees a global convergence. Extensive localisation experiments on different propagation environments and localisation systems are presented to illustrate the high performance of the proposed algorithm compared with theoretical analysis. In one of the case studies, single antenna access points (APs) can locate a single antenna MD even when all paths between them are NLoS, which according to the authors’ knowledge is the first time in the literature.Open Acces

    Similar works