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Abstract—An efficient algorithm for solving semi-infinite 

programming problems is proposed in this paper. The index set 
is constructed by adding only one of the most violated points in a 
refined set of grid points. By applying this algorithm for solving 
the optimum nonuniform symmetric/anti-symmetric linear phase 
FIR filter bank design problems, the time required to obtain a 
globally optimal solution is much reduced compared to that of 
the previous proposed algorithm. 
 

Index Terms—Semi-infinite programming, dual 
parameterization, nonuniform filter banks. 

I. INTRODUCTION 
ANY engineering problems, such as, parametric 
estimation problems [1], identification problems [2], 

array pattern synthesis problems [3], window, filter, filter 
bank and wavelet kernel design problems [4]-[19], as well as 
optimal control problems [20]-[24], can be formulated as 
optimization problems subject to functional inequality 
constraints. Since continuous functions consist of infinite 
number of discrete points, these infinite constraint 
optimization problems cannot be solved via some simple 
methods. 

In order to solve these problems, numerically efficient 
simplex extension algorithms were employed in [6] and [16], 
conventional dual parameterization approaches were 
employed in [5], [12], [17], [18] and [27], an extended active 
set strategy was employed in [4], an extended version of 
Remez algorithm was employed in [7] to generate a feasible 
starting condition for the dual method, discretization methods 
were employed in [9], [15] and [16], outer-approximation 
cutting plane algorithms were employed in [10], [15] and [30], 
penalty function approaches were employed in [11] and [26], 
and constraint transcription approaches were employed in [13] 
and [25]. Among them, the constraint transcription methods, 
the penalty function approaches, the discretization methods, 
the cutting plane methods and the conventional dual 
parameterization methods are the most common methods 
employed for solving engineering problems. 

However, for the constraint transcription method [25], it 
suffers from convergence problems. For the penalty function 
approach [11], it suffers from disadvantages of computing 
numerical integration. For the discretization method [9], it 

does not guarantee that the solution obtained would satisfy the 
corresponding continuous constraints. For the cutting plane 
method [30], the corresponding subset of the index set may 
consist of infinite number of points and only approximated 
solution is obtained. On the other hand, the dual 
parameterization method is capable of finding the exact 
solution because a global solution of the parameterized dual 
problems provides a solution to the primal problems. 

For the conventional dual parameterization method, it is to 
parameterize the measure μ  in the dual problems so that it 
transforms the semi-infinite programming problems into 
equivalent finite dimensional nonlinear programming 
problems via sequences of regular convex programs. These 
sequences of convex programs are obtained by discretization. 
In the kP

th
P iteration, the problems are solved by replacing the 

index set Δ  with a finite subset 
kΔ . The finite subset 

1+Δ k
 of 

the index set is constructed from kΔ  by adding all violated 
index points of a refined set of grid points to 

kΔ  while 
dropping all unnecessary points from 

kΔ . However, as the 
number of all violated index points in a continuous set could 
be very large or even infinite, so the shortcoming of this 
scheme is that the number of points in 

kΔ  may be unbounded 
as k  increases. For example, the number of points that 
violates 12 −>− x  is infinity because there are infinite number 
of points in the set ( )1,1−∈x . Even if the number of points in 

kΔ  is finite, the computational complexity of employing this 
approach for solving the problem may be very huge because 
the number of points in 

kΔ  may be very large. In this paper, 
this conventional dual parameterization method is improved as 
follows. We construct 

1+Δk
 from 

kΔ  by adding to 
kΔ  only one 

of the most violated points in a refined set of grid points. 
Hence, the number of points in 

kΔ  is bounded. For the same 
example, the most violated point is at 0=x  and we only add 
this point in 

kΔ . 
It is shown in this paper that for each k , the number of 

points in 
kΔ  is limited by the number of filter coefficients 

required to be designed plus two. The computational 
complexity of the dual parameterization algorithm does not 
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only depend on the filter lengths, but also on the number of 
points in the refined sets of grid points. Hence, the 
computational complexity of this algorithm is greatly reduced 
compared to the conventional one [27]. It is worth noting that 
both the order of the optimization problem and the number of 
points in the refined sets of grid points for the nonuniform 
filter bank design problems are high. This is because more 
than one filter is required to be designed and the orders of the 
polynomials for the amplitude and aliasing distortions are 
much higher than that for the specifications on the passband 
and stopband of the filters. Hence, the complexity issue is 
particularly important for the nonuniform filter bank design 
problems. 

The rest of this paper is organized as follows. In Section II, 
we summarize the formulation of the optimum nonuniform 
symmetric/anti-symmetric linear phase FIR filter bank design 
problem as a quadratic semi-infinite programming problem 
[18]. In Section III, an improved dual parameterization 
algorithm for solving the semi-infinite programming problem 
is proposed. In Section IV, a numerical experiment for this 
nonuniform filter bank design problem is presented. Finally, 
Section V concludes the paper. 

II. PROBLEM FORMULATION 
In this paper, either symmetric or anti-symmetric FIR filters 

are designed, so all the filters are linear phase. The 
formulation of this optimum nonuniform symmetric/anti-
symmetric linear phase FIR filter bank design problem is 
similar to that of the nonuniform transmultiplexer design 
problem [18], so only the summary of the formulation is stated 
in this paper. For interested readers, we recommend them to 
study [18]. 

Let the coefficient vectors of the analysis and synthesis 
filters be, respectively, x  and y . By arbitrarily choosing a set 
of synthesis filters, y  is fixed. Define the cost function of an 
optimization problem as the sum of the ripple energy for all 
the individual filters in the passband and stopband subject to 
the specifications on the passband and stopband ripple 
magnitudes, as well as on the amplitude and aliasing 
distortions. Using similar approach in [18], the nonuniform 
filter bank design problem can be formulated as the following 
semi-infinite programming problem: 
Problem (P) 

x
min  ( ) pJ TT ++= xbxQxx

2
1 , 

subject to 0cxAxg ≤−= )()(),( ωωω , for Δ∈ω , 
where ( )xJ  is the cost function, 0xg ≤),( ω  is the continuous 
constraint function, Q  is a positive definite matrix, b  is a 
vector, p  is a positive scalar, ( )ωA  and ( )ωc  are continuously 
differentiable functions with respect to some frequency band 
Δ . 

Since amplitude and aliasing distortions are complex 
continuous functions, constraints that take absolute values on 
these functions are equivalent to quadratic constraints, which 

cause the problem to be very difficult to solve. One common 
way to tackle this difficulty is via a discretization approach. If 
the discretization approach is employed, then the constraints 
become convex quadratic constraints which will lead to a 
quadratic programming problem. However, the number of 
grid points required is very large. As a result, the 
computational complexity is very high. Hence, in this 
formulation, we make an approximation that the constraints on 
taking absolute values of these complex functions are almost 
(but not) equivalent to constraints on both the real and 
imaginary parts of these functions. The approximation is valid 
if the constraint functions are small. By making such 
approximation, the quadratic constraints can be approximated 
as linear constraints and the problem is much simplified and 
become easier to solve. 

Problem P can be efficiently solved using the improved 
dual parameterization method and discussed in the following 
section in detail. The problem is convex, so any local solution 
is a global solution and the solution obtained is independent of 
the initial values of x  and y  we select. Once we obtain the set 
of analysis filters, we use the same method to compute the 
synthesis filters, and iterate the above procedures. Since the 
feasible set of each iteration is convex, this iteration process is 
actually a projection on a convex set. Hence, the convergence 
of the iteration process is guaranteed if a solution exists for 
each iteration. Eventually, a set of analysis and synthesis 
filters that globally minimizes the cost function and satisfies 
the continuous constraints is obtained. 

III. IMPROVED DUAL PARAMETERIZATION ALGORITHM 
As discussed in Section I, the conventional dual 

parameterization method is to parameterize the measure in the 
dual problems so that it transforms the semi-infinite 
programming problems into equivalent finite dimensional 
nonlinear programming problems via sequences of regular 
convex programs. The basic working principle of the 
conventional dual parameterization method can be 
summarized as follows: Since the constraint functions are 
continuous with respect to their index parameters and the 
index set is compact Hausdorff, the constraint functions can 
be redefined as an operator whose range is the Banach space 
consisting of continuous functions defined on the index set 
and equipped with the uniform norm. The order in the range 
space is given by a cone consisting of all nonnegative 
functions on the index set. The assumption of the conventional 
dual parameterization method is the existence of a solution 
that strictly satisfies the continuous constraints. This condition 
is also known as the Slater’s condition. Once the Slater’s 
condition is satisfied, the Karush-Kuhn-Tucker (KKT) 
conditions would be satisfied, which guarantees a necessary 
optimality condition for such a cone-constrained nonlinear 
programming problem, where the Lagrange multiplier is 
defined as a regular Borel measure on the index set. As a 
result, the set of multipliers satisfying the KKT condition 
necessarily includes a measure with finite support unless it is 
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empty. Hence, any constraint qualification ensures the 
existence of such a discrete measure, which is also called the 
Haar measure. On the other hand, strong duality holds for 
convex programming under Slater’s constraint qualification. 
Hence, the corresponding dual problem for semi-infinite 
programming can then be formulated in the space of finite 
signed regular Borel measures on the index set. The local 
KKT theory and the global duality theory are naturally related 
through the fact that the set of multipliers satisfying the KKT 
condition coincides with the set of solutions to the dual 
problem, which leads to the consequence that the set of dual 
solutions always includes a measure with finite support under 
the Slater condition. Hence, the conventional dual 
parameterization method is guaranteed to obtain a globally 
optimal solution that satisfies the continuous constraint if a 
solution exists. 

In order to reduce the computational complexity of the 
conventional dual parameterization method, we need to define 
the dual problem, the Slater condition and the KKT condition 
as follows: 

The Dorn’s dual of problem P can be formulated as 
follows: 
Problem (DP) 

νx,
min  ( )( ) ( )∫

Δ

+ ωdω TT νcxQx
2
1 , 

subject to ( )( ) ( ) 0νAbxQ =++ ∫
Δ

ωdω T , 

 ( )ΔΛ∈ +ν , 
where ( )ΔΛ+  is the set of nonnegative bounded regular Borel 
measures on Δ . 

As discussed in the above, in order to solve the problem 
sequence, we need an assumption of the satisfaction of the 
Slater condition, and it is stated as follows: 
Assumption 1 Slater condition 

Sℜ∈∃ 0x  such that ( ) 0xg <ω,0
, Δ∈∀ω , where S  is the 

dimension of the vector 
0x . 

For the nonuniform filter bank design problem, this 
assumption can be interpreted as follows: there exists a set of 
filter coefficients such that the maximum values of the 
amplitude and aliasing distortions, as well as the passband and 
stopband ripple magnitudes of the filters, are strictly lower 
than that of the required specifications. If the set of 
decimation integer is compatible, then this assumption can be 
easily achieved by using a set of filters with suitably long 
filter lengths. 

As discussed in the above, the dual parameterization 
technique is based on the dual parameterization theory, in 
which the dual parameterization theory is based on the 
following results: 
Lemma 1 KKT condition 

Assume that the Slater constraint qualification is satisfied. 
The minimum of problem P is achieved at ∗x  if and only if ∗x  
is feasible and there exists a ( )ΔΛ∈∗ν  such that 

 ( )( ) ( ) 0νAbxQ =++ ∫
Δ

∗∗ ωdω T , (1a) 

 ( ) ( )( ) ( ) 0=−∫
Δ

∗∗ ωdωω T νcxA , (1b) 

and 
 0ν ≥∗ , (1c) 

where ( )ΔΛ  denotes the space of all signed finite regular 
Borel measure. 

This lemma states the necessary and sufficient condition 
relating the minimum of problem P and the existence of ∗ν  in 
the space of all signed finite regular Borel measure. This result 
will be used in Lemmas 3 and 4 later. Since this result is well 
known in the optimization community [28], we just state it 
and omit the proof. For the interested readers, we recommend 
them to study [28]. 
Lemma 2 Carathéodory Theorem 

Let U  be a subset of Sℜ . If U
0α

αx
≥

≡∈ coUconeU , that is, x  

is a nonnegative linear combination of points in U , then there 

exists S  numbers of 0≥iα  such that ∑
=

=
S

i

c
ii

1

xx α  for some 

Uc
i ∈x , Si ,,2,1 L= . In order words, if coneU∈x , then x  

can be represented as a nonnegative linear combination of at 
most S  points of U . 

This lemma states that the measure ∗ν  has a finite support 
of no more than S  points. This lemma is also required for the 
proof of Lemma 4 which is stated later. Since this result is 
also well known in the optimization community [28], we just 
state it and omit the proof. Again, for the interested readers, 
we recommend them to study [28]. 
Lemma 3 

Assume that the Slater constraint qualification is satisfied 
and the minimum of problem P is achieved at ∗x . Then ∗ν  is 
a multiplier satisfying the KKT condition if and only if 
( )∗∗ νx ,  is a solution to the dual problem DP. 

This lemma states the relationship between the satisfaction 
of KKT condition stated in Lemma 1 and the solution to the 
dual problem DP. This lemma is also required for the proof of 
Lemma 4 which is stated later. Since the proof is shown in 
detail in [27], we omit the proof in this paper. For the 
interested readers, we recommend them to study [27]. 
Lemma 4 

Assume that the Slater constraint qualification is satisfied 
and the minimum of problem P is achieved at ∗x . Then the 
solution set of the dual problem DP contains a solution pair 
( )∗∗ νx ,  of which the measure ∗ν  has a finite support of no 
more than S  points. 

Based on the KKT condition stated in Lemma 1, the 
Carathéodory Theorem stated in Lemma 2 and the relationship 
between the satisfaction of KKT condition and the solution to 
the dual problem DP stated in Lemma 3, the proof of Lemma 
4 can be followed easily. Since the detail proof is also shown 
in [27], we omit the proof in this paper. For the interested 
readers, we recommend them to study [27]. 
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Lemma 4 is the foundation of the dual parameterization 
method. The importance of Lemma 4 is that it allows us to 
reduce problem DP to a finite dimensional problem. In order 
to solve the primal problem P, we only need to find a solution 
pair ( )∗∗ νx ,  of problem DP. From Lemma 4, we can restrict 
our search for ∗ν  to those nonnegative measures having a 
finite support of no more than S  supporting points. Such a 
measure ν  is characterized by its k  supporting points Δ∈iω  
for ki ,,2,1 L= , and the corresponding measures 

{ }( ) 0νμ >= ii ω  for ki ,,2,1 L=  at each point. If we restrict the 
measure ν  in problem DP to those of finite support of no 
more than k  supporting points which are collectively denoted 
by Z , then problem DP is reduced to the following problem: 
Problem (

kPDP ) 

τμx ,,
min  ( )( )∑

=

+
k

i
i

T
i

T ω
12

1 μcxQx , 

subject to ( )( ) 0μAbxQ =++ ∑
=

k

i
i

T
iω

1

, 

 0μ ≥i
 for ki ,,2,1 L= , 

 Δ∈iω  for ki ,,2,1 L= . 
where [ ]kμμμμ ,,, 21 L=  and [ ]kωωω ,,, 21 L=τ . 

Problem 
kPDP  is called the parameterized dual of problem 

P with parameterization number k . From the above 
discussions, we see that once a global solution ( )∗∗∗ τμx ,,  of 
problem 

kPDP  is obtained, then ∗x  must be the solution of 
problem P if k  is suitably large. Here, suitably large means 
that k  is no less than an integer ∗k , the minimum 
parameterization number, which is no more than S , but not 
known exactly before solving the problem. Thus, in order to 
solve problem P, we only need to deal with problem 

kPDP . 
For any finite index set { } Δ⊂= kωωωZ ,,, 21 L , we define 

the following problem: 
Problem ( ( )ZPDP ) 

μx,
min  ( )( )∑

=

+
k

j
j

T
j

T ω
12

1 μcxQx , 

subject to ( )( ) 0μAbxQ =++ ∑
=

k

j
j

T
jω

1

, 

 0μ ≥j
 for kj ,,2,1 L= , 

where μ  is defined as in problem kPDP . 
Hence, problem P can be solved efficiently by the 

following improved dual parameterization algorithm. The 
algorithm combines an adaptive scheme for an approximated 
solution and a local search procedure. 

For each 1≥i , let iΔ  be a given subset of Δ  satisfying 

( ) 0minmax, →−≡ΔΔ
Δ∈Δ∈

ωd
iωi ϖ

ϖ
. (2) 

For any Δ∈ω  and Sℜ∈x , we define 
( ) ( )ωgωg jmj

,max,
1max xx

≤≤
≡ , where ( )ωg j ,x  is the j P

th
P entry of the 

vector ( )ω,xg  and m  is the number of rows of ( )ω,xg . 
Algorithm 1 
Step 1. Choose an arbitrary filter coefficient vector Sℜ∈0x , 

a small number 0>ε , a large integer N , and a 
sequence of finite parameterization sets 

{ }ii
ji kjω ,,2,1: L==Δ , for L,2,1=i , satisfying (2). 

Step 2. Let Ø0 =E , where Ø  denotes the empty set. Set 0=i . 
Step 3. Set 1+= ii . Find  

ii Δ∈ϖ  such that 

( ) ( )ωgg i

ωi
i

i

,max, 1
max

1
max

−

Δ∈

− = xx ϖ . 

If ( ) εϖ <−
i

ig ,1
max x , set 1−= ii EZ . 
If Ni ≥ , go to  Step 6. 
Else, set ( ) ( )11,, −−= iiii μxμx , 

1−= ii EE  and repeat 
Step 3. 
End. 

Else, { }iii EZ ϖU1−= . 
End. 

Step 4. Solve problem ( )iZPDP  to obtain a solution ( )ii μx , . 
Step 5.  Choose a set ii ZE ⊂  with no more than 1+S  points 

such that the solution of problem ( )iEPDP  is in the 
form ( )ii μx , . 
Go to Step 3. 

Step 6.  Suppose 
iZ  has k  points 

kϖϖϖ ,,, 21 L . Starting from 

( )iii τμx ,, , where ix  and iμ  are defined previously 
and [ ]k

i ϖϖϖ ,,, 21 L=τ  is the k  tuple formed 
by the points in 

iZ , find a local minimum ( )∗∗∗ τμx ,,  

for problem kPDP . Then ∗x  is taken as the solution 
for problem P. 

In Algorithm 1, we need to initialize two parameters, N  
and ε . The purpose of introducing the integer N  is to prevent 
the algorithm from terminating prematurely. For example, if 
the iteration number i  is small, the subset 

1+Δ i
 may be 

relatively sparse in Δ  and it may happen that the 
approximated solution ix , as part of the solution ( )ii μx ,  of 
problem ( )iZPDP , satisfies all the constraints corresponding 
to index points in 

1+Δ i
. Without introducing the integer N , 

the algorithm would terminate the iteration at this stage even 
if ( ) 0,max >ωg ix  at some points 1\ +ΔΔ∈ iω  and goes to the 
final local search procedure. In this case, ix  may not be close 
enough to the primal solution ∗x  and the subsequent local 
search procedure in Step 6 does not find a global solution for 
problem 

kPDP . The parameter ε  relates to the tolerable error. 
Theoretically, it can be set as close as zero if the Slater 
condition is satisfied. 

The main difference between this algorithm and the 
conventional one [27] is that this algorithm is more efficient in 
the sense that the dimension of the quadratic problem in each 
iteration and that at the final local search procedure is much 
reduced. In the above algorithm, we can see from Step 5 that 
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the number of points in 
iE  is no more than 1+S  points. 

Hence, in Step 3, if ( ) εϖ ≥−
i

ig ,1
max x , then { }iii EZ ϖU1−=  and 

the number of points in 
iZ  is no more than 2+S  points. In 

Step 3, if ( ) εϖ <−
i

ig ,1
max x , then 

1−= ii EZ . If Ni < , then 

1−= ii EE . Hence, the number of points in both 
iZ  and 

iE  is no 
more than 1+S  points. As a result, after re-iterates of Step 3, 
the number of points in iE  and iZ  is no more than 1+S  and 

2+S  points, respectively. According to Algorithm 1, we only 
need to solve the problem ( )ZPDP  in Step 4 and Step 5. As 
the dimension of the problem ( )ZPDP  is equal to the size of 
the vector x  plus that of μ , the size of the vector x  and 

jμ  is, 

respectively, 1×S  and 1×m , and there is no more than 2+S  
points in iZ  or there is no more than 2+S  

jμ , so we only 

need to solve a quadratic programming problem of dimension 
not exceeding ( )2++ SmS  with S  linear equality constraints. 
This is because the number of equality constraints is equal to 
the size of the vector ( )( )∑

=

++
k

j
j

T
jω

1
μAbxQ , which is S . 

Similarly, we can see that we only need to find a local solution 
of a nonlinear programming problem at the final local search 
procedure of dimension no more than ( )( )21 +++ SmS . 

Since the dimension of the optimization problem is greatly 
reduced, one may query that the numerical accuracy of the 
obtained solution will be traded off. It is worth noting that if 
the parameters ε  and N  are chosen properly, then the 
efficiency of the improved dual parameterization method will 
not be traded off with the numerical accuracy of the obtained 
solution even though the dimensionality of the problem is 
reduced. Or in other words, the solution obtained using the 
improved dual parameterization method is the same as that of 
the conventional dual parameterization method. This is 
because both the conventional and the improved dual 
parameterization algorithm guarantee that the obtained 
solution is the globally optimal solution, which is uniquely 
defined. This result will be proved in Theorem 1 later. In 
order to prove Theorem 1, we need Lemmas 5 and 6 stated 
below: 
Lemma 5 

Step 5 of the Algorithm 1 is numerically feasible. 
Proof 

Let { }kjZ ji ,,2,1: L== ω . Then problem ( )iZPDP  is in the 

form of ( )ZPDP . Let ( )ii μx ,  be the solution to this problem 
obtained in the iP

th
P iteration. Consider the following linear 

program: 
Problem (

iLP ) 

( )υμ,
min  ∑

+

=

1

1

S

j
jυ , 

subject to ( )( ) iS

k

j
j

T
j νυω =+ +

=
∑ 1

1
μc , 

 ( )( ) i

k

j
j

T
j cυμA ~ˆ

1
=+∑

=

ω , 

 0μ ≥ , 
and 

 0υ ≥ , 
where 

 ( )( )∑
=

=
k

j

i
j

T
ji

1
μc ων , 

 bQxc −−= ii
~ , 

 [ ]i
k

ii μμμμ ,,, 21 L= , 

 [ ]TSυυυ ,,,ˆ 21 L=υ  
and 

 [ ]TS
T

1,ˆ += υυυ . 
In problem 

iLP , which is the phase one of a linear program, 

jυ  for 1,,2,1 += Sj L  are known as artificial variables in the 

simplex theory of linear programming. Using the simplex 
method, we obtain a basic feasible solution ( )ii υμ ,  where 

iυ  
is a zero vector and 

iμ  contains no more than 1+S  nonzero 

vectors in mℜ . Let [ ]i
k

ii
i μμμμ ,,, 21 L=  and define 

{ }0μ ≠≤≤= i
jji kjE ,1:ω . We form a new tuple 

iμ̂  consisting 

of those column vectors i
jμ  in iμ  whose corresponding 

indices 
jω  are in 

iE . Then, it is easy to see that ( )ii μx ˆ,  is a 

solution to problem ( )iEPDP .  
This lemma is important for the convergence of the 

algorithm. 
Lemma 6 

Let { } Δ⊂== kjZ j ,,2,1: Lω  be any finite subset of index 

points. Then problem ( )ZPDP  is the Dorn’s dual form of the 
following program: 
Problem ( ( )ZP ) 

x
min  ( ) pJ TT ++= xbxQxx

2
1 , 

subject to ( ) ( ) 0cxA ≤− jj ωω , for kj ,,2,1 L= . 

A vector Sℜ∈x̂  is the solution of problem ( )ZP  if and only if 
there exists some [ ]kμμμμ ˆ,,ˆ,ˆˆ 21 L=   such that ( )μx ˆ,ˆ  is a 
solution of problem ( )ZPDP . Furthermore, 

( )( ) ( )( )ZVZV PDPP −= , where ( )DV  denotes the optimal 
value of a given problem D. 
Proof 

This lemma is easy to check and we omit the details.  
This lemma states the necessary and sufficient relationship 

between solutions of problem ( )ZP  and problem ( )ZPDP . 
Hence, we can use Algorithm 1 to solve the problem ( )iZPDP  
instead. This result is required for Theorem 1 and is stated 
below. 
Theorem 1 

If (2) is satisfied, then the sequence { }ix  obtained from 
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Algorithm 1 converges to the solution of problem P. 
Therefore, assuming that problem 

kPDP  has only a finite 
number of local minima for each k , if ε  and N  are suitably 
chosen, then ∗x  obtained in Step 6 is the optimal solution of 
problem P. 
Proof 

The proof is shown in Appendix I.  
The importance of Theorem 1 is that we can guarantee the 

convergence of Algorithm 1 to the solution of problem P. 
Since the dimension of the quadratic programming does not 
exceed ( )2++ SmS  with S  linear equality constraints, 
Algorithm 1 can be used to solve semi-infinite programming 
problems efficiently.

 
IV. NUMERICAL EXPERIMENTS 

We have performed extensive numerical experiments, 
including the cases with the sets of decimation integers 
{ }4,4,2 , { }6,6,6,2  and { }6,6,3,3 . We obtain excellent results for 
all these examples. For brevity and to focus on ideas, we only 
present the case with the set of decimation integers { }4,4,2 . 

Since this set of decimation integers corresponds to a 
cascade of uniform filter banks in a tree structure manner, an 
exact perfect reconstruction is possible if the filter lengths are 
long enough. Hence, there should exist a solution such that the 
specifications on aliasing and amplitude distortions are strictly 
satisfied. That means the Slater’s constraint qualification 
holds and our proposed algorithm will converge to the global 
minimum. Although the existence of a solution or the 
satisfaction of Slater’s constraint is not guaranteed if the filter 
lengths are short, the possibility of this set of decimation 
integer getting a solution is higher than the others. 

Although perfect reconstruction is easy to achieve if the set 
of decimation integers is {2,4,4} even at short filter lengths, it 
is not guarantee that the passband and stopband specifications 
are satisfied. For real applications, subband processing, such 
as quantization, is applied. This subband processing is based 
on the frequency selectivity of the filters. If the frequency 
selectivity of these filters is bad, then the subband processing 
may process undesirable frequency bands. As a result, the 
performance of the overall systems may be bad even though 
perfect reconstruction is achieved without subband 
processing. Hence, we sometimes tradeoff the perfect 
reconstruction conditions with good frequency selectivity 
filters. 

In order to guarantee that the overall system can achieve 
near perfect reconstruction with the performance better than 
that reported in [29], in which the amplitude distortion can be 
bounded by dB40− , the aliasing distortion can be bounded by 

dB60−  and the stopband ripple magnitude is bounded by 
dB60−  with 64  tap filters, we set the specifications on both 

the real and imaginary parts of amplitude distortions as 
dB40− , and that of the aliasing distortions as well as the 

specification on the stopband ripple magnitude as dB60− . 
For this set of decimation integers, the passbands and the 

stopbands of the filters in the analysis bank are denoted as, 
respectively, p

iB  and s
iB  for 2,1,0=i , and defined as follows: 

⎟
⎠
⎞

⎜
⎝
⎛ ∂−∂+−= 000 2

,
2

BBB p ππ , (3a) 

⎟
⎠
⎞

⎜
⎝
⎛ ∂−−∂+−⎟

⎠
⎞

⎜
⎝
⎛ ∂−∂+= 11111 2

,
4

3
4

3,
2

BBBBB p ππππ
U , (3b) 

⎟
⎠
⎞

⎜
⎝
⎛ ∂−−−⎟

⎠
⎞

⎜
⎝
⎛ ∂+= 222 4

3,,
4

3 BBB p ππππ
U , (3c) 

⎟
⎠
⎞

⎜
⎝
⎛ ∂−−−⎟

⎠
⎞

⎜
⎝
⎛ ∂+= 000 2

,,
2

BBBs ππππ
U , (3d) 

⎟
⎠
⎞

⎜
⎝
⎛ ∂+⎟

⎠
⎞

⎜
⎝
⎛ ∂−∂+−⎟

⎠
⎞

⎜
⎝
⎛ ∂−−−= ππππππ ,

4
3

2
,

24
3, 11111 BBBBBs UU (3e) 

and 

⎟
⎠
⎞

⎜
⎝
⎛ ∂−∂+−= 222 4

3,
4

3 BBBs ππ , (3f) 

where 
0B∂ , 1B∂  and 2B∂  are the transition bandwidths of the 

lowpass filter, bandpass filter and highpass filter, respectively, 
and selected as 0.256360 =∂B , 0.32141 =∂B  and 

0.320992 =∂B . 
In the improved dual parameterization algorithm, we 

choose 001.0=ε , 10=N  and 
iΔ  for L,2,1=i  as the set of 

discrete frequencies sampled from π−  to π  with step size 
01.0 . The initial values of x  and y  of our algorithm are 

selected as the filters designed using the Matlab function 
“fir1”. In fact, any initial condition would give the same 
globally optimal solution as discussed before. 

For the same set of filter lengths employed in [29], our 
design can achieve the passband ripple magnitudes bounded 
by 150.9365dB

0
−=pδ , 69.1622dB

1
−=pδ  and 

98.8590dB
2

−=pδ , while the stopband ripple magnitudes 

bounded by 72.4579dB
0

−=sδ , 66.1358dB
1

−=sδ  and 

74.1299dB
2

−=sδ . Both the real part and imaginary part of the 

amplitude distortions is less than 63.1403dB− , and both the 
real part and imaginary part of the aliasing distortions is less 
than 66.6287dB− . It can be checked that our proposed 
algorithm meet all the required specifications. Figure 1 shows 
the responses of the analysis filters and Figure 2 shows the 
corresponding amplitude and aliasing distortions. Compared 
to the result obtained in [29], we have about 0dB2  and dB4  
improvements on respectively, the amplitude and aliasing 
distortions, as well as dB126 −  improvements on the stopband 
ripple magnitudes of the filters. The main reasons for the 
improvements are because the filters obtained in [29] is based 
on the sum of filter responses of filters in the corresponding 
uniform cosine-modulated filter banks, which is not a globally 
optimal solution in general. 

To compare our results with that of perfect reconstruction 
filter banks, we implement the perfect reconstruction filter 
banks as a tree structure. There are many filters that the filter 
lengths of the equivalent filters in the corresponding 
nonuniform filter banks are less than or equal to 64 . For 
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example, we can use a set of filters with filter length 32  in the 
first branch of the tree structure and 16  in the second branch, 
or 24  in the first branch and 20  in the second branch, etc. In 
order to make the roll-off of the frequency response of each 
filter similar, the filter length of the filters in the first branch 
should be approximately equal to that in the second branch. 
Hence, we use 24 tap and 20 tap filters in, respectively, the 
first branch and second branch. Due to finite bit 
implementation, the magnitude and aliasing distortions are 
non-zero and found as, respectively, 285.8366dB−  and 

279.8754dB− . The passband ripple magnitudes are found as 
31.9776dB

0
−=pδ , 40.0002dB

1
−=pδ  and 66.3320dB

2
−=pδ , 

while the stopband ripple magnitudes are as 
13.0335dB

0
−=sδ , 17.2047dB

1
−=sδ  and 30.2599dB

2
−=sδ . 

This set of filters is far from the required specifications. 
Compared to our results, we have very significant 
improvements on both the passband and stopband ripple 
magnitudes. The main reasons for the improvements are 
because the filter lengths are too short to satisfy the passband 
and stopband specifications under the perfect reconstruction 
condition. So if we relax the perfect reconstruction 
requirement, better passband and stopband performances can 
be achieved. 

For this example, we see that our algorithm has found a 
solution satisfying the required constraint specifications. For 
other nonuniform filter banks with other specifications, in 
general, there is no guarantee that a solution exists such that 
the required specifications are satisfied. If there is no solution 
for a particular set of filter lengths, one may increase the filter 
lengths incrementally, run the numerical experiments again 
and check if the required specifications are satisfied. If there is 
no solution, one may need to relax the specifications. 

To compare the computational complexity to the 
conventional dual parameterization approach [27], we find 
that both approaches require three iterations for the 
convergence. However, the conventional approach requires to 
solve a standard quadratic program of dimension 23472  at the 
last iteration, while the improved dual parameterization 
method only requires to solve a standard quadratic program of 
dimension 6102  at the last iteration. The reduction of the 
dimensionality of the problem results to the reduction of 
simulation time not in a linear manner, but in an exponential 
manner. To understand this point, let’s consider the following 
example. If there are 10 points to search in a one-dimensional 
problem, then there are 100 points to search in the 
corresponding two-dimensional problem. Hence, the 
computational time reduces exponentially with respect to the 
dimensional of the problem. As a result, the computational 
complexity of the improved dual parameterization reduces 
much compared to that of the conventional dual 
parameterization method. It is found that the simulation time 
for the improved dual parameterization method is about 5 
minutes, while that of the conventional dual parameterization 
method using the same initial condition and parameters ε , N  

and 
0Δ  is about 17 days. All these experiments are running 

using a PC with Pentium 1.2GHz CPU and 256M bytes 
DDRAM. Hence, the design time for the improved dual 
parameterization is greatly reduced by 99.9796%, even though 
the dimensional of the problem is just reduced by 74.0031%. 

V. CONCLUSION 
The main contribution of this paper is to propose a fast 

implementation algorithm for solving semi-infinite 
programming problems and applied to the optimum 
nonuniform symmetric/anti-symmetric linear phase FIR filter 
bank design problems subject to various practical 
specifications in the frequency domain. In the improved dual 
parameterization method, no more than 2+S  index points are 
chosen in each iteration of the standard quadratic program to 
form the parameterized dual problem, where S  is the 
dimension of the primal problem. As a result, it is only 
required to solve a standard quadratic program of dimension 
not exceeding ( )2++ SmS  with S  linear equality constraints, 
where m  is the number of inequality constraints of the primal 
problem. Furthermore, at the final local search procedure, we 
only need to find a local solution of a nonlinear programming 
problem of dimension no more than ( )( )21 +++ SmS . Hence, 
the improved technique can significantly reduce the 
computational complexity. The numerical experiments 
obtained shows a significant improvement in terms of the 
passband and stopband specifications, as well as the amplitude 
and aliasing distortions, compared to other methods reported 
in existing literature. 

APPENDIX I 
Proof of Theorem I. 
According to Lemma 6, we can see that ix  is the solution 

of the problem ( )iZP . According to Lemma 5, we see that 
Step 5 is numerically feasible. Hence, according to Step 5, ix  
is the solution of problem ( )iEP . On the other hand, 1+ix  is the 
solution of problem ( )1+iZP  of which the constraint index set 

1+iZ  contains 
iE  as a subset. Thus, it is easy to see that 

)()( 1+≤ ii JJ xx , for L,2,1=i . (4) 
The existence of a Slater point 

0x  for problem P shows that 
the sequence { })( iJ x  is bounded from above by )( 0xJ . Thus, 
there exists some constant ∗J  such that 

∗→ JJ i )(x , as +∞→i . (5) 
The strict convexity of the quadratic cost )(xJ  and the 
boundedness of { })( iJ x  guarantee that the sequence { }ix  is 
bounded. Let { }

ki
x  be any chosen convergent subsequence of 

{ }ix  such that 
xx →

ki
, as +∞→k , (6) 

for some Sℜ∈x . We now show that x  is a feasible point of 
problem P. In fact, if x  is not a feasible point of problem P, 
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then there exists Δ∈0ω  such that ( ) 0, 0max >ωg x . Let 

( ) δ=0max ,
2
1 ωg x . (7) 

Since ( )ωg ,max x  is continuous, we see that there exists 0>β  
such that 

( ) ( ) δ<− 0maxmax ,, ωgωg xx , for β<− xx  and β<− 0ωω . (8) 

As a result, we have 
( ) δ≥ωg ,max x , for β<− xx  and β<− 0ωω . (9) 

From (2) and (6), there exists an integer K  such that for 
Kk ≥ , 

ki
Δ  and kix  satisfy 

2
minmax βϖ

ϖ
<−

Δ∈Δ∈
ω

kiω
 and 

2
β

<− xx ki . (10) 

Especially, there exists 
kk iiω Δ∈  such that 

ki
ω  and kix  satisfy 

20
β

<−ωω
ki

 and 
2
β

<− xx ki  for Kk ≥ . (11) 

Thus, 
( ) δ≥

k

k
i

i ωg ,max x , for Kk ≥ . (12) 

It is clear from (12) and the definition of 
1+ki

Z  that 
ki

ω  is in 

1+ki
Z  and hence 

( ) 0,1
max ≤+

k

k
i

i ωg x , for Kk ≥ . (13) 

Again, from the definitions of 
1+ki

Z  and 
ki

E , we see that kix  

and 1+kix  are, respectively, the solution and a feasible point of 
problem ( )

ki
EP . Hence, from the fact that the feasible set of 

problem ( )
ki

EP  is convex and its objective function is strictly 

convex, )(xJ  is strictly monotone along the segment 
connecting kix  and 1+kix . Particularly, we have: 

)(
2

)( 1
1

+
+

<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
< k

kk
k i

ii
i JJJ xxxx . (14) 

Since { }
ki

ω  is contained in the compact set Δ , it has a 

converging subsequence. Without loss of generality, we 
suppose { }

ki
ω  itself converge to Δ∈′ω . At the same time, we 

can further suppose that { }1+kix  converges to some limit x̂ . 
Taking limit ( +∞→k ) in (13) and (14), we obtain 

( ) 0,ˆmax ≤′ωg x  (15) 
and 

)ˆ(
2

ˆ
)( xxxx JJJ ≤⎟

⎠
⎞

⎜
⎝
⎛ +

≤ . (16) 

From (15), it allows that 
( ) ( ) ( ) ( ) δ2,ˆ,,,ˆ max0max0maxmax ≥′−≥−′ ωgωgωgωg xxxx . (17) 

According to (11), we have 
2
β

≤−′ ωω . Hence, (8) shows 

that 
β≥− xx̂ . (18) 

From (5), we have 
)ˆ()( xx JJ = . (19) 

Now we see that (16), (18), and (19) contradict the fact that 
)(xJ  is strictly convex. Therefore, x  is feasible to problem P. 

Next we show that the whole sequence { }ix  converges to 
the solution ∗x  of problem P. Suppose { }ix  does not 
converge. Then there are two sequences { }kix  and { }kjx  
converging to x′  and x ′′ , respectively, where xx ′′≠′ . From 
the above, we can see that both x′  and x ′′  are feasible to 
problem P. Then point 

2
xx ′′+′  is feasible to problem P and 

hence feasible to problem ( )
ki

ZP  for all 1≥k . Therefore, 

( ) ( ) ∗=
′′+′

<⎟
⎠
⎞

⎜
⎝
⎛ ′′+′ JJJJ

22
xxxx . (20) 

Since ∗→ JJ ki )(x  as +∞→k , we have 

( )kiJJ xxx
<⎟

⎠
⎞

⎜
⎝
⎛ ′′+′

2
, (21) 

for sufficiently large k . This contradicts to the fact that kix  is 
the solution to problem ( )

ki
ZP . Therefore, { }ix  converges to 

∗x . It is clear that ∗x  is the solution of problem P. 
Finally, if ε  is sufficiently small and if N  is sufficiently 

large, then the approximation solution ix  found at the 
termination of the iteration in Step 5 will be so close to the 
primal solution that the objective value of problem 

kPDP  at 

( )iii τμx ,,  is smaller than the second smallest local minimum 
value of problem 

kPDP . Therefore, the final local search 
procedure will find the global solution. And this completes the 
proof.  
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Figure 1: Magnitude responses of the analysis filters. 

 
Figure 2: Amplitude and aliasing distortions. 


