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Abstract

In the last few decades, the localisation problems have been studied extensively. There are

still some open issues that remain unresolved. One of the key issues is the efficiency and

preciseness of the localisation in presence of non-line-of-sight (NLoS) path. Nevertheless,

the NLoS path has a high occurrence in multipath environments, but NLoS bias is viewed

as a main factor to severely degrade the localisation performance. The NLoS bias would

often result in extra propagation delay, and angular bias. Numerous localisation methods

have been proposed to deal with NLoS bias in various propagation environments, but

they are tailored to some specific scenarios due to different prior knowledge requirements,

accuracies, computational complexities, and assumptions.

To super-resolve the location of mobile device (MD) without prior knowledge, we address

the localisation problem by super-resolution technique due to its favourable features, such

as working on continuous parameter space, reducing computational cost and good exten-

sibility. Besides the NLoS bias, we consider an extra array directional error which implies

the deviation in the orientation of the array placement. The proposed method is able to

estimate the locations of MDs and self-calibrate the array directional errors simultane-

ously. To achieve joint localisation, we directly map MD locations and array directional

error to received signals. Then the group sparsity based optimisation is proposed to ex-

ploit the geometric consistency that received paths are originating from common MDs.

Note that the super-resolution framework cannot be directly applied to our localisation

problems. Because the proposed objective function cannot be efficiently solved by semi-

definite programming.

Typical strategies focus on reducing adverse effect due to the NLoS bias by separating

line-of-sight (LoS)/NLoS path or mitigating NLoS effect. The LoS path is well studied

for localisation and multiple methods have been proposed in the literature. However, the

number of LoS paths are typically limited and the effect of NLoS bias may not always be

reduced completely. As a long-standing issue, the suitable solution of using NLoS path
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is still an open topic for research. Instead of dealing with NLoS bias, we present a novel

localisation method that exploits both LoS and NLoS paths in the same manner. The

unique feature is avoiding hard decisions on separating LoS and NLoS paths and hence

relevant possible error. A grid-free sparse inverse problem is formulated for localisation

which avoids error propagation between multiple stages, handles multipath in a unified

way, and guarantees a global convergence. Extensive localisation experiments on different

propagation environments and localisation systems are presented to illustrate the high

performance of the proposed algorithm compared with theoretical analysis. In one of the

case studies, single antenna access points (APs) can locate a single antenna MD even

when all paths between them are NLoS, which according to the authors knowledge is the

first time in the literature.
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Notations

R the set of real numbers

C the set of complex numbers

∇◦C(·) the partial derivative of the cost function C(·) w.r.t. ◦

Re the real part of a complex number

Im the imaginary part of a complex number

x∗ the conjugate of x

xT,XT the transpose of vector x, matrix X

xH,XH the conjugate transpose of vector x, matrix X

X[q, w] the [q,w]-th entry of matrix X

x[n] the [n]-th entry of vector x

sign(· · · ) the sign of a non-zero complex number, defined by

∀z ∈ C∗, sign(z) =
z

|z|

bxc the largest integer less than real number x

� the Hadamard product(
a

b

)
=

a!

b!(a− b)!
the combination is the choice of b things from a set

of a things without replacement and where order

does not matter
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Chapter 1

Localisation in Multipath

Environments: Methods and

Challenges

1.1 Introduction

Localisation has found many commercial, civilian, and military applications including

robotics, mixed reality and emergency systems. There is a wide variety of localisation

techniques, which makes localisation a lucrative research field. There is an urgent need

to address the precise localisation problems caused by location-based service (LBS). The

LBS is a suite of services that includes features such as indoor location, local search and

information, asset tracking, and others offered via software, which helps users to access

location-specific data, and other online services [1, 7]. For localisation in an outdoor

environment, a Global Positioning System (GPS) is an ideal method. However, the signal

from GPS is unreliable in the interior space. Since the satellite signal is seriously degraded

and the localisation accuracy cannot meet people’s performance requirements of indoor

localisation [8, 9]. The indoor location technology facilitates the navigation and tracking

1
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of targets and people in a building using sensory information captured by mobile devices.

It has received a high amount of attention in the last decades. Therefore, we urgently

need localisation methods that can perform well in various environments.

Some of the major factors driving the growth of the LBS market include high penetration

of smart devices such as sensors, Internet of Things and others. The LBS industry is

becoming more popular due to its numerous benefits. The global indoor LBS market

size accounted for 7.0 billion dollars in 2021, and is expected to reach 19.7 billion dollars

in 2026, with the projected Compound Annual Growth Rate (CAGR) of 22.9 % during

the forecast period. The global LBS market size to grow from 36.35 billion dollars in

2020 to 318.64 billion dollars by 2030, at a CAGR of 24.3 % during the forecast period.

The growing demand for location technology to support robotic process and lean automa-

tion, and the rising focus on Industry 4.0 smart cities and smart manufacturing, and the

growing need for contact-tracing solutions due to the COVID-19 pandemic would provide

opportunities for the growth of organizations in the market.

1.1.1 Multipath Environments

In the last few decades, the localisation problems have been studied extensively. There are

still some open issues that remain unresolved. One of the key issues is the efficiency and

preciseness of the localisation in presence of non-line-of-sight (NLoS) path. The multipath

happens when the signal takes two or more paths from the mobile device (MD) to the

access points (APs). As shown in Fig 1.1, a MD spreads a radio signal that directly

arriving at the AP is referred as line-of-sight (LoS) path. The other parts of transmitted

signal may encounter reflecting surfaces, and the signal will scatter off theses objects

which is referred as NLoS path. The scattering can occur from the buildings, cars and

airplanes which result in extra NLoS bias at APs. In modern wireless system, the NLoS

path is commonly encountered in both indoor e.g. residential, office, etc. and outdoor

e.g. urban area, shopping plaza, etc. In these scenarios, the LoS path between MD and
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Figure 1.1: Example of multipath, a signal might bounce off several different scatters before it
arrives at an AP.

AP AP AP

MD

(a)

AP AP AP

MD Scatter

Wall

(b)

MD

AP AP AP

Scatter

(c)

Figure 1.2: Three propagation environments: (a) LoS environment is defined as the case where
only LoS paths present; (b) OLoS environment is defined as the case where all LoS paths are
blocked and only signals reflected by scatters can be received; (c) In NLoS environment both
LoS paths and scattered paths are present.

AP might be blocked or not. Moreover, the exact propagation environment is unknown

to estimator which makes localisation problem become more difficulty to handle.

In practice, the localisation methods are tailored to some specific scenarios due to some

special assumptions or the need of a priori knowledge [1–4, 10–15]. Based on type of

received path, multipath environments can be divided into three categories [3] 1) the LoS

environment where all propagation paths are LoS; 2) the obstructed-line-of-sight (OLoS)

environment where all paths are NLoS; and 3) the NLoS environment where both LoS

and NLoS paths are present. See Fig 1.2 for details of LoS, OLoS and NLoS environments.
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In the literature, LoS paths and NLoS paths are processed by different manners. Since

the theoretical study of Cramér-Rao bound (CRB) [16, 17] shows that the performance

of localisation only depends on the LoS paths. Without prior knowledge, the NLoS bias

carry no information for localisation, and it is assumed to be unknown and arbitrary. In

order to achieve better localisation performance, this conclusion suggests to reduce adverse

effect of NLoS path and only exploit LoS paths for localisation. Typical environments

including residential, office, and urban area have a high occurrence of NLoS paths. In

such environments, the number of LoS paths may not always be sufficient for localisation,

which degrades the performance of these localisation methods [10–15,18–20]. On the other

hand, the use of the GPS might be impractical. Therefore, it is critical to understand the

impact of NLoS paths on localisation systems and to develop methods that exploit them

for localisation.

The LoS path is well studied for localisation and a variety of methods have been proposed

in the literature [10–15,18–22]. In general, typical localisation methods involve two steps

for highly accurate location awareness applications. Firstly, intermedia parameters are es-

timated such as time-of-flight (ToF), time-difference-of-flight (TDoF), direction-of-arrival

(DoA), direction-of-departure (DoD), and received-signal-strength (RSS) techniques. Sec-

ondly, the localisation algorithms are used for estimating location of an unknown MD from

known APs.

� The ToF based methods are developed based on trilateration algorithm [10, 12–15,

18–21]. The propagation distance is firstly computed based on measurements. Then

location of MD is reconstructed by finding intersection of circles. The circles are

centered at more than three APs (in 2-dimensional space), and the radii are equal

to corresponding propagation distances.

� For the TDoF based methods [11,22], the difference between ToFs in several APs are

used to estimate a MD’s position. This could either be based on the difference in the

times at which a single signal originating from a MD arrives at three or more APs,
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or based on the difference in the times at which multiple signals originating from

a MD arrive at another AP. This algorithm requires highly precise synchronisation

of the APs, but not precise synchronisation between MD and APs. TDoF based

methods are more commonly used in wireless sensor networks.

� For the RSS based methods [23,24], the propagation distance is measured based on

the attenuation model. The advantage is that the methods can be applied to most

localisation systems with low cost. However, the distance estimation is sensitive to

noise and interference. The MD mobility and unpredictable variation in channel be-

haviour may cause large bias in distance evaluation. As a coarse estimation method,

the RSS technique is not applicable to super-resolved localisation, its application is

limited to some special scenarios.

� For the DoA based methods [25], the angles of LoS paths are used for estimating

location of MD. The major disadvantage of this technique is high requirement on

angular resolution i.e., adoption of antenna arrays and a minimum distance between

the antenna elements which results additional costs and larger antenna sizes. Fur-

thermore, the performance of this technique is highly sensitive to directional errors

i.e., deviation of orientation in array placement and NLoS bias.

The NLoS paths are viewed as a main factor to severely degrade the performance of

conventional localisation methods. The adverse effect of NLoS path is referred as NLoS

bias which is caused by scattering on obstacles or scatters.

� In angular localisation methods (e.g., DoA based method), the NLoS bias results in

extra directional error in angular measurements, making the estimated DoA larger

or less than the true value. In Chapter 3, we propose a super-resolved localisation

for estimating location of MD and self-calibrating the array directional errors si-

multaneously. In our formulation, a group sparsity based optimisation is proposed

to exploit the geometric consistency that received LoS paths are originating from
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MDs. Therefore, the proposed method also can be used for reducing effect of NLoS

bias by discarding all NLoS paths.

� In range measurement based methods (i.e., ToF, TDoF and RSS based methods),

the NLoS bias result in longer propagation distance than the actual direct length.

The location of MD may not be estimated uniquely. In Chapter 4, we propose a

multipath-exploited and grid free (MuG) method to exploit both LoS and NLoS

path for localisation, without dealing with NLoS bias.

1.2 Popular Localisation Methods

In this section, we provide a brief overview on ToF, DoA and DoD based localisation

methods. For other techniques such as RSS and fingerprint-based methods, interested

readers are referred to [23,24,26] and the references therein.

We focus on the following localisation problem by adopting a commonly assumed setup

in the literature [1–4, 10–12, 14, 15, 27–31]. Consider wireless communication systems as

shown in Fig 1.2 where J cooperative APs jointly estimate the location of a MD. The

location of j-th AP is known and it is denoted by APj = [AP x
j , AP

y
j ]T, where T denotes

the transpose of a matrix. The unknown location of MD is denoted by m = [mx,my]T.

For the sake of simplicity, this thesis will provide analysis for 2-dimensional localisation,

since the extension to higher dimensions can be easily obtained. It is typically assumed

that via control signalling, the MD and the involved APs are synchronised [1, 28] and

the transmitted waveform from the MD is known to APs. In the signal model, we only

consider either LoS or NLoS with single-bounced signals from the MD to the APs. This is

motivated by the fact that signals scattered twice or more times typically suffer from great

propagation losses and are thus less perceptible [4, 5]. It is noteworthy that the above

setup is a simplification of actual systems. For example, the assumption of synchronisation

and the complete discard of multiple-bounced signals may be problematic in practice.
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Nevertheless, the above setup is widely adopted in the literature [1–4, 10–12, 14, 15, 27–

31] for the purpose of highlighting the approach/idea without being drowned into great

technical details.

In the literature, the common signal model of multipath is to treat the effect of reflection

on range measurements as a positive stochastic NLoS bias [12]. The range measurement

dj at the j-th AP is extracted from the ToF τj between MD m = [mx,my]T and the j-th

AP APj = [AP x, AP y]T

dj = cτj (1.1)

= fj(m) + bj + vj (1.2)

= (‖m−APj‖2 + bj + vj) , (1.3)

where fj(m) = ‖m−APj‖2 is the true direct propagation distance between MD and the

j-th AP; c is the speed of light; bj is a positive NLoS bias introduced due to scattering

on obstacles or scatters; more precisely,

bj


= 0,

> 0,

if the path is LoS,

if the path is NLoS,

(1.4)

In the literature, there are different ways to model the NLoS bias bj, e.g. Gaussian

distributed [32, 33], constant along a time window [10], exponentially distributed [34–36]

, uniformly distributed [18] , or based on an empirical model from measurements [37,38];

vj ∼ N (0, σ2) is the additive white Gaussian noise(AWGN) with variance σ2.

The NLoS bias b and measurement noise v are two dominant factors of existing localising

methods. As shown in Fig 1.3, the basic idea of range measurement based methods is the

trilateration algorithm which requires at least three LoS paths in three participating APs

(in 2-dimensional space). Each range measurement generates a circle which is centered

at the measuring AP. The corresponding radius equal to the distance from MD to the



8 Chapter 1. Localisation in Multipath Environments: Methods and Challenges

APEstimated MD APEstimated MD

Figure 1.3: Trilateration algorithm in 2-dimensional space. (a) In case of LoS paths, the
estimated MD is located at intersection point of three circles; (b) When the LoS paths are
interfered by NLoS bias b or measurement noise v, the estimated MDs are located at intersection
area of three circles.

measuring AP. As shown in Fig 1.3(a), in the absence of any range measurement error, the

intersection of these three circles unambiguously determines the location of MD. However,

when the range measurements i.e., radii of circles are increased by NLoS bias b or noise

v, then the intersection area contains infinite many estimations. This adverse effect is

detailed by geometrical demonstration in Fig 1.3(b). Therefore, NLoS bias b and noise

v results in unreliable estimation and significantly decreases the localising accuracy if its

effects are not taken into account.

1.2.1 LoS Environment

In a LoS environment, the common strategy is incorporating range measurements to

determine the location of MD. Two steps are required for localising MD. The first step

is obtaining measured propagation distances {dj}Jj=1, J > 3. Considering existing of

measurement error v in the measured ranges d, the trilateration algorithm can only provide

a uncertain region of possible estimations, rather than single estimation. In the second

step, a variety of methods have been developed for solving this problem, including least

square (LS) methods [20,39,40] and iterative statistical positioning algorithms [10,41,42].
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1.2.1.1 LoS Environment: Least Square (LS) Method

The LS method solves the localisation problem by formulating a set of non-linear equations

[20,39,40]. In the absence of NLoS bias (i.e. b = 0 for multipath), the MD can be estimated

as follows,

min
m∈R2

∑
j∈L

(dj − ‖m−APj‖2)2 , (1.5)

where the set L := {j | j-th path is LoS} consists of LoS paths.

For the sake of simplicity, we will provide an analysis for 2-dimensional localisation and

an extension to higher dimensions can be easily obtained. Let m = [mx,my]T be the

unknown MDs x- and y-coordinates and let APj = [AP x
j , AP

y
j ]T denote the coordinates

of the known j-th AP, where j ∈ {1, . . . , J}.

In order to obtain a LS solution, the nonlinear equation fj(m) = ‖m−APj‖2 is firstly

linearised. Linearising f(m) can be achieved by the first-order Taylor series expansion

around reference point m0 and keeping the first two terms [43], i.e.,

fj(m) ≈ fj (m0) + hj (m0) · (m−m0) , (1.6)

where the Jacobian vector hj (m) around m = m0 is given by

hj (m0) =

[
∂fj
∂mx

∂fj
∂my

]
m=m0

. (1.7)

The matrix form of range measurements in (1.3) can be approximated as follows:

d ≈ F (m0) +H (m0) · (m−m0) + v, (1.8)

where d = [d1, · · · , dJ ]T is a vector form of range measurements at J APs. The matrix

F (m0) consists of a set nonlinear equations given by
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F (m0) =


f1(m0)

...

fJ(m0)

 =


‖m0 −AP1‖2

...

‖m0 −APJ‖2

 (1.9)

=


√

(mx
0 − AP x

1 )2 + (my
0 − AP

y
1 )2

...√
(mx

0 − AP x
J )2 + (my

0 − AP
y
J )2

 . (1.10)

The Jacobian matrix H (m) around m = m0 is given by

H (m0) =


h1

...

hJ


m=m0

=


∂f1
∂mx

∂f1
∂my

...
...

∂fJ
∂mx

∂fJ
∂my


m=m0

(1.11)

=


mx−APx1√

(mx−APx1 )
2
+(my−AP y1 )

2

my−AP y1√
(mx−APx1 )

2
+(my−AP y1 )

2

...
...

mx−APxJ√
(mx−APxJ )

2
+(my−AP yJ )

2

my−APxJ√
(mx−APxJ )

2
+(my−AP yJ )

2


m=m0

. (1.12)

The location of MD is estimated by minimizing the cost function given by

E[m̂] = [d− F (m0)−H (m0) · (m̂−m0)]
T[d− F (m0)−H (m0) · (m̂−m0)],

(1.13)

The linearised LS solver is then given by

m̂ = m0 +
(
HT (m0)H (m0)

)−1
HT (m0) [d− F (m0)] . (1.14)

This LS solver may introduce errors when the first-order Taylor series expansion does not

accurately approximate the nonlinear function f(m). In order to improve performance of
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LS solution (1.14), a proper initial estimation of the unknown parameters is required, i.e.,

the reference point m0 should be chosen sufficiently close to the true MD location. With

a random initial estimation of the unknown parameters, the LS solution may converge to

a local optimal solution, instead of a global optimal solution.

To obtain a more accurate estimation, an iterative strategy is applied to LS solver (1.14).

At the (i+ 1)-th iteration, the estimation at the i-th iteration is substituted into (1.8) to

re-linearise the system around it, then iterate each successive estimate being closer to the

optimal estimation [44],

m̂i+1 = m̂i +
(
HT (m̂i)H (m̂i)

)−1
HT (m̂i) [d− F (m̂i)] . (1.15)

The iteration can be terminated by some criterion. For example, the algorithm can be

stopped after a maximum number of iterations has been performed. Alternatively, given

a small threshold ε, the iterative algorithm must stop if |E (m̂i+1)− E (m̂i)| < ε.

1.2.1.2 LoS Environment: Maximum Likelihood (ML) Method

The common hypothesis used in statistical method is assuming that the measurement

noise v is a zero mean Gaussian noise [33]. Then the conditional probability density

function (PDF) of range measurements d = [d1, · · · , dJ ]T given estimated m = [mx,my]T

can be expressed as follows [10,41,42]:

P (d |m) =
J∏
j=1

1√
2πσ2

j

exp

{
−(dj − fj(m))2

2σ2
i

}
(1.16)

=
1√

(2π)J det(Q)
exp

{
−B

2

}
, (1.17)

where

B = [d− F (m)]TQ−1[d− F (m)], (1.18)
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and the Q is given by

Q = E
[
vvT

]
= diag

[
σ2
1, σ

2
2, . . . , σ

2
J

]T
. (1.19)

Then the ML solution for m̂ is determined by maximising the PDF P (d |m)

m̂ = arg max
m

P (d |m) (1.20)

Solving (1.20) requires a search over all possible MD locations which is computational

expensive.

1.2.2 NLoS Environment

The mixture of LoS and NLoS path often occurs in an urban or indoor environment.

As introduced in previous section, the performance of localisation methods is effected by

NLoS bias due to obstacles in the direct paths. NLoS bias results in unreliable localisation

and significantly decreases the location accuracy if its effects are not taken into account.

In the view of the CRB, NLoS bias does not contribute useful information for localisation

[16, 17]. Therefore, the optimal strategy is to reduce the adverse effect of NLoS bias as

much as possible, and exploit information carried by LoS paths to infer the location of

MD. Some localisation methods that cope with the existence of NLoS bias have been

proposed in [10–15, 18–20]. In those works, there are two categories to deal with the

localisation problem in the presence of NLoS path:

* LoS/NLoS separation: These methods focus on separating LoS/NLoS paths, and

estimating the location of MD by using LoS paths. Note that the NLoS paths are

either discarded [10–14,18] or used for restricting the feasible region [15,19].

* NLoS mitigation: The second category is typically adopted to mitigate of the adverse

effect NLoS paths by estimating NLoS biases or assigning proper weighted factors
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[20, 36, 45]. Note that most methods assume that NLoS paths have been separated

or statistical information is available.

Remark that the LoS/NLoS separation play a curial role in both two categories.

1.2.2.1 LoS/NLoS separation

In order to reduce adverse effect of NLoS bias, the optimal strategy is to discard NLoS

paths and only use LoS paths for localising MD. The LoS/NLoS separation can be achieved

by statistical approach or geometrical approach.

� Under the statistical methods, the NLoS bias is considered as a random variable

that can be constant [10], a random process of a Gaussian [11, 13, 14], or uniform

distribution [18] with given parameters. In [12,46], the LoS/NLoS path is separated

by comparing the estimated variance of measurement with the prior historical infor-

mation of LoS/NLoS path. To build an accurate statistical model, these methods

require prior information about the distribution of NLoS bias or historical informa-

tion.

� In the geometrical method, the geometric relationship between the MD and AP is

exploited to separate LoS paths based on measured time-of-flight (ToF) or direction-

of-arrival (DoA). In [47], the method exploits the fact that LoS paths typically arrive

with a shorter ToF than NLoS paths. In [15], a compressed sensing (CS) based

framework is proposed for separating LoS path by exploiting the fact that DoAs of

LoS paths must originate from the same MD, but DoAs of NLoS paths is arbitrary.

In some situations, the statistical information of NLoS bias may be obtained a priori

based on surveyed data [10–14,18,46]. As a consequence, the statistical method is widely

adopted to separate LoS paths or NLoS paths from multipath. In [10], the ML detector

is based on historical information which assumes T ToF measurements are available for
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each one of J APs. The common model of the t-th ToF measurement (t = 1, ..., T ) at the

j-th AP is expressed as

τj,t = fj(m)/c+ bj + vj (1.21)

= (‖m−APj‖2) /c+ bj + vj, (1.22)

where the NLoS bias bj is assumed as a constant along the time window [10], and vj is

a zero-mean Gaussian noise independent in time and independent for each AP. In case

of NLoS path at the j-th AP, the conditional PDF over T ToF measurements can be

formulated as follows:

pNLoS
j (τj |m, bj) =

T∏
t=1

1√
2πσj

e
− 1

2

(
τj,t−fj(m)/c−bj

σj

)2

, (1.23)

where τj = [τj,1 . . . τj,T ]T. Similarly, the conditional PDF of LoS path at the j-th AP over

T ToF measurements can be formulated as:

pLoSj (τj |m, bj) =
T∏
t=1

1√
2πσj

e
− 1

2

(
τj,t−fj(m)/c

σj

)2

. (1.24)

The LoS/NLoS path is further separated by different hypothesis based on PDFs in (1.23),

(1.24). The number of hypothesis (Nhyp) depends on the number of APs (J) for local-

isation and the maximum number of APs (HNLoS, forHNLoS 6 J) suffering from NLoS

paths. The number of hypothesis characterised by the subset of APs with NLoS paths

are

Nhyp =

(
J

0

)
+ · · ·+

(
J

HNLoS

)
, (1.25)

where the operator
(
a
b

)
= a!

b!(a−b)! is the choice of b things from a set of a things without

replacement and where order does not matter; HNLoS is the maximum number of APs

suffering the NLoS paths. Note that the computational cost of the algorithm is growing
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with the number of hypothesis Nhyp.

In the l-th hypothesis, the subset of APs with LoS paths can be characterised by SLoS
l ,

and the subset of APs with NLoS paths can be characterised by SNLoS
l . The conditional

PDF associated with JT ToF measurements can be expressed as:

ql

(
τ |m, bSNLoS

l

)
=

∏
j∈SNLoS

l

pNLoS
j (τj |m, bj)

∏
j∈SLoS

l

pLoSj (τj |m) , (1.26)

where τ = [τ T
1 , . . . , τ T

J ]T is the matrix form of JT ToF measurements and bSNLoS
l

denotes

vector form of NLoS bias of the NLoS paths in the l-th hypothesis.

In (1.26), the value of conditional PDF is determined by different subset of unknown

parameters: m, bSNLoS
l

. The first step is maximising the l-th hypothesis PDF with respect

to corresponding unknown parameters:

qML
l (τ ) = max

m,b
SNLoS
l

ql

(
τ |m, bSNLoS

l

)
, (1.27)

where m is location of the MD, and bSNLoS
l

is vector form of NLoS bias in the l-th

hypothesis.

Then LoS/NLoS separation can be achieved by selecting proper hypothesis index l̂:

l̂ = arg max
l
γl · qML

l (τ ), (1.28)

where γl is constant assigned based on prior probability of the hypothesis. Without

knowledge of the probability, the γl is chosen as γl = 1, ∀l.

1.2.2.2 NLoS Mitigation

Discarding NLoS paths may not be a viable option, as the number of available LoS paths

may be limited due to obstacles. To solve this problem, NLoS mitigation methods consider
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another strategy to deal with NLoS bias [36, 45]. The effect of NLoS bias is reduced by

estimating the bias or assigning weights. The performance is depending on how much

prior information is available, and the estimation may be unreliable in presence of NLoS

bias, since the effect can not be reduced completely.

Given different prior statistics information, different NLoS mitigation methods are selected

for localisation [36]. For the ease of demonstration, in this section, the NLoS bias is

assumed exponentially distributed with the parameter bj, therefore, the mean is bj and

variance is b2j , and the measurement noise vj at the j−th AP is Gaussian with zero mean

and variance σ2
j .

Known LoS/NLoS Status and distribution Parameter

As we mentioned in Section 1.2.2, LoS/NLoS separation play an important role in local-

isation. In NLoS environment, the ideal case that the NLoS paths have been separated

from LoS paths and distribution parameters are known. Without loss of generality, given

J APs, the set of APs with LoS paths is denoted by SLoS, the complementary set of

APs are assumed to be suffering from NLoS paths SNLoS. The corresponding conditional

PDF of range measurements d = [d1, · · · , dJ ]T given estimated m̂ = [m̂x, m̂y]T can be

expressed as follows

p(d |m) =
J∏
j=1

1√
2πσ̃j

exp

−
(
d̃j − fj(m)

)2
2σ̃2

j

 (1.29)

where

σ̃j =

 σj, j ∈ SLoS√
σ2
j + b2j , j ∈ SNLoS

(1.30)
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and

d̃j =

 dj, j ∈ SLoS

dj − bj, j ∈ SNLoS
(1.31)

The log likelihood can be obtained by taking logarithm on both sides of (1.29) and ignoring

the irrelevant constants,

Λ(d |m) = −
J∑
j=1

(
d̃i − fj(m)

)2
2σ̃2

i

. (1.32)

The location of MD can be determined by maximising the log likelihood in (1.32). Equiv-

alently, the ML location estimate is obtained by

m̂ = arg max
m

(Λ(d |m)). (1.33)

Known NLoS Status and σj But Unknown Parameter bj

In practical scenarios, some of the parameters might be unknown for the solver. Assum-

ing that LoS or NLoS paths have been separated (known NLoS status) and variance of

measurement noise σ2
j is known, but distribution parameter bj is unknown. With known

NLoS path set SNLoS, the unknown parameter bj can be bounded as

0 ≤ bj ≤ dj, j ∈ SNLoS, (1.34)

where dj is the range measurement at the j-th AP; SNLoS denotes the set of APs with

NLoS paths.

Let b =

[
· · · bj · · ·

]T
, j ∈ SNLoS denote parameter of NLoS bias. Similarly as (1.33),
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the location estimate can be determined by maximising the log likelihood given by

Λ(d |m, b) = −
J∑
j=1

(
d̃j − fj(m)

)2
2σ̃2

i

, (1.35)

w.r.t. m, b. The location of estimated MD m̂ can be determined by

m̂ = arg max
m,b

(Λ (d |m, b)) (1.36)

s.t. 0 ≤ bj ≤ dj, j ∈ SNLoS.

Known NLoS Probability PNLoSj and Distribution Parameters bj

With known NLoS probability PNLoSj and distribution parameters bj, the joint conditional

PDF at the j-th AP can be expressed as

p′j = PNLoSjpbj +
(
1− PNLoSj

)
pj, (1.37)

where PNLoSj is the probability that the j-th AP has a NLoS path; pbj is the Gaussian

density function with mean bj and variance σ̃2
j = σ2

j + b2j ,

pbj =
1√

2πσ̃j
exp

(
−(dj − fj(m)− bj)2

2σ̃2
j

)
; (1.38)

pj is the Gaussian density function with zero mean and variance σ2
j ,

pj =
1√

2πσj
exp

(
−(dj − fj(m))2

2σ2
j

)
. (1.39)

Then, the joint conditional PDF over J APs is given by:

p(d |m) =
J∏
j=1

p′j, (1.40)
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and the log likelihood of the measurements is given by:

Λ(d |m) =
J∑
j=1

ln p′j. (1.41)

Finally, the location of MD is estimated by

m̂ = arg max
m

(Λ (d |m)) . (1.42)

Known NLoS Probability PNLoSj and Variance σ2
j But Unknown Distribution

Parameters bj

A more general case is that both probability of NLoS path PNLoSj and noise variance

σ2
j are known based on historical data. However, LoS paths or NLoS paths have not

been separated, and the distribution parameter of NLoS path bj is unknown. Similar

as (1.34), the distribution parameter bj can be bounded. The location of MD can be

estimated by maximising the log likelihood in (1.42) with respect to unknown location m

and distribution parameter bj:

m̂ = arg max
m,b

Λ (d |m, b) (1.43)

= arg max
m,b

(
J∑
j=1

ln p′j

)
. (1.44)

Without Any Prior Statistical Information

In most practical scenarios, it is very difficult to separate LoS or NLoS paths from mul-

tipath environments since prior statistical information of NLoS bias may be unavailable.

These NLoS paths will severely degrade the accuracy of localisation, since they have large

positive biases which make the measured propagation distances much larger than the

true values. To deal with NLoS bias without any prior information, one of NLoS mitiga-
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tion methods is jointly estimating location of MD and NLoS biases. The corresponding

objective function is formulated as

min
m∈R2,{bj}Jj=1

∑
wj (dj − fj(m)− bj)2 (1.45)

s.t. fj(m) = ‖m−APj‖2,

bj > 0,

where {wj}Jj=1 are the weighting elements for reducing effect of NLoS path and empha-

sizing more reliable LoS paths; Without any prior information, wj can be chosen as one.

In [36], the author proposed a Taylor-series expansion based linear quadratic programming

for the problem (1.45). In order to have LS solution, the function fj(m) = ‖m−APj‖2

is expanded in the first order Taylor series at the initial point m0 which is expressed as:

fj(m) ≈ fj (m0) + hj(m0) · (m−m0) , (1.46)

where the Jacobian vector hj(m) around m = m0 is given by

hj(m0) =

[
∂fj
∂mx

∂fj
∂my

]
m=m0

. (1.47)

The matrix form of range measurements in (1.3) can be approximated as follows:

d ≈ F (m0) +H(m0) · (m−m0) + b+ v, (1.48)

where d = [d1, · · · , dJ ]T is a vector form of range measurements between the MD and

APs; The vector b = [b1, · · · , bJ ]T contains NLoS bias for multipath; The F (m0) contains
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a set of nonlinear equations given by

F (m0) =


f1(m0)

...

fJ(m0)

 =


√

(mx
0 − AP x

1 )2 + (my
0 − AP

y
1 )2

...√
(mx

0 − AP x
J )2 + (my

0 − AP
y
J )2

 ; (1.49)

The Jacobian matrix H(m) around m = m0 is given by

H(m0) =


h1

· · ·

hJ


m=m0

=


∂f1
∂mx

∂f1
∂my

· · · · · ·
∂fJ
∂mx

∂fJ
∂my


m=m0

. (1.50)

Note that the problem (1.45) is a constrained nonlinear underdetermined problem, in

which there might be infinite number of solutions and finding its solution is computa-

tionally difficult. In [36], the unknown parameters are approximately solved by using

one parameter bs to represent all unknown NLoS biases {bj}Jj=1. As explained by author,

variable bs plays the role as a “balancing” parameter to partially reduce the effect of NLoS

biases. Obviously, the localisation performance is degraded by one NLoS constant bs, and

this one NLoS-bias-based method can be used to tackle localisation problem with similar

biases. Then the measurement in (1.48) can be expressed as:

dL = Az + v (1.51)

where dm0 = d− F (m0)−H(m0), and A is written as:

A =


h1 1

...
...

hJ 1

 , (1.52)
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and z is defined as the unknown parameters vector as follows:

z =

[
mT bs

]T
, (1.53)

The location of MD and bias are estimated by minimizing the cost function given by

E[z] = [dm0 −Az]T[dm0 −Az], (1.54)

The linearised LS solution is then given by

ẑ =
(
ATA

)−1
ATdm0 (1.55)

This algorithm introduces errors when the linearised function does not accurately approx-

imate the original nonlinear function. In order to make (1.46) valid, it requires an initial

estimate of the unknown parameters, i.e., the reference point m0 should be chosen suffi-

ciently close to the true location of MD. With a random initial estimate of the unknown

parameters, this algorithm may converge to a local optimal solution, instead of a global

optimal solution. On the other hand, the problem is simplified by replacing {bj}Jj=1 with

one NLoS bias bs which would result in performance degradation.

1.2.3 OLoS Environment

Reducing effect of NLoS bias may not be a viable option, as the prior knowledge may be

limited. In order to exploit NLoS paths for localisation without dealing with NLoS bias,

existing methods are proposed under some special settings. In order to eliminate conse-

quence of different effect of different path and use multipath for localisation, the methods

in [1–4, 48] require extra angle information besides ToF information. These methods fol-

low the common two-step localisation strategy, first the intermediate parameters, such

as ToF, DoA and DoD [1–4], then finding the MD by various localisation methods. In
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Figure 1.4: The basic idea behind [1–5] is interpreted into three steps: (a) the FLS is determined
by ToF τ and DoA θ information which contains infinite scatter estimations; (b) given one
estimated scatter and corresponding DoD α information, one estimated MD can be further
determined; (c) As a result, the FLMD determined by ToF τ , DoA θ and DoD α which is the
straight line between B and C. The exact location can then be determined by intersecting of
more than two FLMDs.

the literature, the location of MD is determined by ML non-linear programming [1], LS

algorithm [2, 4], and combination of ML and LS [3]. Note that [1–4] assume that the

parameters are obtainable at either the MD or the AP, and the parameters associated

with different propagation paths are assumed known. In order to address data association

problem, [5] proposes a novel ML estimator to directly localise MD with prior on the num-

ber of multipath, but the problem cannot be solved efficiently. This comes at the cost of

increased computational complexity, since the many unknown parameters including MD

location, DoD components and DoA components need to be jointly estimated.

The basic idea behind [1–5] is interpreted into three steps. See Fig 1.4 for geometrical

demonstration. As shown in Fig 1.4(a), given measured ToF and DoA, the feasible lo-

cations of the scatter (FLS) can be determined which is along the line between AP and

B. Next step is shown in Fig 1.4(b). For each feasible scatter, the location of MD can

be further determined with assistance of DoD information. The FLS contains infinite

number of scatter estimations which results in the feasible locations of the MD (FLMD)

lie on the piecewise line BC, see Fig 1.4(c) for demonstration. The exact location can

then be determined by intersecting of more than two FLMDs.
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Mathematically, the coordinate of the point B (Bx, By) in Fig 1.4 can be denoted by

Bx = AP x + cτ cos θ (1.56)

By = AP y + cτ sin θ, (1.57)

where θ is DoA of received path, and τ is ToF. Similarly, the coordinate of the point C

(Cx, Cy) can be denoted by

Cx = AP x − cτ cosα (1.58)

Cy = AP y − cτ sinα, (1.59)

where α is the DoD of path. Based on the equations (1.56) - (1.59), the equation of the

FLMD in Fig. 1.4 can be expressed as:

amx + bmy = l, (1.60)

where

a = sin θ + sinα, (1.61)

b = − (cos θ + cosα) (1.62)

l = AP x (sin θ + sinα)− AP y (cos θ + cosα) + cτ (sinα cos θ − cosα sin θ) (1.63)

Given J APs, we use the index j, k denoting parameter at k-th signal path of the j-th

AP. Then the matrix form of equation (1.60) is expressed as:

Am = L, (1.64)
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where

A =


sin θ11 + sinα11 − (cos θ11 + cosα11)

...
...

sin θJK + sinαJK − (cos θJK + cosαJK)

 (1.65)

m =

[
mx my

]T
(1.66)

L =



AP x
1 (sin θ11 + sinα11)− AP y

1 (cos β11 + cosα11)

+cτ11 (sinα11 cos θ11 − cosα11 sin θ11)

...

AP x
J (sin θJK + sinαJK)− AP y

J (cos βJK + cosαJK

+cτJK (sinαJK cos θJK − cosαJK sin θJK)


(1.67)

Considering the additive measurement noise v, the matrix form can be expressed as:

Am+ v = L, (1.68)

In order to estimate location of MD, the objective function can be formulated as

min
m
‖ L−Am‖2 (1.69)

The above approach works when there are more than two paths with measured parameters

for localisation.
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1.3 Challenges in Multipath Environment

The localisation performance of LoS/NLoS separation based methods depends on the

ability to separate LoS/NLoS paths. In case of perfect separation, these methods are

able to provide well estimations that close to theoretical bound. For instance, the LoS

paths based method in [10] can localise MD in meter level. As for NLoS mitigation, the

localisation performance of methods depends on how much prior information is available.

As shown in [36], given less statistical information, the precision of localisation is around

meter level. Given the detail statistical information, its precision is improved to decimeter

which is close to CRB. Therefore, the difficulty of localisation is increased by assuming

that neither LoS/NLoS separation information nor statistical characteristics of NLoS bias

is available. The technical difficulties of existing methods to deal with NLoS bias are as

following.

1. As for LoS/NLoS separation, these methods are effective when sufficient LoS paths

are available for localisation. In the urban or indoors scenarios, the number of

LoS paths is typically limited. There is no guarantee that the a LoS path always

exists from the MD to a particular AP, which degrades the performance of these

localisation algorithms.

2. As for NLoS mitigation, the performance is depending on how much prior infor-

mation is available, and the estimation may be unreliable because the presence of

NLoS bias, since complete reduction of the NLoS bias effect may be impractical.

3. The localisation performance depends on the ability to accurately separate LoS/NLoS

paths. However, the mistaken separation cannot be avoided completely. There is

always the possibility that NLoS path is incorrectly separated as a LoS path and

vice versa, which may significantly degrade the localisation accuracy [49].

4. In practical application, the prior statistical information may not always be avail-

able at AP. There is extra latency incurred due to collection of range estimates to
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establish a historical information. On the other hand, the statistics of NLoS bias b

are not necessarily identically distributed. In indoor scenario, the NLoS biases have

different variances and means due to propagation distance and condition of scatter.

5. Generally it is difficult to determine the joint probability distributions of the features

required by many statistical approaches.

Therefore, the efforts for finding an efficient method to incorporate both LoS and NLoS

paths for localisation are still needed.

1.4 Contributions of the Thesis

This thesis focuses on super-resolved localisation algorithms and the main contributions

are as follows:

1. A super-resolution based convex optimisation is formulated for localising MDs.

Then, we provide primal and dual solvers for the localisation problem. An ex-

ample is provided to show how to transform a received signal into superposition of

exponentials, which can be recovered by super-resolution technique. Numerical ex-

periment is performed to illustrate the preciseness of the proposed method. Details

are provided in Chapter 2.

2. We propose a novel super-resolved localisation method that can estimate multiple

MDs and perform self-calibration to correct array directional errors simultaneously.

To achieve joint localisation, we directly map MD locations and array directional

errors to received signals. Then the group sparsity based optimisation is proposed

to exploit the geometric consistency. Unlike the NLoS paths, the received LoS paths

at different APs are originating from common MDs. Thus, the proposed method

also can be applied to separate LoS/NLoS paths. Details are provided in Chapter

3.
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3. Localisation is challenging in present of NLoS path. Traditional methods focus on

dealing with NLoS bias. We propose a novel localisation method that can exploit

both LoS and NLoS paths for localisation without dealing with NLoS bias. Another

unique feature is avoiding hard decisions on separating LoS/NLoS path and hence

relevant possible error. A grid-free sparse inverse problem is formulated for localisa-

tion which avoids error propagation between multiple stages, handles multipath in

a unified way, and guarantees a global convergence. Extensive localisation experi-

ments on different propagation environments and localisation systems are presented

to illustrate the high performance of the proposed algorithm compared with theo-

retical analysis. Especially, in one of the case studies, single antenna AP can locate

a single antenna MD even when all paths are NLoS, which according to the authors

knowledge is the first time in the literature. Details are provided in Chapter 4.

1.5 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we introduce the super-

resolved localisation method based on the modern super-resolution technique. In Chapter

3, we discuss a novel super-resolved localisation method with self-calibrating the array

directional errors. In Chapter 4, we propose an end-to-end multipath-exploited and grid-

free (MuG) framework which can be directly applied to various system configuration and

propagation environments. In Chapter 5, we discuss results of the present work and gives

potential future research directions of the localisation.

1.6 Publications

The material presented in this thesis has led to the following publications:

1. H. Liu, W. Dai, and Y. Shen, “ MuG: A Multipath-Exploited and Grid-free Localisation
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Method,” in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). IEEE, 2021, pp.4665-4669.

2. H. Liu, W. Dai, and Y. Shen, “ Super-resolved Localisation in Multipath Environment,”

(submitted to IEEE Transactions on Cybernetics)

3. H. Liu, W. Dai, and Y. Shen, “ Super-resolved Localisation without Identifying

LoS/NLoS Paths,” arXiv preprint arXiv: 1910.12662, 2019.



Chapter 2

Super-Resolved Localisation

In this Chapter, we briefly describe the background of the super-resolution technique and

it’s application in localisation problem. Unlike previous compressed sensing (CS) works,

the unknown parameters of super-resolution technique are not assumed to locate on pre-

defined grids, but can be any values in the continuous parameter space. A super-resolved

localisation method is proposed to recover the signal from it noisy observation and identify

the unknown parameters. The reset of this Chapter is organized as follows. Section 2.1

introduces the basic concepts of the super-resolution technique. Section 2.2 formulates

an optimisation problem for localisation problem, followed by two solvers. In Section 2.3,

we present some numerical simulation results to illustrate the preciseness of the proposed

method. The conclusion is drawn in Section 2.4.

2.1 Super-Resolution Technique

Our proposed super-resolved localisation is based on super-resolution technique due to its

favourable properties. Super-resolution technique is designed to recover a superposition

of point sources with high precision [6,50,51]. In settings of various super-resolution prob-

lems, one aims to recover the frequencies components from a superposition of complex

30
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exponential functions. In fact, many problems arising in science and engineering with high

dimensional signals that can be formulated as the same model. Examples of applications

include localisation [15,19,52] , medical imaging [53], astronomy [54] and microscopy [55].

In localisation problem, the delay estimation can be transformed into frequency estimation

problem by signal processing methods (e.g., Fourier transform and Finite Rate of Inno-

vation (FRI) theory [56]) which encourage us applying the super-resolution technique to

resolve localisation problem. In this section, we show a basic concept of super-resolution

technique. The super-resolution technique is motivated by the idea of atomic norm for

continuous parameter space. On the other hand, the atomic norm minimisation (ANM)

is a well defined convex optimisation to recover the signal with superposition of atoms.

The exact recovery is guaranteed when parameters are reasonably well separated.

2.1.1 Atomic Norm

To begin, we formulate the observed signal y as the superposition of atoms {ak}Kk=1 from

an atomic set A. This form is widely used in signal processing, more precisely,

y =
K∑
k=1

γkak ∈ CN , (2.1)

where γk is complex coefficient of k-th atom ak; the atom ak ∈ A, is defined as simple

building block of the signal; A = {· · · ,ak, · · · } is called atomic set that includes the finite

or infinite atoms.

In many scenarios, the dimension of signal N can be much less than the size of atomic set

A, leading to various combinations of atoms for representing signal. Then, how to select

proper representation among these combinations is the key issue in signal processing. In

the literature, one meaningful criterion is to seek parsimonious decomposition of signal

yj with the minimal number of atoms which is referred to as sparse representation.

The sparse representation is one meaningful criterion since many synthetic and natural
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signals inherently satisfy this assumption [57,58], such as signal in localisation [15,19,52],

audio and music signals [59], medical imaging [53], and astronomy [54]. The atomic norm

proposed in [6, 51] aims to decompose the signal y ∈ CN into a linear combination of a

few atoms. The definition is shown as

‖y‖A = inf {t > 0 : y ∈ t conv (A)} . (2.2)

Given the definition in (2.2), atomic norm identifies the unit ball with the convex hull of

atomic set A. In view of sparsity recovery, the atomic norm enforces the signals involving

only a few atoms. Alternatively, the atomic norm ‖·‖A can be rewritten as [6]:

‖y‖A = inf

{∑
ak∈A

γk : y =
K∑
k=1

γkak , γk > 0, ∀ak ∈ A

}
. (2.3)

The dual atomic norm is defined as:

‖q‖∗A = sup {〈q,a〉 : a ∈ A} , (2.4)

where 〈q,a〉 = (a Hq).

The atomic norm ‖·‖A is firstly proposed and analysed in [6] to enforce the sparsity in

atomic set A. As a natural regularizer, it can be alternatively viewed as the continuous

counterpart of the L1 norm in discrete CS methods [60–62] , and the nuclear norm for rank

minimisation [6,63,64]. In the works of CS, the sparse atom is viewed as the foundation for

signal compressing and recovering [65–68]. Discrete CS methods suppose that the signal is

sparse under known transform atom such as Fourier transform matrix and wavelet basis,

these atoms can be taken from finite dictionary by dividing the continuous parameter

space into discrete grid. This discrete methods provide a well estimation on the condition

that unknown parameters are perfectly located on the discrete grid. However, there are

some unavoidable drawbacks in practical scenarios. As noticed in [69,70], the signal cannot

be sparsely represented under a finite dictionary when the true parameters are not falling
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onto the discrete grid. The finer grid can help for improving performance by minimising

the difference between true parameter and imaginary discrete grids. However, a denser

grids may degrade the performance of recovery. Since the dictionary will become very

coherent and computational cost is increased by increasing the number of grid points [71].

To address mentioned problems, the super-resolution technique is proposed motivated by

the idea of atomic norm for the continuous space.

2.1.2 ANM Method

The ANM is a well defined convex programming to recover the signal with superposition

of atoms. Without considering measurement noise, the goal is to reconstruct y ∈ CN

from the given observed signal r = y ∈ CN . As suggested in [6], the general form of

atomic minimisation is written as

min
y
‖y‖A (2.5)

s.t. r = y.

The Lagrangian duality theory provides an important information for using atomic norm.

The corresponding Lagrange dual problem of (2.5) is given as [72]

max
q

Re 〈q, r〉 (2.6)

s.t. ‖q‖∗A 6 1, (2.7)

where Re 〈q, r〉 = Re (r Hq) is the real part of a inner product, ‖q‖∗A is dual atomic norm

of vector q ∈ CN . The dual atomic norm is defined as

‖q‖∗A , sup
a∈A

Re 〈a, q〉. (2.8)
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In case of a(τ) =
[
e−i2πτ0, e−i2πτ , · · · , e−i2πτ(N−1)

]T
, the dual atomic norm can be ex-

pressed as

‖q‖∗A = sup
τ∈[0,1)

| 〈a(τ), q〉︸ ︷︷ ︸
Q(τ)

|, (2.9)

which indicates that ‖q‖∗A can be written in a complex trigonometric polynomial Q(τ) =

〈a(τ ), q〉 =
∑N−1

n=0 qne
i2πτn. This gives an important information that the constraint

(2.7) over infinite dimension can be transformed as linear matrix inequalities with some

Hermitian matrices. Therefore, in case of a(τ) =
[
e−i2πτ0, e−i2πτ , · · · , e−i2πτ(N−1)

]T
, the

dual problem of (2.6) can be rewritten as

max
q

Re 〈q, r〉 (2.10)

s.t

 H q

q∗ 1

 � 0, (2.11)

N−l∑
p=1

H[p, p+ l] =


1, l = 0

0, l = 1, ..., N − 1.

, (2.12)

where H[p, p+ l] denotes [p, p + l]-th entry of matrix H . The problem (2.10) is semi-

definite programming (SDP) involving finite constrains which can be solved using generic

off-the-shelf convex solvers [73].

In the noise free case, the analysis of exact recovery guarantees is given in [51],

Theorem 2.1. [51, 72] Suppose we observe the time samples of

y[n] =
K∑
k=1

γke
i2πnτk , n = 0, . . . , N − 1,

with unknown ToFs {τ1, τ2, ..., τK} ⊂ [0, 1] on the index set T ⊂ {0, ..., N − 1} of size L

selected uniformly at random. Additionally, assume sgn (γk) := γk/ |γk| are drawn i.i.d

from a symmetric distribution on the complex unit circle.
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4τ = min
a6=b
|τa − τb|

If 4τ > 4
N−1 , then there exists a numerical constant C such that:

L > C max

{
log2 N

δ
, s log

K

δ
log

N

δ

}
,

is sufficient to guarantee that we can recover r and localize the ToFs {τk}Kk=1 via a semi-

definite program with probability at least 1− δ.

Theorem 2.1 shows that the unobserved samples and unknown parameters can be re-

covered when unknown parameters are reasonably well separated. Note that the con-

tinuous dictionary of super-resolution is globally coherent. This theorem shows that the

performance of super-resolution technique is not determined by global coherence of the

dictionary, but the local coherence between the atoms composing the true signal.

2.2 Super-Resolved Localisation

In the localisation problem, we first focus on a simple but widely used signal model.

Without loss of generality, we assume the observed signal rj at the j-th AP can be

expressed in the following form,

rj = yj (2.13)

where

yj =
K∑
k=1

γj,ka(τj,k) , γj,k > 0, a(τj,k) ∈ A, (2.14)

where γj,k is weight of the atom to model attenuation of the k-th path at the j-th AP, atom

a(τj,k) ∈ CN is defined as
[
e−i2πτj,k0, e−i2πτj,k , · · · , e−i2πτj,k(N−1)

]T
; τj,k ∈ [0, 1] denotes

propagation delay of the k-th path at the j-th AP, which is defined over continuous
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space. The A is atomic set that includes the simple building blocks of the signal yj which

includes infinite number of atoms

A =
{[
e−i2πτ0, e−i2πτ , · · · , e−i2πτ(N−1)

]T
, τ ∈ [0, 1]

}
. (2.15)

This is because the parameter τ can be arbitrary values across the continuous parameter

space [0, 1].

The goal of localisation problem is estimating location of MD m based on observed signal

{rj}Jj=1 from J APs. Considering the ANM of (2.13), (2.14) can be reformulated as SDP,

and solved by off-the-shelf solvers [51, 74, 75]. Therefore, in the first step, we reconstruct

signal from observed signal {rj}Jj=1 by primal solver in Section 2.2.2 or dual solver in

Section 2.2.3. Then, the unknown parameters {τj,k}J,Kj=1,k=1 are retrieved for inferring

location of MD. The parameter retrieving can be achieved by matrix pencil in Section

2.2.2.1 or dual certification in Section 2.2.3.1.

2.2.1 Why Atomic Norm

While there are numerous traditional methods in the literature, the atomic norm carries

a number of favourable properties that are useful for helping recovering signal [6]. The

motivations of using atomic norm for localisation are shown as follows:

� General framework. Atomic norm provides a general convex penalty function for

linear inverse problems. Based on the definition of atomic norm in (2.2), the unit

ball of atomic norm ‖·‖A is the convex hull of the atomic set A . Some examples

are shown in Figure 2.1. When A is the collection of unit-Euclidean-norm one-

sparse vectors, the convex hull is unit ball of the L1 norm. When A is the set

of unit-Euclidean-norm rank-one matrices, the convex hull is nuclear norm ball.

In summary, atomic norm generalizes the L1 norm for sparse vector estimation

problems [60–62], and nuclear norm used for rank minimisation problems [6,63,64].
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Figure 2.1: Unit balls of atomic norms. In the figures, red points indicate the set of atoms, and
the unit ball of the associated atomic norm is shown in blue. In (a), the atoms are the unit-
Euclidean-norm one-sparse vectors, and the atomic norm is the L1 norm. In (b), the atoms are
the 2Ö2 symmetric unit-Euclidean-norm rank-one matrices, and the atomic norm is the nuclear
norm. In (c), the atoms are the vectors {−1,+1}2, and the atomic norm is the L∞ norm [6].

� Exact recovery guarantee: As introduced in [51, 72], the unknown parameters can

be recovered with performance guarantee when parameters are reasonably well-

separated 4τ > 4
N−1 . See Theorem 2.1 for more information.

� Robust to noisy measurement: In practical scenarios, the observed signal are usually

corrupted by noise [74,75]. There is no estimator that can exactly recover the signal

from its noisy measurements. The atomic norm provides near-optimal recovery of

y, such as r = y + v, where v is additive complex Gaussian noise with zero mean

and variance σ2 [76] . When the unknown parameters {τk}Kk=1 satisfy the separation

condition 4τ > 4
N−1 , the mean square error (MSE) of estimated ŷ given by lasso

formulation ‖r − y‖22 + λ‖r‖A is bounded by [76]

1

N
‖ŷ − ytrue‖22 = O

(
σ2K logN

N

)
. (2.16)

� A framework tailored to various applications. The signal recovered by atomic min-

imisation can be sum of sparse vectors, low-rank matrices, low-rank tensors and

orthogonal matrices, etc. It provides an efficient solver for real-world application

not only for localisation [15, 19, 52], but also audio and music signals [59], medical

imaging [53], astronomy [54] and microscopy [55].
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2.2.2 Primal Solver

In the first step, we consider to reconstruct yj from its observed signal rj = yj. To achieve

this, ANM based localisation can be formulated in following form:

min
{yj}Jj=1

∑
j

‖yj‖A (2.17)

s.t. rj = yj, for j = 1, ..., J. (2.18)

Solving primal problem (2.17) require a high computational cost. Because the corre-

sponding atomic set contains infinite number of atoms. It is worth noticing that the

paper [51, 74, 75] has demonstrated that the ANM (2.17) is equivalently to semi-definite

program

min
{yj ,tj}Jj=1

∑
j

1

2N
trace (Toep (yj)) +

1

2
tj (2.19)

s.t.

 Toep (yj) rj

rHj tj

 < 0, for j = 1, ..., J. (2.20)

The semi-definite program is the well studied topic, and {yj}Jj=1 can be obtained by CVX

tool box [73]. Then the next step is retrieving ToFs {τj,k}J,Kj=1,k=1 from Toeplitz matrices

{Toep (yj)}Jj=1 by performing the matrix pencil method [77].

2.2.2.1 Exponential Retrieving Using Matrix Pencil

Solving SDP in (2.19), the signals {yj}Jj=1 have been reconstructed from the observed

{rj}Jj=1. In order to localise MD, the next step is retrieving unknown ToFs {τj,k}J,Kj=1,k=1

from reconstructed signal {yj}Jj=1. In this section, we present an example of using the

matrix pencil method.
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Firstly, matrix pencil with order P ∈ Z+ is defined as:

LP (λ) = A0 +A1λ+ · · ·+APλ
P , (2.21)

where {Ai}Pi=0 are square matrices with the same size.

In particular, a linear matrix pencil has the form of L1 (λ) = A0 − λA1. An eigen-

value λ of a linear matrix pencil is a rank reducing number of the matrix pencil, i.e.

det (A0 − λA1) = 0. The problem of retrieving all eigenvalues of a matrix pencil is called

generalized eigenvalue problem.

Let us consider a sequence of signals {y [n]}N−1n=0 . Specifically, we assume the element y [n]

is given by a sum of K exponentials:

y [n] =
K∑
k=1

γka
n
k , (2.22)

where all γk are non-zeros and ank = e−i2πτkn.

A Toeplitz matrix has constant values along its diagonals. Let us denote T{n,L,M} as a

L×M Toeplitz matrix which is built using {y [n]}Nn=0 and starts with element y [n]:

T{n,L,M} =



y [n] y [n− 1] · · · y [n−M + 1]

y [n+ 1] y [n] · · · y [n−M + 2]

...
...

. . .
...

y [n+ L− 1] y [n+ L− 2] · · · y [n−M + L]


. (2.23)

The Toeplitz matrix T{n,L,M} can be constructed using L + M − 1 consecutive elements.

The number of rows L and columns M are assumed to be larger than the number of ex-

ponentials K. Based on the constraint (2.20), T{n,L,M} is a positive semi-definite Toeplitz

matrix. Thanks to classical Vandermonde decomposition [78], the positive Toeplitz matrix



40 Chapter 2. Super-Resolved Localisation

T{n,L,M} can be decomposed as follows:

T{n,L,M} =



1 · · · 1

a1 · · · aK
...

. . .
...

aL−11 · · · aL−1K




γ1 · · · 0

...
. . .

...

0 · · · γK



an1 an−11 · · · an−M+1

1

...
...

. . .
...

anK an−1K · · · an−M+1
K


= V{0,L,K}diag (γ)V T

{n,M,K}, (2.24)

where V{a,b,c} is a Vandermonde matrix starting with order a and with b rows and c

columns, and diag (γ) is a diagonal matrix with diagonal values being [γ1, · · · , γK ].

Let us build Toeplitz matrices T{0,K,K} and T{1,K,K} using {y [n]}Nn=0 where the elements

are sum of K exponentials. From (2.24), we have that:

T{0,K,K} = V{0,K,K}diag (γ)V T
{0,K,K} (2.25)

and

T{1,K,K} = V{0,K,K}diag (γ)V T
{1,K,K}

= V{0,K,K}diag (γ) diag (a)V T
{0,K,K}, (2.26)

where diag(a) = diag([a1, a2, · · · , ak]). In case of the V{0,K,K} is invertible, based on (2.25)

and (2.26), we have:

T{1,K,K}V
-T
{0,K,K} = T{0,K,K}V

-T
{0,K,K}diag (a) . (2.27)

From (2.27), V -T
{0,K,K} can be considered as the generalised eigenvectors for matrix pair

T{0,K,K} and T{1,K,K} with the corresponding generalised eigenvalues diag (a). The roots

of the exponentials can be obtained by solving a generalized eigenvalue problem for a
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linear matrix pencil T{1,K,K} − µT{0,K,K}:

(
T{1,K,K} − µT{0,K,K}

)
v = 0, (2.28)

where the eigenvalues µ ∈ {a1, ..., ak, ..., aK} are exponentials composing the true signal

(2.22); v ∈ {v1, ...,vK} is column vector composing the matrix V -T
{0,K,K} = [v1, ...,vK ].

The generalized eigenvalue of the matrix pencil is equivalent to the eigenvalue of matrix

T−1{0,K,K}T{1,K,K}: (
T−1{0,K,K}T{1,K,K} − µI

)
v = 0. (2.29)

When the observed data is corrupted by noise, directly taking the inversion of T−1{0,K,K}

may not be a good numerical approach. To be more noise resilient, we can generate two

bigger Toeplitz matrices as T{0,N−L,L} and T{1,N−L,L} with K ≤ L ≤ N − K. They are

obtained by dropping the first and last row of T{0,N−L+1,L}, respectively. Let us consider

Toeplitz matrix T{0,N−L+1,L} and take the truncated singular value decomposition of it

and only retain the K largest singular values:

T{0,N−L+1,L} = UKΣKV
T
K , (2.30)

where ΣK is the diagonal matrix containing the K largest singular values of T{0,N−L+1,L},

and UK and VK are the corresponding left and right singular vectors.

T{0,N−L,L} and T{1,N−L,L} can be represented as:

T{1,N−L,L} = UKΣKV
T
K , (2.31)

T{0,N−L,L} = UKΣKV
T
K , (2.32)

where UK and UK are obtained by dropping the first and last row of UK .
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Algorithm 1: Matrix Pencil Method

Input: Input noisy samples {y [n]}N−1n=0 and number of exponentials K.

Output: Retrieved exponentials {ak}Kk=1.
1: Build the Toeplitz matrix T from noisy samples.
2: Perform SVD of T : T = UΣV T .
3: Keep the K left-singular vectors that correspond to the K largest singular values
UK .

4: Build UK and UK from UK .
5: Retrieve K exponentials {ak}Kk=1 by solving the eigenvalue problem in (2.34).

Based on (2.28), (2.31) and (2.32), we have:

(
UK − µUK

)
ΣKV

T
K v = 0. (2.33)

The exponentials can be obtained by solving the eigenvalue problem:

(
U †KUK − µI

)
v = 0. (2.34)

whereU †K is the Moore-Penrose pseudo-inverse ofUK ; the eigenvalues µ ∈ {a1, ..., ak, ..., aK}

are exponentials composing the true signal (2.22). Algorithm 1 summarizes the matrix

pencil method for retrieving exponentials.

2.2.2.2 Stability Robustness of Matrix Pencil

The stability robustness analysis of matrix pencil has been studied in [79], and this prob-

lem is to estimate the distance of a stable matrix to the set of all unstable matrices. In

the literature, a matrix is defined to be stable when all the eigenvalues are contained in

the open left half of the complex plane [79–81]. In [79], the stability robustness analysis

of matrix is extended to matrix pencil. A linear matrix pencil has the form of

L1 (λ) = A0 − λA1. (2.35)
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The matrix pencil (2.35) is said to be stable if all its generalized eigenvalues are located

in the open left half of the complex plane [79]. The generalised eigenvalues of (2.35) are

defined as the roots of the polynomial in λ:

det (A0 − λA1) . (2.36)

Theorem 2.2. Given A0 and A1 ∈ Cn×n such that ρ(A1) = rrank, the matrix pencil

L1 (λ) is stable and |Λ(L1 (λ))| = rrank, then

� µ(L1 (λ)) > 0;

� αµ(L1 (λ)) = µ(αA0 − λβA1), for any α > 0, β > 0;

� µ(L1 (λ)) = µ(W1A0W2−W1A1W2), for any orthogonal matrices W1, W2 ∈ Rn×n;

� µ(L1 (λ)) ≤ σ(A0);

� µ(L1 (λ)) ≤ σ
(
UT

2 A0V2

)
;

where ρ(A1) is rank of matrix A1; Λ(L1 (λ) is the set of all generalised eigenvalues;

|Λ(L1 (λ))| is the number of elements in Λ(L1 (λ)); µ(L1 (λ)) is the distance of L1 (λ)

from instability by

µ(L1 (λ)) = inf{‖ 4 ‖s : 4 ∈ Rn×n and Λ(L1 (λ) +4) 6⊂ C−}, (2.37)

where ‖ · ‖s is spectral norm; σ is the minimum singular value of the matrix A0; C−

denotes the sets {λ ∈ C : Re(λ) < 0}; Let a singular value decomposition of A1 is

A1 = USV T =

[
U1 U2

] S11 0

0 0

 [V1 V2]
T , (2.38)

where U,V ∈ Rn×n are orthogonal matrices and S11 ∈ Rn×n is a diagonal matrix with

positive elements [79].
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Remark that the Theorem 2.1 also indicates the matrices A0,A1 can be recovered with

performance guarantee when parameters are well-separated. Because the parameters re-

covered by ANM can be used for constructing matrices A0,A1. Therefore, in the practice,

it is reasonably to apply Algorithm 1 for the matrix pencil problem.

2.2.3 Dual Solver

As for atomic norm minimisation, the dual problem provides a useful structure for analysis

and implementation. The first step is to reconstruct dual feasible {qj}Jj=1 from observed

signal {rJj=1}. Then, retrieve the unknown time dealys {τj,k}J,Kj=1,k=1 from dual feasible

{qj}Jj=1.

In particular, it is shown in [6] that the dual problem of program (2.17) can be written as

max
{qj}Jj=1

∑
j

Re 〈qj, rj〉 (2.39)

s.t for j = 1, ..., J,

|〈qj,a (τ)〉| ≤ 1, τ ∈ [0, 1] . (2.40)

which is the optimisation program with the infinite many constrains (2.40). Solving the

problem (2.39) is computational cost. As presented in Section 2.1.2, the dual problem

(2.39) can be characterized as semi-definite program with finite many constrains (2.42),
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(2.43). This dual problem of localisation also has a semi-definite formulation:

max
{qj}Jj=1

∑
j

Re 〈qj, rj〉 (2.41)

s.t for j = 1, ..., J, Hj qj

q∗j 1

 � 0, (2.42)

N−l∑
p=1

Hj[p, p+ l] =


1, l = 0

0, l = 1, ..., N − 1,

(2.43)

where Hj[p, p+ l] denotes [p, p + l]-th entry of matrix Hj. As shown in [50, 51, 75],

the linear matrix inequalities (2.42), (2.43) are equivalent to the dual norm constraint

|〈qj,a (τ)〉| ≤ 1, τ ∈ [0, 1]. The SDP in (2.41) can be solved off-the-shelf solvers, such as

CVX [73]. Then the next step is extracting ToFs {τj,k}J,Kj=1,k=1 from dual problem solution

{qj}Jj=1 by performing the dual certification, as detailed next.

2.2.3.1 Exponential Retrieving Using Dual Certification

Given the exponential atom (a[n] = e−i2πτn), the dual certification provides useful ap-

proach for retrieving unknown delays. In the dual certification, the true parameters

{τ ′j,k}Kk=1 that comprise the optimal yj is located at peaks of the dual polynomial Qj (τ) =

〈qj,a (τ)〉:

{τ ′j,k}Kk=1 = {τ : |Qj (τ)| = 1, τ ∈ [0, 1]} , (2.44)

This method is shown in Fig 2.2, for the observed signal r =
∑5

k=1 γka(τk) with five ToFs,

where peak of the dual polynomial Qj(τ) is matching to the location of true ToFs.

Under strong duality, one implies that equality between primal objective value ‖yj‖A =∑K
k=1 |γj,k|, where yj =

∑K
k=1 γj,ka(τj,k) and dual objective value Re 〈qj, rj〉. Given rj =
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Figure 2.2: Retrieving ToF τ via identifying the peaks of the dual polynomial (in blue).

yj, the dual objective value can be expressed as

Re 〈qj,yj〉 = Re

〈
qj,

K∑
k=1

γj,ka(τj,k)

〉
= Re

K∑
k=1

γ∗j,kQj(τj,k) =
K∑
k=1

|γj,k|. (2.45)

Therefore, we have Qj(τj,k) = sign(γj,k) =
γj,k
|γj,k|

and |Qj(τj,k)| = 1.

Note that the dual certification does not require any prior knowledge, and can estimate

the unknown parameters with infinitesimal precision. One the other hand, it can be

efficiently performed by Fast Fourier transform.

2.3 Numerical Simulation

In this section, we will first introduce the configuration of the system and the shape of

the transmitted waveform. Then, we will present a super-resolution based localisation

method and the simulation results.
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AP

Transmitter

Ground Truth

Figure 2.3: The system setup for simulation

2.3.1 System Configuration

As shown in Fig 2.3, we consider the localisation system with one transmitter, J = 3

APs to localise K = 6 MDs. The transmitted signal is firstly sent from transmitter,

then passing through the MD, finally arriving at AP. The signal speed is assumed to be

constant in the propagation medium. We make the assumptions in the problem setting

that the coordinates of transmitter Trans, APs {APj}Jj=1 are known and they work with

synchronized clocks. The transmitted signal is also known to the APs. This localisation

system has emerged in many novel applications such as target detection and localisation,

ultrasound imaging and Internet of Things.

2.3.2 Transmitted Signal

We assume that transmitters transmit pulses with the same shape, and the transmitted

signal g(t) is assumed to be a Gaussian modulated sinusoidal pulse:

g(t) = exp

(
−
(
t− T0

2

)2

σ−2g

)
exp

(
j2πfc

(
t− T0

2

))
, (2.46)
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(a) Transmitted waveform in time domain
g(t).

(b) Transmitted waveform in frequency do-
main ĝ(ω).

Figure 2.4: An example of transmitted waveform and its Fourier transform with T0 = 0.1 s,
σg = 0.02, and fc = 100 Hz.

where T0 is the duration of the transmitted waveform, σg is the standard deviation of the

Gaussian pulse, and fc is the frequency of the sinusoidal signal.

The transmitted waveform g(t) from transmitter is passed by the k-th MD mk and is

then received by the j-th AP APj. Therefore, the received signal in the j-th AP is

superposition of multiple delayed versions of g(t), and it takes the form of:

xj (t) =
K∑
k=1

γj,kg(t− τj,k) + vj, for j = 1, 2, ..., J, (2.47)

where γj,k is the unknown coefficients modelling the signal attenuation of k-th path at

j-th AP; τj,k is the ToF for the signal transmitted by Trans, reflected by mk and received

by j-th AP APj. The propagation delay τj,k = dj,k/c is determined by the transmission

distance dj,k = ‖Trans −mk‖2 +‖mk −APj‖2 and the speed of signal propagation in the

space c; vj is additive Gaussian noise with zero mean and variance σ2
j .

In practice, the received signal is uniform time-samples of xj(t) in the form of

xj[n] =
K∑
k=1

γj,kg(nTs − τj,k) + vj[n], (2.48)

where n = 0, 1, ..., N − 1 and N is the number of time instances for taking samples; Ts is

the sampling period.
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In order to apply ANM framework for estimating unknown ToFs, the first step is trans-

forming received signal into superposition of exponentials as (2.13), (2.14). The Fourier

transform of received signal xj (t) defined in (2.47) is given by:

x̂j (ω) =
K∑
k=1

γj,kĝ (ω) e−jωτj,k , (2.49)

where x̂j (ω) and ĝ (ω) is the Fourier transform of xj (t) and g (t), respectively. The Fourier

transform of the transmitted signal g(t) is expressed as follows:

ĝ (ω) = σg
√
π exp

(
− (σgπ (ω − fc))2

)
exp

(
j2π

T0
2

(ω − fc)
)
, (2.50)

where T0 is the duration of the transmitted waveform, σg is the standard deviation of the

Gaussian pulse in time domain, and fc is the frequency of the sinusoidal signal. Figure

2.4 shows an example of the transmitted waveform in time g(t) and frequency domain

ĝ(ω), respectively. Note that the center of frequency domain signal ĝ (ω) is located at

fc and the standard deviation of the Gaussian term in ĝ(ω) is (2σgπ)−
1
2 . That is, if the

transmitted pulse g(t) is wider in time domain, its spectral domain representation ĝ (ω)

has a narrower pulse. In order to retrieve sufficient samples of the sum of exponentials,

it would be better to have a smaller standard deviation σg in the transmitted waveform.

From (2.50) and (2.49), we can therefore rewrite the observed signal as sum of K expo-

nentials:

rj [n] =
x̂j (nω0)

ĝ (nω0)
=

K∑
k=1

γj,ke
−jnω0τj,k , (2.51)

where n = 0, 1, ..., N − 1, x̂j (nω0) and ĝ (nω0) are Fourier transform of xj(t) and g(t)

evaluated at ω = nω0, respectively. In this way, the delay estimation has been transformed

into a line spectral estimation problem which can be recovered using super-resolution

techniques [51,72].
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Algorithm 2: Atomic Norm Based Localisation Method

Input: propagation speed s, parameters of the transmitted waveform θ, sampling rate
fs and threshold value ε.

Output: The locations of K targets.
1: for every transmitter/receiver
2: Extract the observed signal as in Eqn. (2.51).
3: Apply primal solver (2.19) to recover Toeplitz matrix Toep(yj), for j = 1, ..., J .
4: Apply matrix pencil method (Algorithm 1) to retrieve JK exponentials from

Toep(yj), for j = 1, ..., J .
5: Obtain JK delays from the retrieved exponentials.
6: end for
7: Determine the locations of K targets based on the JK delays through trilateration.

2.3.3 Localisation Method

At each AP, a segment of observed signal can be obtained as in (2.51). It is the su-

perposition of K exponentials and noise. To gain robustness against noise, the signal is

reconstructed by atomic norm based minimisation (2.19). Matrix pencil method is then

applied to the observed signal to retrieve K exponentials. With the obtained unique de-

lays, the location of the targets can be calculated through trilateration. Algorithm 2

summarizes the proposed atomic norm based localisation method.

2.3.4 Simulation Results

In this section, simulation results are presented. Table 2.1 summarizes the parameters

setting for simulation. The transmitter, APs and the MDs are assumed to be in 2 dimen-

sional space. The strength of the noise is measured using Signal-to-Noise Ratio (SNR) in

dB, where SNR = 10 log10

(
Signal Power
Noise Power

)
. White Gaussian noise is added to the received

time sequence samples xj[n] with SNR = 0 dB.

Figure 2.5 shows the estimation results by the super-resolved method and discrete CS

method (orthogonal matching pursuit (OMP) [82]). The unknown targets are placed

at intersection of two ellipses, which result in poor resolution in multi-stage estimation.

The OMP approach suffers from performance degradation, since each sub-stage is unable
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Number of transmitters/receivers NT = 1/NR = 3
Number of MDs K = 6

Number of samples N = 128
Propagation speed c = 3× 105 m/s

Transmitted waveform duration T0 = 0.1 s
Frequency of sinusoidal fc = 1000 Hz

Standard deviation of Gaussian σg = 0.001
Sampling rate fs = 10× 210 Hz

Scale 1× 104 m

Table 2.1: Parameters setting for simulation.

OMP

Super-resolution

Receiver

Transmitter

Ground Truth

Figure 2.5: The simulation results for 2-dimensional localisation

to correctly detect or estimate the targets. Because the OMP approach assumes that

the unknown MDs are located at predefined grids. When this assumption is satisfied,

the OMP approach can provide a well estimation. However, the performance of OMP

could be degraded when the true MDs are not falling on the discrete grid. A denser grid

can help for improving performance by minimising the difference between true parameter

and imaginary discrete grids. But, in practice, it is hard to determine the proper scale

of grid points. Since the dictionary will become very coherent and computational cost

is increased by increasing the number of grid points. In this simulation, the estimated

results of the OMP show a low positioning accuracy and failed to estimate one target.

Compared with the discrete approach, the super-resolved localisation is able to recover the

unknown targets {mk}K=6
k=1 with high precision. The super-resolved localisation scheme

avoids drawbacks of discrete CS by working on continuous parameter space. Note that
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this continuous parameter space will not result in a global coherence of the dictionary. As

illustrated in Theorem 2.1, the performance of super-resolution technique is determined

by the local coherence between the atoms composing the true signal.

Sample Number Solver Time [s] Iteration

ANM(N= 64) SDPT3 | SeDuMi 1.833 |1.623 14.12 | 23.45
ANM(N=128) SDPT3 | SeDuMi 10.784 |8.234 16.63 | 26.21
ANM(N=256) SDPT3 | SeDuMi 114.342 |90.778 19.43 |28.75
ANM(N=364) SDPT3 | SeDuMi 376.166 |555.532 18.92 |39.55

Table 2.2: In case of SNR = 10 dB, the average running time of the ANM. The ANM is
solved by Primal Solver in (2.19). In the Primal Solver, the SDP is solved by SDPT3 [83] and
SeDuMi [84]. CPU: Intel Core i7-7700HQ, 2.80GHz.

The computational cost of ANM is measured by the average running time over 200 Monte

Carlo trials. The corresponding SDP is solved by SDPT3 [83] and SeDuMi [84] respec-

tively. Based on the Table 2.2, the SDPT3 performs less iterations compared with the

SeDuMi. In case of N = 64, N = 128, N = 256, the SDPT3 spends more running time

compared with the SeDuMi. However, in case of N = 365, the running time of SDPT3 is

significantly decreased compared with the SeDuMi.

2.4 Conclusion

This Chapter has shown a super-resolved localisation scheme based on super-resolution

technique. Firstly, we introduce background and motivation of super-resolution technique.

It is designed to recover a superposition of point sources with high precision. Then we

formulate the localisation problem as a convex optimisation problem and provide two

solvers for the problem. Finally, the simulation result shows the superior performance

of super-resolved localisation compared with discrete CS method. However, directly ap-

ply the super-resolution technique to localisation involving multi-stage process i.e., first

estimating ToFs, then localising MD. The performance is degraded due to data asso-

ciation problem and error propagation. The task of associating intermedia parameters
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(ToF, TDoF and DoA) to MDs or scatters is known as an NP-hard problem, leading to

huge computational cost [85,86]. Moreover, the estimation of intermedia parameters may

introduce additional noise and lead to error propagation.

In order to address these issues, we consider direct joint processing for localising MD.

The estimation is directly obtained by processing all the measurement simultaneously.

Then the error propagation and data association is avoided. The objective function is

formulated as

min
m

J∑
j

‖rj − yj(m)‖22 + λG([y1,y2, ...,yJ ]) , (2.52)

where λ > 0 is the regularization parameter that tunes a tradeoff between the fidelity

to the observation and the size of the penalty function; G(·) is the penalty function to

promote sparse solution. The technical difficulties come from two aspects:

� How to design the sparse penalty function G(·) to super-resolve the location of MD

in various propagation environments by jointly processing all the received signals.

� The problem (2.52) can not be solved by SDP. To apply the SDP formulation for

ANM, one must first define the atom properly. Precisely, it requires that atom

should follow the simple exponential form as

a(τ) =
[
e−i2πτ0, e−i2πτ , · · · , e−i2πτ(N−1)

]T
. (2.53)

However, in the direct mapping formulation the atom is in a totally different form

a(m) =
[
e−i2πτ(m)0, e−i2πτ(m), · · · , e−i2πτ(m)(N−1)]T , (2.54)

where the atom a(m) is directly mapping from the location of MD m = [mx,my]T;

τ(m) is the ToF from the MD to AP.

In the Chapter 3, 4, we propose two different penalty functions for different localisation

problems. We give a novel method to solve the proposed optimisation problems. This
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method iteratively adds candidate estimation to the support set at each iteration, then

followed by pruning step to remove estimations when they are found not contributing

to reducing loss function. Finally, the precision of estimations are further improved by

descent method over continuous parameter space. Numerical simulation results verify its

feasibility and the advantage over traditional methods.



Chapter 3

Direct Joint Localisation with

Self-calibration

Under high angular resolution, the DoAs of LoS paths can provide precise estimation of

MDs. In this Chapter, we consider directional error that degrade the performance of DoA

based localisation scheme. Besides the NLoS bias, another directional error is called array

directional error. The array directional error implies the deviation in the orientation of

the antenna array placement which is rarely noticed. We present a novel super-resolved

localisation method that estimates multiple MDs and performs self-calibration to correct

array directional errors simultaneously. To achieve joint localisation, we directly map

MD locations and array directional errors to received signals. Then the group sparsity

based optimisation is proposed to only exploit the geometric consistency that received LoS

paths at different APs are originating from common MDs. Thus, the proposed method

also can be applied to separate LoS/NLoS paths. The rest of the Chapter is organized

as follows. Section 3.1 introduces backgrounds of the problem. Section 3.2 describes

the signal model. Section 3.3 explains the feasibility of self-calibration from the aspect

of necessary conditions. Section 3.4 briefly reviews the basic concepts of group sparse

recovery and ANM, followed by establishing an optimisation problem for direct passive

joint emitter localization with selfcalibration. Section 3.5 presents the proposed novel

55
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method to solve the formulated optimisation problem. Section 3.6 shows some numerical

simulation results. The conclusion is drawn in Section 3.7.

3.1 Introduction

Due to the rapid development of MDs and wireless techniques, localisation with wireless

signals is in strong demand of various applications. In general, these localisation methods

can be divided into several categories by the types of signal measurements, such as DoA,

ToF, TDoF, and RSS. This Chapter considers the general problem of localising multiple

MDs based on measurements at APs of which the locations are given. The APs are

equipped with antenna array and only DoA information can be obtained for localisation.

DoA is referred as the angle at the AP of the received path. Localising MD based on

DoAs of LoS paths have attracted considerable attention under high angular resolution

of antenna arrays and independent of absolute time measurement (clock of sensors can

be either synchronized or unsynchronized).

Under high angular resolution, the DoAs of LoS paths can provide precise estimation of

MDs. However, the performance of this localisation scheme is sensitive with directional

errors. The directional errors come from two aspects: NLoS bias, and array directional

error. The NLoS path results in extra angular bias (NLoS bias) in DoA measurement.

Therefore, only DoAs of LoS paths are used to determine MD locations. There are

numerous methods designed for reducing effect of NLoS bias in the literature [10–13,15].

The array directional error implies deviations in the orientation of the array placement

which is rarely noticed. In this Chapter, we focus on self-calibrating the array directional

errors and estimating multiple MDs simultaneously. Remark that our proposed method

also can be used to reduce adverse effect of NLoS bias by separating LoS/NLoS path and

discarding the NLoS paths. Since the idea behind our method is exploiting the angular

geometry consistency of LoS paths between APs and MDs, but NLoS paths have arbitrary

DoAs.
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In the literature, various kinds of self-calibration methods have been proposed. These

methods are following the principle of typical two-step localisation approaches that first

measure immediate parameters (i.e., DoA), and then fuse them to achieve localisation.

Traditional self-calibration techniques can be roughly divided into two categories. One

calibrates errors in the first step to improve DoA measurements [87–89] and then fuse

them for localisation. The other methods such as [90–92] calibrate errors in the data

fusing step, using the uncalibrated measurements directly.

However, these self-calibration methods in the literature rely on data association [85], thus

resulting in a big challenge. Precisely, in joint MD localisation, DoA of each MD DoA

with respect to each AP is measured in advance. These DoAs measurements are required

to be associated with certain MDs, and then fused together to achieve localisation of the

MD. Nevertheless, the task of associating the DoAs of all the APs to multiple MDs is

NP-hard [85], leading to huge computational complexity. On the other hand, two-step

localisation may introduce additional noise and lead to error propagation.

To avoid data association, the concept of direct localisation has been proposed in [5,15,93].

By mapping the MD positions to the received signals, a direct localisation approach

eliminates the intermediate measurements (DoAs) and estimate the MD positions from

the received signals directly. To the best knowledge of authors, self-calibration on array

directional errors in direct localisation has not been widely studied [94]. Existing works

[95–97] studied this problem under the condition of positioning single MD with multiple

snapshots, which is not suitable for multiple MDs localisation using a single snapshot as

we consider. The research in [94] extends the localisation model to multiple MDs, however,

it aims at self-calibration on sensor gain and phase errors, which are different from the

error considered in this chapter. Therefore, to achieve direct passive joint multiple MDs

localisation with NLoS biases reduction and array directional errors self-calibration, a

novel approach is in demand.

To propose our approach, we refer to compressed sensing based ideas [61] and construct
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a direct joint localisation formulation based on sparse recovery. Typical sparse recovery

methods discretize the parameter space into finite grid points and assume that true pa-

rameters exactly lie on these grids [65, 67, 70]. However, MD locations are distributed

in some continuous domain, and may be off these grids. The grid mismatch problem

could result in serious degradation in performance [69]. To avoid this problem, a super-

resolution technique called ANM has been developed [6,70]. Instead of being divided into

grids, parameters are estimated by identifying a small number of atoms parameterized

over continuous parameter space. Particularly, when the atoms are Fourier bases with

their line spectrum being the unknown parameters that are to estimate, ANM is equiva-

lent to some SDP [98], and can be efficiently accomplished by some off-the-shelf convex

toolboxes, such as CVX [73].

There are two challenges in the way of applying ANM to passive joint MD localisation with

error self-calibration. On the one hand, most ANM based methods depend on the prior

of accurate array manifold, which violates the fact that some APs may have inevitable

unknown array directional errors. On the other hand, the corresponding atoms are not

Fourier structured w.r.t. the MD locations. As a consequence, the efficient SDP solver

in [51, 75] is not directly applicable.

To solve the above problems, we establish a non-convex optimisation problem based on

group sparse recovery, which exploits the geometric consistency that received LoS paths

are originating from a common MDs. On the one hand, the joint estimation of MD lo-

cations and array directional errors self-calibration are achieved simultaneously. On the

other hand, this formulation is based on the received signals and not restricted to Fourier

structure. To solve the proposed optimisation problem, we give a novel method named as

group sparsity exploitation for self-calibration (GSE-SC). This method iteratively adds

MDs estimation to the support set one by one, while locally improving the estimates

of MD locations and array directional errors by a two-loop alternating gradient descent.

This descent method guarantees the decrease of the cost function in each iteration and

the two-loop structure helps avoid local minimums and self-calibrate array directional er-
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rors. Numerical simulation results verify its feasibility and the advantage over traditional

methods.

3.2 System Model

In this section, the signal model of joint MD localisation with array directional errors is

given. We consider the scenario with J APs equipped with passive uniform linear arrays

(ULA) and I MDs in two-dimensional (2D) plane. As for the j-th AP, it is composed

of NR antenna arrays with the first element located at APj = [AP x
j , AP

y
j ]T, the interval

between adjacent elements is denoted by dj, and the default angle of antenna array versus

the horizontal axis is denoted by αj. The i-th MD location is denoted by mi = [mx
i ,m

y
i ]

T.

The schematic diagram of the scenario is shown in Fig 3.1. At j-th AP, the angle of the

i-th MD w.r.t. the normal direction of antenna array, i.e., the DoA, is denoted by θj(mi),

expressed as

θj(mi) = arctan
mx
i − AP x

j

my
i − AP

y
j

+ αj, (3.1)

for j = 1, . . . , J and i = 1, . . . , I.

In practical scenario, the perturbations in the antenna array deployment are inevitable,

resulting in that the actual parameters αj are different from their pre-assumed counter-

parts, denoted by α′j. We denote array directional errors by δj = α′j − αj ∈ ∆, where

∆ is a rough range of δj. The DoA measurements of LoS paths, which are crucial in

joint MD localisation, are sensitive to array directional errors. Considering effect of array

directional error, the DoA of the i-th MD w.r.t. the pre-assumed j-th AP, denoted by

θ′j(mi), is expressed as

θ′j(mi) = arctan
mx
i − AP x

j

my
i − AP

y
j

+ α′j = θj(mi) + δj, (3.2)

for j = 1, . . . , J and i = 1, . . . , I. Note that array directional error is highly structured,

prevalent on mobile platforms, but not widely studied yet. What is the effect of the kind
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of error and how to achieve self-calibration well are still open problems, which are our

focus in this chapter. The geometry of the arrays and MDs is depicted in Fig 3.1.

Figure 3.1: The geometry of the MDs and arrays in XOY plane. White blocks, black blocks and
dots represent the actual, pre-assumed deployment of arrays and location of MDs, respectively.

Before introducing the signal model, there are some pre-conditions listed as follows: 1)

The baseband signals of the transmitted signals from MDs are assumed to be narrow-band

and wide-sense stationary. 2) The MDs are in the far field [99]. 3) In each array, one

sample is taken at the same time as a single-snapshot. Then, the received signal at j-th

AP is given by

rj =
I∑
i=1

γi,jaj(fi,j) + vj, (3.3)

where rj ∈ CNR×1, γi,j is a complex coefficient characterizing the unknown attenuation

of the transmitted signals from the i-th MD to the j-th AP, fi,j =
dj
λ

sin θj(mi) is often

referred to the spatial frequency, vj ∈ CNR×1 denotes the additive noise, and the steering

vector aj(·) is denoted by

aj(fi,j) =
[
ej2πfi,j ·0, . . . , ej2πfi,j ·(NR−1)

]T
, (3.4)

where j = 1, . . . , J and i = 1, . . . , I.
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By substituting (3.2) to (3.3), we recast the received signals as

rj =
I∑
i=1

γi,jaj(mi, δj) + vj, (3.5)

where the steering vector aj(·, ·) is denoted by

aj(m, δj) =
[
ej2π

dj
λ
sin
(
θ′j(m)−δj

)
·0, . . . ,j2π

dj
λ
sin
(
θ′j(m)−δj

)
·(NR−1)

]T
. (3.6)

For ease of notation we use δ = [δ1, . . . , δJ ]T , M = [m1, . . . ,mI ], Γ = {γi,j, for i =

1, . . . , I, and j = 1, . . . , J} and R = {r1, . . . , rJ} to represent the directional errors

vector, position matrix, complex coefficient set and measurement set, respectively. In

(3.5), we note that R, M , NR and the function of θ′j(·) as (3.2) are known. Unknown

parameters {M ,Γ, δ} and I are to be estimated.

Note that (3.5) is an incoherent model, which means that the coefficient γi,j of the i-th

MD varies in amplitude and phase w.r.t. different APs and the relationship between them

is unknown. The challenge of recovering MD locations m from (3.5) lies in the highly

non-convex structure for frequencies fi,j w.r.t. mi and unknown array directional errors

δj, j = 1, . . . , J and i = 1, . . . , I.

3.3 Necessary Conditions

In this section, we explain the feasibility of self-calibrating array directional errors in joint

MD localisation from the aspect of necessary conditions.

First, we give a necessary condition in our scenario by comparing the number of equations

and unknowns. Particularly, for the equations, the given received signals set R embodies

a series of equations as (3.3), whose number is IJ . For the unknowns, there are I MD

positions in the 2D plane and J array directional errors to be estimated, which is 2I + J

in total. A necessary condition to achieve the joint estimation of {M , δ} is to guarantee
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that the number of equations is larger than the unknowns, i.e.,

IJ > 2I + J. (3.7)

From (3.7), it is not hard to find that when I > 2, many enough APs J guarantee (3.7),

yielding the success of self-calibrating array directional errors. However in practice, due

to the impact of noises, sensor system settings, sensor and MD spatial geometry and so

on, more APs than the threshold in (3.7) are generally in demand.

Especially, in case of I = 1, (3.7) does not hold no matter what J is, yielding the inevitable

failure of the joint estimation of {m, δ}. It implies that in passive joint MD localisation,

we are not able to calibrate all the directional errors when I = 1. Here we further explore

this phenomenon as follows: If I = 1, for any true values {m1, δ} and a false MD position

m′1, it is always available to estimate the directional errors as δ′j = θ′j(m
′
1)− θ′j(m1) + δj,

such that the following equation is satisfied:

sin
(
θ′j(m1)− δj

)
= sin

(
θ′j(m

′
1)− δ′j

)
, (3.8)

where j = 1, . . . , J . Therefore, {m′1, δ′} yields the same signals as {m1, δ} according to

(3.5) when Γ and noises are fixed. This indicates that {m′1, δ′} and {m1, δ} can not be

distinguished only from the received signals R. Correspondingly, the joint estimation of

{M , δ} can be either one of them and will fail eventually.

To avoid the estimation failure in case of I = 1, we assume that there are some precise

antenna without array directional errors. Denote the number of APs with array directional

errors by Jr, 1 < Jr < J . A necessary condition for successful localisation in case of I = 1

is J > 2 + Jr. On the other hand, we consider another scenario assuming that the

directional errors in multiple APs are the same. Similar assumptions on the errors can

be seen in [94], where distributed sensor observations are obtained by sampling different

moments of a single moving array with errors, and the position relationship of each array
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at different samplings is assumed to be exactly known. Under this condition, we have 3

unknowns (2 for MD positions and 1 for directional error) and J equations, yielding the

necessary condition as J > 3.

In summary, we explain the potential of self-calibrating the directional errors in terms

of necessary conditions when I > 2. For the I = 1 case, where the necessary condition

always does not hold, we also give the additional conditions for the self-calibration to be

available. Note that in the sequel, our proposed method is suitable for both cases.

3.4 Objective Formulation

In this section, a group sparsity based optimisation is proposed for joint localising MDs

and self-calibration. In subsection 3.4.1, we introduce the motivation of using group

sparsity. In subsection 3.4.2, we review the super-resolution CS methods such as ANM and

group ANM. Finally, in subsection 3.4.3, we establish a new group sparse recovery model

that simultaneously accomplish calibration of array directional errors and estimation of

MD positions.

3.4.1 Group Sparsity Exploitation

Considering the sparsity of MDs in the spatial space, it is a common belief of using sparse

recovery methods for localisation. In the literature, the general sparse recovery methods

incorporates multiple distributed APs and realises a direct inverse mapping from their

measurements to MDs, which is referred to as direct localisation. The benefits of direct

localisation technique are avoiding error propagation in multistage processing and data

association. However, simple application of atomic norm ‖ · ‖A for exploiting sparsity

separately may result in possible spurious MDs estimations.

To address this issue, group sparsity [100], which enhances the mapping from common
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MDs to the measurements for all the sensors, is generally used in distributed sensor net-

works and proven to achieve better performance [101–103]. Particularly in joint MD

localisation with array directional errors considered, group sparsity exploitation also in-

hibits the bias of MD localisation caused by the sensor errors to some extent. Therefore,

we exploit group sparsity for the data fusion of multiple APs with errors in this paper.

The demonstration of showing difference between sparsity and group sparsity method is

shown in Fig 3.2. As shown in Fig 3.2(a), exploiting sparsity in measurements of each AP

separately lead to infinite estimations. Finding intersection of DoAs of two LoS paths will

involve error propagation and data association. As shown in Fig 3.2(b), the geometric

consistency indicates the truth that received LoS paths are originating from common MD,

but DoA of NLoS path is arbitrary. It means that LoS paths admit the group sparsity.

The precise estimation can be obtained by designing group sparsity over common MD.

On the other hand, the group sparsity formulation also can be applied for separating LoS

path from multipath, thus effect of NLoS bias is reduced.

In the literature, methods with group sparsity are usually grid-based, i.e., they divide

the parameter domain into many grids and assume that the true values are on the grids.

However, this assumption is hardly satisfied in practice and grid-based sparse recovery

inevitably encounters the grid mismatch problem, which degrades the performance [69].

To this end, super-resolution techniques such as the typical ANM methods are proposed

to tackle the aforementioned challenge. These methods avoid dividing discrete grids

and achieve sparse recovery on continuum. There are some existing works [98, 104] that

extend ANM methods to exploit group sparsity, named as group ANM here. In the next

subsection, for better clarity, we give a brief review of ANM and group ANM methods.

3.4.2 ANM and Group ANM

A brief review of ANM and group ANM is presented in subsection 3.4.2.1 and subsection

3.4.2.2, respectively.



3.4. Objective Formulation 65

(a) Sparsity Estimation

(b) Group Sparsity Estimation

Figure 3.2: Difference between sparsity and group sparsity method.
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3.4.2.1 ANM

Typical ANM stems from the frequency estimation from a superposition of complex sinu-

soids, given by

x =
I∑
i=1

γia(fi, φi) ∈ CN×1, (3.9)

where fi ∈ [0, 1), γi > 0 and φi ∈ [0, 2π) are unknown parameters to estimate, denoting

frequency, amplitude and phase of the i-th sinusoid, respectively, a(f, φ) ∈ CN×1 with

entry [a(f, φ)]n = ej(2πf(n−1)+φ) is defined as a linear spectral atom, n = 1, . . . , N , and I

denotes the number of sinusoids. Denote A = {a(f, φ) : f ∈ [0, 1), φ ∈ [0, 2π)} as the set

of atoms.

The atomic norm ‖ · ‖A is defined by identifying its unit ball with the convex hull of A,

conv(A), given by

‖x‖A = inf{t > 0 : x ∈ tconv(A)}

= inf
γi > 0, φi ∈ [0, 2π),

fi ∈ [0, 1)

{
I∑
i

γi : r =
I∑
i

γia(fi, φi)

}
. (3.10)

The atomic norm in (3.10) can be viewed as the continuous counterpart of the L1 norm

in grid-based CS methods. ANM is to solve a convex optimisation problem minimising

(3.10) under certain constraints. Especially, ANM problems can be equivalently solved

by SDP with performance guarantee when the frequencies {fi}Ii=1 are well separated [70].

3.4.2.2 Group ANM

Based on ANM, we consider that there are J measurement vectors of I complex sinusoids,

with the j-th vector given by

xj =
I∑
i

γi,ja(fi, φi,j) ∈ CNR , (3.11)
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where fi ∈ [0, 1), γi,j > 0 and φi,j ∈ [0, 2π) denote the frequency, coefficient and phase

of j-th measurement w.r.t. the i-th sinusoid, respectively. These coefficients and phases

varying with j indicate the incoherence of the signal models. In the (3.11), we could also

choose to absorb the phase φi,j into the coefficient γi,j as we did in (2.1).

Unlike the ANM promoting sparsity for each measurement separately, group ANM pro-

vides features across all the measurements with joint sparsity. In our framework, the

group ANM encourages that received LoS paths are originating from the common MDs.

The group atomic norm, denoted by ‖ · ‖G, can be expressed as

‖X‖G = inf
γi,j > 0,

φi,j ∈ [0, 2π),

fi ∈ [0, 1)

{
I∑
i

√√√√ J∑
j=1

γ2i,j : xj =
∑
i

γi,ja (fi, φi,j) , j = 1, . . . , J

}
, (3.12)

where X = {x1, . . . ,xJ} denotes the set of multiple measurements. The group atomic

norm in (3.12) is often regarded as the continuous counterpart of the L2,1 norm in the

MMV model of grid-based CS methods [105]. Group ANM is to solve a convex optimi-

sation problem minimizing (3.12) under certain constraints. Similar with ANM, group

ANM also can be transformed into SDP which is a convex optimisation with finite con-

strains [98].

Here we explain that the group ANM model and corresponding SDP can not accurately

address joint MD localisation with AP self-calibration. At a first glance, the MMV model

(3.11) is similar with the received signals (3.5) using multiple sensors, indicating the

potential of using group ANM for our scenario considered. However, there are at least

two significant differences between (3.11) and (3.5): 1) There exists unknown directional

errors δ in (3.5), which is not present in (3.11); 2) Atoms in (3.11) and (3.5) are different,

because fi in (3.11) are frequencies of line spectrum, while mi in (3.5) are not, due to the

non-linearity of the map mi 7→ fi,j. These differences hold back applying group ANM

directly in our scenario, while motivating us to incorporate self-calibration in the group
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ANM model, which we will introduce below.

3.4.3 Group ANM Model Incorporating Self-calibration

In this subsection, based on group ANM, we propose a new sparse recovery framework

that jointly address group sparsity exploitation and AP self-calibration.

In order to self-calibrate the directional error, we heuristically formulate directional errors

δ into the group atomic norm and then propose a new sparsity representation operator

for joint MD localisation, denoted by ‖ · ‖S ,

‖X‖S = inf
m,Γ,δ

{
I∑
i

√√√√ J∑
j=1

|γi,j|2 : xj =
∑
i

γi,jaj (mi, δj) , j = 1, . . . , J

}
, (3.13)

where X = [x1, . . . ,xJ ] is the set of noise-free measurements in joint MD localisation

with sensor self-calibration; the atoms aj (mi, δj) follows the definition in (3.6). Based

on the proposed operator (3.13), we can formulate a denoising lasso problem to jointly

estimate {M ,Γ, δ}:

min
m,Γ,δ

1

2

J∑
j=1

‖rj − xj‖22 + µ‖X‖S , (3.14)

where µ > 0 is the regularization parameter characterizing group sparsity and the bias

between received measurements rj and noise-free measurements xj.

Different from the group ANM model, (3.14) properly addresses antenna array directional

errors in passive joint MD localisation. However, difficulty emerges since (3.14) is a non-

convex optimisation problem with multiple unknowns as {M ,Γ, δ}. This is a consequence

of the fact that the proposed operator in (3.13) is not corresponding to convex hulls as

atomic norms due to the existence of δ. To solve the above problem, we propose a novel

method, detailed in Section 3.5.
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3.5 Solving Optimisation Problems

In this section, we propose GSE-SC method to solve (3.14), yielding estimates of unknown

parameters {M ,Γ, δ}. In each step, we add MD estimation to the support, while imple-

menting local improvement on the unknown variables. Here, local improvement is based

on a two-loop alternating gradient descent to guarantee the decline of the cost function

and avoid possible local minima. Meanwhile, the support set is pruned by removing weak

elements when they are found not contributing to reducing the loss function (3.14). To

clearly present the proposed GSE-SC, the framework is introduced in subsection 3.5.1,

and local improvement is detailed in subsection 3.5.2.

3.5.1 Framework

Our proposed method, GSE-SC, is based on such a scheme: the MD estimates are added

to the support set one by one, then all the unknown variables are improved locally by

alternating gradient descent and support set prune. Before introducing this algorithm

framework, we denote the counter of steps as t. Assume that after t− 1 steps, we obtain

the position candidate matrix M̂ t−1 that contains t − 1 MD position estimates, i.e.,

M̂ t−1 = [m̂1, . . . , m̂t−1], the corresponding coefficient matrix Γ̂t−1 with the (i, j)-th entry

γ̂t−1i,j , as well as the directional errors δ̂t−1 = [δ̂t−11 , . . . , δ̂t−1J ]T.

It is well-known that initialisation plays a crucial role in the iterative methods. In the t-th

step, proposed GSE-SC method initialises the MD location through using grid-based CS

methods for accuracy, particularly by solving the following L2,1 norm based lasso problem

as

Ŝ = argmin
S

1

2

J∑
j=1

∥∥et−1j −AjS1:G,j

∥∥2
2

+ µcs‖S‖2,1, (3.15)
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where µcs > 0 is the regularization parameter, the ‖ · ‖2,1 is L2,1 norm which is defined as

‖S‖2,1 =
G∑
g=1

√√√√ J∑
j=1

|Sg,j|2, (3.16)

and Aj is the dictionary matrix constructed by uniformly dividing the range of MD

position U intoG = gx×gy grids as m̄g, g = 1, . . . , G, and concatenating the corresponding

atoms, i.e., Aj = [· · · , aj(m̄g, 0), · · · ]. Here, et−1j is the residual signal of the j-th sensor

in the (t− 1)-th step, given by

et−1j = rj −
t−1∑
i=1

γ̂t−1i,j aj(m̂i, 0). (3.17)

Then once the convex optimisation problem (3.15) is solved. The t-th initialisation of MD

position, m̂t, is then derived from the optimal solution Ŝ by selecting the grid with the

largest intensity as

m̂t = m̄ĝ, ĝ = arg max
g

‖ŜT
g,1:J‖2. (3.18)

The t-th corresponding coefficient matrix Γt is then initialised by minimising the temp

residual as

min
Γj

∥∥∥∥∥rj −
t∑
i=1

γi,jaj(m̂i, 0)

∥∥∥∥∥
2

2

(3.19)

for j = 1, . . . , J , which can be solved via least squares, yielding the closed form solutions

as

Γ̂t
j = (BH

j Bj)
−1Bjrj, (3.20)

where Bj = [aj(m̂1, 0), . . . ,aj(m̂t, 0)]. Without prior knowledge, directional errors δ̂t is

thus initialized to be 0.

The initialized {M ,Γ, δ} is then improved locally by an alternative gradient descent

method to guarantee the decline of the cost function in (3.14) and avoid possible lo-

cal minimums, which is shown in the next subsection. Consequently, we will obtain

{m̂t, Γ̂t, δ̂t}, which implies the residuals {etj}Jj=1. Then we repeat the procedures from
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(3.15) to (3.20) to continue the refinement of {M ,Γ, δ} and this iteration terminates

when t reaches the maximum number of steps, tmax. Generally, tmax is set to be larger

than the MD number I.

Lastly, for the identification of the MD number I, we assume that the true I is pre-known

here. Therefore, the estimation of {m,Γ, δ} is actually given by
{
m̂I , Γ̂I , δ̂I

}
. Remark

that there are specific studies on this issue and some existing principles such as AIC [106]

and BIC [107] have been widely used. Our main contribution is not in this and previous

related works are available for reference. In Algorithm 3, we retain the framework with

unknown I for further extension on the identification of I.

3.5.2 Joint Estimation of {M ,Γ, δ}

In this subsection, we detail the local improvement procedure, which aims to minimise

the cost function in (3.14) by an alternating gradient descent method.

The difficulties of solving the optimisation problem (3.14) reflect on two aspects. On the

one hand, (3.14) is non-convex, most well known optimisation methods do not guarantee

a global optimal solution. On the other hand, array directional errors δ are key unknowns

to the non-convexity and complexity of (3.14). Therefore, how to self-calibrate δ by a

precise descent style is important and desired.

In response to the challenges above, our strategy has a two-loop structure called outer loop

and inner loop, respectively. Particularly, we simultaneously improve the joint estimation

of {M ,Γ, δ} and {M ,Γ} by gradient descent in the outer and inner loop, respectively.

In between, we prune the support set of M by removing weak elements as support(·),

a typical procedure commonly seen in ANM methods such as ADCG [108] and greedy

CoGEnT [109]. In summary, the role of this structure is reflected in the following three

points:

A1) The outer loop with gradient descent on {M ,Γ, δ} guarantees to bring the cost
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function in (3.14) down.

A2) The inner loop inside an outer loop is used to refine {M ,Γ} beforehand. In this

way, we avoid many possible local minimums in the outer loop iteration due to the

imprecise initialisation of {M ,Γ}.

A3) The two-loop structure is designed for self-calibrating the directional errors precisely.

This is reflected in that after the inner loop, {M ,Γ} reach their local minimums

for a certain δ. Then, the iteration direction and step size of gradient descent w.r.t.

{M ,Γ, δ} in the outer loop will mainly depend on the errors δ, which is beneficial

for precise and fast estimation of δ.

Therefore, this two-loop structure well achieves our purpose.

Particularly, we introduce the details of the two-loop structure here. As a preliminary,

we use k as the iteration counter of the outer loop, denote intermediate estimate by

·̂k−1 and initial ·̂k=0, where · belongs to the set {M ,Γ, δ} or {mi, γi,j, δj}. Also denote

by C(M ,Γ, δ) the cost function in (3.14) and by ∇◦C(M̂ k−1, Γ̂k−1, δ̂k−1) the partial

derivative of the cost function w.r.t. ◦ at (M̂ k−1, Γ̂k−1, δ̂k−1), where ◦ belongs to the

set {mi, γi,j, δj}. For the convenience of presentation, we remain the calculation of these

derivatives in Appendix A.

In the k-th outer loop iteration, the inner loop is first carried out, i.e., {m̂k−1
i , γ̂k−1i,j } is

renewed by gradient descent repeatedly until the maximum number of repetitions lmax,

which is large enough to guarantee the convergence. Note that we use this convergence

criterion for brief expression and other criteria such as stopping the iteration when the

gradients are small enough are also available. Here, let l denote the index of the inner

loop repetitions. Then, we perform


m̂l

i = m̂l−1
i − κl∇mi

C(M̂ l−1, Γ̂l−1, δ̂k−1),

γ̂li,j = γ̂l−1i,j − κl∇γi,jC(M̂ l−1, Γ̂l−1, δ̂k−1),

(3.21)
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where κl denotes the step size in the l-th repetition and is determined via Armijo line

search [110]. When the inner loop ends, we achieve the updated parameters denoted by

{M̃ k, Γ̃k}.

The aim of pruning support step is to produce sparse solution. Given the updated pa-

rameters {M̃ k, Γ̃k} of the inner loop, the support is pruned by

M̂ t = support(Γ̃t), (3.22)

where

Γ̃t
j = (B̃H

j B̃j)
−1B̃jrj, (3.23)

and

B̃j = [aj(m̃1, 0), . . . ,aj(m̃t, 0)]. (3.24)

By pruning support, the source locations are removed from candidate set when they are

found not contributing to reducing the loss function. This is motivated by the drawback of

greed step: the source location added at previous iteration may not be helpful comparing

with other later added sources.

Array directional error δ̂k is then updated by gradient descent together with the immediate

parameters {M̂ k, Γ̂k} as


m̂k

i = m̂k
i − κk∇mi

C(M̂ k, Γ̂k, δ̂k−1),

γ̂ki,j = γ̂ki,j − κk∇γi,jC(M̂ k, Γ̂k, δ̂k−1),

δ̂kj = δ̂k−1j − κk∇δjC(M̂ k, Γ̂k, δ̂k−1),

(3.25)

where the k-th step size κk is also determined via Armijo line search. The alternating

iterations, (3.21) and (3.25), continue to be carried out until k reaches the maximum

number of steps kmax, yielding the end of the outer loop. The specific GSE-SC method is
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summarized in Algorithm 3.

Algorithm 3: GSE-SC

Input: Signal R and parameters µ, κ0, tmax, kmax, imax,M̂
0 = Γ̂0 = ∅, δ̂0 = 0, e0j = rj

Output: M̂ tmax , Γ̂tmax and δ̂tmax

for t = 1, ..., tmax do
(1) Localise the next emitter with (3.18), yielding m̂t.

(2) Update the supports as M̂ t = [M̂ t−1, m̂t], the corresponding intensities Γ as
(3.20) and δ̂t = 0.
(3) Alternating gradient descent:
for k = 1, ..., kmax do

1) Refine {M̂ , Γ̂} using (3.21) while l 6 lmax (inner loop).
2) Prune support by (3.22).

3) Locally improve {M̂ , Γ̂, δ̂} together using (3.25).
end for

end for

Note that Algorithm 3 is proposed for the I > 2 case, but also available for the particular

I = 1 case mentioned in Section 3.3 by just viewing δj for j = 1, . . . , J as a single unknown

parameter and iteratively update it similarly as (3.25).

3.6 Numerical Simulation

In this section, we perform numerical simulations to compare our proposed method, GSE-

SC with existing methods including matched filtering (MF) [111], grid-based group CS

(GCS) [100, 112] and ADCG [108] , as well as Cramér-Rao bound (CRB) [16, 17]. For

these methods, we examine the influence of noises, the number of sensors J and the

number of sensors with sensor errors Jr on the recovery of MD positions m. Meanwhile,

the estimation of the directional errors δ and the MD number I using GSE-SC method

is also presented. Finally, in the GSE-SC method, we consider the necessary conditions

for precise localisation w.r.t. J and Jr.
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3.6.1 Simulation Setting

We consider using J sensors to passively receive signals from I = 2 MDs. Each sensor is

equipped with a ULA array and the number of array elements is NR = 12, j = 1, 2, . . . , J .

The intervals of the adjacent elements are set as half the wavelength, i.e., dj = λ/2. The

positions of these sensors are set randomly and uniformly in a circle with center (0, 0)

m and radius 120 m. The pre-assumed angles, α′j, are set as 0. Among these J sensors,

Jr sensors have unknown location errors, denoted imprecise sensors, and the locations of

the rest J − Jr sensors are exactly known. It is assumed known that which sensor has

errors and which is exactly located. In the simulations, the entries in δ are set randomly

in (0, π/30]. MD positions are set randomly and uniformly distributed in a circle with

center (0, 0) m and radius 40 m. The amplitude matrix Γ is set as a standard complex

Gaussian random matrix. We assume that the additive noise vj is i.i.d. white Gaussian

with zero mean and variance σ2
v .

We compare our approach GSE-SC with MF, GCS, ADCG methods and CRB. Partic-

ularly, MF method is to solve the following optimisation problem (3.26) w.r.t. m ∈ U ,

given by

m̂ = arg max
m∈U

J∑
j=1

‖aHj (m, 0)rj‖22
NR

. (3.26)

Note that in this way, only one MD can be estimated using the MF method. GCS method

solves the lasso problem (3.15). The position estimates of the I MDs correspond to the I

largest values in the set
{
‖ST

i,1:J‖2, i = 1, 2, . . . , gx×gy
}

. For ADCG method, it is detailed

in [108]. Based on the gradients in Appendix A, the CRBs are calculated as in [113] .

The parameter settings of these methods are shown as follows: The region of interest is

set as P = [−50, 50] × [−50, 50] m. The regularization parameter µ is set by borrowing

the corresponding idea in [75]. In GCS method, we set the grid number as gx = gy = 21.

In GSE-SC method, we set the total iteration times tmax = 4, the outer loop iteration

times kmax = 200 and the inner loop iteration times imax = 50.
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We use the indicator root mean square error (RMSE) in log10 scale to measure the recovery

performance of {m, δ}. Particularly, we carry out Tr Monte Carlo trials and denote RMSE

of {m, δ} by 
RMSE of M : log

√∑Tr
t=1

∑I
i=1 ‖m̂t

i − m̃t
i‖22

ITr

 ,

RMSE of δ : log

√∑Tr
t=1 ‖δ̂t − δ̃t‖22

JrTr

 ,

(3.27)

where ·̃ and ·̂ represent the true values and estimation of ·.

To further study the feasibility of GSE-SC method in certain scenarios such as I = 1, we

also use hit rate as the evaluation index. Particularly, it is recognized as a successful hit

if the RMSE of MD positions m is less than a specific threshold, denoted by Tp. Then

hit rate is defined as the probability of the successful hit.

3.6.2 RMSE versus SNR and Computational Cost

In this subsection, we compare the performance of MF, GCS, ADCG and GSE-SC meth-

ods with the CRB in terms of RMSE under different levels of noises.

Particularly, we set the total sensor number J = 8 and the imprecise sensor number

Jr = 4. We change SNR from 0dB to 40dB and perform Tr = 100 Monte Carlo trials for

each SNR and method. The CRBs of M and δ are calculated w.r.t. SNR. To calculate

RMSE as (3.27), we assume that I = 2 is pre-known. Fig 3.3(a) and Fig 3.3(b) show

RMSEs of M by tested methods and RMSEs of δ using GSE-SC method, respectively.

From Fig 3.3(a), we find that under the same SNR, RMSEs of M using GSE-SC method

are significantly lower than the counterparts of MF, GCS and ADCG methods, indicating

that GSE-SC outperforms the other methods in the estimation accuracy of MD positions.

And the RMSE of M decreases much faster along with the increase of SNR by GSE-SC

method than MF, GCS and ADCG methods. This happens because array directional

errors play a more important role than noises here, and GSE-SC efficiently alleviates the
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(a) RMSE of M

(b) RMSE of δ

Figure 3.3: RMSEs of M and δ versus SNR.
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errors, while MF, GCS and ADCG methods do not. Meanwhile, the RMSE of M using

GSE-SC method is close to CRB when SNR is large enough. Fig 3.3(b) demonstrates

that RMSE of δ using GSE-SC method decreases along with the increase of SNR and is

also close to CRB.

3.6.3 Computational Cost

Estimator Time [s]

GSE-SC 137.46
ADCG 82.18
MF (gx=gy=21) 0.121
GCS (gx=gy=21) 15.19
MF (gx=gy=64) 0.52
GCS (gx=gy=64) 400.05
MF (gx=gy=128) 1.91
GCS (gx=gy=128) 4543.5

Table 3.1: In case of SNR = 10 dB, the average running time of the considered estimators.
CPU: Intel Core i7-7700HQ CPU 2.80GHz.

Following the simulation setup in section 3.6.2, the computational cost of estimator is

measured by the average running time. The Both GSE-SC and ADCG methods are

working on continuous parameters space, and both MF and GCS methods are two discrete

based methods. As shown in Table 3.1, the GSE-SC has a longer running time than

ADCG. This is due to the ADCG focuses on estimating less unknown parameters. As for

discrete methods, the running time is increased by increasing the number of grid points

gx, gy.

3.6.4 Advantages of Group Atomic Norm based Method

In order to demonstrate the superior performance of group atomic based method, i.e.,

GSE-SC comparing with the corresponding discrete method, i.e., GCS, we change the

imprecise sensor number Jr into zero. Thus, the GCS also can be used for localising
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MDs. In this case, the GSE-SC can be viewed as continuous counterpart of the GCS.

In the discrete method, the ground truth is assumed on the grid points. However, the

discrete method may lead to the leakage effect when the ground truth is off-the-grid, and

deteriorate the estimation performance. On the other hand, a finer grid may mitigate

the off-the-grid leakage but may result in large computational cost. The average running

time and RMSE are shown in Table 3.2. Comparing with GCS, the GSE-SC can achieve

a higher precision with less running time.

Estimator Time [s] RMSE [m]

GSE-SC 139.11 2.02
GCS (gx=gy=64) 398.68 33.89

Table 3.2: In case of SNR = 10 dB and the imprecise sensor number Jr = 0, the average
running time and average RMSE of GSE-SC and GCS. CPU: Intel Core i7-7700HQ, 2.80GHz.

3.6.5 Convergence of GSE-SC

Following the simulation setup in section 3.6.2, we present results with a single trial sim-

ulation, to give some intuition on the convergence of GSE-SC. In the Fig 3.4, we show the

trajectory of objective function of local improvement step along with the iterative times.

The trajectory terminate close to the corresponding ground truth, which demonstrates

that GSE-SC obtains accurate estimation.
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Figure 3.4: Convergence of the proposed GSE-SC
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Theoretically, our proposed GSE-SC is globally convergence. The proposed GSE-SC com-

bines convex and non-convex optimisation techniques. Firstly, the convex optimisation

guarantees a global convergence. In the final step, the non-convex optimisation is a sub-

routine that takes estimations from the convex optimisation and attempts to use gradient

information to reduce the value of objective function. Therefore, this non-convex opti-

misation does not change the convergence guarantees. The non-convex step provides a

significantly sparser solutions by allowing the unknown parameters to move continuously

within the parameter space.

3.6.6 RMSE versus J

In this subsection, we investigate the impact of the number of sensors J on the estimation

performance of {M , δ}. Here, SNR is fixed as 25 dB, J is varied from 2 to 10 and Jr

is set as bJ/2c. We then carry out Tr = 100 Monte Carlo trials in each case of J . The

simulation results are given in Fig 3.5.

We observe from Fig 3.5 that RMSEs of M and δ using GSE-SC method first decrease

along with the increase of J and then tend to level off. Remarkably, there is a sharp drop

from J = 4 to J = 5, implying a necessary condition for GSE-SC method in this case

is J > 5. As for the simulated methods except the GSE-SC, these methods are failing

to estimate M without calibrating the array directional errors. In Fig 3.5(a), we find

that the RMSE of GSE-SC method is much smaller than the other tested methods and

close to CRB when J is larger enough, J > 5. As J increases furthermore, the RMSE

of GSE-SC and CRB both decline slowly which means the estimated performance cannot

be improved significantly after the necessary condition. This phenomenon helps in the

effective use of multiple arrays in practice. Fig 3.5(b) shows that the curve of the RMSE

of δ is similar with the RMSE of m. This is because that more sensors are beneficial to

the self-calibration on sensor errors, which further improves the localisation accuracy.
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(a) RMSE of M

(b) RMSE of δ

Figure 3.5: RMSEs of M and δ versus J .
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3.6.7 RMSE versus Jr

In this subsection, when the total sensor number J and SNR are fixed, we analyze the

effect of the number of sensors with errors Jr on the localisation performance. This indeed

reflects the performance bound of the multiple-array system in self-calibrating directional

errors. Particularly, we set J = 8, SNR as 25dB and then vary Jr from 1 to 8. The

simulation results are shown as Fig 3.6.

(a) RMSE of M

(b) RMSE of δ

Figure 3.6: RMSEs of M and δ versus Jr.

From Fig 3.6, we find that the RMSEs of M and δ using GSE-SC method are close to

CRB when Jr 6 4 and increase apparently when Jr > 5. This reflects a performance

bound of GSE-SC method in self-calibrating directional errors, and the limit is Jr = 4

when J = 8 in this scenario. However, in most cases, GSE-SC method still performs
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better than other tested methods.

3.6.8 Hit Rate versus J

In this subsection, we study that by using GSE-SC method, how many sensors are required

to achieve precise localisation in the cases with I = 1, 2, respectively. The corresponding

results are compared with the necessary conditions.

Here we fix the SNR as 25dB. Based on the simulation results in Fig 3.3 and Fig 3.5,

the threshold of hit rate is empirically set as Tp = 0.25. Particularly, we focus on the

scenarios with Jr = bJ/2c or Jr = J and I = 1, 2. We perform Tr = 100 Monte Carlo trials

in each case and the hit rate results, as well as the corresponding necessary conditions

(distinguished by markers), are shown in Fig 3.7(a). Then, as assuming the same δj for

j = 1, . . . , J for I = 1 case in Section 3.3, we also carry out Tr = 100 trials and the hit

rate result is shown in Fig 3.7(b).

From Fig 3.7(a), we find that when Jr = bJ/2c, hit rates with I = 1, 2 tend to be 1 as

J increases. And the least numbers of sensors for hit rate larger than 0.9 are 5 and 7

for I = 1, 2, respectively, which are larger than the necessary conditions. When Jr = J

and I = 2, hit rates grow slowly as J increases, since more unknowns are to be estimated

compared with the Jr = bJ/2c case. When Jr = J and I = 1, the failure of the joint

estimation of {m, δ} is unavoidable as discussed in Section 3.3, and hence the hit rate is

close to 0. Therefore, we do not mark its necessary condition. For the I = 1 case with

assuming the same δj, Fig 3.7(b) indicates that large enough J = 7 guarantees the hit

rate close to 1.
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(a) Different δj .

(b) The same δj .

Figure 3.7: Hit rate w.r.t. J with the same or different δj for j = 1, . . . , J .
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3.7 Conclusion

A novel super-resolved localisation method has been derived in presence of array direc-

tional errors. In order to achieve estimation and self-calibration simultaneously, we first

formulate a direct localisation model consist of location of MDs and errors. Then the group

sparsity is proposed to exploit the geometric consistency. Finally, we propose a method

called GSE-SC to solve this optimisation problem. Simulation results demonstrate that

GSE-SC method outperforms existing methods including MF, GCS and ADCG methods.



Chapter 4

MuG : A Multipath-Exploited and

Grid-free Localisation in Multipath

Environments

Localisation is challenging in presence of NLoS paths. Typical methods focus on reducing

adverse impact due to the NLoS bias by separating LoS/NLoS path or NLoS mitigation.

However, the complete reducing of the impact may not always succeed which degrades

the localisation accuracy. Instead of dealing with NLoS bias, this Chapter presents a

novel localisation method that exploits both LoS and NLoS paths in a much more general

setting. Another unique feature is avoiding hard decisions on separating LoS/NLoS path

and hence relevant possible error. A grid-free sparse inverse problem is formulated for

localisation which avoids error propagation between multiple stages and handles multipath

in a unified way. Extensive localisation experiments on different propagation environments

and localisation systems are presented to illustrate the high performance of the proposed

algorithm comparing with theoretical analysis. Especially, in one of the case studies,

single antenna AP can locate a single antenna MD even when all paths are NLoS, which

according to the authors knowledge is the first time in the literature. The rest of the

Chapter is organized as follows. Section 4.1 introduces backgrounds of the problem.

86
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Section 4.2 describes the signal model. We adopt a commonly assumed setup in the

literature for the purpose of highlighting the idea without being drown into great technical

details. Section 4.3 presents the proposed method to solve the localisation problem in

multipath environments. Firstly, we show the feasible and geometric insight behind the

proposed method. Then, a unified formulation is proposed for LoS path and NLoS path.

Finally, we present a group sparse recovery based optimisation problem. Section 4.4 shows

some numerical simulation results. The conclusion is drawn in Section 4.5.

4.1 Introduction

This chapter considers the general problem of localising a transmitting MD based on

measurements at APs of which the locations are given. We follow the standard setup

of this problem [1–4, 10–12, 14, 15, 27–31] by assuming a cooperative scenario where the

MD and APs are synchronised, the transmitted signals from the MD are known at APs,

and the signals from different MDs are orthogonal so that without loss of generality it

suffices to consider only one MD. This chapter focuses on localisation in a 2D plane for

compositional clarity though the extension to 3D space is straightforward.

A major challenge in localisation is the efficiency and accuracy of the estimation in pres-

ence of NLoS paths. Since without prior knowledge, the NLoS paths carry no information

for localising MD’s location. This claim is supported by the analysis in [16, 17], which

showed that the CRB of the source location estimate depends only on the LoS paths. Dif-

ferent from the LoS path, NLoS paths occur when there is a scatter between MD and AP

which results in different signal model and commonly modeled as LoS path with additive

NLoS bias. In the literature, the NLoS bias is the majority of localisation error, and it is

defined as a large and always positive error which results in additional propagation delay,

attenuation, and angular bias. Typical environments including such as residential, office,

and urban area have a high occurrence of NLoS situations. In such an environment, the

use of the GPS might be impractical. Therefore, it is critical to understand the impact
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of NLoS conditions on localisation systems and to develop techniques that exploit them

for localisation.

The optimal strategy is to reduce effect of NLoS paths as much as possible, and exploit

information carried by LoS paths to infer the location of MD. Many methods have been

investigated to deal with NLoS paths which fall in two categories: LoS/NLoS separation

and NLoS removal.

1. The LoS/NLoS separation focus on separating LoS/NLoS paths, and estimating the

location of MD by using LoS paths. After separation, the NLoS paths are either

discarded [10–14,18] or used for restricting the feasible region [15,19,20].

2. The NLoS mitigation is typically adopted to reduce of the adverse effect NLoS paths,

assuming that NLoS path has been separated or statistical information is available.

In [36], the impact of NLoS path is removed with proper weighting or scaling.

In both two categories, the NLoS separation play a curial role and it can be achieved by

by statistical approach or geometrical approach. 1) Under the statistical methods, the

NLoS bias is considered as a random variable that can be constant [10], a random process

of a Gaussian [11,13,14], or uniform distribution [18] with given parameters. In [12], the

LoS/NLoS path can be separated by comparing the estimated variance of measurement

with the prior historical information of LoS/NLoS path. To build an accurate statistical

model, these methods require prior information about the distribution of NLoS paths or

historical information. 2) In the geometrical method, the geometric relationship between

the MD and AP is exploited to separate LoS paths based on measured ToF or DoA.

In [47], the method exploits the fact that LoS paths typically arrive with a shorter ToF

than NLoS paths. In [15,47], a CS based framework is proposed for separating LoS path

by exploiting the fact that LoS paths must originate from the same MD.

Discarding the NLoS paths may not be a viable option, as the number of available LoS

paths may be limited. There are few works exploiting NLoS path for localisation in
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NLoS and OLoS environment, but the methods are designed for some special settings.

In [1–4,114], methods are designed for multi-antenna system where extra angle information

is used for localisation. Typically, the MD is estimated in a two-step approach, first the

intermediate parameters such as DoA, DoD [1–4, 114], then fusing them for localisation.

It is also clear that the accuracy of localisation highly depends on the path parameter

estimation. Error propagation is inherent since the accuracy of localisation highly depends

on the intermediate parameter estimation. Another technical difficulty comes from data

association between intermediate parameters such as ToF/DoA/DoD information and

locations of scatters. As the same scatter creates different paths and gives rise to different

intermediate parameters for different APs. When there are multiple scatters in the scene,

the task of associating the intermediate variables estimates to scatters is an NP-hard

problem for which the solution cannot be solved efficiently.

In this Chapter, we first study the geometry of localisation in multipath environment. We

identify and analyse scenarios that localisation requires exploitation of NLoS paths and

incorporating scatters’ unknown locations. Motivated by the geometric insight, we then

propose the usage of virtual scatters so that hard-decision, separation, and removal of

NLoS paths are avoided. An optimisation formulation is then developed where a grid-less

approach eliminates the tradeoff of discrete grids between localisation precision and com-

putational complexity. In the numerical demonstrations, the performance improvement

of our approach has been illustrated. In one of the numerical case studies, we show that

localisation is possible even when all propagation paths are NLoS and there is no antenna

array in the system to provide direction information, which according to the authors’

knowledge is the first time in the literature.

To summarise, we propose an end-to-end optimisation framework which can be directly

applied to different system configurations and various propagation environments. The

technical novelties behind are virtual scatter and direct map, sparse recovery formulation

and a grid-free formulation as introduced in Section 4.3.2, 4.3.3 and 4.3.4. As shown

in Table 4.1, MuG is a universal scheme that can work for all three propagation envi-
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ronments. Note that the algorithm proposed in [12, 36] also can be extended for other

propagation environment. But the method proposed in [12] relies on additional laborious

experimental campaigns to build up a database of NLoS error. The performance of [36]

depends on how much a priori statistical information is available for localisation.

LoS environment OLoS environment NLoS environment
ToF based
techniques

MuG, [10–12,14,20,
27,28,36,115]

MuG, [12]
MuG, [10–12,14,20,
27,28,36]

Hybrid ToF-
DoA/DoD
based tech-
niques APs

MuG, [1–4, 15, 114,
116]

MuG, [1–5,114] MuG, [1–4,15,114]

Table 4.1: Without any prior information, MuG is the only technique can be used for all system
setups and propagation conditions.

4.2 System Model

We focus on the following localisation problem by adopting a commonly assumed setup

in the literature [1–4, 10–12, 14, 15, 27–31]. Consider a wireless communication system

where J cooperative APs jointly estimate the location of one MD. We include two types

of localisation systems where all APs can be equipped with single antenna and ULA with

NR > 0 antenna elements. It is typically assumed that via control signalling, the MD

and the involved APs are synchronised [1, 28] and the transmitted waveform from the

MD is known to APs. In the signal model, we only consider either LoS or NLoS with

single-bounced signals from the MD to the APs. This is motivated by the fact that signals

scattered twice or more times typically suffer from great propagation losses and are thus

less perceptible [4, 5]. It is noteworthy that the above setup is a simplification of actual

systems. For example, the assumption of synchronisation and the complete discard of

multiple-bounced signals may be problematic in practice. Nevertheless, the above setup

is widely adopted in the literature [1–4,10–12,14,15,27–31] for the purpose of highlighting

the approach/idea without being drowned into great technical details.
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The MD is assumed to transmit a signal h(t) ∈ C with a single antenna. The DoD

information is assumed not available for localisation. In practice, the observation at the

j-th AP is uniform N time-samples of the received signal, which can be expressed as

Yj = Y LoS
j (m) + Y NLoS

j (m, s) + Vj, (4.1)

where Yj ∈ CN×NR denotes the general form of received signal; The term Y LoS
j rep-

resents the received LoS path; Y NLoS
j represents the received NLoS path; For the LoS

environment, the observation is Yj = Y LoS
j (m) + Vj; For the OLoS environment, the

observation is Yj = Y NLoS
j (m, s) + Vj; For the NLoS environment, the observation is

Yj = Y LoS
j (m) +Y NLoS

j (m, s) +Vj; m = [mx,my]T denotes the unknown location of the

MD, and mx and my are the horizontal and vertical coordinates, respectively; without

loss of generality, the position of scatter is s = [sx, sy]T and Vj is the additive noise. More

in details,

Y LoS
j (m) = γjh

(
τLoSj (m)

)
a
(
θLoSj (m)

)T
, (4.2)

Y NLoS
j (m, s) =

K−1∑
k=1

γj,kh
(
τNLoS
j,k (m, s)

)
a
(
θNLoS
j,k (m, s)

)T
, (4.3)

where γ ∈ C is unknown coefficient modelling the signal attenuation along the path; K is

the number of received paths at the AP; the position of the AP is APj = [APj
x, APj

y]T;

h (τj) is the vector of N time-samples at the j-th AP with dealy τj :

h (τj) =

[
h(0− τj), h(

1

fs
− τj), · · · , h(

N − 1

fs
− τj)

]T
, (4.4)

where fs is the sampling frequency; a(θ) ∈ CNR reflects the phase differences of received

signals due to DoA and it takes the form of

a (θ) =
[
1, ei

2π
λ
L sin(θ), · · · , ei

2π
λ
L sin(θ)(NR−1)

]T
, (4.5)

where λ is the wavelength of the carrier, and L is the distance between adjacent array
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elements; NR > 0 is the number of antenna elements at AP; Vj is the additive noise.

We would like to emphasise the difference between LoS path and NLoS from the compu-

tation of ToF and DoA. The LoS path is directly originating from MD m. Therefore, the

unknown parameters of ToF τLoSj (m) and DoA θLoSj (m) are only related to location of

MD m :

τLoS (m) = ‖m−AP ‖2/c, (4.6)

θLoS (m) = atan(mx − AP x)/(my − AP y). (4.7)

Different from the LoS path, the NLoS path is originating from MD and scattering on

scatter. The NLoS parameters τNLoSj (m, s) and θNLoSj (m, s) are specific to the location

of MD m and scatter s, which can be written in the following form:

τNLoS (m, s) = (‖m− s‖2 + ‖s−AP ‖2)/c, (4.8)

θNLoS (m, s) = atan(sx − AP x)/(sy − AP y). (4.9)

Note that our aim is providing a unified method to tackle localisation problem for dif-

ferent environments and localisation systems. The propagation environments can be

LoS environment, OLoS environment and NLoS environment. Different from the lit-

erature [10–15, 18–20, 36], we assume that the estimator does not know the information

about the propagation environment and statistical distribution of NLoS path. Thus, it

is very difficult to separate LoS/NLoS paths. Additionally, there is no guarantee that a

specific path exists from the MD to a particular AP, e.g. the OLoS environment. The

minimum delay path may correspond to a NLoS path. Therefore, most existing methods

might be infeasible to be implemented here. As for the localisation system, we assume

the number of antenna elements NR > 0 is the number of ; NR = 1 represents the single
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antenna AP that only ToF information is available; NR > 1 represents multi-antenna AP

that both ToF and DoA are available for localisation.

4.3 Proposed MuG method

4.3.1 Feasibility and Geometry

Without prior knowledge, it was shown in [16, 17] that the CRB of the MD location

estimate depends only on the LoS paths, and NLoS paths cannot used for localisation.

Under this condition, typical methods suggest that the NLoS paths are separated and

discarded, and the MD location is estimated by using only the LoS paths. However,

there is no guarantee that the mistaken sapration can be avoided completely and the

LoS paths always exist from the MD to APs, which degrades the performance of these

localisation algorithms. Towards localisation with both LoS paths and NLoS paths, the

underlying geometry becomes much more complicated and much less discussed. In the

following, we study the geometry behind localisation with multipath to demonstrate that

the proposed MuG method can exploit both LoS paths and NLoS paths for localisation.

In order to show it is a unified method, we start from the most generic single antenna

APs system where only ToF information is available. Then we demonstrate that the same

localisation principle can be applied to other system configuration such as: APs equipped

with antenna arrays where both ToF and DoA information can be extracted.

In this subsection, we assume that LoS path and NLoS path is separated and data as-

sociation between intermediate parameters and scatters is solved. In the literature, they

are two crucial problems to affect performance of traditional localisation methods. The

assumptions are made for following reasons: 1) We focus on identifying and analysing

geometry of scenarios that incorporate both LoS and NLoS path for localisation. 2)

Motivated by the geometric insight, we propose the usage of virtual scatters so that

hard-decision on LoS/NLoS path separation is avoided completely. Moreover, the direct
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map from location of MD and scatters is proposed so that the notorious data association

problem is avoided.

4.3.1.1 Single Antenna APs

Typical localisation methods in the literature rely on trilateration algorithm which is the

most basic and intuitive method to determine the location of the MD. The basic principle

of this algorithm is to estimate the location of the MD (in 2D plane) by requiring at least

three APs with known locations and their distances from the MD to be localised. Given

the distance from MD to the AP, it is known that the feasible location of MD (FLMD)

must be along the circumference of a circle centered at AP and a radius equal to the

distance from MD to AP. The intersection of these three circles is the location of the

unknown MD. The principle of this method is illustrated in Fig 1.3.

Trilateration localisation only focuses on estimating location of MD and it is effective

when only LoS paths are presented. However, in case of multipath, there is much more

uncertainty in localisation. For LoS path, it is directly originating from MD, which has the

shortest propagation distance between MD and AP. For a given AP, the FLMD of LoS path

is along the circumference of a circle, as illustrated in Fig 4.1(a). The corresponding radius

equals the measured ToF times speed of light. Different from LoS path, the NLoS path

is originating from MD and scattering on scatter. Therefore, for a given AP, the FLMD

of NLoS path is restricted to a disk region, as depicted in Fig 4.1 (b). The corresponding

radius is summation of the distance between MD and scatter and the distance between

scatter and AP.

With increase in the number of multipath, the FLMD could be further reduced. In the

case of the localisation system with multiple APs, we assume intermedia parameters and

associated scatters are known. This assumption is reasonable, since the locations of MD

and scatters are directly estimated by proposed sparse inverse problem which avoids es-

timating of intermedia parameters and data association problem. For a pair of APs, the
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FLMD obtained by two LoS paths contains two estimations which are located at intersec-

tions of two circles, as depicted in Fig 4.2(a). In the case of two NLoS paths, the FLMD

is intersection of two disk region and it still contains infinite number of estimations, as

depicted in Fig 4.2(b). For a group of three APs, FLMD obtained by three LoS paths con-

tains one estimation which is uniquely located at intersection of three circles, as depicted

in Fig 4.3(a). In presence of three NLoS paths, directly applying trilateration principle

results in erroneous estimation since the biased propagation distance, as illustrated in Fig

4.3(b).

Theorem 4.1. In D = 2, 3 dimensional space, given D LoS paths originating from the

same MD, the estimated location of MD obtained by trilateration localisation method is

not unique.

Proof. In D dimensional space, let γL denote FLMD obtained by LoS path, d is the

propagation distance from MD m ∈ RD to AP AP ∈ RD. The corresponding FLMD γL

is formulated as

γL =
{
m ∈ RD|‖m−AP ‖2 = d

}
. (4.10)

The FLMD obtained by LoS path γL is along the circumference of a circle centered at

AP AP , and the radius d is equal to propagation distance of LoS path.

As for LoS paths, consider a set CLoS =
{
γL1 , γ

L
2 , · · · , γLJ

}
of J circles, whose centers

{AP }Jj=1 and radius {d}Jj=1 are known. The intersection of J circles in CLoS is denoted

by

ILoS(J) = ∩γLj , for j = 1, ..., J. (4.11)
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More precisely, it can be expressed as

ILoS(J) = {m ∈ RD|‖m−APj‖2 = dj,

for j = 1, ..., J.}. (4.12)

In case of D = 2 space, the number of LoS paths of localisation is then J = 2. The

intersection of J = 2 circles ILoS(2) is determined by solving following equations

‖m−AP1‖2 = d1 (4.13)

‖m−AP2‖2 = d2 (4.14)

Without loss of generality, we can rotate and translate any two APs asAP1 = [0, 0]T,AP2 =

[AP x
2 , 0]T. By squaring (4.13) from (4.14) and then eliminating my, we have

(mx − AP x
2 )2 + (d1)

2 − (mx)2 = (d2)
2. (4.15)

Expand and simplify (4.15)

−2mx(AP x
2 )2 + (AP x

2 )2 + (d1)
2 = (d2)

2. (4.16)

Then mx of m is

mx =
(d1)

2 − (d2)
2 + (AP x

2 )2

2AP x
2

. (4.17)

Substituting (4.17) into (4.13), the my of m is

my = ±
√

(d1)2 − (mx)2. (4.18)

Based on (4.12) with D = 2, we have (mx)2 ≤ (d1)
2. Therefore, (4.18) indicates the

trilateration solution determined by D = 2 LoS paths is not uniquely. Especially, in case
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of mx = d1, mathematically speaking, it is referred as a special case that the two possible

solutions are overlapped.

In case of D = 3 space, the number of LoS paths of localisation is then NL = 3. The

intersection of NL = 3 circles ILoS(3) is determined by solving following equations

‖m−AP1‖2 = d1, (4.19)

‖m−AP2‖2 = d2, (4.20)

‖m−AP3‖2 = d3. (4.21)

Without loss of generality, we can rotate and translate any three APs asAP1 = [0, 0, 0]T,AP2 =

[AP x
2 , 0, 0]T,AP3 = [AP x

3 , AP
y
3 , AP

y
3 ]T. By subtracting (4.19) and (4.20) to solve for mx,

we have

mx =
(d1)

2 − (d2)
2 + (AP x

2 )2

2AP x
2

. (4.22)

Then we subtract (4.19) and (4.21) to solve for my:

my =
(d1)

2 − (d3)
2 + (AP x

3 )2 + (AP y
3 )2 − 2AP x

3m
x

2AP y
3

(4.23)

Based on the expression of mx and my, we can subtract it into (4.19) to solve for mz:

mz = ±
√

(d1)2 − (mx)2 − (my)2, (4.24)

Based on the (4.12) with D = 3, we have (mx)2+(my)2 ≤ (d1)
2. Therefore, (4.24) indicates

the trilateration solution determined by D = 3 LoS paths is not unique. Especially, in

case of (mx)2 + (my)2 = (d1)
2, mathematically speaking, it is referred as a special case

that the two possible solutions are overlapped. �

Theorem 4.2. In D = 2, 3 dimensional space, if all paths are NLoS, the estimated location

of MD obtained by the trilateration localisation method is not unique.
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Proof. In D dimensional space, let γN denote FLMD obtained by NLoS path, d is the

propagation distance from MD m ∈ RD to AP AP ∈ RD. The corresponding FLMD γN

is formulated as

γN =
{
m ∈ RD|‖m−AP ‖2 + b = d

}
, (4.25)

where 0 < b < d is the NLoS bias to model the extra propagation distance due to

scattering. Therefore, as illustrated in Fig 4.1 (b), the FLMD γN obtained by NLoS path

is a disk region centered at AP AP , and the radius d is equal to the propagation distance

of NLoS path.

As for NLoS paths, consider a set CNLoS =
{
. . . , γNj,g, · · · , γNJ,G

}
of JG circles, whose centers

{APj}Jj=1 and radius {dj,g}J,Gj=1,g=1 are known; J and G are number of APs and scatters,

respectively. The intersection of JG circles in CNLoS is denoted by

INLoS(JG) = ∩γNj,g, for j = 1, ..., J, g = 1, ..., G. (4.26)

More precisely, the intersection of JG circles can be expressed as

INLoS(JG) = {m ∈ RD|‖m−APj‖2 + bj,g = dj,g,

for j = 1, ..., J, g = 1, ..., G}. (4.27)

Note that the number of unknowns D+JG are always larger than the number of equations

JG for solving. The (4.27) is an underdetermined problem whose solution cannot be

uniquely determined. �

Theorem 4.2 indicates that increasing the number of NLoS paths, the FLMD obtained by

trilateration localisation contains infinite number of estimations. In NLoS environment,

ToF-based range estimates are positively biased with high probability, since the first ar-

riving NLoS path travels a distance that is in excess of the true distance between MD and
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APMD

FLMD

(a)

APMD

FLMD

(b)

Figure 4.1: (a) For a given AP, FLMD obtained by LoS path is along the circumference of a
circle. (b) For a given AP, FLMD obtained by NLoS path is restricted to a disk region.

APMD

FLMD

(a)

APMD

FLMD

(b)

Figure 4.2: (a) For a given pair of APs, FLMD obtained by two LoS path contains two intersec-
tions of two circles. (b) For a given pair of APs, FLMD obtained by NLoS path is intersection
of two disk region.

APMD

FLMD

(a)

APMD

FLMD

(b)

Figure 4.3: (a) For given group of three APs, FLMD obtained by LoS paths contains one
integration of three circles. (b) For given group of three APs, FLMD obtained by NLoS paths
is intersection of three disk region.
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AP. These effects result in FLMD that involves much more uncertainty estimation com-

pared with LoS paths. The accuracy of estimated MD can be adversely affected. Recall

the estimator (1.45) derived for NLoS environment is a constrained nonlinear underdeter-

mined problem. There might be an infinite number of solutions. Therefore, localisation

methods in the literature suggest to use LoS paths for localisation. The technical dif-

ficulty comes from that the multipath signal is mixture of LoS paths and NLoS paths.

Separating LoS path from multipath requires prior information and mistaken separation

can not be avoided completely.

Theorem 4.3. Except for the non-general setting that D+1 APs are placed in alignment.

In D = 2, 3 dimensional space, the location of scatter can be uniquely estimated, given

D + 1 NLoS paths scattered from the same scatter.

Proof. In D dimensional space, let γs denote feasible location of scatter (FLS) obtained

by NLoS paths, d is the propagation distance from MD m ∈ RD to AP AP ∈ RD. The

corresponding FLS γs is formulated as

γsj,i =
{
s ∈ RD|‖s−APj‖2 − ‖s−APi‖2 = dj − di, j 6= i

}
. (4.28)

Based on time different of flight (TDoF), the FLMD obtained by two NLoS paths γs is a

half-hyperbola with two focus at APj and APi, respectively.

As for NLoS paths, consider a set Cs =
{
γs1,2, γ

s
1,3, · · · , γsJ−1,J

}
of J !

2(J−2)! half-hyperbolas

whose focuses {APj}Jj=1 are known. The intersection of NH = J !
2(J−2)! half-hyperbolas in

Cs is denoted by

IS(NH) = ∩γsi,j, for j 6= i, and j, i = 1, ..., J. (4.29)
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More precisely, it can be expressed as

IS(NH) = {s ∈ RD|‖s−APj‖2 − ‖s−APi‖2 = dj − di,

for j 6= i, and j, i = 1, ..., J.}. (4.30)

In case of D = 2 dimensional space, the number of NLoS paths of localisation is then

NH = 3. The intersection of hyperbolas IS(3) is determined by solving following equations

‖s−AP1‖2 − ‖s−AP2‖2 = d1 − d2, (4.31)

‖s−AP1‖2 − ‖s−AP3‖2 = d1 − d3, (4.32)

without loss of generality, we can rotate and translate any three APs asAP1 = [0, 0]T,AP2 =

[AP x
2 , 0]T,AP3 = [AP x

3 , AP
y
3 ]T. The presented solution is essentially transforming the hy-

perbolic equation into linear form associated with s = [sx, sy]T. We rewrite (4.31) as a

difference of squares:

‖s−AP1‖22 − ‖s−AP2‖22 = (d1)
2 − (d2)

2. (4.33)

Let AP1 = [0, 0]T,AP2 = [AP x
2 , 0]T. We have

sx =
(d1)

2 − (d2)
2 + (AP x

2 )2

2AP x
2

. (4.34)

By similar analysis of the propagation difference between d1 and d3, (4.32) can be written

as:

sy =
(d1)

2 − (d3)
2 + (AP x

3 )2 + (AP y
3 )2 − 2AP x

3 s
x

2AP y
3

. (4.35)

When AP y
3 = 0, it indicates the non-general setting that 3 APs are placed in an aligned

line. From mathematical expression of sx (4.34) and sy (4.35), in D = 2 dimensional

space, the unique solution of scatter requires at least D = 3 NLoS paths.
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In case of D = 3 dimensional space, the number of NLoS paths of localisation is then

NH = 4. The intersection of hyperbolas IS(4) is determined by solving following equations

‖s−AP1‖2 − ‖s−AP2‖2 = d1 − d2, (4.36)

‖s−AP1‖2 − ‖s−AP3‖2 = d1 − d3, (4.37)

‖s−AP1‖2 − ‖s−AP4‖2 = d1 − d4, (4.38)

Without loss of generality, we can rotate and translate any four APs asAP1 = [0, 0, 0]T,AP2 =

[AP x
2 , 0, 0]T,AP3 = [AP x

3 , AP
y
3 , AP

z
3 ]T,AP4 = [AP x

4 , AP
y
4 , AP

z
4 ]T. By similar analysis as

in D = 2 dimensional space, we can rewrite (4.36) as a difference of squares:

‖s−AP1‖22 − ‖s−AP2‖22 = (d1)
2 − (d2)

2 (4.39)

Let AP1 = [0, 0, 0]T,AP2 = [AP x
2 , 0, 0]T. We have

sx =
(d1)

2 − (d2)
2 + (AP x

2 )2

2AP x
2

. (4.40)

By similar analysis of the propagation distance between d1 and d3, (4.37) can be written

as:

2AP y
3 s

y + 2AP z
3 s

z = E1, (4.41)

where

E1 = (d1)
2 − (d3)

2 + (AP x
3 )2 + (AP y

3 )2 + (AP z
3 )2 − 2AP x

3 s
x. (4.42)

By similar analysis of the propagation distance between d1 and d4, (4.38) can be written

as:

2AP y
4 s

y + 2AP z
4 s

z = E2, (4.43)
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where

E2 = (d1)
2 − (d4)

2 + (AP x
4 )2 + (AP y

4 )2 + (AP z
4 )2 − 2AP x

4 s
x. (4.44)

By substituting (4.41) and (4.42) into (4.43) and (4.44), we have

sy =
E1 − 2AP z

3 s
z

2AP y
3

, (4.45)

sz =
AP y

3E2 − AP y
4E1

2AP y
4AP

z
3 − 2AP y

3AP
z
4

. (4.46)

When AP y
3 = 0, AP y

4 = 0, it indicates one of non-general settings that 4 APs are placed

in aligned plane. From mathematical expression of sx (4.40), sy (4.45) and sz (4.46), in

D = 3 dimensional space, the unique solution of scatter requires at least D = 4 NLoS

paths.

�

Typical methods in the literature only consider location of MD, although the locations of

scatters can help for localising the MD. The proposed MuG method concerns locations

of MD and scatters, which is able to exploit the information carried by LoS paths and

NLoS paths. Given a group of three APs, one may uniquely determine the location of

scatter by time different of flight (TDoF) based technique. Remark that the estimated

scatter is overlapped with MD in case of LoS paths. More specifically, for single TDoF

measurement between the j-th AP APj and the l-th AP APl, the feasible locations of

scatter correspond to a hyperbola. As a result, it can be shown in Fig 4.4 that the scatter

is located at intersection of at least three hyperbolas. The FLMD further generates a circle

which is centred at the estimated scatter. The corresponding radius is the propagation

distance between MD and scatter which can be computed based on estimated scatter and

ToF of NLoS path. In Fig 4.4, the demonstration of FLMD is illustrated as green solid line.

Once more than three scatters have been determined. Then following the trilateration

method, the location of MD is located at the intersection of these FLMDs. See Fig 4.5
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FLMD

APMD Scatter

Figure 4.4: TDoF based localisation method for localising scatter. The FLMD further generates
a circle in green which is centred at the estimated scatter.

for an illustration. When the multipaths are the LoS paths, the radius of FLMD is zero

which indicates the location of MD overlaps with estimated scatter. Therefore, in OLoS

environment, the unique FLMD is obtained by acquiring at least three APs and three

scatters. In the case of LoS environment, the location of MD can be determined by three

APs which coincides with traditional trilateration localisation method presented in Fig

4.3(a).

MD Scatter

FLMD

Figure 4.5: In case of NLoS paths, the trilateration localisation method can be applied to find
location of MD when there are three estimated scatters.
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4.3.1.2 APs with Antenna Arrays

The proposed localisation principle concerns locations of MD and scatters, and it can

be extended for different system configuration. We take the multi-antenna APs as an

example, in which both ToF and DoA measurements are available. As for a LoS path,

the DoA of LoS path indicates the propagation direction from MD. Thus, for a given

AP, the FLMD obtained by LoS path contains unique estimated MD based on known

ToF and DoA (see Fig 4.6(a) for illustration). Unlike the LoS path, the DoA of NLoS

path indicates the direction from scatter. For a given AP, the location of scatter can

be anywhere along the angle direction line (see Fig 4.6(b) plotted with ‘red solid line’).

However, the FLMD of NLoS path is involved much more uncertainty, since it depends

on location of scatter. Two possible scatters obtained by NLoS paht are depicted in Fig

4.6(b), the corresponding FLMD is along the circumference of circles centered at scatters

which lead to infinite feasible locations of MD.

Unlike the LoS path, the NLoS path cannot be directly used for localising MD. For a

given pair of APs, the FLMD of LoS paths is uniquely obtained by finding intersection

of angle direction lines from different APs (see Fig 4.7(a) for illustration). However, this

idea can not be used for finding FLMD of NLoS paths. Different from FLMD obtained

from two LoS paths, the FLMD obtained by two NLoS path has much more uncertainty.

Because the DoA indicates the direction from scatter which is irrelevant with location of

MD. As shown in Fig 4.7(b), the corresponding FLMD is along the circumference of a

circle centered at the scatter.

In order to incorporate NLoS paths for localisation, the localisation principle is also

relying on locations of scatters. Given a pair of two APs and received NLoS paths, one

may uniquely determined is location of scatter by finding the intersection of DoA lines.

Since the NLoS paths are scattering from the same scatter. As shown in Fig 4.7(b), the

corresponding FLMD is along the circumference of circle centered at scatter. Recalling the

idea presented in Fig 4.5, the process of estimating location of MD is the same as single
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APMD

DoA

APMD

FLMD

Scatter

DoA

Figure 4.6: (a) As for LoS path, the FLMD is uniquely determined based on ToF and DoA
information. (b) As for NLoS path, the FLMD contains infinite feasible solutions which is along
the circumference of circles centered at scatters.

APMD

DoA

APMD Scatter

DoA

FLMD

Figure 4.7: (a) As for LoS paths, the FLMD is located at intersection of two angle direction
lines from different APs. (b) As for NLoS paths, the FLMD is along the circumference of circle
centered at the scatter.

antenna case. The unique FLMD is possible by applying the trilateration localisation

method when the localisation system contains more than three scatters. Therefore, in

OLoS environment, the unique FLMD is obtained by acquiring at least two APs and

three scatters. In the case of LoS environment, the location of MD can be determined by

at least two APs. Note that above processes are implicitly embedded into our end-to-end

framework.

4.3.2 Virtual Scatter and Direct Map

While much efforts in the literature focus on separating and removing NLoS paths [10–15],

our approach avoids hard decision on separating propagation path and accommodates
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Virtual Scatter

AP

 
MD

(a)

Virtual Scatter

MD

AP AP

AP

(b)

Figure 4.8: (a) When there is only one LoS path existing in the environment, the location of
the virtual scatter can be anywhere on the straight line between AP and MD. This arbitrariness
will not affect the localisation performance, as the ultimate goal is to locate the MD. (b) When
there are multiple LoS paths existing in the environment, a sparsity constraint in (4.61) will lead
to a solution that all virtual scatters merge to one being located at the MD position. Technical
novelties behind are the virtual scatter, direct map and a grid-free formulation as introduced in
Section 4.3.2, 4.3.3 and 4.3.4.

both LoS and NLoS paths in a unified way. We simplify the two-component model

Yj = Y LoS
j + Y NLoS

j (see Section 4.2 for details) into one-component model Yj = Y
NLoS

j

(see below for details). This simplification allows LoS paths to be treated and exploited

in the same way as NLoS paths.

The key to achieve this is to introduce virtual scatter for LoS paths: a physical LoS path

can be viewed as a NLoS path where an artificial scatter is added on the straight line

segment between MD and AP. In proposed MuG method, the LoS path is alternatively

viewed as a special case of NLoS path which originates from MD m and scattered on vir-

tual scatter s = [sx, sy]T. Also note that the similar concept was very briefly mentioned

in [15]. The method proposed in [15] only studies localisation problem under OLoS envi-

ronment, the DoA information of LoS path is omitted since the virtual scatter is forced

to locate where AP is, which leads to a quite different from ours. Compared with the

method in literature, our novel formulation brings two benefits: 1) The LoS/NLoS path

separation is avoided completely, and hence, the prior statistical information of multipath

is not required for separating LoS/NLoS paths. Conventional approaches suggest separat-

ing LoS/NLoS based on statistical information, and only using LoS paths for localisation.
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Note that the mistaken separation cannot be avoided completely. If the actual path is a

scattered path but it is mistakenly regarded as a direct path, then localisation fails, and

vice versa. 2) The MuG method relies on NLoS paths for localisation which can be used

for tackling more general localisation problem. For example, in urban or indoor scenarios,

the number of LoS paths is typically limited, but there are sufficient NLoS paths.

The technical difficulty of using a virtual scatter is that the locations of virtual scatters are

not uniquely. As illustrated in Fig 4.8 (a), in case of LoS path, it is clear that the virtual

scatter can be any point along the path between MD and AP. Thus, directly applying

virtual scatter will lead to infinite number of solutions. In order to solve this issue,

the proposed objective function (4.61) in Section 4.3.4 is imposed sparsity constraints to

exploit the fact that multipath actually originates from the minimal common MD and

scattered on minimal common (real or virtual) scatters. From geometrical point of view,

as illustrated in Fig 4.8 (b), when there exists multiple LoS paths from MD to APs, the

common virtual scatter of LoS paths is exactly located at the position of MD.

Based on the virtual scatter s, the received LoS path can be reformulated as a special

NLoS path

Y LoS
j = Y NLoS

j (m, s). (4.47)

The signal model introduced in (4.1) is replaced with an unified forward model associated

with both location of MD m, virtual scatter s and scatters {s}K−1k=1 , which is the sum of

NLoS paths

Yj = Y
NLoS

j + Vj

= Y NLoS
j (m, s) + Y NLoS

j (m, s) + Vj. (4.48)

In order to simplify later notation, in the rest of the chapter, we denote both real and
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virtual scatter by {s}Kk=1. The received signal in (4.48) is written as

Yj =
K∑
k=1

γj,kh
(
τNLoS
j,k (m, s)

)
a
(
θNLoS
j,k (m, s)

)T
+ Vj. (4.49)

The technical development of forward model can be simplified as follows. We work on

the DFT coefficients rj = DFT(vec(Yj)) ∈ CNNR of the received signals Yj, where the

subscript j denotes the signals at the j-th AP, vec() is vectorised operator, N is the

number of time instances for taking samples, NR is the number of antenna elements, and

DFT transform is taken on vec(Yj). Then the signal model rj ∈ CNNR is given by

rj =
K∑
k=1

γj,kbj(m, sk) + vj (4.50)

where bj(m, s) represents the direct map from locations of the MD m and a scatter s to

the received signal at the j-th AP:

(m, s) ∈ R2 × R2 7→ bj (m, s) ∈ CNNR , (4.51)

bj(m, s) = vec
(
ĥF (τj (m, s))a (θj(m, s))T

)
. (4.52)

The ĥF (τj (m, s)) ∈ CN is expressed as

ĥF (τj (m, s)) =
[
· · · , hF (n)e−i2πfsnτj(m,s)/N , · · ·

]T
, (4.53)

where hF is transmitted signal h in frequency domain; computation of τj (m, s) follows the

form of (4.8); a (θj(m, s)) ∈ CNR is the steering vector of DoA obtained by substituting

(4.9) into (4.5); vj is the additive noise, i.e., which follows an additive white Gaussian

distribution with zero mean and variance σ2.

Different from the indirect method which relies on estimating intermediate parameters

such as ToF and DoA [1–4], our approach is based on a direct mapping from locations

to the received signals. The indirect methods are suboptimal because they estimate the
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intermediate parameters of each AP independently. In our proposed MuG method, it

takes all received signal into account that both MD and scatters are simultaneously esti-

mated. Intermediate parameters are not explicitly used and the notorious data association

problem is avoided.

4.3.3 Sparse Recovery Formulation

In this subsection, the non-linear inverse localisation problem is reformulated as a sparse

recovery problem, which has been studied extensively in the literature. Given the mea-

surements at j-th AP rj = Ψjγj +vj, where Ψj is an NNR×N2
g pre-defined measurement

matrix with NNR � N2
g of K sparse solution γj. More specifically, ∀j ∈ [J ],

rj =
[
bj(m1, s1), · · · , bj(mNg , sNg)

]︸ ︷︷ ︸
Ψj


γj,1

...

γj,NgNg


︸ ︷︷ ︸

γj

+vj, (4.54)

where γj = [γj,1, · · · , γj,NgNg ] T is the coefficients at the j-th AP. Without loss of generality,

we assume there are multiple MDs {m}Ng1 in the environment. For every potential location

(m, s), a vector bj(m, s) can be calculated according to (4.52) and it becomes a column

of Ψj in (4.54). The unknown variables are γj : γj,ng 6= 0, for ng = 1, ..., Ng, if and only

if the received signal at the j-th AP contains a path originated from mng and scattered

at sng ; the value γj,ng depends on path attenuation, and the signal strength loss due to

scattering.

Localisation problem is equivalent to recovery γj from these linear measurements. Typi-

cally, the number of observation NNR is much smaller than N2
g , in which the linear inverse

problem (4.54) is underdetermined. To solve the problem, it is reasonable to assume that

MD and scatters are not everywhere, equivalently, there are only a few non-zero entries

in vector γj. A canonical technique for sparse recovery is solved by compressive sens-
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ing (CS) [60, 72, 108, 117]. In this case, γj is the solution of the following constrained

optimisation problem:

min
γj

J∑
j

‖ (rj − Ψjγj) ‖22 + G(Γ) , (4.55)

where G(Γ) is the penalty function to promote sparse solution, Γ = [γ1, · · · ,γJ ]. The

technical difficulties come from several aspects:

� How to design the measurement matrix Ψj. In conventional CS techniques, the Ψj

is obtained by discretising parameter space into grid points. However, discretisation

leads to the leakage effect when the ground-truth is off-the-grid. The signal gener-

ated from an off-the-grid (m, s) typically cannot be well approximated by signals

from a small number of grid points. It has been observed that off-the-grid points

typically result in approximation error that is proportional to signals themselves,

and deteriorate the estimation performance. On the other hand, a finer grid may

mitigate the off-the-grid leakage but may result in large computational cost. Each

tuple (m, s) has four variables mx,my, sx, sy. An Ng-point grid of location of MD

m and scatter s results in N2
g many grid points.

� How to design the sparse penalty function G(Γ) to exploit the truth that multipath

is originating from one MD and scattered from a few scatters. In the literature,

the sparse penalty functions are designed only for separating LoS paths from NLoS

paths and exploiting information carried by LoS paths for localisation, such as L1

norm [47] and L2,1 norm [15].

4.3.4 A Grid-free Formulation

In order to tackle the first difficulty proposed in Section 4.3.3, we cast sparse inverse

problem as a grid-free formulation where the parameters (m, s) are defined on continuous

space. This is significantly different from [15,47,114] where a discrete grid is used as the

parameter space. Our grid-free formulation avoids large computational complexity of
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ultra-fine discrete grids, or self-interference caused by mismatch between discrete grid

points and actual locations.

The following concepts are needed for the grid-free formulation. We consider a more

general problem setting that an environment may contain multiple MDs and scatters.

Denote the number of MD by I, and the number of scatters by G. Then the number of

possible multipath in the environment is JIG. For the j-th AP, the location of the i-th MD

and the g-th scatter are encoded using an atom bj(mi, sg), where (mi, sg) ∈ R2×R2. The

corresponding coefficient is denoted as γj,i,g. Based on atom and coefficient, the noiseless

measurement xj ∈ CNNR at the j-th AP is formulated as:

xj =
I∑
i=1

G∑
g=1

γj,i,gbj(mi, sg). (4.56)

In order to design a sparse penalty function G(·) to exploit multipath for localisation,

there are two aspects that need to be exploited. The first aspect is based on the view of

sparse recovery formulation, and the second aspect is based on the view of propagation

environment.

In the view of sparse recovery, the signal xj is assumed to consist of a few weighted

atoms {bj(mi, sg)}I,Gi=1,g=1. Therefore, it is natural to impose sparsity constraint to seek

a parsimonious decomposition of the signal that contains the smallest number of atoms.

Then the atomic norm ‖·‖A is used to promote an overall sparsity of the composing

atoms. The atomic norm is defined to promote sparsity of number of multipath for each

AP [51,72]:

‖X‖A = inf
M ,Γ,S

{
J∑
j=1

I∑
i=1

G∑
g=1

|γj,i,g| : xj =
∑
i

∑
g

γj,i,gbj (mi, sg) , j = 1, . . . , J

}
, (4.57)

where X = [x1, . . . ,xJ ] is the matrix of noiseless measurements; M = [m1, · · · ,mI ] is the

matrix of MDs, Γ = [γj, · · · ,γJ ] is the matrix of coefficients; γj = [γj,1,1, · · · , γj,i,g, · · · ,

γj,I,G] T is coefficients at the j-th AP ; S = [s1, · · · , sG] is the matrix of scatters.
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Mathematically speaking, all the true atoms bj(m, s), j = 1, · · · , J are defined on the

same support {mi, sg}I,Gi=1,g=1, which is referred as common MD and scatters. For each

AP, the received multipath is originating from common MDs {mi}Ii=1 and scattered on

scatters {sg}Gg=1 but with different attenuation factors. The group atomic norm encourages

the group sparsity of coefficients. We use ‖·‖MS in our formulation to promote this share

of locations among APs:

‖X‖MS = inf
M ,Γ,S

{
I∑
i=1

G∑
g=1

√√√√ J∑
j=1

|γj,i,g|2 : xj =
∑
i

∑
g

γj,i,gbj (mi, sg) , j = 1, . . . , J

}
.

(4.58)

In the view of propagation environment, it is reasonable to assume that propagation

environment is consisted of minimal number of MDs and scatters. Moreover, finding a

sparse solution of MDs and scatters is well-motivated since the the true solution is sparse

and unique, see section 4.3.1 for details. To promote sparsity of MDs, the group atomic

norm ‖·‖M on MDs is introduced:

‖X‖M = inf
M ,Γ,S

{
I∑
i=1

√√√√ G∑
g=1

J∑
j=1

|γj,i,g|2 : xj =
∑
i

∑
g

γj,i,gbj (mi, sg) , j = 1, . . . , J

}
.

(4.59)

To promote sparsity of scatters, the group atomic norm ‖·‖S on scatters is introduced:

‖X‖S = inf
M ,Γ,S

{
G∑
g=1

√√√√ I∑
i=1

J∑
j=1

|γj,i,g|2 : xj =
∑
i

∑
g

γj,i,gbj (mi, sg) , j = 1, . . . , J

}
.

(4.60)

With definitions of atomic norm and group atomic norms, the localisation problem can
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be then formulated as a LASSO-type optimisation programming:

min
M,Γ,S

J∑
j

‖ (rj − xj) ‖22 + G(X ) , (4.61)

s.t. G(X ) = λ1‖X‖A + λ2 ‖X‖MS

+ λ3 ‖X‖M + λ4 ‖X‖S ,

I = 1,

where λ1, λ2, λ3, λ4 > 0 are regularisation constants; [J ] := {1, · · · , J}; the number of MD

is set I = 1 because the signals from different MDs are orthogonal so that without loss of

generality it suffices to consider only one MD. The cost function (4.61) favours solution

that has the sparse number of common MD and scatters.

4.3.5 Solving the Super-resolution Problem

In this section we develop a variant of the alternating descent conditional gradient (ADCG)

[108] called MuG to solve the problem in (4.61). Remark that MuG is not simple appli-

cation of ADCG, since the unknown parameters are associated with different number of

parameter {mi, sg}I,Gi=1,g=1 for I 6= G. It is non-trivial to solve the problem (4.61), since

the unknown parameters are defined over infinite parameter space. In order to jointly es-

timate location of MD and scatters simultaneously, we use the gradient descent approach

and detailed computation is presented accordingly. Similarly with the ADCG, each iter-

ation of MuG method has the three main steps to estimate location of MD and scatters

: conditional gradient step, the pruning support step and local descent step. The aim of

conditional gradient is finding possible estimation of the problem. The pruning support

step is used to produce sparse solution. The final step is improving convergence speed

and sparsity level of solution. We make further description in following about detailed

implementations of Algorithm 4.

The conditional gradient step is solving an approximation to (4.61) based on lineari-
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Algorithm 4: MuG: Multipath-exploited and Grid-free Method

Input: M0 = ∅,S0 = ∅, d = 1, ε, rj, j = 1, ..., J
Output: Locations of MD :Md and scatter : Sd.

repeat
(1) Compute gradient of loss :

gd−1j = ∇rd−1
resj

∥∥rd−1resj

∥∥2
2
, (4.62)

where

rd−1resj = rj −
∑
i

∑
g

bj(mi, sg)γj,i,g, (4.63)

∀mi ∈Md−1, ∀sg ∈ Sd−1;

(2) Conditional gradient:(
md, sd

)
= arg max

md,sd

∑
j=1

∣∣〈bj (md, sd
)
, gd−1j

〉∣∣ ; (4.64)

(3) Update the candidate set :

Md =Md−1 ∪md, Sd = Sd−1 ∪ sd; (4.65)

for t do
1) Compute weights:

γd = arg min
γ

∑
j

∥∥∥∥∥rj −∑
i

∑
g

bj(mi, sg)γj,i,g

∥∥∥∥∥
2

2

+ λ1
∑
j

∑
i

∑
g

|γj,i,g|+ λ2
∑
i

∑
g

‖γ:,i,g‖2

+ λ3
∑
i

‖γ:,i,:‖F + λ4
∑
g

‖γ:,:,g‖F , (4.66)

∀mi ∈Md, ∀sg ∈ Sd;

2) Prune support:

Md = mi, for i = arg max ‖γd:,i,:‖F , (4.67)

Sd = supp
sg∈Sd

(
γd:,i,g

)
, for i = arg max ‖γd:,i,:‖F . (4.68)

3) Locally improve support :

Md,Sd = gradient descent ((mi, sg) ,γ ({mi, sg}))
,∀mi ∈Md, ∀sg ∈ Sd. (4.69)

end for
(4) Update parameters: rcur =

∑J
j

∥∥rdresj∥∥22, rpre =
∑J

j

∥∥rd−1resj

∥∥2
2
, d = d+ 1.

until rcur/rpre < ε
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sation around the current iteration [108]. As an extension of ADCG to estimate the

unknowns with common sparsity, at each iteration, MuG adds single source locations

(md, sd) ∈ [0, 1]4 to the corresponding approximated candidate set Md, Sd which max-

imize the summation of the inner product of gradient of loss gdj with its corresponding

atom bj(m
d, sd) at different APs, and detailed formulation is presented in (4.64). Moti-

vated by distributed compressive sensing framework as presented in [118, 119], (4.64) is

equivalent to select the source that maximizes the value of the sum of the magnitudes of

the projections of the residual rd−1resj . Specifically, by substituting (4.62), (4.63) into (4.64),

it is easy to show that the conditional step (4.64) solves the following problem:

(
md, sd

)
= arg max

(m,s)∈[0,1]4

∑
j=1

∣∣∣〈bj (m, s) ,∇rd−1
resj

∥∥rd−1resj

∥∥2
2

〉∣∣∣ (4.70)

= arg max
(m,s)∈[0,1]4

∑
j=1

∣∣〈bj (m, s) , 2rd−1resj

〉∣∣ , (4.71)

where rd−1resj is the residual of the j-th AP at the d-th iteration; and ∇rd−1
resj

∥∥rd−1resj

∥∥2
2

denotes

derivative of the function
∥∥rd−1resj

∥∥2
2

at rd−1resj . In the rest of chapter, we denote ∇◦C(·) as

the partial derivative of the cost function C(·) w.r.t. ◦ . Note that (4.71) is non-convex

optimisation problem and it has no closed-form solution. In the implementation, the

new sources are obtained by the gradient descent method over 4 dimensional continuous

parameter space. The corresponding gradient is then

∇(m,s)

∑
j=1

∣∣〈bj (m, s) , 2rd−1resj

〉∣∣ =
∑
j=1

∂

∂(m, s)

∣∣∣∣〈bj (m, s)

(m, s)
, 2rd−1resj

〉∣∣∣∣ . (4.72)
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For ease of notation, we denote vj =
〈
bj (m, s) , 2rd−1resj

〉
, and the gradient becomes

∇(m,s)

∑
j=1

∣∣〈bj (m, s) , 2rd−1resj

〉∣∣ =
∑
j

∂ |vj|
∂(m, s)

(4.73)

=
∑
j

∂
(
vHj vj

) 1
2

∂(m, s)

=
∑
j

(
vHj vj

)− 1
2 Re

(
∂vj

∂(m, s)
vHj

)
, (4.74)

where

∂vj
∂(m, s)

=
(
2rd−1resj

)H ∂bj (m, s)

∂(m, s)
(4.75)

=
(
2rd−1resj

)H ∂τj (m, s)

∂(m, s)
D1bj (m, s) +

(
2rd−1resj

)H ∂θj (s)

∂(m, s)
bj (m, s)D2,

and D1,D2 are two diagonal matrices as

D1 =diag ([−i2πf, · · · ,−i2πfn, · · · ,−i2πfN ]) , (4.76)

D2 =diag

([
0, · · · , i2π

λ
Lcos(θj)(nR − 1), · · · , i2π

λ
Lcos(θj)(NR − 1)

])
. (4.77)

The derivate of ToF τj(m, s) with respect to location of MD m is

∂τj(m, s)

∂m
=

[
∂τj(m, s)

∂mx

∂τj(m, s)

∂my

]T
, (4.78)

where

∂τj(m, s)

∂mx
=

1

c‖m− s‖2
(mx − sx), (4.79)

and

∂τj(m, s)

∂my
=

1

c‖m− s‖2
(my − sy). (4.80)
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The derivate of ToF τj(m, s) with respect to location of scatter s is

∂τj(m, s)

∂s
=

[
∂τj(m, s)

∂sx
∂τ(m, s)

∂sy

]T
, (4.81)

where

∂τj(m, s)

∂sx
=

1

c‖m− s‖2
(sx −mx) +

1

c‖s−APj‖2
(sx − AP x) (4.82)

and

∂τj(m, s)

∂sy
=

1

c‖m− s‖2
(sy −my) +

1

c‖s−APj‖2
(sy − AP y) (4.83)

The derivate of DoA θj(s) with respect to location of scatter s is

∂θj(s)

∂s
=

[
∂θj(s)

∂sx
∂θj(s)

∂sy

]T
, (4.84)

where

∂θj(s)

∂sx
=

1

1 + (tan(θj))
2

(
sy − AP y

j

)−1
(4.85)

and

∂θj(s)

∂sy
=

1

1 + (tan(θj))
2 (AP x − sx)

(
sy − AP y

j

)−2
. (4.86)

The pruning support step aims to produce sparse solution. As shown in (4.67), the source

locations are removed from candidate set when they are found not contributing to reducing

the loss function (4.66). The coefficients γd is obtained by solving group lasso problem

(4.66), which is a finite-dimensional convex optimization problem that can be solved with

an off-the-shelf algorithm. This is motivated by the drawback of greed step (4.64): the

source location added at previous iteration may not be helpful as compared with other
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later added sources.

The aim of final step is improving convergence speed and sparsity level of solution by

smoothly moving estimated set Md, Sd within continuous parameter space [0, 1]4d. By

fixing the attenuation coefficients γd, the local descent step is implemented with minimis-

ing following optimisation problem

arg min
mi,sg

J∑
j

∥∥∥∥∥rj −∑
i

∑
g

bj(mi, sg)γj,i,g

∥∥∥∥∥
2

2

, (4.87)

∀mi ∈Md, ∀sg ∈ Sd. (4.88)

In the most cases, the gradient descent method is an efficient approach to reduce the

function. The corresponding gradient is

∇(mi∈Md,sg∈Sd)

J∑
j

∥∥∥∥∥rj −∑
i

∑
g

bj(mi, sg)γj,i,g

∥∥∥∥∥
2

2

= −2
∑
j

∑
i

∑
g

Re

(
∂bTj (mi, sg)

∂(mi, sg)
γj,i,g

)
Re

(
rj −

∑
i

∑
g

bj(mi, sg)γj,i,g

)
, (4.89)

based on the equation (4.75), we have

∂bj (mi, sg)

∂(mi, sg)
=
∂τj (mi, sg)

∂(mi, sg)
D1bj (mi, sg) +

∂θj (mi, sg)

∂(mi, sg)
bj (mi, sg)D2,

The detailed computations of
∂τj(mi,sg)

∂(mi,sg)
and

∂θj(mi,sg)

∂(mi,sg)
are shown in (4.78) - (4.86).

4.3.6 Cramér-Rao Bound (CRB)

The CRB is the lower bound on the variance of the unbiased estimatator for unknown

parameters [113]. Define all the unknown variables as

p =
[
αT,Re([...,γj

T, ...]), Im([...,γj
T, ...)

]T
, (4.90)
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where α = [mT, s1
T, · · · , skT, · · · , sKT, ] contains unknown locations of MD and scatters,

and γj = [γj,1, ..., γj,k, ...γj,K ] T is the coefficient at the j-th AP. The CRB is a lower bound

of the covariance of estimation error as

CRB(p) 6 E
{

[p− p̃] [p− p̃]T
}
, (4.91)

where p̃ =
[
α̃T,Re([..., γ̃j

T, ...]), Im([..., γ̃j
T, ...)

]T
is the estimated parameter.

For simplicity of notation, we use fj(p, n, nr) denoting the n-th noise free observation, at

the nr-th antenna array element and the j-th AP, which is

fj(p, n, nr) =
K∑
k=1

γj,kbj(m, sk, n, nr), (4.92)

Then the noisy sample rj(n, nr) corrupted by white Gaussian noise is expressed as

rj(n, nr) = fj(p, n, nr) + vj(n, nr), (4.93)

where vj(n, nr) is additive noise i.i.d. white Gaussian with zero mean and variance σ2.

The computation of CRB requires channel statistics, propagation path type, the number

of MD and scatters, and noise variance as prior information. In the simulation, the prior

information is usually unknown to MuG technique. The CRB is the inverse of the Fisher

information matrix (FIM) F (p) ∈ R(2K+2KJ+2)×(2K+2KJ+2) as shown below [113]:

CRB(p) = F−1 (p) . (4.94)

The FIM is defined as

F (p) = E

(
∂ lnL(R;p)

∂p

∂ lnLH(R;p)

∂p

)
, (4.95)

where L(R;p) is the likelihood function of observation R = [r1, · · · , rj, · · · , rJ ] at all
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APs conditioned with unknown parameters p and it can be expressed as

L(R;p) =
J∏
j=1

N∏
n=1

NR∏
nr=1[

1√
2πσ2

exp

[
− 1

2σ2
(rj(n, nr)− fj(p, n, nr))2

]]
. (4.96)

Then the estimated location error σMD =
√
E(mx − m̃x)2 + E(my − m̃y)2 of any unbiased

localisation estimator has the lower bound at

σMD >
√

CRB(p)1,1 + CRB(p)2,2, (4.97)

where CRB(p)q,w is the [q, w]-th entry of the CRB matrix. The entries of CRB(p)q,w are

derived in Appendix B.1.

4.4 Numerical Case Studies

4.4.1 Simulation Setup

The setup of case studies is as follows. Consider the problem of localisation a single

antenna MD within 1km × 1km area under cooperative APs and three scatters. The

locations of MD and three scatters are randomly generated as point sources [1–4, 15].

The transmitted signal can be chosen for different purpose. We take the orthogonal

frequency division multiplexing (OFDM) as an example which contains 16 blocks of data.

Each data block has M = 32 sub-carrier frequencies, the sub-carrier frequency spacing

is 4f = 10kHz, the speed of light is c = 3 × 108m/s, carrier frequency fc = 2GHz.

The path loss of LoS path follows an uniform distribution in the interval [0, 0.01]. The

average reflection loss for the NLoS path is set to -10dB [3]. Noise follows an additive

White Gaussian distribution with zero mean and variance σ2. The threshold to terminate

algorithm ε = 0.9999. The performance of localisation technique is evaluated by the
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RMSE, defined as spatial distance between true and estimated MD.

4.4.2 Performance of MuG and CRB

Two case studies are presented here, which includes performance of MuG method under

different system configurations and different propagation environments. Motivated by

practical scenarios that the number of LoS paths is typically limited, and the general

scenario where the signal from the scatter may not be received by all APs. In simulation,

we also include the performance of MuG with limited LoS and NLoS paths. It is also

noteworthy that though our algorithm is propagation environment blind, the computation

of CRB is not. The computation of CRB requires knowing which path is LoS and which

is not, and the exact locations of scatters, both of which are absent in practice.

The first one concerns single antenna APs where there is no DoA information at all. We

show it’s possible to locate MD even when all the paths are NLoS, i.e., only exploiting

NLoS paths without mitigating NLoS effect. According to our knowledge, this is the first

time in the literature. As illustrated in Section 4.3.1, the success of localising MD requires

at least 3 single antenna APs and 3 scatters, where cooperative APs are horizontally

located at (0, 0)km, (1, 0)km and (1, 1)km. The numerical performance is presented in

Fig 4.9 (a). The performance of MuG is shown in solid lines while CRB is shown as dashed

lines. In LoS environment, the number of LoS paths is Lp = 3. In OLoS environment, the

number of NLoS paths is Np = 9 because there are three scatters; in NLoS environment,

the multipath contains Lp = 3 LoS paths , Np = 9 NLoS paths. All APs are assumed

to be equipped with single antenna so that there is no DoA information to extract at

APs. This case is particularly challenging because 1) throughout this chapter we don’t

assume any a priori information and historical data, so techniques based on statistical

modelling [10–14] cannot be applied; 2) techniques separating LoS and NLoS paths based

on DoA information [15] cannot be applied here either; 3) the paths with smallest ToFs

can be NLoS ones. Note that although we show our results in different propagation
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Figure 4.9: Simulation results of RMSE versus the signal-to-noise ratio (SNR) under different
system configuration and environment. The Lp and Np are total number of LoS paths and
NLoS paths in the environment, respectively. The CRB represents the theoretical bounds under
different propagation environment. (a) In the first case studies, 3 single antenna APs (NR = 1)
are employed for providing ToF information. (b) In the second case studies, 2 multi-antenna
APs (NR = 12) are employed for providing ToF and DoA information.

environments (LoS, NLoS and OLoS), the propagation environment is unknown to our

algorithm.

The second case studies involves multi-antenna APs, which are located at (0, 0)km and

(1, 1)km. As shown in Fig 4.9(b), the simulation result demonstrates the ‘plug-and-play’

nature of our method by directly applying it to different system configurations in various

propagation environments. With extra DoA information, the minimum number of APs

for localising MD is reduced to two. The number of multipath in LoS environment is

Lp = 2, Np = 0; in OLoS environment is Lp = 0, Np = 6; in NLoS environment is Lp = 2,



124Chapter 4. MuG : A Multipath-Exploited and Grid-free Localisation in Multipath Environments

Np = 6. To tackle practical localisation problem with limited multipath, we include the

performance of MuG under different number of LoS and NLoS paths and corresponding

results are marked by a circle. It is observed that estimation performance of MuG under

Lp = 2, Np = 2 is improved by adding NLoS paths comparing with Lp = 2, Np = 4 and

Lp = 2, Np = 6. In addition, increasing the number of LoS paths also can help improve

the performance of MuG technique by comparing the performance of MuG under Lp = 0,

Np = 6 with Lp = 2, Np = 6.

Environment System Configuration Time [min]

LoS single antenna system 4.21
OLoS single antenna system 8.02
NLoS single antenna system 10.73
LoS multi-antenna system 7.45
OLoS multi-antenna system 13.78
NLoS multi-antenna system 17.23

Table 4.2: In case of SNR = 10 dB, the average running time of the MuG in different environ-
ments and system configurations. CPU: Intel Core i7-7700HQ, 2.80GHz.

The computational cost of the MuG is measured by the average running time. In the

numerical case studies, we assume that the exact propagation environment is unknown

to the APs and there is no information for identifying or separating LoS/NLoS paths.

Therefore, the existing methods are infeasible to be applied here. Table 4.2 shows the

computational cost of the MuG in different environments and system configurations. The

MuG method will stop when the improvement drops below a threshold ε = 0.9999. In the

LoS environment, the MuG has a lower running time than other environments. Under

the same system configuration, the running time is increased by increasing the number of

propagation paths. Based on the running time of LoS and OLoS environments, the LoS

path can provide a high precision estimation with less computational cost.

In order to compare the performance of MuG with existing method in single antenna

system, we assume that LoS/NLoS path has been separated perfectly. Therefore, the

maximum likelihood (ML) estimator in [36] can works in LoS environment and NLoS

environment. The simulation results are shown in Fig. 4.10(a). In case of single antenna
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Figure 4.10: Simulation results of RMSE versus the signal-to-noise ratio (SNR) under different
system configuration and environment. (a) In the first case studies, 3 single antenna APs
(NR = 1) are employed for providing ToF information. (b) In the second case studies, 2 multi-
antenna APs (NR = 12) are employed for providing ToF and DoA information.

system, the ML estimator takes a set of ranges (related to the ToFs and the speed of

light) as inputs and outputs the estimation. The ToFs are obtained by the ANM (2.17)

in Chapter 2. Note that the ML estimator requires LoS path for localisation. Therefore,

it only works in LoS environment and NLoS environment. Based on the Fig. 4.10(a) the

ML estimator works well in LoS environment. In NLoS environment, the performance

of ML estimator is slightly degraded since complete mitigation of the NLoS bias may be

impractical.

In case of multi-antenna system, the performance of MuG is compared with direct locali-

sation method DiSouL [15]. The DiSouL takes the DoA information to separate LoS paths
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from multipath and then localise MD by ToFs of LoS paths. Therefore, it only works in

LoS environment and NLoS environment. Based on the Fig. 4.10(b), the DiSouL works

well in LoS environment. In NLoS environment, the performance of DiSouL is slightly

degraded since the mistaken LoS/NLoS separation cannot be avoided completely.

4.5 Conclusion

This chapter has shown a multipath-expolited and grid-free (MuG) localisation scheme.

Concretely, it is an end-to-end localisation scheme to exploit information carried by multi-

path. We address the localisation problem by three key elements. First, we introduce the

virtual scatter to LoS path so that there is no need to separate LoS/NLoS path, and both

LoS and NLoS paths are uniformly formulated into a forward model. Then we formu-

late the localisation problem as a general sparse recovery problem which is different from

previous works. Finally, the modern grid-free technique is adapted to solve the sparse

inverse problem. The simulation results show that the proposed MuG method is capable

to handle different system configurations and all three propagation environments. We

also demonstrate superior performance of multipath exploitation strategy in case of NLoS

paths dominating in the environment. Our approach addresses long-standing issues not

completely solved in the literature, achieves good localisation accuracy and guarantees a

global convergence.

The proposed MuG method combines convex and non-convex optimisation techniques.

The convex optimisation guarantees a global convergence. In the final step, the non-

convex optimisation is a subroutine that takes estimations from the convex optimisation

and attempts to use gradient information to reduce the residual function. Therefore,

this non-convex optimisation does not change the convergence guarantees. On the other

hand, it provides a significantly sparser solutions by allowing the unknown parameters to

move continuously within the parameter space. Our numerical case studies demonstrates

that proposed MuG method achieves state-of-the-art results comparing with theoretical
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CRB. In the numerical case studies, we generate synthetic data by adopting a commonly

assumed setup in the literature [1–4, 10–12, 14, 15, 27–31]. It is noteworthy that this

common setup is a simplification of actual systems for the purpose of highlighting the

idea without being drowned into great technical details. To tackle the practical problems,

the real data will be included in the future work.
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Conclusion

In this chapter, we summarise results of the present work and gives potential future

research directions to the localisation of MD.

5.1 Summary of Thesis

In Chapter 1, we settle the main stream of the thesis. The localisation is challenge

in presence of multipath. Even though it has been studied in the literature, there are

still some unresolved open issues. Then, we discuss the typical methods to deal with

localisation problem in different prior knowledge and assumptions. Finally, we summarise

challenges of localisation in multipath environments.

In Chapter 2, we discuss the basic idea of super-resolved localisation which is based on

super-resolution technique. The super-resolution technique shows that line spectral es-

timation problem can be formulated as SDP with finite many variables and constraints.

However, this framework cannot be directly applied to our localisation problems, be-

cause the received signal is not the superposition of simple exponential form. In order

to avoid data association and error propagation, our model is direct mapping from un-

known parameters to received signal, the atom is formulated with irregular trigonometric

128
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polynomial form. Efficient algorithms for solving it are not known in full generality.

In Chapter 3, we present a novel super-resolved localisation method that estimate mul-

tiple MDs and perform self-calibration to correct possible errors simultaneously. The

array directional error implies deviations in the orientation of the array placement which

results in additional angular bias. We first formulate a direct localisation model with

self-calibration on these errors and based on this model, group sparsity is exploited to

improve the performance. Then, we propose a method called GSE-SC to solve this non-

convex optimisation problem. Particularly, MD is added to the support set one by one,

while all the unknowns are improved locally by a two-loop alternating gradient descent to

bring the cost function down. In addition, we analyse the ambiguity problem and provide

a sufficient condition that guarantees no ambiguity. Simulation results demonstrate that

GSE-SC method outperforms existing methods including MF, GCS and ADCG methods.

In Chapter 4, we provide geometric insight to demonstrate the usage of both LoS and

NLoS path for localising MD. In the literature, the NLoS path is commonly treated as

a main issue to degraded localisation performance. A MuG localisation scheme is pro-

posed. Concretely, it is an end-to-end localisation scheme to exploit information carried

by multipath. We address the localisation problem by three key elements. We first study

the geometry of the localisation in multipath environment. We identify and analyse sce-

narios that localisation requires exploitation of NLoS paths and incorporating scatters’

unknown locations. Motivated by the geometric insight, we then treat the LoS paths

as NLoS paths by the usage of virtual scatters so that hard-decision, separation, and

removal of NLoS paths are avoided. Then we formulate the localisation problem as a gen-

eral sparse recovery problem which is different from previous works. Finally, the modern

grid-free technique is adapted to solve the sparse inverse problem. The simulation results

show that the proposed MuG scheme is capable to handle different system configurations

and all three propagation environments. We also demonstrate superior performance of

multipath exploitation strategy in case of NLoS paths dominating in the environment.

Our approach addresses long-standing issues not completely solved in the literature, and
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achieves good localisation accuracy.

5.2 Future Work

For localisation problem in multipath environments, the NLoS bias is one of the main

issues to degrade estimation performance. In order to enhance localisation performance,

the common strategy of existing method is still dealing with NLoS bias. Many methods

have been proposed in LoS/NLoS separation. Nonetheless, these methods may not satisfy

for industrial application due to computational cost and positioning accuracy. Hence, a

new, efficient and simple method is required. The usage of machine learning techniques

to train a classifier for LoS and NLoS path could be an alternative research direction.

In particular deep learning, is known to be very effective when the underlying model

is hard to approximate or unknown [120]. On the other hand, many methods assume

that LoS path should not be blocked in order to apply trilateration. This loss of LoS

can be addressed using a distributed antenna array, since the probability that the LoS

link with the majority of antennas is broken is much smaller in this case. Therefore,

distributed localisation system should be studied and evaluated if they do in fact improve

the robustness of the positioning system in LoS paths.

While the LoS path is well studied and multiple methods are reported in the literature

(e.g., angle- and time-of-arrival based predictions and trilateration methods) suitable

solutions for the NLoS path are still open for research. Therefore, a potential future

research direction is to address the more challenging NLoS case which covers a huge variety

of different scenarios. In Chapter 3, we propose a method to calibrate array directional

error during localising MDs. As for another error i.e., NLoS bias, it can be formulated

into array directional error for calibrating instead of discarded. But this formulation may

lead to underdetermined problem, in which there might be infinite number of solutions

and finding its solution is computationally difficult. In Chapter 4, geometrical insight of

NLoS path localisation is provided which can be viewed as a guidance for future work.
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Appendices of Chapter 3

A.1 Gradients w.r.t. Γ

In the t-th step, we use ci,j and Ct to denote atoms aj(mi, δj) and the cost function

C(M ,Γ, δ) as

ai,j =
[
e
√
−12π

dj
λ
sinθi,j ·0, . . . , e

√
−12π

dj
λ
sinθi,j ·(Nm−1)

]T
, (A.1)

Ct =
1

2

J∑
j=1

∥∥∥rj − t∑
i=1

γi,jai,j

∥∥∥2
2

+ µ
t∑
i=1

‖γi‖2, (A.2)

where

sin θi,j =
sinαj(m

x
i − AP x

j )− cosαj(m
y
i − AP

y
j )√

(mx
i − AP x

j )2 + (my
i − AP

y
j )2

, (A.3)

‖γi‖2 =

√√√√ M∑
m=1

|γi,j|2, (A.4)

γi = [γi,1, ..., γi,J ]T and αj = α′j − δj. Denote that nm = [0, 1, . . . , Nm − 1]T . Then, the

∂Ct/∂γ∗i,j can be expressed as
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∂Ct

∂γ∗i,j
=

∂ 1
2

J∑
j=1

∥∥∥rj − t∑
i=1

γi,jai,j

∥∥∥2
2

∂γ∗i,j
+

∂µ
t∑
i=1

‖γi‖2

∂γ∗i,j

=
1

2

∂
∥∥∥rj − t∑

i=1

γi,jai,j

∥∥∥2
2

∂γ∗i,j
+ µ

∂‖γi‖2
∂γ∗i,j

. (A.5)

The first term in (A.5) implies

1

2

∂
∥∥∥rj − t∑

i=1

γi,jai,j

∥∥∥2
2

∂γ∗i,j

=
1

2

∂

(
rHj −

t∑
i=1

γ∗i,ja
H
i,j

)(
rj −

t∑
i=1

γi,jai,j

)
∂γ∗i,j

= −1

2

∂γ∗i,ja
H
i,j

(
rj −

t∑
i=1

γi,jai,j

)
∂γ∗i,j

= −1

2
aHi,j

(
rj −

t∑
i=1

γi,jai,j

)
. (A.6)

Through extending the second term in (A.5), we have

µ
∂‖γi‖2
∂γ∗i,j

= µ
1

2‖γi‖2
∂γ∗i,jγi,j

∂γ∗i,j
= µ

γi,j
2‖γi‖2

. (A.7)

Combining (A.6) and (A.7) yields

∂Ct

∂γ∗i,j
= −1

2
aHi,j

(
rj −

t∑
i=1

γi,jai,j

)
+ µ

γi,j
2‖γi‖2

. (A.8)



134 Chapter A. Appendices of Chapter 3

A.2 Gradients w.r.t. M

Here we calculate ∂Ct/∂mi. To this aim, we denote by

Ctj :=
∥∥∥rj − t∑

i=1

γi,jai,j

∥∥∥2
2
. (A.9)

Hence, we have

∂Ct

∂mi

=
1

2

J∑
j=1

∂Ctj
∂mi

. (A.10)

Particularly, we denote vj := rj −
∑t

i=1 γi,jai,j. Then we have Ctj = vHj vj and the partial

derivative becomes

∂Ctm
∂mi

=
∂vHj vj

∂mi

= vHj
∂vj
∂mi

+
∂vHj
∂mi

vj

= vHj
∂vj
∂mi

+

(
∂vj
∂mi

)H
vj

= 2Re

(
vHj

∂vj
∂mi

)
, (A.11)

where

∂vj
∂mi

=
∂
(
rj −

∑t
i=1 γi,jai,j

)
∂mi

= −γi,j
∂ai,j
∂mi

. (A.12)

In the 2D plane, we have mi = [mx
i ,m

y
i ]

T. Based on (A.1) and (A.3), here we calculate

the gradients w.r.t mx
i and my

i , respectively, given by

∂ [ai,j]n
∂mx

i

= [ai,j]n
√
−12π

dj
λ
n
∂sinθi,j
∂mx

i

= [ai,j]n
√
−12π

dj
λ
n

1

Rsp

(
sinαj − (mx

i − AP x
j )

·
sinαj(m

x
i − AP x

j )− cosαj(m
y
i − AP

y
j )

R2
sp

)
= [ai,j]n

√
−12π

dj
λ
n(my

i − AP
y
j )Rth/R

2
sp, (A.13)
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where Rth and Rsp are defined as

Rth :=
sinαj(m

y
i − AP

y
j ) + cosαj(m

x
i − AP x

j )

Rsp

, (A.14)

Rsp :=
√

(mx
i − AP x

j )2 + (my
i − AP

y
j )2. (A.15)

Then, by substituting (A.13) into (A.12), substituting (A.12) into (A.11), and substituting

(A.11) into (A.10), we have

∂Ct

∂mx
i

=
J∑
j=1

Re

(
−

(
rHj −

t∑
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γ∗i,ja
H
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)
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·
√
−12π
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Rth/R

2
sp · (m

y
i − AP

y
j )

)
. (A.16)

Similarly, we calculate the corresponding gradient w.r.t. my
i , given by

∂Ct

∂my
i

=
M∑
m=1

Re
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)
, (A.17)

Here, we are ready to provide the partial gradient w.r.t. mi as

∂Ct
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=
M∑
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Re
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2
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[
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y
j , AP

x
j −mx

i

]T)
. (A.18)
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A.3 Gradients w.r.t. δ

Here we calculate ∂Ct/∂δj. Similar with the derivation from (A.9) to (A.12), we directly

have

∂Ct

∂δj
= Re

(
−

(
rHj −

t∑
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γ∗i,ja
H
i,j
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∂
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(
−

(
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H
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∂ai,j
∂δj

)
. (A.19)

Based on αj = α′j − δj and (A.3), we then calculate

∂[ai,j]n
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√
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Combining (A.19) and (A.20) yields
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∂δj
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. (A.21)
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Appendices of Chapter 4

B.1 Cramér-Rao bound

As for (q, w)-th entry of Fisher information matrix (FIM) F (p), the general expression

can be written as

F (p) = E

(
∂ lnL(R;p)

∂p

∂ lnLH(R;p)

∂p

)
, (B.1)

The partial derivatives of the log-likelihood function lnL(R;p) with respect to the q-th

unknown parameter of p is given by

∂ lnL(R;p)

∂pq
(B.2)

=
∑
j

∑
n

∑
nr

− 1

σ2

(
∂ (rj(n, nr)− fj(p, n, nr))∗

∂pq
vj(n, nr)

)
− 1

σ2

(
v∗j (n, nr)

∂ (rj(n, nr)− fj(p, n, nr))
∂pq

)
=

1

σ2

∑
j

∑
n

∑
nr

∂f ∗j (p, n, nr)

∂pq
vj(n, nr) + v∗j (n, nr)

∂fj(p, n, nr)

∂pq
. (B.3)
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By substituting (B.3) into (B.1), we have

F (p)q,w = E

(
∂ lnL(R;p)
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∂ lnL(R;p)
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)
(B.4)
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(a)
=

1

σ2

∑
j

∑
n

∑
nr

(
∂f ∗j (p, n, nr)

∂pq

∂fj(p, n, nr)

∂pw
+
∂fj(p, n, nr)

∂pq

∂f ∗j (p, n, nr)

∂pw

)
(B.6)
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where (a) is following the fact that the complex noise samples are i.i.d with the variance

σ2 and E (vjvj) = E
(
v∗j v
∗
j

)
= 0.

In order to obtain entries of FIM F (p), we need to compute derivative of observation

fj(p, n, nr) with respect to the q-th unknown parameter of p,

∂fj(p, n, nr)

∂pq
=
∂
∑K

k=1 bj (m, sk, n, nr) γj,k
∂pq

. (B.8)

For pq ∈ {mx,my, sx1 , s
y
1, ..., s

x
K , s

y
K}, the corresponding first-order derivative (B.8) is

∂
∑K

k=1 bj (m, sk, n, nr) γj,k
∂pq

=
K∑
k

∂τj(m, sk)

∂pq
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2π

λ
Lcos(θj)(nr − 1))γj,k. (B.9)

The detailed computations of
∂τj(m,sk)

∂pq
and

∂θj(m,sk)

∂pq
are similar with (4.78) - (4.86).

For pq = Re(γj,k), the corresponding first-order derivative (B.8) is

∂
∑K

k=1 bj(m, sk, n, nR)γj,k
∂pq

= bj(m, sk, n, nr) (B.10)
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For pq = Im(γj,k), the corresponding first-order derivative (B.8) is

∂
∑K

k=1 bj(m, sk, n, nR)γj,k
∂pq

= b∗j(m, sk, n, nr). (B.11)

Finally, the CRB can be obtained as the inverse of the FIM F (p).
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for semidefinite programming, version 1.3,” Optimization Methods and Software—,

volume=11, number=1-4, pages=545–581, year=1999, publisher=Taylor & Francis.

[84] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-

metric cones,” Optimization Methods and Software, vol. 11, no. 1-4, pp. 625–653,

1999.

[85] K. R. Pattipati, S. Deb, Y. Bar-Shalom, and R. B. Washburn, “A new relaxation

algorithm and passive sensor data association,” IEEE Transactions on Automatic

Control, vol. 37, no. 2, pp. 198–213, 1992.

[86] M. R. Chummun, T. Kirubarajan, K. R. Pattipati, and Y. Bar-Shalom, “Fast data

association using multidimensional assignment with clustering,” IEEE Transactions

on Aerospace and Electronic Systems, vol. 37, no. 3, pp. 898–913, 2001.



150 BIBLIOGRAPHY

[87] Y.-M. Chen, J.-H. Lee, and C.-C. Yeh, “Two-dimensional angle-of-arrival estimation

for uniform planar arrays with sensor position errors,” in IEE Proceedings F (Radar

and Signal Processing), vol. 140, no. 1. IET, 1993, pp. 37–42.

[88] Z. Xiaofei and X. Dazhuan, “Antenna array self-calibration algorithm with sensor

location errors,” in 6th International Symposium on Antennas, Propagation and EM

Theory, 2003. Proceedings. 2003, 2003, pp. 225–228.

[89] Y. Liu, C. Liu, Y. Zhao, and J. Zhu, “Wideband array self-calibration and doa

estimation under large position errors,” Digital Signal Processing, vol. 78, pp. 250–

258, 2018.

[90] Xiaoning Lu and K. C. Ho, “Taylor-series technique for source localization using

AOA s in the presence of sensor location errors,” in Fourth IEEE Workshop on

Sensor Array and Multichannel Processing, 2006., 2006, pp. 190–194.

[91] C. Qu, Z. Xu, and C. Wang, “Novel passive localization algorithm based on weighted

restricted total least square,” Journal of Systems Engineering and Electronics,

vol. 24, no. 4, pp. 592–599, 2013.

[92] Y. Wang and K. C. Ho, “An asymptotically efficient estimator in closed-form for 3-d

AOA localization using a sensor network,” IEEE Transactions on Wireless Com-

munications, vol. 14, no. 12, pp. 6524–6535, 2015.

[93] A. Amar and A. J. Weiss, “Advances in direct position determination,” in Sensor

Array and Multichannel Signal Processing Workshop, 2004, pp. 584–588.

[94] G. Wu, M. Zhang, and F. Guo, “Self-calibration direct position determination using

a single moving array with sensor gain and phase errors,” Signal Processing, p.

107587, 2020.

[95] J. Yin, D. Wang, Y. Wu, and T. Tang, “Single-step localization using multiple

moving arrays in the presence of observer location errors,” Signal Processing, vol.

152, pp. 392–410, 2018.



BIBLIOGRAPHY 151

[96] D. Wang, J. Yin, R. Liu, H. Yu, and Y. Wang, “Performance analysis and improve-

ment of direct position determination based on doppler frequency shifts in presence

of model errors: case of known waveforms,” Multidimensional Systems and Signal

Processing, vol. 30, no. 2, pp. 749–790, 2019.

[97] Z. Yang, D. Wang, B. Yang, and F. Wei, “Robust direct position determination

against sensor gain and phase errors with the use of calibration sources,” Multidi-

mensional Systems and Signal Processing, pp. 1–34, 2020.

[98] Y. Chi, “Joint sparsity recovery for spectral compressed sensing,” Proceedings

of IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 3938–3942, 2014.

[99] Y. Wang and K. C. Ho, “Unified near-field and far-field localization for AOA and hy-

brid AOA-TDOA positionings,” IEEE Transactions on Wireless Communications,

vol. 17, no. 2, pp. 1242–1254, 2018.

[100] J. Huang and T. Zhang, “The benefit of group sparsity,” Annals of Statistics, vol. 38,

no. 4, pp. 1978–2004, 2010.

[101] M. B. Wakin, M. F. Duarte, S. Sarvotham, D. Baron, and R. G. Baraniuk, “Recov-

ery of jointly sparse signals from few random projections,” in Advances in Neural

Information Processing Systems, 2006, pp. 1433–1440.

[102] C. R. Berger and J. M. F. Moura, “Noncoherent compressive sensing with applica-

tion to distributed radar,” in 2011 45th Annual Conference on Information Sciences

and Systems, 2011, pp. 1–6.

[103] M. Wei, “Group sparsity techniques for data fusion of a passive miso radar network,”

in 2016 17th International Radar Symposium (IRS). IEEE, 2016, pp. 1–5.

[104] Z. Yang and L. Xie, “Exact joint sparse frequency recovery via optimization meth-

ods,” IEEE Transactions on Signal Processing, vol. 64, no. 19, pp. 5145–5157, 2016.



152 BIBLIOGRAPHY

[105] Y. Chi and Y. Chen, “Compressive two-dimensional harmonic retrieval via atomic

norm minimization,” IEEE Transactions on Signal Processing, vol. 63, no. 4, pp.

1030–1042, 2015.

[106] H. Akaike, “A new look at the statistical model identification,” IEEE Transactions

on Automatic Control, vol. 19, no. 6, pp. 716–723, 1974.

[107] G. Schwarz et al., “Estimating the dimension of a model,” Annals of Statistics,

vol. 6, no. 2, pp. 461–464, 1978.

[108] N. Boyd, G. Schiebinger, and B. Recht, “The alternating descent conditional gradi-

ent method for sparse inverse problems,” SIAM Journal on Optimization, vol. 27,

no. 2, pp. 616–639, 2017.

[109] N. Rao, P. Shah, and S. Wright, “Forwardbackward greedy algorithms for atomic

norm regularization,” IEEE Transactions on Signal Processing, vol. 63, no. 21, pp.

5798–5811, 2015.

[110] N. Boumal and P.-A. Absil, “Low-rank matrix completion via preconditioned op-

timization on the grassmann manifold,” Linear Algebra and its Applications, vol.

475, pp. 200–239, 2015.

[111] J. L. Horner and P. D. Gianino, “Phase-only matched filtering,” Applied Optics,

vol. 23, no. 6, pp. 812–816, 1984.

[112] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “A sparse-group lasso,” Jour-

nal of Computational and Graphical Statistics, vol. 22, no. 2, pp. 231–245, 2013.

[113] S. M. Kay, Fundamentals of Statistical Signal Processing. Prentice Hall PTR, 1993.

[114] B. Gear, E. Mellios, A. Nix, and J. McGeehan, “A maximum likelihood location

estimator for non-line of sight geolocation of radio emitters,” in 2019 13th European

Conference on Antennas and Propagation (EuCAP), March 2019, pp. 1–5.



BIBLIOGRAPHY 153

[115] J. C. Chen, R. E. Hudson, and K. Yao, “Maximum-likelihood source localization

and unknown sensor location estimation for wideband signals in the near-field,”

IEEE Transactions on Signal Processing, vol. 50, no. 8, pp. 1843–1854, 2002.

[116] A. J. Weiss, “Direct position determination of narrowband radio frequency trans-

mitters,” IEEE Signal Processing Letters, vol. 11, no. 5, pp. 513–516, 2004.

[117] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal recon-

struction,” IEEE Transactions on Information Theory, vol. 55, no. 5, pp. 2230–2249,

2009.

[118] D. Baron, M. F. Duarte, M. B. Wakin, S. Sarvotham, and R. G. Baraniuk, “Dis-

tributed compressive sensing,” arXiv preprint arXiv:0901.3403, 2009.

[119] M. F. Duarte, S. Sarvotham, D. Baron, M. B. Wakin, and R. G. Baraniuk, “Dis-

tributed compressed sensing of jointly sparse signals,” in Conference Record of the

Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005., 2005,

pp. 1537–1541.

[120] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.


