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Abstract

Adaptive digital beamforming (DBF) algorithms are designed to mitigate the effects

of interference and noise in an radio frequency (RF) environment encountered by

modern electronic support (ES) receivers. Traditionally, an ES receiver employs a

single adaptive DBF algorithm that is part of the design of the receiver system. If

the ES receiver is designed to form multiple independent beams, the same adaptive

DBF algorithm is applied in each beam. Traditional receiver design is effective and

works when system processing power is limited. Modern computer technology al-

lows improvements over traditional receiver design, where a receiver is able to change

the implemented algorithm based upon system usage. This dissertation provides a

new ES receiver framework that attempts to make better use of the available com-

puting resources by adaptively selecting the most efficient DBF algorithm for each

beam that is able to meet system requirements. The framework contains a resource

manager (RM) that facilitates adaptive algorithm selection through the use of a look-

up-table (LUT). The RM estimates parameters of the RF environment, to include

the number of signals present in the environment, whether the signals are wideband

or narrowband, and their respective directions-of-arrival (DOAs). The parameters of

signal relative bandwidth and the number of signals in the environment are used to

select an adaptive DBF algorithm from the LUT. The resource manager also contains

a method to detect signals-of-interest (SOIs) in the RF environment and to estimate

their respective DOAs for use in adaptive DBF implementation. The SOI detection

method also indicates the number of independent simultaneous beams the receiver is

required to form.

Implementation of the proposed framework requires the development of the adap-
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tive DBF LUT. Creation of the LUT requires selecting a set of adaptive DBF al-

gorithms, determining their sensitivity to different environmental parameters, and

choosing the best algorithm for each member of a selected set of RF environments.

The RF environment parameters with the highest sensitivity are used to create the set

of RF environments. This dissertation focuses on development and characterization

of the RM but provides a representative LUT creation for demonstration purposes.

Future users of the framework are required to formulate their own LUT. The methods

of the RM, however, are designed to be used intact from the research and implemented

with a user generated LUT.
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DEVELOPMENT OF A RESOURCE MANAGER FRAMEWORK FOR

ADAPTIVE BEAMFORMER SELECTION

I. Introduction

1.1 Introduction

Designing radio receivers for signal interception and collection, whether for nefar-

ious purposes or good, has been ongoing since Marconi transmitted the first radio

signals in the late 1890s [66]. In the “early days” of radio the spectrum was un-

crowded and intercepting signals of interest did not require complex processing. To-

day, the radio frequency spectrum is crowded with competing interests vying for every

last Hertz of available bandwidth. The increased number of signals in the available

spectrum complicates interception and collection of radio signals. Adaptive digital

beamforming (DBF) algorithms counter the increasing spectral complexity by using

measurements of the environment to formulate filter weights capable of reducing the

effect of interference on signal collection [35, 70, 114]. Even so, the ability to detect

and collect low-power sources in a crowded electromagnetic environment, referred to

as the “Needle-in-a-Haystack” scenario, is difficult at best [114].

This dissertation proposes a new electronic support (ES) receiver framework, di-

agrammed in Figure 1, capable of autonomously selecting a best adaptive DBF al-

gorithm from a set of adaptive DBF algorithms known to the receiver. The chosen

DBF is considered the best available algorithm based upon an estimate of the radio

frequency (RF) environment intercepted by the receiver’s array and available compu-

tational resources. The receiver framework selects the best adaptive DBF algorithm

1



Figure 1. Signal collection receiver structure where X is a matrix of digitally sampled
baseband array channel data used by the RM to determine the appropriate adaptive
DBF weights
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using a resource manager (RM). The RM estimates a set of parameters that charac-

terize the RF environment and selects the adaptive DBF algorithm considered best

for the environment characterized by the estimated parameters. The choice of what

makes an adaptive DBF algorithm best for a given scenario is dependent upon the

desires of the receiver designer. The RM and the adaptive DBF selection techniques

are designed to be reused directly from the framework; however, the implementer

is required to choose a set of adaptive DBF algorithms and RF environments and

populate a look-up-table (LUT) of adaptive DBF algorithms from which the frame-

work chooses the algorithm based upon the estimated environment parameters. To

demonstrate the full function of the ES receiver framework this dissertation creates a

LUT of adaptive DBF algorithms based upon their signal-to-interference-plus-noise

ratio (SINR) improvement and computational complexity.

The demonstration algorithm selection criteria of computational complexity is

from the proposed receiver framework goal of efficient receiver computer resource

usage. Using this desire the rule for choosing adaptive DBF algorithms for the LUT is

to select the adaptive DBF algorithm that first meets an SINR improvement threshold

and has the lowest computational complexity of all algorithms in the chosen set that

meet the desired threshold. This decision rule is just one of an infinite number

of decision rules based upon receiver designer requirements and is practicable, not

necessarily intended to be an optimal decision rule.

The proposed receiver framework expands the current methodologies of adaptive

DBF selection while acting as a precursor for future intelligent designs. Adaptive

DBF algorithms are chosen for receiver implementation based upon known algorithm

performance against different electromagnetic (EM) environments. Classically, the

choice of an algorithm is made once during receiver design. Future intelligent sys-

tems are likely to implement Haykin’s perception-reaction cycle [31]. A static algo-
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rithm does not allow for receiver reaction to changing environments such that the

best algorithm for the environment is being applied. This research presents the first

receiver framework to select an adaptive DBF algorithm through perceiving the en-

vironment1. Furthermore, this receiver framework is the first to consider a second

parameter, computational complexity, in the algorithm selection such that the chosen

algorithm uses the receiver’s resources efficiently. Efficient use of computer resources

in the proposed receiver framework is predicated on the use of parallel processing.

1.2 Background

Traditionally ES receivers intercept, detect, characterize, classify, and identify

emitters in the electromagnetic environment [18]. The ES receiver design has paral-

leled the progression of communications systems from narrowband systems to wide-

band systems and from analog to digital implementations. The transition from nar-

rowband to wideband was necessary as the ES systems adapted to intercept and

process the wideband communication signals transmitted by the new communication

systems. Also, digital implementation provides access to digital signal processing

(DSP) techniques allowing for more sophisticated characterization and classification

algorithms [77].

There are two primary types of ES receivers. The ES receiver type most commonly

thought of is the radar warning receiver (RWR). The RWR technology is used in

combat aircraft to detect enemy integrated air defense system (IADS) threat radars

and warn the pilot of incoming anti-air missiles or artillery fire. Primitive RWR

detected radar transmissions and provided the direction of the incoming threat radar

signal [71, 112]. Modern RWR are more sophisticated and can determine the type

of threat radar by measuring the radar’s transmission frequency, pulse repetition

1Perception in the proposed receiver architecture is analogous with measuring/estimating envi-
ronment parameters.
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rate, pulse length, and other characteristics [112]. In this manner RWRs become

intelligence gathering instruments as well as providing threat radar data to the pilot.

Emitter classification is performed by using DSP to characterize the received radar

waveforms in terms of the aforementioned transmission frequency, pulse repetition

rate, and pulse length. The RWR forms a pulse descriptor word (PDW) for each

pulse and makes classification decisions based upon the PDW.

The second type of ES receiver is the signal collection receiver. Signal collection

receivers are applicable to all communications signals in the RF environment [112].

While the receiver can characterize the signal with respect to signal parameters simi-

lar to formation of a PDW, such receivers are also designed to decode the transmitted

communication signal to collect the information transmitted in the signal. Signal col-

lection receivers often deal with lower power signals-of-interest (SOIs), and therefore

must handle signals with lower SINR than the RWR. The difference is due to radar

systems using high power transmitters to overcome reflection and round trip losses

associated with radar detection [97] and communication SOI employing low proba-

bility of intercept techniques. Transmission of low power communication SOIs in a

crowded RF environment results in the “needle-in-a-haystack” scenario.

Like the RWR, the signal collection receiver may have to receive, detect, and ex-

ploit multiple signals of interest at the same time. There are two ways for an ES

receiver to collect multiple signals at the same time, both referred to as forming mul-

tiple independent beams. The term “beam” is based on the ability of an array to use

constructive and deconstructive interference from multiple antenna array elements to

increase the received signal power over a narrow range of receive angles while de-

creasing the received signal power from all other directions [70]. The two methods

of forming multiple independent beams are to apply multiple receiver hardware con-

figurations and use a separate hardware set for each beam, or to use a single set of
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hardware and form multiple beams through DSP. Also, it is possible to integrate the

two methods to form multiple digital beams for each set of multiple receiver hardware

sets [70].

The main advantage of forming multiple beams through hardware is the ability

to apply beams in multiple areas of the frequency spectrum simultaneously. As each

beam has an independent set of hardware, the RF hardware for each beam can be

tuned separately as required. The major disadvantage of applying multiple beams

through hardware is the cost, in terms of monetary cost and the size, weight, and

power required to implement the required hardware. Adding a beam requires the

addition of a complete set of receiver hardware and DSP processing hardware. The

main advantage of forming multiple digital beams is the ability to form multiple

beams simultaneously in all possible directions allowed by the array. As each beam

is implemented in software, adding digital beams requires only an additional compu-

tational cost. All beams, however, are required to be in the same frequency range. A

hybrid system of multiple hardware receiver configurations, each with the ability to

form multiple digital beams, would still have the costs associated with implementing

multiple receiver hardware sets. The hybrid system would require fewer hardware

configurations than the hardware-only multiple beam implementation, as multiple

beams within the same frequency range could be handled by applying multiple digi-

tal beams.

One example environment that an ES receiver is expected to operate in is pictured

in Figure 2. The scenario demonstrates both how multiple beams are required for

a ES signal collection receiver and how interference sources complicate the tasks

of detecting and estimating the signal of interest. In this scenario the ES receiver

is tasked with collecting the signal transmitted from the global system for mobile

(GSM) communication cellphone of a high value target (HVT). In the scenario the
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HVT is not the only user of the GSM network. In addition to the GSM users there

are interference signals in the environment from appliances such as microwave ovens,

radio and television broadcasts from terrestrial and satellite sources, along with other

possible noise sources. The ES receiver is on an airborne platform observing the

terrestrial scene. The ES receiver must isolate and collect the GSM signal from

the HVT. While techniques for RF device fingerprinting can distinguish between

different cellular devices [49, 84], these techniques require the signature of the HVT

cell phone to be known a priori. If the assumption is made that all GSM users are

indistinguishable by the receiver, each GSM signal must be considered a SOI and a

separate beam formed toward each GSM user.

The inability to distinguish between different GSM users requires that a separate

beam is required to isolate each GSM signal for further processing. Furthermore,

because of the complex interference environment adaptive DBF is required to effec-

tively estimate the GSM signals. This is true regardless of how the multiple beams

are implemented; if multiple receiver hardware sets are used, then an adaptive DBF

algorithm is applied to the output of each hardware set. For a single hardware set,

multiple adaptive DBF algorithms are applied to the same receiver hardware output.

Before any adaptive DBF algorithm is applied by the ES receiver tasked with

collecting the phone call from the HVT, two main questions need to be answered. In

what spatial and temporal (spectral)2 directions is the adaptive beamformer applied?

What adaptive DBF algorithm should be used? The first question is partially an-

swered when the ES receiver is tasked. In the current scenario the ES receiver knows

what type of signal to collect (GSM), and therefore knows the spectral region in which

to apply the adaptive DBF algorithm. The spatial direction and what adaptive DBF

algorithm to implement are not as easily determined.

2The spectral direction of a signal refers to the region in frequency space occupied by the signal.
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Figure 2. ES receiver notional operation and application.
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The ES receiver has no a priori knowledge about the directions-of-arrival (DOAs)

of the GSM signals, nor the interference signals. The ES receiver must estimate the

DOA of the GSM signals and the interference signals. This is similar to the RWR

operation in that the RWR determines the direction of threat emitters and notifies the

pilot of their location. The RWR receiver also must differentiate between “friend” and

“foe” emitters as the ES collection receiver must differentiate between GSM signals

and interference signals. The difficulty for the collection receiver arises in that the

SOIs often have much less signal power than the interference signals. Whereas, for the

RWR all signals are considered to be high power signals. For the scenario depicted in

Figure 2, the interference signals can be terrestrial television and radio signals which

have the potential of being much higher power than a GSM signal. In either case

the ES receiver must use the available data from the environment to determine the

angles of arrival of all signals in the environment as well as to differentiate the signals

of interest from the interference signals.

The proposed receiver framework separates the SOIs from the interference sources

using spatial and spectral filtering operations. Once the SOIs are separated from the

interference signals the ES receiver is required to decode the GSM signal. While digital

communication techniques are designed to be robust against noise and interference

[96], the GSM scenario is just an example and ES receivers are required to decode

information from other signal types such as analog communication signals where the

decoder requires a signal as close to the transmitted signal as possible. Beamformers

are designed to mitigate the effects of interference and noise on a received signal and

can be thought of as estimators of the transmitted signal. Beamformers mitigate

directional interference sources by placing a directional beam towards a SOI and

placing nulls toward all interference signals [70]. Applying an adaptive beamformer

estimates the desired SOI by placing a spatial beam, spatial nulls, and removing
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noise [33, 70]. The ES receiver task is complete once each SOI is estimated. All of

the processing for detecting all SOIs, separating the SOI and interference sources,

forming the adaptive filter weights, and estimating each SOI must be completed in

enough time to allow the process to repeat quickly enough to track any changes in

the EM environment.

1.3 Assumptions

The proposed receiver framework is intended to be applicable to digital receivers

that use digitized data for each channel of a multi-element array antenna. The for-

mulations presented throughout this dissertation are based upon an uniform linear

array implementation; use of other types of arrays requires utilizing the correct forms

of the adaptive DBF algorithms as well as correct forms of the environment parame-

ter estimation algorithms [70, 114]. To ensure that the receiver framework is able to

beamform on all SOIs it is assumed that the total number of signals in the environ-

ment is less than the degrees of freedom of the implemented array.

Algorithm discussion does not assume any particular computation hardware ar-

chitecture or software environment. All computations and simulations are performed

using Mathworks MATLAB R2012b. MATLAB is chosen due to its ease of imple-

menting matrix equations along with its availability. Because MATLAB is an inter-

preted language, no direct measurements of computation time are performed and all

complexities are given in “big O” notation to be platform agnostic.

1.4 Document Overview

The organization of the rest of the dissertation follows. Chapter Two is a review

of literature describing each of the adaptive DBF algorithms applied in the RM. The

literature review also covers the spectral estimation and direction of arrival algorithms
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used to implement the RM. Literature on cognitive radio (CR) is discussed with

respect to the similarities of CR spectral hole detection and signal detection in the

RM. An overview of literature with concepts similar to the receiver framework and

adaptive algorithm selection concludes the chapter.

Chapter Three provides a detailed development of the proposed receiver frame-

work. The presentation includes a description of how the RM chooses an appropriate

adaptive DBF algorithm and provides the algorithm for implementation by the ES

receiver. Each functional block of the RM is discussed including the choice of environ-

ment estimation and signal of interest detection algorithms. The chapter describes

how the electromagnetic environment is parameterized and how the RM handles

environments with multiple signals of interest. The chapter also describes the com-

putational efficiency of the RM algorithm including the computational complexities

of each functional block of the RM.

Chapter Four contains descriptions of the five adaptive DBF algorithms chosen

to demonstrate the receiver framework. The algorithm description section discusses

each algorithm and the rationale for choosing the set of algorithms. After the math-

ematical description of each algorithm, the chapter provides a sensitivity analysis

of the algorithms with respect to different environment parameters. The sensitiv-

ity analysis is used in developing scenarios to generate the look-up-table of adaptive

DBF algorithms chosen by the RM algorithm based upon the sensed environment.

All scenarios are listed as well as each algorithm’s performance when applied to the

given scenario. The performance of each algorithm is presented in terms of the SINR

improvement ratio and the computational complexity of the adaptive DBF algorithm.

The complexities of each adaptive DBF algorithm are provided with their respective

mathematical description. The chapter concludes with the final listing of the LUT

for use by the RM algorithm.
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Chapter Five provides a validation of the RM. The validation is presented as ap-

plication of the RM to four data scenarios. The first three scenarios are simulated

environments. Each simulated environment is designed to show the RM performance

in a specific type of environment. The first scenario contains only wideband interfer-

ence signals, the second scenario contains only narrowband interference signals, the

third scenario contains a mixture of wideband and narrowband interference signals.

The final two scenarios are composed of data collected from the Air Force Research

Laboratory (AFRL) McWESS and MUD-WASP adaptive array testbeds. Applica-

tion of the RM against McWESS and MUD-WASP data validates the performance

against measured data showing that its applicability is not just theoretical.

Chapter Six provides concluding remarks on how the receiver framework is able to

determine the environment and apply an appropriate adaptive DBF algorithm across

a wide variety of interference environments. The chapter also provides future areas of

research. These future areas of research are continuations of the research presented

in this dissertation along with possible research into the application of the receiver

framework in an operational receiver system.
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II. Literature Review

Adaptive digital beamforming (DBF) algorithms are designed to mitigate the

effects of interference and noise incident upon the array of a receiver. Application

of an adaptive DBF algorithm is a preprocessing step for electronic support (ES)

receivers. An ES receiver is designed to detect and characterize signals-of-interest

(SOIs). In an ideal situation there would be neither interference nor noise present in

the radio frequency (RF) environment, and the ES receiver would perform whatever

characterization algorithms are necessary. Receivers, however, do not operate in ideal

conditions, and the RF environment incident upon the receiver’s array contains noise

and often multiple interference sources. The preprocessing step of beamforming is

applied to remove the noise and interference as much as possible and feed a “cleaned

up” signal to the post processing algorithms. In this manner, an adaptive DBF

algorithm is an estimation algorithm that provides at its output an estimate of the

unknown transmitted signal where the estimate is of the desired transmitted signal

waveform.

The proposed receiver framework is designed to adaptively choose the best adap-

tive DBF algorithm, based upon the parameterized RF environment, from a set of

adaptive DBF algorithms made available to the framework. The criteria of what

makes an algorithm the best is determined by the framework implementor. For

demonstration purposes, this work bases algorithm selection upon signal-to-interference-

plus-noise ratio (SINR) improvement and algorithm computational complexity. The

SINR improvement is a measure of adaptive DBF algorithm output SINR of a de-

sired signal over the input SINR of the signal with respect to all interference and

noise signals in the environment. Algorithm computational complexity is analytically

determined for each algorithm chosen for the framework demonstration.

When implementing the receiver framework the implementor must choose a set
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of adaptive DBF algorithms for possible selection. The resource manager (RM) of

the framework estimates the RF environment parameters and picks the best adap-

tive DBF for an RF environment characterized by the estimated parameters. The

five adaptive DBF algorithms chosen for demonstration purposes in this work are

the wideband, linearly constrained minimum variance (LCMV) called Frost’s algo-

rithm [21], a generalized discrete Fourier transform (GDFT) implementation [65],

a time reversal method (TRM) implementation [56, 57], a least squares space-time

beamformer (LSSB) implementation [134,135], and a narrowband LCMV implemen-

tation [21].

All the selected adaptive DBF algorithms, estimation algorithms, and detection

algorithms used throughout this work are described in terms of a common signal and

data model. This chapter first describes the signal and data models. The initial sec-

tion on the data model also includes the assumptions and notation associated with the

model and algorithm descriptions. This chapter then provides a detailed description

of the five adaptive DBF algorithms chosen for the framework implementation used

as discussion throughout this work. This chapter also provides background on the

direction-of-arrival (DOA) estimation algorithms, spectral estimation algorithms, and

signal detection algorithms used in the design of the RM portion of the framework.

The techniques used for both SOI and interference signal detection are borrowed from

the cognitive radio (CR) literature and the background on the multi-taper method

(MTM) spectral estimator and generalized likelihood ratio test (GLRT) are presented

in terms of their CR usage. The usage of the detector and MTM in CR translate

directly to their usage in the RM function of the proposed receiver framework.
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2.1 EW Environment Model

The electromagnetic (EM) environment has three main components: the signal of

interest, interference signals, and receiver noise. To construct the model first consider

the SOI. Define the SOI as a deterministic time function given by

s (t) = u (t) e−j2πfot+ψ(t) , (1)

where u (t) is the baseband complex signal representation, fo is the center frequency,

and ψ (t) is a time dependent phase. The complex baseband signal is in general a

wideband signal. While there are numerous definitions of what a wideband signal

is, [55, 97, 106, 107], for the purposes of this research a wideband signal is one where

the instantaneous bandwidth, B, of the baseband signal is greater than 10% of the

center frequency, fo.The SOI is considered to be located in the far field of the receiver

and incident upon the receiver at an azimuth angle of φs, and an elevation angle of

θs with respect to the look direction of the receiver. Figure 3 provides a graphical

representation of scenario geometry.

An interference signal is defined as any signal that is not s (t). DBF algorithms

are designed to suppress interference from the measured RF environment. In doing so

the DBF algorithms are only concerned with the power and DOA of the interference

signals [112]. This allows the interference signals to be modeled as stochastic signals

defined by a power spectral density (PSD) and a DOA. Representing each of the k

interference signals similar to s (t), the model for each interference signal Iς is given

by

Iς (t) = %ς (t) e−j2πfς t+ψς(t), ς = 1, 2, · · · ,k (2)

where %ς (t) is the complex stochastic envelope of Iς (t); fς and ψς (t) are the center

frequency and phase, respectively, for interference signal Iς . The PSD for Iς (t) is a
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frequency shifted version of the PSD of %ς (t). Each interference signal is also consid-

ered to be wideband and in the far field of the receiver, with azimuth and elevation

angles of φIς and θIς respective to the receiver look direction. The interference signal

power for interferer Iς is given by: γ2 = E [%ς (t) %ς (t)∗], where E [·] is the expectation

operator and (·)∗ is complex conjugation.

Thermal noise is modeled as a zero-mean complex white Gaussian stochastic pro-

cess n (t), with power σ2
noise = E [n (t)n (t)∗]. The EM environment model is then the

superposition of the SOI, interference signals, and noise given by

x (t) = s (t) +

(
k∑
ς=1

Iς (t)

)
+ n (t) . (3)

The signal model of (3) is a general model that can incorporate any number of interfer-

ence sources. The interference sources, as well as the SOI, can be either narrowband

or wideband.

2.2 Data Model

All algorithms used in this dissertation are digital and operate on digitized sam-

ples of the environment. To keep the data model platform agnostic, the environment

as modeled in Section 2.1 is assumed to be sampled and digitized such that Nyquist

criteria are met and the bit depth is sufficient to meet all calculation accuracy re-

quirements for the chosen processing system.

To fully develop the data model, consider a system with M channels and K time

samples per channel. For channel m ∈ {0, · · · ,M − 1}, the environment of (3) is

sampled as

xm = [xm [0] , · · · , xm [K − 1]], (4)
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where each xm (k) is

xm (k) = s (t− kT − τm) +

(
k∑
ς=1

Ip (t− kT − τm)

)
+ n (t− kT − τm) , (5)

given T is the system sampling period and τm is the delay the signal experiences in

traversing from a reference array element to element m. For this work, the reference

element is considered to be the leftmost array element and τ0 = 0. When K samples

from the M channels are considered the data can be arranged in matrix form as

X =



x0

x1

...

xM−1


, (6)

where the number of data samples can range from one to 16,000 for each of the 64

channels of the MUD-WASP system.

One further restriction to the data model is that the elevation pattern of the

simulated array is considered isotropic. This assumption is made to partially model

the MUD-WASP system which has a fixed elevation pattern. This limitation simplifies

the required steering vectors to only require azimuth specification. Throughout the

document all incidence angles are therefore referring only to the azimuthal incidence

angle.

2.3 Notation and Terminology

• Scalars are denoted by Roman font lower case (e.g. t)

• Vectors are denoted by Roman bold face, lower case (e.g. x)

• Matrices are denoted by Roman bold face, upper case (e.g. R)
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• Estimated quantities are denoted with a hat character (e.g. θ̂)

• Complex conjugation of an object with a superscripted ∗

• Vector or matrix transpose operation is denoted by superscripted T

• Complex conjugate transpose, i.e. the Hermitian transpose vector or matrix, is

denoted with superscripted H

• ‖ · ‖ denotes the Euclidean norm of a vector

• the propagation speed of RF waves is denoted by c, i.e. the speed of light

Throughout the document the terms electromagnetic environment and interfer-

ence environment are used interchangeably. Both terms refer to the combination of

directional interference signals and noise as discussed in Section 2.1. In both cases

the environment also contains all signals of interest. The RM is broken into different

functions referred to as functional blocks. Each block contains multiple algorithms

used for estimating parameters of the environment from the data matrix. The term

spatial estimate refers to the estimate of the signals’ direction of arrival. Likewise,

spatial beams refer to angular regions in physical space that are created by applying

delay-and-sum beamformers toward a given direction.

2.4 Beamforming

2.4.1 Beamforming Overview.

Beamforming in this work is considered a data time series estimator. The adaptive

DBF algorithms operate on sampled array channel data and output an estimate of

the desired transmitted signal. Adaptive DBF algorithms operate either on a time

sample-by-time sample basis or on a block of time data. For a given time sample the
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data from the array is a column vector x̃ [k] corresponding to the kth column of (6).

If a block of data is used the data is represented by an M × K ′ sub matrix of (6),

where M again corresponds to the number of array channels in the receiver, and K ′

is the number of samples included in the data block. If a single time sample is used

for beamforming the output for time k is found by

y [k] = wH x̃ [k] (7)

where w is a column vector of complex filter weights. If the beamformer is a data

block implementation the output has a similar form

y [k] =
∑
i,j

{W∗ � X̃′ [k]}i,j (8)

where W is an M ×K ′ block of filter weights, X̃′ is an M ×K ′ data block, � is the

Hadamard product, and the summation is performed for all elements of a K ′ × K ′

matrix of weighted .

The format of the beamformer in (8) is referred to as the delay-and-sum beam-

former as it operates by summing over multiple weighted data samples that are sep-

arated in time by a known delay. All delay-and-sum beamformers can be written in

the form of (7). First stack the columns of both W and X′ into length MK ′ column

vectors as

w′ =



w1

w2

...

wK′


(9)

where w′k is the k′th column of W. Similarly, create an length MK ′ column vector

20



from the data sub matrix X′ as

x̃′ =



x̃1

x̃2

...

x̃K′


(10)

where x̃′k is the k′th column of X′. With these two definitions the output of the

delay-and-sum beamformer is written as

y [k] = w′
H

x̃′ [k] (11)

where the k refers to the output at time sample k and x̃′ [k] represents the data sub

matrix from time k to time k +K ′.

Narrowband beamformers typically apply the form given in (7) and wideband

beamformers apply the forms of (8) or (11). The difference is because narrowband

beamformers apply a single filter weight to each channel per time sample, while

wideband beamformers apply a finite impulse response (FIR) filter to the output

of each array channel. The FIR applied to the output of each channel allows the

adaptive DBF algorithm to control the beamformer response across multiple angles

and frequencies [114], where a single filter weight vector applied at one time sample

provides beam pattern control at a single frequency [70, 114]. The weight matrix W

for a wideband beamformer is then a matrix consisting of a length K ′ row vector of

FIR filter weights for each of the M array channels.

The forms of (7), (8), and (11) appear simple but hide the complexity of forming

the actual beamforming weights for a given adaptive DBF implementation. The next

section provides background on the development of adaptive beamformers in recent

history. After the brief history, each of the five adaptive DBF algorithms used in this
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work are described in detail.

2.4.2 Early Beamforming Practices.

Initial works presenting beamforming in its present sense of adaptive arrays ap-

peared in the 1960s [22–24, 129, 130]. Due to the immaturity of RF sources and

modulation techniques, the majority of the research in the 1960s and throughout

the 1970s was narrowband focused. The techniques presented in these papers, us-

ing analog phase shifters to form complex filter weights and tapped delay lines, are

also applicable to wideband adaptive beamforming. Wideband beamforming was in-

troduced first in the context of acoustic direction finding, where the bandwidths of

the sources predicated wideband beamforming techniques [6, 15, 44, 93]. The earliest

wideband beamforming was used for acoustic direction finding in both air and water.

While analog adaptive array processing advances such as the Rotman lens [88]

proved quite capable, the systems could be bulky and sensitive to factors such as

temperature and humidity [97]. Gains in adaptive array processing made in recent

times are a result of the proliferation of digital computers. Using digital comput-

ers allows adaptive techniques such as Weiner and Kalman filtering [33, 70]. These

adaptive digital techniques greatly improve the signal-to-noise-ratio (SNR) of modern

receivers [70,77]. Many algorithms such as minimum variance distortionless response

(MVDR) and linearly constrained minimum variance (LCMV) are reformulations of

the Weiner filter [114]. One powerful algorithm available from digital processing is

the least squares derived beamformer that can adaptively place space-time nulls to

cancel the effects of numerous interference sources [134, 136, 137]. The problem with

the LCMV, MVDR, and least squares techniques is their computational complexities.

Computer hardware in the 1970s and into the 1980s was slow, bulky, and costly to

implement. The computational capability for the best algorithms was too great for
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implementation. Furthermore, to satisfy the Nyquist criteria wideband processing

systems such as radar warning receiver (RWR) with bandwidths of 500 MHz [112] re-

quired sampling rates greater than 1 GHz. Such analog to digital converters (ADCs)

were not available until the 1990s [105, 117]. Given these limitations the earliest

digital algorithms were also narrowband in nature.

With modern hardware able to provide the required ADC and processing to realize

adaptive wideband DBF algorithm implementation, there is a resurgence of wideband

adaptive DBF research. This section covers the recent advances in adaptive wide-

band array processing applied in the proposed receiver framework. Section 2.4.3 de-

tails the development of wideband versions of narrowband adaptive DBF techniques,

Section 2.4.4 details modern space-time adaptive techniques for wideband beamform-

ing, Section 2.4.5 details a new beamforming technique based on true time delay

beamforming in the digital domain, and Section 2.4.6 details sub-space beamforming

methods.

2.4.3 Adaptive Wideband Beamforming.

Narrowband adaptive beamforming continues to be an active research area. Many

of the adaptive DBF algorithms developed for narrowband application are simplifica-

tions of wideband algorithms. This section details the development in the literature

of wideband adaptive beamforming algorithms based on narrowband techniques.

The first mention of adaptive arrays was in a technical report by Applebaum

for the Syracuse Research Laboratory [2]. Applebaum derived “control loops” for

adapting array channel weights to null out the effects of a jammer in the sidelobe

of an array [2]. The method was applicable to narrowband arrays and updated the
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array channel weights as

w = wq −
(

pj
pn +Mpj

)
G (βj) v∗j (12)

where wq is the quiescent1 weight for a noise only array, pj and pn are the jammer

power and noise power, respectively, G is the quiescent beam pattern function, M is

the number of array channels, d is array interlement spacing, λ is the wavelength of

the transmitted signal,

βj =
2πd

λ
sinφj, (13)

and

vj =
[
1, ejβj , . . . , ej(M−1)βj

]T
(14)

is the jammer steering vector, with φj ithe jammer incidence angle. The Applebaum

beamformer was implemented in analog hardware and provided an effective means

for nulling jammers within the sidelobes of the array [2]. If the jammer was in the

main lobe of the array, however, the method provided poor performance.

Modern adaptive beamforming algorithms, while having roots with Applebaum,

are more directly linked to the work of Widrow, et al. [129]. Widrow was the first to

apply adaptive filters to the output of antenna arrays [129] and adapted filter weights

by choosing the weighs that minimized the mean-squared error of the filter output

with respect to the desired signal, leading to development of the least mean squares

(LMS) algorithm. If the weight vector w is considered to be applied at time sample

k the LMS update equation for the filter weights at time k + 1 is given by

w (k + 1) = w (k) + ks∇σy (k) , (15)

1The quiescent weight vector is the vector that would be applied in a noise only environment.

24



where ks is a weighting factor and ∇ is the gradient operator. The error between

the desired signal dsig at time k and the filter estimate of d provided by applying the

filter weights at time sample k is given as

ε = dsig (k)−wHx (k) . (16)

The LMS algorithm requires knowledge of the second order statistics of the desired

signal. In situations where this information is available, the LMS algorithm is effective

and is referenced in many adaptive antenna and adaptive algorithm books, such as [33,

70]. The algorithms of Widrow are equally applicable to wideband and narrowband

signals.

Griffiths reformulated the LMS problem for cases when a priori knowledge of the

second order statistics [26,27] is not available. Frost made further developments in the

area of beamforming by proposing a different constrained least squares beamformer

that only requires knowledge of the DOA of the desired signal [21]. Frost solved the

beamfomer problem by minimizing the output power of the beamformer while placing

a hard constraint in the direction of the main beam. Furthermore, Frost demonstrated

that the LMS beamfomer of Griffiths was the same as the Frost beamformer, where

soft quadratic constraints were imposed as opposed to the hard constraints of Frost

[21]. In addition to imposing hard constraints in the beamforming problem, Frost’s

iterative algorithm was numerically stable, where the algorithm of Griffiths becomes

numerically unstable for long data runs on fixed-precision machines.

The beamformer first published by Frost, is known today as either the MVDR

or LCMV beamformer, depending upon whether or not the SOI is present in the

training data used to formulate the beamformer weights. The formulation of Frost

continues to be an active area of research. Modern research on Frost-type beamform-

ers concentrates on improving the robustness of the algorithm against steering vector
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mismatches. One simple method for improving robustness, at the cost of reduced

sensitivity, mentioned in most textbooks on the subject, is to diagonally load the

covariance matrix of the received data [58,70,113]. The works of [1, 20, 108] attempt

to improve the algorithms through changing the constraints imposed upon the least

squares (LS) problem.

The works of Widrow and Frost [21, 129] while implemented for narrowband re-

ceivers at first, are equally applicable to wideband receivers. The transition to wide-

band receivers in both algorithms requires using the block data approach with a FIR

filter used in each array channel. Early work using FIR filters with fewer than ten

filter taps per channel showed improved wideband performance over the narrowband

beamformer implementations [54,67,89,116]. Rodgers and Compton demonstrated a

wideband version of the LMS algorithm employing FIR filters at each channel [86].

The wideband performance of Frost was demonstrated using FIR filters at each array

channel in [119,121].

2.4.3.1 LCMV Beamformer.

The LCMV was first described by Frost [21] as a way to adaptively update filter

weights to beamform on a signal in noise. Frost’s algorithm was known as the MVDR

algorithm. The MVDR was a minimization of the array output variance with a

constraint that the beamformer response in a given direction be unaltered. Frost’s

early beamformer required signal-free training data to form the covariance matrix

estimate used in the computation of the filter weights. As in the current context, when

training data containing the SOI is unavoidable, the same minimization technique is

applied leading to the LCMV beamformer. The following development of the LCMV

filter weights follow that of [114].

To fully understand the mathematical description of the LCMV beamformer, first
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consider that a beamformer provides an estimate of the SOI time series. The re-

ceiver array provides measurements of the electromagnetic environment in the form

of sampled array channel data. The array data is written in matrix form of (6). The

beamformer is asked to provide an estimate of the desired signal using this set of

measured data. As the name would imply, the LCMV provides the DBF weights that

minimize the variance of the signal estimate. A signal estimate is given by

y [k] = wH [k] x̃ [k] , (17)

where

w = [w0, w1, · · · , wM−1]T (18)

is the vector of adaptive filter weights at time kTs for sample time Ts, and x̃ [k] is

the kth column of the data matrix X from (6) representing a vector of data for all M

channels at a single time k.

Each of the measurements x̃ [k] is a random vector and so the estimate y [k], which

is a function of a random vector, is a random variable. The variance of the estimate

is then

σ2
y = E [(y [k]− ȳ [k]) (y [k]− ȳ [k])∗] , (19)

where ȳ [k] is the mean of y [k], E [·] is the expectation operator. Then by substituting

equation (17) into (19) the variance of the estimate can be written as

σ2
y = E

[(
wH [k] x̃ [k]− ȳ [k]

) (
wH [k] x̃ [k]− ȳ [k]

)∗]
, (20)

where all variables are as defined above. At this point in the literature it is typically

assumed that all signals, including the SOI are zero-mean signals. The zero-mean

assumption is valid for modulated radio frequency signals that oscillate about zero

27



volts tending the mean toward zero. The thermal noise is also assumed to be zero-

mean noise due to the fact that it occurs from thermal excitement of electrons in the

receiver hardware. The assumption of statistically independent signals, interference

sources, and noise is also invoked. Under these assumptions the variance (20) becomes

σ2
y = E

[
wH [k] x̃ [k] x̃ [k]H w [k]

]
= wH [k]E

[
x̃ [k] x̃ [k]H

]
w [k]

= wH [k] Rx̃x̃w [k] , (21)

where Rx̃x̃ is the correlation matrix is for the measured data vector x̃.

Finding the filter weights w [k] that minimize (21) creates a filter that minimizes

the power output of the DBF. This DBF would tend to eliminate the SOI from the

filter output in addition to minimizing the interference and noise contributions to

the output. To prevent SOI degradation, the LCMV minimizes (21) subject to the

constraint that the signal received from the DOA of the SOI is not distorted. This

constraint can be written as

wH [k] v (φs) = 1, (22)

where v (φs) is the steering vector toward the SOI defined by

v (φs) =
[
1, ej2πf

d sinφs
c , ej4πf

d sinφs
c , · · · , ej2(M−1)πf d sinφs

c

]T
. (23)

The linearly constrained optimization problem to minimize (21), subject to (22),

is solved by the method of Lagrange multipliers [7, 33]. Solution by the method of

Lagrange multipliers requires minimization of the Lagrangian cost function

L (w, λ) = wH [k] Rx̃x̃w [k] +R
[
λ∗
(
wH [k] v (φs)− 1

)]
, (24)
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where λ is the complex Lagrange multiplier andR [·] takes the real part of the enclosed

value. To determine the minimum of L in (24) we assume that ŵ is the global

minimum. Then a necessary optimality condition is the gradient of L with respect to

the filter weights w is set equal to zero giving

∇wL = 2Rx̃x̃w + λv (φs) = 0. (25)

The solution for the LCMV filter weights is

ŵ (λ) = −λ
2

R−1
x̃x̃v (φs) , (26)

where the solution is in terms of the unknown Lagrange multiplier. The Lagrange

multiplier is eliminated from (26) by substituting (26) into (22), then solving for the

optimal λ̂ to get

λ̂ = − 2

vH (φs) Rx̃x̃v (φs)
. (27)

Using (27) in (26), the LCMV filter weights are given as:

wLCMV = ŵ
(
λ̂
)

=
R−1
x̃x̃v (φs)

vH (φs) R−1
x̃x̃v (φs)

. (28)

The expression for the LCMV filter weights in (28) is correct if the correlation matrix

for the measured data and the DOA of the SOI, are known completely. In reality

neither of these quantities is known and both must be estimated. Algorithms are

available to estimate the DOA of all detectable signals in the environment. The

inverse data correlation matrix of R−1
x̃x̃ can be estimated through the sample matrix

inversion (SMI) method [114]. In SMI multiple time samples of the array channel

data vector x̃ [k] are considered. If K data time samples are available as in (6), then

the SMI method first estimates Rx̃x̃ as the average of the sample correlation matrices
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through

R̂x̃x̃ =
1

K

K−1∑
k=0

x̃ [k] x̃ [k]H . (29)

The inverse of the correlation matrix then entails a standard matrix inversion. Im-

plementation of the LCMV algorithm in (28) is exacted using the given estimates.

A major consideration with algorithms such as the LCMV above is that an inverse

computation is required. Matrix inverse algorithms are computational complex and

can become numerically unstable when the matrix is poorly conditioned. One method

to overcome the instability is to use the Moore-Penrose pseudo inverse [33,114]. The

pseudo inverse is more numerically stable; however, it is still a computationally com-

plex algorithm. To achieve a numerically stable and less complex algorithm, Frost [21]

rewrote the LCMV as an iterative algorithm that updates the filter weights based on

the current sample of array channel data eliminating the requirement for a covariance

matrix inversion. The new method does require a matrix inverse; however the inverse

is of a smaller constraint matrix reducing the time required for algorithm computation

and increasing computational accuracy.

The following implementation of Frost’s algorithm [21] also increases the number of

constraints used to determine the LCMV filter weights. By adding constraints beyond

(22) the algorithm has greater control over beam pattern at the cost of increased

computational complexity. Each new constraint is of the form

v (φi)
H w = fi, (30)

where φi is the angle of the new constraint and fi is the desired beam pattern value

in direction φi. All constraints of the form (30) are written in matrix form as

CHw = f , (31)
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where

C = [v (φ1) ,v (φ2) , · · · ,v (φNc)] (32)

is a matrix containing the Nc steering vectors for Nc different constraints and

f = [f1, f2, · · · , fNc ]
T . (33)

The recursive algorithm begins with an initial solution that meets the required

constraints

w0 = C
(
CHC

)−1
f . (34)

The solution is then updated in the direction of the negative gradient of the LCMV

objective equation (24) as

w [k + 1] = w [k]− µ [Rx̃x̃w [k] + Cλ [k]] , (35)

where µ is a weighting factor that controls the rate of convergence of w [k + 1] and

the Lagrange multiplier λ [k] is found by forcing the solution w [k + 1] to meet the

LCMV constraints. The weight update equation is then written as [21]

w [k + 1] = w [k]− µ
[
I−C

(
CHC

)−1
CH
]

Rx̃x̃w [k] + C
(
CHC

)−1 [
f −CHw [k]

]
.

(36)

Frost used this formulation to emphasize that due to digital computation inaccuracies

the term f − CHw [k] is not zero, that is the constraints are not exactly met. This

formulation allows for small corrections, required due to numerical inaccuracy, to be

made during each iteration to force the new solution to exactly meet the constraints.
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For a length M array an M dimensional vector Ξ may be defined as

Ξ , C
(
CHC

)−1
f (37)

and the M ×M matrix

ג , I−C
(
CHC

)−1
CH . (38)

The algorithm update may be written as

w [k + 1] = ג [w [k]− µRx̃x̃w [k]] + Ξ. (39)

Equation (39) is a deterministic constrained gradient descent algorithm requiring

knowledge of the input correlation matrix Rx̃x̃. As stated previously, this matrix is

unavailable. Frost’s algorithm [21] uses a simple approximation for Rx̃x̃ available at

each iteration. The approximation at each iteration k is simply the outer product of

the sampled array channels x̃ [k] given as x̃ [k] x̃ [k]H . Substitution of this estimate

for Rx̃x̃ into (39) provides the final format of Frost’s adaptive LCMV formulation [21]

as

w [0] = Ξ (40)

w [k + 1] = ג [w [k]− µy [k] x̃ [k]] + Ξ.

Frost’s algorithm [21] derivation up to this point has been applicable to narrow-

band sources only. This is evidenced in the formation of the data vector x̃ and steering

vector v (φi), which is only a function of arrival angle. LCMV algorithms, to include

Frost’s implementation, naturally extend to the wideband data case by defining a

wideband data matrix, a wideband steering vector, and a wideband weight matrix

based upon the wideband receiver design.

32



Receivers designed for wideband data have an FIR filter at the output of each

array channel in place of a single adaptable filter weight [35, 70, 114]. The FIR filter

implementation allows for beam constraints to be placed at multiple angles during

wideband beam pattern design. Narrowband DBF algorithms can use FIR filter taps

at each channel; however, for narrowband signals a single filter weight can provide

adequate beam control. The addition of the FIR filters adds unnecessary complexity

for narrowband signals. How much the beam pattern can be affected over a range

of frequencies is dependent upon the number of filter taps in each FIR filter. The

number of taps for each channel need not be fixed; for this research effort, however,

the number of FIR filter taps is assumed to be constant across all array channels.

The format of the wideband data matrix, wideband steering vector, and wideband

data matrix depend on the number of filter taps in the receiver.

Because the single filter weight for each array channel is replaced by an FIR filter,

wideband adaptive DBF algorithms must derive filter weights for each filter tap of

each array channel. For J filter taps per channel, this amounts to M × J weights

per update cycle. The filter weights can be arranged in matrix form, where Wi,j is

the weight for the jth filter tap of the ith array channel. To implement the LCMV

algorithm, however, a filter weight vector is required. To form a vector, consider the

form of the filter weight matrix as

W = [w1,w2, · · · ,wJ ] (41)

with

wj = [w1,i, w2,i, · · · , wM,i]
T . (42)
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By stacking the columns of W such that

w′ =
[
wT

1 ,w
T
2 , · · · ,wT

J

]T
(43)

the wideband weights are in a vector form that can be used in the LCMV algorithm.

The data matrix (6) is also reformatted to provide the correct array sample values

for algorithm implementation. The new wideband data vector x′ is formed as

x′ =
[
x̃ [0]T , x̃ [1]T , · · · , x̃ [J − 1]T

]T
. (44)

To develop the implementation of the steering vector v (φi) used in wideband

adaptive algorithm consider the narrowband steering vector of (23), where the steering

vector is for a single frequency and for a given time sample. Advancing one sample

period, the time between filter taps, advances the phase in the exponential by ωTs

where ω = 2πf . Wideband steering vectors apply the appropriate phase delay to

array data simultaneously at multiple sample times. If the steering vector of (23) is

considered the delay for zero delay then the required delay to phase correct for the

sample vector at k = 1 is

v (φi)k=1 =
[
1, ejω

d sinφi
c

+ωTs , ej2ω
d sinφi

c
+ωTs , · · · , ej(M−1)ω

d sinφi
c

+ωTs
]T
. (45)

Noting (23) as v (φi)0 and (45) as v (φi)1, then extending the development to all J

time delays for each tap of the FIR filter applied to each channel

v (φi)k =
[
1, ejω

d sinφi
c

+ωkTs , ej2ω
d sinφi

c
+ωkTs , · · · , ej(M−1)ω

d sinφi
c

+ωkTs
]T
. (46)

the multi-delay steering vector containing the phase shifts for each channel at multiple
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sample times is written as:

v (φi)WB =
[
v (φi)

T
0 ,v (φi)

T
1 , · · · ,v (φi)

T
J−1

]T
, (47)

where the steering vector is derived for a single frequency f and a single angle φi.

To implement wideband algorithms a steering vector is created for each frequency of

interest and used in the adaptive DBF implementation.

In the wideband implementation of Frost’s algorithm [21], the above defined wide-

band data vector, weight vector, and steering vectors directly replace their narrow-

band counterparts x̃ [k], w [k], and (23) respectively. The final form of Frost’s algo-

rithm [21] defined in (40) becomes:

w′ [k + 1] = ג [w′ [k]− µy [k] x′ [k]] + Ξ,

w′ [0] = Ξ (48)

where y [k] = w′H [k] x′ [k].

One last implementation issue of the wideband Frost algorithm [21] is the con-

straint definition. The algorithm now has the ability to place constraints on a beam

pattern in both the spatial and temporal domains. This requires an additional con-

straint for every angle-frequency pair where the weight vector and steering vectors in

(30) and (31) are replaced with the appropriate wideband weight and steering vector

formats. The wideband steering vectors and weight vector replace the narrowband

versions in (30) through (38) and the adaptive DBF algorithm processing proceeds

the same as for the narrowband case. This additional control over the beam pattern

has a corresponding increase in computational complexity from the increase in vector

size and the increased number of constraints forming C.

The computational complexity of the LCMV algorithm is derived from (40) and
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the precursor equations (37) and (38). For Nc constraints and an M -element array

with J filter taps on each channel, Ξ has a complexity of O (N3
c +MJN2

c +MJNc).

The cubic in the complexity is for the matrix inverse, and the remaining terms are

from matrix multiplications. Calculation of ג utilizes some of the computations from

Ξ and adds O ((MJ)2Nc + (MJ)2) complexity for additional matrix multiplications

and additions. The computation of Ξ and ג are only required once for the algorithm.

Frost’s algorithm [21] then iterates towards an optimal solution with a per iteration

cost of O ((MJ)2 +MJ) for additional matrix multiplications and additions. In oper-

ation, Frost’s algorithm [21] converges quickly, and w can be considered stable after

only a few iterations. This allows the recursive nature of the algorithm to be ab-

sorbed into the big-O notation such that the computational complexity of the Frost

algorithm [21] can be written as

O
(
N3
c +MJN2

c + (MJ)2Nc + (MJ)2 +MJNc +MJ
)
. (49)

Figure 4 shows a representative LCMV beamformer beam pattern for eight dif-

ferent normalized frequencies. The beamformer was created to have a peak at 0o and

to null an interference source at −30o. While there is no distinct null at −30o the

sidelobe pattern is down over 30 dB at −30o. The null placed by the LCMV algorithm

is not clearly visible because of its narrowness; however the LCMV algorithm does

place a null in the beampattern where interference sources are located.

2.4.4 Data Independent Space-Time Beamforming.

The data dependent LCMV beamformers use the sampled array data to produce

filter weights. The adaptive DBF algorithms form nulls in the direction of interference

sources present in the data across the instantaneous bandwidth of the array. It is

possible to formulate a space-time beam pattern placing nulls in given directions and
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Figure 4. Multiple beampattern frequency cuts for the linearly constrained minimum
variance beamformer with a main beam at 0o and an interference source at −30o. Each
frequency cut is for a normalized frequency between 0 and π.
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at given frequencies without using sampled array data. The beamformer weights

are formed using the method of least squares to minimize the Euclidean distance

between a desired beam pattern and the beam pattern formed by the filter weights.

The general problem formulation is written as [72]

min
r̂,ω
‖Harr (r̂, ω)−Href (r̂, ω) ‖ (50)

where Harr (r̂, ω) is the beam pattern due to the calculated filter weights at all points

in space r̂ at given frequency ω, and Href (r̂, ω) is the desired, or reference beam

pattern at all spatial points for the given frequency; ‖ · ‖ is the L2 norm. Apply-

ing the minimization problem of (50) at all frequencies of interest allows for con-

trol of the beampattern at all angles and frequencies of interest for the beamformer

designer. Solving for a specific beam pattern that varies in frequency for each an-

gle is computationally intractable for a large number of frequencies and angles. In

practice beamformer designers place frequency invariant constraints on the problem

where the angle response is constrained to be constant across all frequencies of in-

terest [134, 136, 137]. The frequency invariant constrained minimization problem is

solvable using least squares as demonstrated in [134, 137]. In a few cases for specific

constraints, moving away from frequency invariance allows for solvability using the

methods of convex optimization [39, 118, 120]. The computational complexity of the

convex methods is usually greater than direct solution of the LMS problem. This

research applies a frequency invariant form of the beamformer of (50) denoted as the

LSSB.

2.4.4.1 LSSB Algorithm.

The LSSB determines the wideband filter weights by attempting to minimize the

Euclidean distance between the designed beam pattern F (ω, φ) output and a desired
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beam pattern shape i (ω, φ). LSSB beamformers are not adaptive in the traditional

sense as they do not update the filter weights based upon measurements of the envi-

ronment but place space-time nulls in the wideband beam pattern. Adaptation occurs

by placing space-time nulls in the beam pattern at those locations where interference

sources are estimated to exist. When the RM senses that the electromagnetic envi-

ronment has changed, new filter weights are formed to account for the changes and

place the required space-time beams.

The following development of the LSSB uses the wideband weight vector (9), data

vector (10), and steering vector (47) representations [134, 136, 137]. Beam patterns

for all adaptive filters are constructed by applying the derived filter weights to a set

of steering vectors that span the range of frequencies and angles over which the beam

pattern is designed. Application of the LSSB to a single steering vector is given as

yb = w′HvWB (ω, φ), where the steering vector is now considered as a function of space

and time consistent with (47). Algorithm weight solution requires the minimization

of the Euclidean distance between the beam pattern F (ω, φ), comprised of the filter

output yb for all desired frequencies and angles, and a desired beampattern i (ω, φ).

If the minimization is considered over the possible range of frequencies and angles for

the array, the LS cost function is

JLS =

∫
Ω

∫
Φ

∣∣w′HvWB (ω, φ)− i (ω, φ)
∣∣2 dωdφ, (51)

where Ω and Φ represent the frequency range and angle range of interest, respectively.

As with the LCMV algorithm, a distortionless algorithm is desired such that

the SOI is passed through unmodified and the interference sources are reduced to a

sufficiently low level. This leads again to a constrained optimization problem. The

simplest form of the LSSB minimizes (51) and does not form specific space-time nulls

but ensures that the response to all signals except the SOI is kept to a low level.
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The distortionless constraint requires constraining i (Ωs, φs) = 1 where Ωs is in the

frequency range of the SOI and φs is the DOA of the signal of interest. The resulting

optimization problem is then [134,136,137]

min
w′

JLS subject to i (Ωs, φs) = 1. (52)

There is, in general, no closed form solution to (52). The solution is found by first

discretizing the field of regard of the array into a uniformly spaced grid of (Ωη, φκ)

frequencies and angles [134, 136, 137]. Once the frequency-angle space has been dis-

cretized, the cost function can be broken into two cost functions. The first cost

function minimizes the Euclidean distance between the algorithm output and the

beam pattern shape in the constraint area. The second constraint minimizes the

power outside of the constrained frequencies and angles. Using this discretization

and split, the LS cost function of (51) becomes [134,136,137]

JLS =
∑
ω∈Ωs

∑
φ∈Φs

∣∣∣w′HvWB (ω, φ)− 1
∣∣∣2 + α

∑
ω/∈Ωs

∑
φ/∈Φs

∣∣∣w′HvWB (ω, φ)
∣∣∣2 , (53)

where α is a control parameter that can be used to tradeoff mainbeam and sidelobe

performance. Then , for notational convenience, denote

V (ω, φ) = vWB (ω, φ) vHWB (ω, φ) , (54)

which allows the definition of

QLS ,
∑
ω∈Ωs

∑
φ∈Φs

VR (ω, φ) + α
∑
ω/∈Ωs

∑
φ/∈Φs

VR (ω, φ) , (55)
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where VR (ω, φ) is the real part of V (ω, φ); also denote

a =
∑
ω∈Ωs

∑
φ∈Φs

vWB (ω, φ) . (56)

Finally, let

dLS =
∑
ω∈Ωs

∑
φ∈Φs

1. (57)

Using (54) through (57) allows the rewriting of (53) in quadratic form as

JLS = w′
H

QLSw′ − 2w′
H

a + dLS, (58)

the solution of which is recognized to be

w′LS = Q−1
LSa. (59)

Another way to formulate the LSSB algorithm is to apply a frequency invariance

constraint to (51) [134, 136, 137]. Consider again a discretization of angles and fre-

quencies (ω, φ). The adaptive array beampattern is first constrained to be invariant

over the bandwidth of the SOI through the definition of a spatial variation (SV) cost

function that replaces (53). The SV cost function is

SV =
∑
ω∈Ωi

∑
φ∈ΦFI

∣∣∣w′Hv (ω, φ)−w′
H

v (ωr, φ)
∣∣∣2 , (60)

where ωr is a reference frequency and ΦFI is the spatial angle range over which the

frequency invariance is considered. The frequency invariance can be forced over the

main beamwidth of the adaptive LS beamformer or over the entire field of regard of

the array. For the purposes of this research, the frequency invariance will be kept

over the entire spatial field observable by the array.
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The adaptive LS beamformer is again constrained to have low sidelobe levels by

also considering the secondary cost function [134,136,137]

J1 =
∑
φ∈Φsl

∣∣∣w′Hv (ωr, φ)
∣∣∣2 , (61)

where Φsl is the set of angles in the spatial sidelobes and ωr is the same reference

frequency as in (60). Because the beamformer is not able to form an arbitrarily narrow

main beam, the constraint of minimizing over all angles that are not the DOA of the

SOI is relaxed to allow for a more generally defined sidelobe region.

Now that the beamformer has been designed to have a frequency invariance with

respect to a reference frequency, a distortionless mainbeam is forced over all frequen-

cies by defining the linear constraint [134,136,137]

w′
H

v (ωr, φs) = 1, (62)

where ωr is again the reference frequency and φs is the DOA of the SOI. The two

cost functions (60) and (61) and the constraint (62) can now be combined to form

the constrained LS problem [134,136,137]

JCLS =
N−1∑
η=0

K−1∑
κ=0

∣∣∣w′Hv (ωη, φκ)−w′
H

v (ωr, φκ)
∣∣∣2 + β

∑
φκ∈Φsl

∣∣∣w′Hv (ωr, φκ)
∣∣∣2

subject to w′
H

v (ωr, φs) = 1, (63)

where β is a control parameter, and N , K are the number of discrete frequencies

and angles, respectively, considered for frequency invariance. The constrained LS

problem of (63) can be solved using Lagrange multipliers, as was done for previous

beamformers.

As of yet, the full capability of the LSSB has not been implemented. The LSSB
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can apply space-time nulls towards interference sources. Space-time nulls are created

by adding constraints similar to (62) to the LS problem of (63). If there exist k

interferences, a series of k nulls, up to the degrees-of-freedom of the array, can be

formed through the constraint equations

w′
H

v (ωη, φς) = ες , for all ω ∈ ΩI , (64)

where ΩI is the set of frequencies over which the interference sources are to be min-

imized and each ες is a small value to limit the adaptive DBF response in the given

direction and frequency band. If a steering vector matrix is defined as

C = [v (ω1, φ1) , · · · ,v (ωN , φ1) ,v (ω1, φ2) , · · · ,v (ωN , φk)] , (65)

and a constraint vector as

f = [1, ε1, · · · , ε2, · · · , ες , · · · , εk]T , (66)

then the constraints of (62) and (64) can be combined into one constraint equation

CHw′ = f . (67)

Then forming an auxillary matrix similar to (55) as

QCLS ,
N−1∑
η=0

K−1∑
κ=0

(v (ωη, φκ)− v (ωr, φκ)) (v (ωη, φκ)− v (ωr, φκ))
H

+β
∑
φκ∈Φsl

V (ωr, φκ) , (68)

the LS optimization problem of (63) can be written as a new constrained optimization
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problem

min
w′

JCLS = min
w′

w′
H

QCLSw′ subject to CHw′ = f , (69)

where the DBF weights w′ are now designed to place space-time nulls toward inter-

ference sources in addition to reducing noise.

The linearly constrained adaptive DBF weights of (69), due to the form of the con-

straint equation C, can no longer be derived using the Lagrange multiplier method.

The problem of (69) is a linearly constrained quadratic problem, which can be solved

using semi-definite programming (SDP) [7, 39, 40, 118, 120, 131]. Each SDP solution

of (69) creates a joint domain adaptive wideband DBF. As the electromagnetic envi-

ronment is constantly changing, the problem needs to be resolved periodically. This

allows the DBF algorithm to track moving emitters as well as null interferes as they

appear and disappear from the electromagnetic environment.

One issue with SDP solvers is they are iterative algorithms, and therefore no set

computational complexity is available. Research in SDP solvers has demonstrated

complexities of equal or lesser values than Lagrange multiplier algorithms [7]. For

implementation in actual ES systems, SDP solvers may allow for complex space-time

beams to be formed with low computational complexity. Each implementation would

have to be tested individually to determine how the complexity of the SDP solver

compares with the complexities of the other possible adaptive DBF algorithms. This

research is intended to demonstrate the proposed receiver framework performance and

is not meant to be inclusive of all adaptive DBF algorithms. Thus, only the Lagrange

mulitplier defined LSSB [134,136,137] is considered for inclusion in the look-up-table

(LUT); this allows for a closed form solution of the LSSB computational complexity

for adaptive DBF algorithm performance comparisons.

The computational complexity of the LSSB is from two main computations. The

first is the derivation of QLS and a from (55) and (56) respectively. The number
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of computations is dependent upon how the space-time coordinates are discretized.

Consider NΩ frequency points and Nφ angular subdivisions. Then, considering the

MJ × 1 space time steering vectors v (Ωη, φκ) the number of computations to deter-

mine QLS is O
(
NΩNφ (MJ)2). To calculate a requires and additional O (NΩNφMJ)

computations.

The second major computation for the LSSB algorithm is the inverse required in

(63). The matrix QLS is MJ ×MJ requiring O
(
(MJ)3) computations to find the

inverse. The final multiplication to find the filter weights wLS requires an additional

O
(
(MJ)2) computations. The final computational complexity for the LSSB is then

O
(
NΩNφ (MJ)2 +NΩNφMJ + (MJ)3 + (MJ)2) . (70)

The dominant terms in the complexity are NΩNφ (MJ)2 and (MJ)3. To keep compu-

tations low the number of frequency and azimuthal sample points are kept low on the

same order of the number of array channels and FIR filter taps allowing the overall

complexity of the LSSB to be written as O
(
(MJ)3).

Figure 5 shows a representative least squares formed frequency invariant beam-

former (FIB). The mainbeam is toward 0o and a null is placed toward −30o. The

least squared beamforer is able to place deep nulls of greater than 40 dB down toward

interference sources as demonstrated in the beamformer plot.

2.4.4.2 Fourier Transform Based Frequency Invariant Beamformer.

A less computationally complex FIB is formed by applying an inverse fast Fourier

transform (FFT) to a frequency angle map of the desired beamformer response [13,

59–62,65,74,92]. In the notation of [63], the less computationally complex algorithm
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Figure 5. Multiple beampattern frequency cuts for the least squares space-time beam-
former (LSSV) with a main beam at 0o and an interference source at −30o where each
data set is a normalized frequency cut of the space-time beamformer beam pattern.
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first forms a nominal narrowband beam pattern

P (ω, φ) =

∫ ∞
−∞

e−j
ω sinφ
c

xD (x, ω) dx, (71)

at an arbitrary frequency ω and angle φ where

D (x, ω) =

∫ ∞
−∞

d (x, t) e−jωtdt (72)

is the sensor response to frequency ω at position x, and d (x, t) is the inverse fast

Fourier transform (IFFT) of the array response. Combining (71) and (72) gives the

narrowband beamformer response as:

P (ω, φ) =

∫ ∞
−∞

∫ ∞
−∞

d (x, t) e−j
ω sinφ
c

xe−jωtdxdt. (73)

The goal of this method is to find the array filter weight matrix W from discretizing

d (x, t) such that the response of the array at a given angle φ is constant for all

frequencies. If (73) can be written in terms of two terms containing e−jωiα. The filter

weights can be found using an IFFT. Forming an FIB then requires forming a desired

frequency invariant beam pattern and taking the IFFT. The transformation of (73)

is accomplished by making the substitutions ω1 = ω sinφ
c

and ω2 = ω then rewriting

(73) as [61]

P (ω1, ω2) =

∫ ∞
−∞

∫ ∞
−∞

d (x, t) e−jω1xe−jω2tdxdt. (74)

The response of the beamformer is now a two-dimensional FFT of the array weights

d (x, t) which are found by taking the IFFT of the desired array response P (ω1, ω2).

When creating the desired beam response in (ω1, ω2) space the conditions allowing

for frequency invariance, namely ω1 = ω sinφ
c

and ω2 = ω, must be considered. The

sine function can only have values between -1 and 1. Therefore, the desired beam
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pattern P (ω1, ω2) only exists when −ω2/c ≤ ω1 ≤ ω2/c. When this constraint is not

met all values of P (ω1, ω2) are set to zero.

Formulation of the FIB beam patterns for the disambiguation algorithm filter

bank follows that of [61]. An arbitrary frequency dependent beam pattern is written

as

P (ω, φ) =
∞∑

m=−∞

∞∑
n=−∞

d [m,n] e−jm(ω sinφ/c)de−jnωT (75)

where d, the discrete version of d (x, t) from (72), is an infinite matrix of Fourier

weights, ω is radial frequency, d is inter-element spacing, and T is the sample period.

The beam pattern is approximated by truncating d to a M × J matrix of M length

J FIR filters d [m,n], with m ∈ M and n ∈ J , used as a wideband beamformer.

Assuming alias-free sampling and an inter-element spacing of λmax/c/2 where λmax

is the wavelength corresponding to a signal at one half the sampling frequency, the

frequency is normalized as

Ω =
dω

c
= ωT. (76)

The frequency dependent beam pattern (75) is now written as

P (Ω, φ) =
∞∑

m,n=−∞

d [m,n] e−jmΩ sinφe−jnΩ. (77)

Analysis of (77) allows for the substitutions Ω1 = Ω sinφ and Ω2 = Ω and the rewriting

of (77) as a two-dimensional DFT of the weighting matrix d [m,n] given by

P (Ω1,Ω2) =
∞∑

m,n=−∞

d [m,n] e−jmΩ1e−jnΩ2 . (78)

From (78) the array weights for any beam pattern P (Ω1,Ω2) are found using

an IFFT. The beam pattern, however, is still frequency dependent. A frequency

independent beamformer is only a function of φ, the pointing direction of the beam,
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or sinφ in sine space. A frequency invariant beam pattern requires that when Ω1 =

Ω sinφ and Ω2 = Ω are substituted back into (78), the pattern can be written as a

frequency independent beam pattern P (sinφ). This requires that the beam pattern

involve Ω1 and Ω2 such that

P (Ω1,Ω2) = P

(
Ω1

Ω2

)
= P (sinφ) . (79)

The design procedure for a FIB based upon (78) requires the specification of a

desired beam pattern F (sinφ). The two-dimensional response is formed by making

the substitution P (Ω1,Ω2) = F (Ω1/Ω2). An IFFT is taken of P (Ω1,Ω2) resulting in

the filter weight matrix d [m,n]. Applying the IFFT requires caution. Recall the sub-

stitutions of Ω1 = Ω sinφ and Ω2 = Ω. Because of this constraint the frequencies Ω1

and Ω2 must have the relationship: −Ω2 ≤ Ω1 ≤ Ω2. To account for this dependence

of Ω1 on Ω2, the two-dimensional beamformer is written as:

P (Ω1,Ω2) =


F
(

Ω1

Ω2

)
, when

∣∣∣Ω1

Ω2

∣∣∣ ≤ 1 ∧ Ω2 6= 0

0, otherwise

(80)

where the beam pattern is set to zero when undefined because of the constraints.

The final step in finding the filter weight matrix W = d [m,n] is truncation. In

creating P (Ω1,Ω2), the normalized frequency spectrum where Ω ∈ [−π, π] is dis-

cretized. For a smooth beam pattern the discretization would include a large number

, say Υ samples. The resulting beamformer, however, has a limited number of chan-

nels with a limited number of FIR taps per channel. The initial d [m,n] found from

the IFFT, however contains Υ x Υ samples. The final FIB requires truncating the

resulting matrix to M × J samples for the proper weight matrix size.
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2.4.5 Time Reversal Method.

If a signal is incident upon an array from broadside and no interference signals

are present in the RF environment, an estimate of the incident signal is simply the

average over the input of all array channels. When the signal is incident from other

than broadside there is a delay between the signal arriving at subsequent antenna

array elements. Modeling the delay of each channel as a linear system allows a time

reversal filter to be specified for each channel [57]. Applying the time reversal filters

to each channel of the array is equivalent to wideband beamformers applying an FIR

filter to the output of each array channel. For signals arriving off boresight on an array,

beamformer weights are formed by finding the time reversal filter weights and then

applying the correct coefficients to account for averaging over the M array elements.

The resulting beamformer is referred to as the time reversal method (TRM).

The TRM DBF used in this research is a more complex algorithm that applies the

TRM as a pre-steering algorithm that “points” the array toward the SOI [57,102,132].

At this point, the SOI is considered to be at array broadside. The term pre-steering is

used for the first step of the TRM algorithm, because the first step does not attempt

to null any interference sources nor counter the effects of noise. After the pre-steering

is applied the TRM DBF algorithm applies a LCMV algorithm to the pre-steered

array data. The LCMV algorithm applied when the SOI is known to arrive from

broadside uses a simplified constraint matrix equation

C =



1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1


[w] =



1

1

...

1


(81)

where 1 and 0 are M × 1 vectors of ones and zeros respectively. This simplified
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constraint equation is more efficiently solved than the general versions of (31) and

(32) [70, 114].

The pre-steering step of the TRM algorithm is based on the fact that for a plane

wave traveling through a medium, the backward traveling wave solution is found by

time reversing and conjugating the forward propagating plane wave solution [56,57].

If the DBF receiver architecture is treated as a propagation medium, the backward

solution of the sampled array channel data can be found and then back-propagated

through the receiver to arrive at the signal that was incident upon the array. The

backward propagated wave solution is free from any artifacts introduced by the re-

ceiver hardware, to include inter-element delay due to the reception of signals off

broadside. It should be noted that this method assumes that hardware artifacts are

deterministic.

The following derivation follows that of [57]. In order to back-propagate a mea-

sured signal through the array, the impulse response of the array is required. The

receiver impulse response function can be calculated by measuring the response of a

carefully selected probe signal. Consider a probe signal ρ (t) chosen such that

ρ∗ (−t) ∗ ρ (t) ∼= δ (t) , (82)

where δ (t) is the dirac delta function. Also consider from linear systems theory that

output of the array z (t) is the probe signal ρ (t) convolved with the array impulse

response function h (t) given as

z (t) = ρ (t) ∗ h (t) . (83)

Using both (82) and (83) with linear systems theory the impulse response is calculated
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as

h (t) ∼= ρ∗ (−t) ∗ z (t) . (84)

The formula of (84) is sufficient to calculate the array impulse response when

(82) is met exactly. Because of transmission system limitations and the fact that

the calculations exhibit numerical inaccuracies due to digital implementation, (82)

in practice cannot be met [56, 57]. An estimate of the array response function is

formulated by considering the response z̆ (t) of an array to a transmitted signal z (t)

approximately meeting the requirement of (82)

z̆ (t) = h (t) ∗ z (t) . (85)

All values are Fourier transformed to eliminate the convolution integrals giving

Z̆ = HZ (86)

where the non-bold capital letters represent the Fourier transform of the lower-case

equivalent. The impulse response weights are found by first normalizing H in (86) as

Z̆ =
H∗

H∗
HZ =

|H|2 Z
H∗

(87)

and then rearranging the terms of (87) as

H∗

|H|2
=
Z̆

Z
. (88)

The final processing step requires recognizing the expression for the impulse response
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function and performing the inverse Fourier transform (IFT)

ĥ = F−1

[
H∗

|H|2

]
(89)

assuming that the IFFT exists. The TRM pre-steering is applied by convolving the

pre-steering TRM filter ĥ (t) with the measured input signal z (t).

Implementing wideband beamforming through the TRM requires the formation

of TRM impulse response functions ĥω,φ (t) over the frequency band Ω and possible

DOA angles Φκ of the SOI for each array channel. TRM beamforming is performed by

convolving the impulse response function ĥω,φ for the estimated DOA and frequency

of the SOI, for each array channel, with the sample data xm (t) from the corresponding

array channel data as

x̆m (t) = ĥω,φ ∗ xm (t) . (90)

For DBF application the impulse response function and array channel data are dis-

cretized so that

x̆m [k] = ĥω,φ,m [k] ∗ xm [k] (91)

where the notation ĥω,φ,m reflects that a different array response function exists for

each array channel. The pre-steered x̆m [k] for each channel can be arranged as a

pre-seteerd data matrix

X̆ =



x̆0

x̆1

...

x̆M−1


. (92)

Complexity of the TRM algorithm, like the GDFT algorithm, includes the com-

plexity from the LCMV implementation. The LCMV implementation for use with
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the TRM method, however, is a simplified version of the LCMV and has less com-

putational cost. To implement the TRM properly requires applying predetermined

filters to each channel of the data similar to the GDFT. The current effort applies

the TRM filters in the frequency domain and so requires an FFT of each data chan-

nel before filter application and an IFFT after the TRM filters have been applied.

The cost of the FFT is again N logN where N is the number of data points in

the FFT. The TRM method requires M such FFT operations for a complexity of

O (MN logN). Application of each filter requires O (MN) for multiplication and an

additional O (MN logN) for the IFFT. The total complexity is then:

O
(
MN logN +MN +

(
N3
c +MJN2

c + (MJ)2Nc + (MJ)2 +MJNc +MJ
))
,

(93)

where the latter part is the complexity added due to the LCMV processing. The

dominant term from the FFT and FFT operations given by O (MN logN).

Figure 6 is a representative beampattern for the combination TRM and LCMV

beamformers. The mainbeam is formed toward 0o and an interference source is at

−30o. As with the general LCMV beamformer the implementation used in conjunc-

tion with the TRM does places a null at −30o that is not clearly visible because of

how narrow the null is. The null, however, is at -40 dB, similar in depth to the LSSB

placed null.

2.4.6 Sub-Band Methods.

Full space-time processors are computationally complex. The complexity of wide-

band beamforming is reduced through sub-band processing. Sub-band processing

lessens the computational burden of wideband processing by reducing the rank of

the array data covariance matrix through reducing the spatial or temporal extent the

beamformers are required to cover. Sub-banding can be applied in either the spatial
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Figure 6. Multiple beampattern frequency cuts for the time reversal method beam-
former with a main beam at 0o and an interference source at −30o. Each frequency cut
is for a normalized frequency between 0 and π.

55



or frequency domain.

Spatial sub-band processing is referred to as beamspace processing, because the

spatial domain is filtered into spatial sub bands [65,92,136]. These papers apply the

FFT-based FIB of Section 2.4.4 to form a FIB filter bank to cover the spatial field

of interest to the array. Frequency-based adaptive processing is then applied to each

beam.

A more common form of sub-banding utilizes frequency sub-bands, where nar-

rowband adaptive DBF algorithms are applied to each frequency sub-band [28–30,

36,42,48,68,75,82,94,101,126–128]. Further reductions in processing time are made

through use of the GDFT, which in addition to applying adaptive algorithms in

sub-bands uses multi-rate processing. Multi-rate processing downsamples, in time,

the array data to reduce the amount of processed data allowing for faster algorithm

implementation [29, 30, 126, 128]. Removing data through downsampling effectively

lowers the sampling rate of the system; however, because the data was sub-banded in

frequency the Nyquist constraint is still met and no aliasing occurs. The sub-banding

and downconversion are applied simultaneously in multi-rate processing through a

modified discrete Fourier transform (DFT) matrix. A separate DBF algorithm is

applied to each frequency sub-band of the data. After DBF processing the post DBF

signal from each sub-band is upsampled in time and combined using another DFT

referred to as the synthesis filter. The final output from the GDFT is an estimate of

the desired wideband signal.

2.4.7 GDFT Algorithm.

GDFT is a sub-band adaptive algorithm that attempts to lower the computa-

tional complexity of wideband beamforming by applying narrowband adaptive DBF

algorithms in frequency sub-bands of the wideband array data. Each channel of wide-
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band array data is filtered into sub bands using what are known as analysis filters.

Narrowband adaptive DBF algorithms are applied to each sub-band produced by the

analysis filters. Each sub-band thus contains an estimate of the the corresponding SOI

sub-band. The narrowband estimates are recombined into the final wideband signal

estimate using synthesis filters. The GDFT is so named because the sub-band filters

are generated from a prototype filter by a generalized DFT operation [64, 126–128].

The analysis filters hk [n] and GDFT operation is given by

h̆k [n] = ej
2π
Ǩ (ǩ+ǩ0)(n+n0) · ϕ [n] , ǩ, n ∈ N, (94)

where Ǩ is the number of sub bands, n is the sample number or discrete time index,

and ϕ [n] are the prototype filter coefficients. The operation is a generalized DFT

due to the n0 and ǩ0 offsets.

Implementation of the GDFT algorithm does not involve directly solving for the

prototype filter coefficients ϕ [n]. The analysis filter coefficients h̆ǩ [n] and synthesis

filter coefficients gǩ
[
ǩ
]

are found by minimizing the stop-band attenuation of each

filter and the distortion error imposed upon the signal when passed through the

analysis and synthesis filters [28–30]. To limit distortion in both the analysis and

synthesis stages the filters are made to maintain a linear phase by setting n0 = Lp−1

2

and ǩ0 = 1
2

where Lp is the length of the prototype filter. All synthesis filters gǩ [n]

are time reversed complex conjugates of the analysis filters, i.e.

gǩ [n] = h̆∗
ǩ

[Lp − n+ 1] , (95)

where Lp is again the length of the prototype filter. The stop-band attenuation is

limited by minimizing the attenuation over a grid of selected points [73, 87].

The stop-band attenuation of the GDFT is dependent upon the design of the
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prototype filter used for derivation of the analysis and synthesis filter banks. Design of

the prototype filter for the GDFT follows that of [28–30] and takes into consideration

not only the stop-band attenuation of the filter, but also the resulting error imposed

upon a signal when passed through both the analysis and synthesis filters.

Solution of the filter coefficients hǩ [n] results from labeling the reconstruction

error as ξ1, the stop-band energy as ξ2 and minimizing their sum given by

ξ = ξ1 + γξ2, (96)

The factor γ is a positive weight factor to trade off the two criterion. Assuming that

in-band aliasing is sufficiently suppressed, the impulse response of the GDFT filter

bank is the convolution of the analysis and synthesis filters

ι [n] =
Ǩ−1∑
ǩ=0

h̆ǩ [n] ∗ gǩ [n] . (97)

From [80] the convolution of the ǩth filter can be written in matrix notation as

ιǩ =



h̆ǩ [0] 0 · · · 0

h̆ǩ [1] h̆ǩ [0] · · · 0

h̆ǩ [2] h̆ǩ [1] · · · 0

...
...

. . .
...

0 0 · · · h̆ǩ [Lp − 1]





gǩ [0]

gǩ [1]

gǩ [2]

...

gǩ [Lp − 1]


= Hǩgǩ. (98)

Summing over each ιǩ from (97) written in the form of (98) allows the rewriting of
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(97) as

ι =
[
H0 H1 · · · HǨ−1

]


g0

g0

...

gǨ−1


= Hg. (99)

Consider a GDFT that does not apply an adaptive DBF algorithm to the sub-bands.

The signal at the output of the GDFT is ideally the input signal delayed by the amount

of samples required to apply the analysis and synthesis filters. Any difference between

the input signal and the output of this GDFT and the delayed signal out of the GDFT

is reconstruction error. The reconstruction error is defined mathematically as the

Euclidean distance between the impulse response ι and a perfect delay δ represented

by

ξ1 = ‖ι− δ‖2 = ‖Hg − δ‖2 (100)

The stop band attenuation is calculated in [73, 87] by selecting a dense grid of fre-

quency points [ω0, ω1, · · · , ωN ] covering the stop band and then calculating

ξ2,ǩ =

∥∥∥∥∥∥∥∥∥∥∥∥∥



1 cos (ω0(1)) · · · cos (ω0 (Lp − 1))

1 cos (ω1(1)) · · · cos (ω1 (Lp − 1))

...
...

. . .
...

1 cos (ωN(1)) · · · cos (ωN (Lp − 1))





gǩ (0)

gǩ (1)

...

gǩ (Lp − 1)



∥∥∥∥∥∥∥∥∥∥∥∥∥

2

= ‖P̌ǩgǩ‖2 (101)

where P̌ǩ describes the required specification on the ǩth analysis filter. Rewriting
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(96) using (100) and (101) gives

ξ =

∥∥∥∥∥∥∥
 H

γP̌

g −

 δ

0


∥∥∥∥∥∥∥

2

(102)

where 0 is a matrix of zeros, P̌ is a block diagonal matrix where the sub-matrices on

the diagonal are the P̌ǩ from (101) written as

P̌ = diag
(
P̌0, P̌1, · · · , P̌Ǩ−1

)
(103)

and

g =
[
gT0 gT1 · · · ,gTǨ−1

]T
. (104)

The filter coefficients hk [n] are derived by minimizing (102) with respect to g using

the iterative least squares design algorithm of [29,30].

The GDFT algorithm applies the hǩ and gǩ found through minimizing (102) for

each ǩ ∈ Ǩ to form the analysis and synthesis filter banks. The analysis filter bank

is applied to the array channel data forming the Ǩ sub-bands. A narrowband LCMV

algorithm is then applied to each sub-band. The synthesis filter bank is applied to

each of the Ǩ narrowband signals after application of the LCMV. The output from

each of the Ǩ synthesis filters is summed to form the GDFT adaptive DBF output.

Computational complexity of the GDFT algorithm incorporates the complexity

of the LCMV algorithm, as a LCMV algorithm is applied to each sub band. Compu-

tational savings can occur as each sub band requires fewer FIR filter coefficients per

channel and also fewer constraints. In addition to the complexity from the LCMV

algorithm, GDFT requires application of a filter bank for data analysis and a second

filter bank for synthesis. Because the frequency range of the desired SOI is known a

priori, the filter coefficients h̆ of (94) are determined off-line of algorithm implemen-
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tatiom and do not add to the computational complexity. Application of the filters

for both analysis and synthesis are applied in the frequency domain and require FFT

of the data and IFFT of the post synthesis data filters. The cost of an FFT is

O (N logN) where N is the number of points in the FFT. To keep implementation

fast, N should be set as a power of two. Implementation of each filter then requires

O
(
MǨN

)
for N multiplications in each of M channels for K filter banks per channel.

The same number of operations is required for synthesis filter bank implementation.

Summing up the complexity from the analysis filters, the synthesis filters, and the Ǩ

required LCMV algorithms the total complexity is:

O
(
ǨN logN +MǨN + Ǩ

(
N3
c +MJN2

c + (MJ)2Nc + (MJ)2 +MJNc +MJ
))
,

(105)

where the latter part of (105) is due to the Ǩ implementations of a LCMV algorithm.

The dominant term is from the Ǩ LCMV applications leading to O
(
Ǩ (MJ)2Nc

)
.

2.5 Environment Estimation Techniques

2.5.1 DOA Estimation.

Wideband DOA estimation is fundamental to wideband beamforming because

adaptive DBF algorithms require knowledge of the DOA of the SOI. The narrowband

DOA estimation techniques Capon and multi-signal classification (MUSIC) [10, 91]

are based upon the Neigs eigenvectors corresponding to the Neigs highest eigenvalues,

of the array data matrix being equal to the steering vectors of the signals present in

the measured data. These Neigs eigenvectors form a signal subspace orthogonal to the

noise subspace corresponding to the M − Neigs eigenvectors with eigenvalues equal

to the noise power σ2
noise. The Capon and MUSIC spectra are found by discretizing

the angle space of the array and forming a set of steering vectors corresponding to
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each discrete angle. Each steering vector is projected onto the noise subspace; the

inverse of the results of the projections are plotted as the spectra. The maxima of the

spectrum correspond to those eigenvectors, and thus angles, most nearly orthogonal

to the noise subspace and thus signal directions present in the measured data. When

the signals impinging upon the array are wideband, however, each signal adds multiple

eigenvectors to the covariance matrix and the CAPON and MUSIC methods fail to

properly locate the signal’s DOA.

As with narrowband DOA estimation, the maximum likelihood estimator (MLE)

can be used to locate the arrival directions of wideband signals of interest. The

MLE is a consistent estimator, in that as the number of data samples used in the

estimate grows large, the variance of the estimate approaches the Cramer-Rao lower

bound (CRLB) [81, 124]. The MLE, however, is computationally complex and not

suitable for direct implementation [113]. Wideband DOA estimation is, in practice,

implemented using the frequency sub-banding approach.

The earliest methods of wideband DOA estimation performed averaging of DOA

estimates found in each sub-band [122]. Sub-band averaging DOA estimation meth-

ods require high SNR and have large variances [12]. Coherent signal subspace DOA

estimation methods were introduced by Kaveh, et al. in [122]. Coherent methods

apply the DOA estimation to all sub-bands at the same time eliminating any losses

due to averaging. Coherent methods are capable of performing wideband DOA es-

timation with lower SINR and operate on correlated signals. The method of Kaveh

is a coherent frequency sub-band method that applies unitary transformation matri-

ces to the covariance matrix estimate of each sub-band such that the eigenvectors of

each correlation matrix are “focused” to a desired frequency while not affecting the

eigenvector norm. A reduced rank covariance matrix is formed by averaging the fo-

cused narrowband covariance matrices. Narrowband DOA estimation methods such
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as Capon and MUSIC are applied to the averaged covariance matrix to estimate the

DOA of all impinging signals. Further work on Kaveh’s method has improved the

formulation of the transformation matrices to improve the variance and bias of the

resulting DOA estimates [8, 9, 17,41,93,95,103].

The coherent subspace DOA estimation methodology of Kaveh, while effective,

requires initial coarse group angle estimates for the signal DOAs [37, 122]. Group

angles are directions about which multiple sources are expected to be grouped in

angular space. Environments with large numbers of interference signals would require

multiple initial group angle estimates. The focusing matrices were formed using

matrices of steering vectors in the direction of the group angle estimates. The initial

angle estimates were found using a narrowband DOA estimation algorithm at selected

frequencies.

To be effective in blind detection and DOA estimation, an algorithm is desired that

requires no a priori information about the incoming sigal directions. The require-

ment for initial DOA estimates is overcome in [37] where focusing matrices are found

using global minimization. The focusing matrices sought are those that minimize the

Euclidian distance between the true wideband steering vectors and the transformed

steering vectors for all angles within an angular region [37]. To mathematically de-

scribe this global minimization problem, consider the frequency dependent steering

vector v(φ, f) from (47) and a region in sine space, where sine space involves the

transformation of µ = sinφ for all angles. The new focusing matrices T
(
fj̃
)

are

found through the minimization of

min
T(fj̃)

∫ µfinal

µinitial

‖ T(fj̃)v(φ, fj̃)− v(φ, fc) ‖2 dµ, for each j̃ = 1, . . . , J̃ (106)

for J̃ frequency bands, where fc is the focusing frequency for the DOA estimator.

Note that the integration is performed in sine space. Each steering vector v
(
φ, fj̃

)
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can be written in terms of µ. The notation is left in terms of φ to keep in mind that

the process is designed to estimate the DOA φ of all signals in the RF environment.

The minimization is further constrained by TH(fj̃)T(fj̃) = I resulting in unitary

transformation. Applying the unitary constraint to (106) allows the problem to be

written as a maximization problem

maxT(fj̃)

∫ µfinal
µinitial

vH(φ, fj̃)T
H(fj̃)v(φ, fc) + vH(φ, fj̃)T

H(fj̃)v(φ, fj̃)dµ,

for each j̃ = 1, . . . , J̃ . (107)

This can be reduced further to

max
T(fj̃)
R
[
Tr(RgcnT(fj̃))

]
, for each j̃ = 1, . . . , J̃ , (108)

where R[·] is the real part of the bracket and Tr[·] is the trace of the matrix. The

matrix Rgcn is the outer product of steering vectors given by

Rgcn =

∫ µf

µi

v(φ, fc)v
H(φ, fj̃)dµ (109)

where the subscripts on the integration limits have been shortened from initial to i

and from final to f . If the DOA estimation search is performed over a symmetric

interval (i.e., µi = −µf ), then the (p, q) element [Rgcn]pq of the M ×M matrix has

the simple form of

[Rgcn]pq = 2 sinφisinc

{
d sinφi
c

((p− 1)ωc − (q − 1(ωj̃)))

}
, (110)

for p, q ∈ {1, 2, . . . ,M} where c > 0 is the speed of propagation [37]. Solution of

(108) is exacted by performing a singular value decomposition on Rgcn, such that
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Rgcn = UΣVH , resulting in

max
T(fj̃)
R
{

Tr
[
U(fj̃)Σ(fj̃)V

H(fj̃)T(fj̃)
]}
, j̃ = 1, . . . , J̃ . (111)

The solution of (111) is, as shown in [41], T†
(
fj̃
)

= U(fj̃)V
H(fj̃) where [·]† refers to

the optimal solution providing the maximum value of the trace.

To solve for the angles of arrival, a single covariance matrix is formed from the J̃

narrowband matrices as

Rfoc =
J̃∑
j̃=1

T(fj̃)Rx(fj̃)T
H(fj̃), (112)

where Rx

(
fj̃
)

is the spectral covariance matrix of the array data matrix X at fre-

quency fj̃. The final step is to apply the narrowband MUSIC DOA estimation al-

gorithm to Rfoc. A description of the MUSIC algorithm is provided in Appendix

A.

2.5.2 Model Order Selection.

The problem of determining the number of signals in an environment is written as

the minimization of the Akaike information criteria (AIC) [19, 125] over the possible

number of sources. The possible number of sources is limited to one less than the

number of array elements used in the sensing array. The AIC as a function of sources

is [19, 125]

AIC (ς) = −2 log


∏M

i=ς+1 l
1

(M−ς)
i

1
M−ς

∑M
i=ς+1 li

(M−ς)N̆
+ 2ς (2M − ς) , (113)
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where ς is the number of interference signals, li is the ith eigenvalue of the estimated

covariance matrix from (112), M is the number of sensors in the array, and N̆ is the

number of data points used to estimate Rfoc. As Rfoc is determined using frequency

domain processing, N̆ is the number of frequency samples used in the construction

of Rfoc. Also, the method assumes the eigenvalues of Rfoc are arranged such that

l1 ≥ l2 ≥ · · · ≥ lp.

2.5.3 Cognitive Radio.

The cognitive radio (CR) literature provides insight into blind environment es-

timation. Current CR technology is designed to transmit communication signals in

underused portions of the spectrum to better use the existing spectrum. This is im-

portant as the available spectrum is becoming increasingly crowded with competition

for every spectral region [31, 34, 35]. CRs search for spectral “holes” in which the

radio can transmit without affecting the primary user of the spectrum [31].

In contrast to spectral holes, the RM of the proposed receiver framework looks

for filled regions of the spectrum. CR receivers search for holes either by using edge

detection or through the use of a GLRT detecting where signals are present and

declaring a hole where there is no signal. Edge detection in the same way determines

the filled portions of the spectrum as a GLRT is designed to detect signals in a

spectrum. Thus, no modification to the CR spectral detection algorithms is required

for application to the proposed receiver framework.

Methods for detecting spectral holes require a spectral estimate of the electromag-

netic environment [3,11,31,32,43,56,90,111,123,133]. Spectral estimates for spectrum

utilization must be unbiased with low variance for small sample sizes for efficient op-

eration. The estimator used throughout the CR literature is the multi-taper method

(MTM) spectral estimator [31, 32]. The MTM method was first described by Thom-
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son in [109]. The MTM is a multiple window spectral estimation [110], where multiple

windowed periodograms are averaged to form a final spectral estimate. MTM esti-

mates are designed using the discrete prolate spheroidal sequence (DPSS) derived by

Slepian in a series of papers for Bell laboratories [52,53,98–100]. The DPSS are used

because, for a given sequence length, the DPSS are the sequences out of all possible

sequences whose spectrum provides the greatest concentration of power over a given

bandwidth [99,109].

2.5.3.1 MTM Spectral Estimation.

Bandwidth determination and signal detection require estimating the spectrum

of the environment. The spectrum is estimated using the MTM [109] of spectral

estimation. Classical estimation methods such as the Periodogram [47] and Bartlett

[47] estimators suffer from biased estimates due to spectral leakage from the choice of

windows used in the estimation. The MTM spectral estimator, however, through the

use of DPSS has low spectral leakage [31,109]; for this reason the MTM estimator is

chosen for the RM algorithm. The MTM works similar to the method of Bartlett;

however, MTM uses specially chosen weighting sequences (windows) for each direct

spectrum estimate to minimize spectral leakage. Using multiple windowed direct

estimates reduces the variance of the overall MTM spectral estimate. Thomson et

al. [109], developed the MTM estimator based on the work of Slepian with DPSS [99].

Slepian considered doubly infinite sequences h̃n, −∞ ≤ n ≤ ∞ where

H̃ (f) =
∞∑

n=−∞

h̃ne
−j2πfn (114)

represents the Fourier transform of the sequence. Slepian [99] then solved the problem

of what length N subsequence of h̃n, with normalized bandwidth |B| ≤ 1
2
, maximizes
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the ratio

λ̃ =

∑No+N−1
No

|h̃n|2∑∞
−∞ |h̃n|2

. (115)

That is, what such sequences have the most spectral content in bandwidth B? The

summations in (115) are performed over any N -length data sequence, where the

starting point is given as No. The answer from Slepian is the zeroth-order DPSS

denoted by ν
(0)
n−No (N,B). The sequence orthogonal to ν

(0)
n−No (N,B) possessing the

second most spectral content in B is ν
(1)
n−No (N,B). The orthogonalization process can

be generalized to the N sequences with the most spectral content in given bandwidth

B. The DPSS ν
(k)
n−No (N,W ) and their corresponding eigenvalues λ̃$ (N,B) are found

from the solution of

N−1∑
m̄=0

sin 2πB (n− m̄)

π (n− m̄)
ν$m̄ (N,B) = λ̃$ (N,B) ν($)

n (N,B) n = 0,±1,±2, . . . , (116)

normalized so that

N−1∑
j=0

ν
($)
j (N,B)2 = 1, (117)

N−1∑
j=0

ν
($)
j (N,B) ≥ 0, (118)

N−1∑
j=0

(N − 1− 2j) ν
($)
j (N,B) ≥ 0. (119)

The idea of Thomson [109] was to apply the DPSS as defined above to a multi-

taper spectral estimate. Thomson’s multi-taper spectral estimate is formed by aver-

aging ∆ direct spectral estimates as

Ŝ(mt) (f) ,
1

∆

∆−1∑
$=0

Ŝ(mt)
$ (f) (120)
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where

Ŝ(mt)
$ (f) , ∆

∣∣∣∣∣
N∑
t=1

h̃t,$Xte
−i2πft∆

∣∣∣∣∣
2

, (121)

and h̃t,$ is the $th DPSS used as the data taper (window) for the $th direct spectral

estimate Ŝ
(mt)
$ function, and Xt are realizations of the stationary process to which

the estimator is applied. The DPSS above were chosen by Thomson, because Slepian

showed they provided the least leakage for any taper of length N . The MTM spectral

estimators used in practice are regularized versions of the standard MTM estimate

provided in (120). The regularized MTM estimates are defined as [79]

S̄(mt) (f) ,

∑∆−1
$=0 λ$Ŝ

(mt)
$ (f)∑∆−1

$=0 λ$
, (122)

where λ$ is the eigenvalue associated with the $th DPSS. CR systems determine if a

signal is present by applying a GLRT [45] to the MTM spectral estimate [11,31,43,56].

The GLRT can be applied to a single frequency sub-band as in [56], or over a range

of sub-bands to detect wideband signals as in [11,43]. A GLRT is applied instead of

a standard Bayesian likelihood ratio test (LRT), because the measurements for the

detector are the MTM estimates of the spectrum for which the second order statistics

are not known.

2.5.3.2 GLRT Implementation.

According to [79] each sample of the spectral estimate S̄(mt) (fn) is distributed as

a scaled Chi-squared random variable S(fn)
2∆

χ2
(2∆) with 2∆ degrees of freedom, where

S(fn) denotes the actual sampled PSD of the time series, and ∆ is the number of

DPSS data windows used in the MTM spectral estimate. Because of the low leakage

properties of the DPSS, each S̄(mt) (fn) is statistically independent [109]. Assume a
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vector of independent and identically distributed (i.i.d) spectral estimate samples

S̄(mt) (f) =
[
S̄(mt) (f0) , S̄(mt) (f1) , . . . , S̄(mt) (fN−1)

]
(123)

where N is the number of frequency samples in the spectral estimate. The joint

probability distribution of (123) is then given by [79]

N−1∏
η=0

[
1

2∆Γ(∆)

] [
1

D′

] [
S̄(mt)(fη)

D′

]∆−1

e−
1

2D′ S̄
(mt)(fη), (124)

where S̄(mt) (fη) ≥ 0, D′ = S(fη)

2∆
and the Gamma function Γ(x) =

∫∞
0
tx−1e−tdt.

The two hypotheses considered for the GLRT are H0 → spectral hole; H1 → signal

present. The GLRT formed as p(S̄)(mt);H1

p(S̄)(mt);H0
is

∏N−1
η=0

[
1

2∆Γ(∆)

] [
1
D1

] [
S̄

(mt)
Rx (fη)

]∆−1

e
− 1

2D1
S̄

(mt)
Rx (fη)

∏N−1
η=0

[
1

2∆Γ(∆)

] [
1
D0

] [
S̄

(mt)
n (fη)

]∆−1

e
− 1

2D0
S̄

(mt)
n (fη)

H1

≷
H0

ξ (125)

where ξ is a threshold value, D1 = SRx(fη)

2K
, and D0 = Sn(fη)

2∆
. The subscript Rx refers

to the spectral estimate when a signal and noise is present; the subscript n refers to

the spectral estimate when only noise are present.

To write the above ratio test in a more compact manner and eliminate the re-

quirement for knowing SRx(fη) the ratio is written as a log ratio

(∆− 1)
∑N−1

η=0 ln

[
S̄

(mt)
Rx (fη)

S̄
(mt)
n (fη)

]
(126)

−1
2

{[
2∆
∑N−1

η=0

S̄
(mt)
Rx (fη)

SRx(fη)

]
−
[
2∆
∑N−1

η=0
S̄

(mt)
n (fη)

Sn(fη)

]}
H1

≷
H0

ln (ξ)−N∆ ln
(
D1

D0

)
= ξ′.
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Because of the properties of the MTM spectral estimator, the assumption S̄
(mt)
Rx (fη) ≈

SRx(fη) is made; also the assumption S̄
(mt)
n (fη) ≈ σ2

n is made due to the constant PSD

of white Gaussian noise. Applying these two assumptions to (126) gives

(∆− 1)
N−1∑
η=0

ln
[
S̄

(mt)
Rx (fη)

] H1

≷
H0

ξ′ + (N − 1)N ln
[
σ2
n

]
= ξ′′. (127)

The final form of the GLRT is

TLRT
(
S̄(mt) (f)

)
= (∆− 1)

N−1∑
η=0

ln
[
S̄(mt) (fη)

] H1

≷
H0

ξ′′ (128)

with TLRT as the test statistic and ξ′′ as the threshold value for spectrum sensing.

2.6 Resource Management

The proposed receiver architecture applies the best adaptive DBF algorithm with

respect to beamformer performance criteria established by the receiver framework

implementer. A chosen algorithm is the best adaptive DBF algorithm of those chosen

for implementation, with respect to the performance criteria, for application to a RF

environment type. The RF environments are differentiated based upon estimated

environment parameters. Adaptive DBF choice is made by a RM. The RM estimates

the environment parameters and picks the best adaptive DBF algorithm from a LUT

of adaptive DBF algorithms. The LUT is derived before receiver implementation

based upon the chosen algorithm performance metrics for each algorithm applied to

multiple RF scenarios. The receiver implementer develops the LUT based upon the

type of RF environments the receiver is expected to operate against, the adaptive

DBF algorithms chosen by the implementer, and the desired algorithm performance
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criteria.

The term resource manager is used because the choice of adaptive DBF algorithm

impacts the loading of the receiver’s computational hardware. Using the proposed

framework most efficiently uses available computational resources.

Selecting the most appropriate adaptive DBF algorithm is a more precise state-

ment of the algorithm selection problem (ASP) first introduced by Rice in [85]. Rice

proposed a mapping from problem space to algorithm space and selected the algo-

rithm as solution, that provided the best algorithm, with regard to finding the most

accurate solutions over a variety of optimization problems, out of all algorithms in a

given portfolio of algorithms. The ASP is an important problem receiving consider-

able attention in the field of computer science [51]. In a survey paper Kotthoff states

that [51]:

Researchers have long ago recognised that a single algorithm will not give
the best performance across all problems one may want to solve and that
selecting the most appropriate method is likely to improve the overall
performance. Empirical evaluations have provided compelling evidence
for this.

Transposed to the problem of adaptive beamforming, the rationale for solving the

ASP is the rationale for proposing the new receiver architecture. Selecting sepa-

rate adaptive DBF algorithms for each electromagnetic environment encountered is

“likely” to improve the overall performance.

Even though the ASP has been studied in computer science since the 1970s, little

has been done to apply the problem to improving beamforming system performance.

Where work has been done is with respect to multiple-input multiple-output (MIMO)

communications systems. The works of [16, 38, 78, 115] adaptively select a subset

of spatial transmit beams from a randomly generated set of transmit beams that

provide for the highest channel capacity. The receivers determine the SINR of all

transmit-receive links in the MIMO system and only select the subset of transmitted
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beams providing the highest SINR. The beam selection requires a feedback link from

the receivers to the transmitters. The four papers [16, 38, 78, 115] present different

methodologies for formulating the transmit beams and selecting the most optimal

beams.

One other ASP-like problem is defined in [69], where the MIMO system selects an

appropriate coding of the transmitted signal based upon the SINR of the signal mea-

sured at the receiver. As with the other MIMO systems studied, the communication

system requires feedback between the receivers and transmitters.

The available literature to this point does not contain any studies or receiver

architectures that extend the ASP to adaptive beamforming beyond the few MIMO

systems. The receiver framework is thus beneficial not only for its potential to increase

the performance of electronic support receivers, but also to open up a new research

thread for adaptive DBF.

2.7 Chapter Review

The adaptive DBF algorithms presented in this chapter are those selected from

the available adaptive DBF algorithms for inclusion in the LUT for demonstrating the

proposed receiver framework. The choices form a representative set of the different

types of adaptive DBF algorithms available and are not meant to be an exhaustive

listing of adaptive algorithms. The choice of adaptive DBF algorithms for inclusion

in any instantiation of the proposed framework is left to the receiver designer. When

choosing algorithms for inclusion in the receiver implementation the designer should

consider the types of SOIs as well as the types of environments the receiver will

encounter.

Environment and signal detection algorithms presented are selected because of

their applicability to CR. Use in the proposed receiver framework is analogous to use
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in CR, making their implementation straightforward. The method of Kaveh [122]

is used to estimate the DOAs of all signals in the RF environment, because it is

able to work in both narrowband and wideband environments. Design of the RM

for the receiver framework employs the described signal detection algorithms, DOA

estimation algorithms, and the AIC model order selection algorithm. The output of

the detection and estimation algorithms is used to decide which of the five adaptive

DBF algorithms to use for a given adaptive beam.
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III. Resource Manager Framework and Algorithms

Current state of the art electronic support (ES) receivers apply digital signal pro-

cessing (DSP) to detect signals-of-interest (SOIs) and interference signals in the elec-

tromagnetic (EM) environment, formulate adaptive filter weights, and estimate the

desired SOIs. The choice of adaptive digital beamforming (DBF) algorithm used to

formulate the filter weights is determined traditionally during receiver design. Intelli-

gent receivers, i.e. receivers that operate within Haykin’s perception-action cycle [31],

apply DSP not only for standard ES receiver processing but also to also select the

adaptive DBF algorithm used in the processing. This dissertation develops a new

receiver framework that perceives the EM environment and then performs the action

of selecting an adaptive DBF algorithm based upon the perceived environment. No

initial weighting of the array data is performed upon reception. The raw intermediate

frequency (IF) array channel measurements are digitized and used by the receiver.

The adaptive DBF weighting is applied after the best adaptive DBF algorithm is

chosen by the resource manager (RM).

The receiver’s perception and action are shown in the diagram of the proposed

receiver architecture of Figure 1. The first processing performed by the receiver is

perceiving the environment using the functions of the RM. Action is taken when an

adaptive DBF algorithm is chosen from a look-up-table (LUT) of adaptive DBF algo-

rithms. The final portion of the receiver is using the chosen adaptive DBF algorithm

to estimate the SOIs using the measured array data.

This chapter details the RM that is responsible for perceiving the EM environment.

In the case of the proposed receiver framework, perception involves estimating a set

of environment parameters that can be used to classify the environment as belonging

to one of a set of predetermined environment classes. The RM portion of the receiver

framework is designed to be useable for all instantiations of the framework. The LUT
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is comprised of adaptive DBF algorithms that are considered the best algorithms,

from a chosen set, with respect to user-defined algorithm performance criteria. For

demonstration purposes this research chooses signal-to-interference-plus-noise ratio

(SINR) improvement and computational complexity as the desired algorithm perfor-

mance criteria. By determining the environment class the RM determines the best

adaptive DBF to chose from the LUT. An adaptive DBF algorithm must be chosen

from the LUT for each SOI detected in the radio frequency (RF) environment. This

requires the RM, in addition to classifying the RF interference environment, detect

and disambiguate all SOIs in the environment. Detection of the SOI is accomplished

through a three-of-three detection process and aided by the Akaike information crite-

ria (AIC) model order selection algorithm. The AIC is used to determine the number

of interference signals and the number of SOIs to ensure all signals are accounted for.

One last requirement levied upon the RM is the estimation of all required envi-

ronment and SOI parameters for adaptive DBF algorithm implementation. As will

become clear when the functional blocks of the RM, as depicted in Figure 1, are

discussed, the parameters required for adaptive DBF algorithm implementation are

estimated for adaptive DBF algorithm selection and SOI detection. It should also

be noted that the RM assumes the type of SOI is known to include the spectral re-

gion where the SOI exists. The RM requires knowledge of the SOI spectral region to

operate. No other a priori signal knowledge is assumed.

3.1 Resource Manager Look-Up-Table Interdependence

Design of the resource management algorithm is interdependent with design of

the adaptive DBF LUT. The parameters estimated by the resource manager must be

sufficient to differentiate between electromagnetic interference environment classes.

The different interference environments must likewise allow for differentiation be-
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tween adaptive DBF algorithms in the LUT. Because of this interdependence, a brief

discussion of how the LUT is developed is required before the resource management

algorithm is fully described.

The electromagnetic environment estimates must be parameterized so that perfor-

mances of adaptive DBF algorithms are sensitive to the parameter changes. Measur-

able environment parameters include the number of interference signals, bandwidth

of interference signals, directions of arrival of interference signals, and power of inter-

ference signals. However, power estimates rely on signal knowledge greater than what

is known a priori, or estimable, by the electromagnetic signal receiver. Simulation

experiments in Section 4.2 show the number of interference signals and interference

signal bandwidth have the most effect on adaptive DBF performance. For interference

signals of similar power, the spatial distribution is shown to have little effect; likewise,

the spectral distribution of the interference signals is also shown to have little effect.

The one caveat is when the interference signal is within one half beamwidth, with

regard to the beamformer applied, in which case the error greatly increases. In such

instances data-dependent beamformers are able to differentiate between signal and

interference only when there is either spatial or spectral differentiation between the

signal and interference sources. When the interference signals are co-located with the

signal of interest both spectrally and spatially, no adaptive DBF algorithms are able

to separate the signal from the interference.

Of the observable electromagnetic environment parameters, only the number of

interference signals present and the relative bandwidths of the interference signals

provide for differentiation between the different adaptive DBF algorithms under con-

sideration. The LUT is therefore designed by varying these two parameters to create

multiple interference environments against which the chosen adaptive DBF algorithms

are tested.
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The exact number and composition of the electromagnetic environments gener-

ated for LUT generation is also determined by the adaptive DBF algorithm sensitivity

analyses in Section 4.2. The adaptive DBF algorithms used in the sensitivity analysis

demonstrate natural break points with regard to the number of signals and band-

widths of the signals in the interference environments. For the current research a

total of eight interference environments were simulated for LUT generation. The

parameters for each are listed in Table 1.

Table 1. Listing of scenario environment parameters for LUT generation

Scenario # of Interference Signals Bandwidth of Signals
One 1 Wideband
Two 2 Wideband
Three 5 Wideband
Four 10 Wideband
Five 1 Narrowband
Six 2 Wideband and Narrowband
Seven 2 Wideband and Narrowband
Eight 5 Wideband and Narrowband

The selection of adaptive DBF algorithms for the LUT is based upon user de-

fined selection criteria. The framework instantiation used throughout this work for

demonstration purposes is designed to accurately estimate an SOI using the most

computationally efficient DBF algorithmin available to the receiver. Adaptive DBF

algorithms are usually compared with regard to their ability to remove the effect of

interference and noise on a signal of interest. One logical measure for consideration

in the current instantiation is thus the SINR improvement, which measures an algo-

rithm’s ability to reduce the influence of interference and noise on the SOI [70, 113];

for this reason, SINR improvement is the first performance criteria1 where

SINR Improvement =
SINR out

SINR in
(129)

1Appendix B contains a discussion on the use of SINR and SINR improvement as an adaptive
DBF algorithm performance metric.
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and

SINR =
psig

pnoise + pinterference
. (130)

The sensitivity studies performed to determine the effects of changing environment

parameters on receiver performance were achieved using the SINR improvement per-

formance measure.

The current receiver framework instantiation is also designed to increase the effi-

ciency of ES receivers, in addition to providing the best SINR improvement across a

large number of interference environments. Algorithm efficiency is measured in terms

of computational complexity. LUT entries are those adaptive DBF algorithms not

only with high SINR improvement, but those that also have low computational com-

plexity. As a result computational complexity is chosen as the second performance

criteria for implementation. Further discussion on receiver efficiency is provided in

Section 3.3.

Knowledge of the performance, with respect to the receiver framework imple-

mentor’s performance criteria, is not sufficient to populate the LUT. The receiver

framework implementor must also provide a rule to determine how the algorithm

performance is used to determine the best adaptive DBF algorithm for each RF envi-

ronment tested. For the current demonstration framework instantiation the designer

is concerned with minimizing the computational complexity of the receiver while

meeting a required SINR improvement threshold. The SINR improvement threshold

is based upon the post processing performed on the signal estimate. Algorithms for

decoding communication signals and creating pulse descriptor words (PDWs) have

a known required SINR. The threshold also requires knowledge of the “worst case”

SINR environment. The minimum required SINR improvement is then

required SINR improvement =
SINRrequired out

SINRworst case
. (131)
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The demonstration decision rule is then to find the subset of adaptive DBF algorithms,

from the user determined set of adaptive DBF algorithms, that provide the required

SINR improvement. Given the subset of adaptive DBF algorithms that most likely

meet the SINR improvement threshold, the decision rule chooses the algorithm that

has the lowest computational complexity from the set.

3.2 Resource Manager Structure

The structure of the RM is shown in Figure 7. There are two functional blocks

that run in parallel. The first block is labeled environment determination, and it

provides estimates of the number of signals in the environment, the direction-of-

arrival (DOA) of all signals in the environment, and the relative bandwidth of those

signals in the environment. The relative bandwidth of the environment refers to

whether there are narrowband signals, wideband signals, or a mixture of wideband

and narrowband signals in the environment. The environment determination block

provides estimates of the environment parameters to the selection algorithm that

chooses the best adaptive DBF algorithm from the LUT.

The SOI detection block disambiguates the RF environment by separating the

SOIs from the interference sources. Upon completion, the SOI detection block pro-

vides the number of SOIs in the environment and their respective DOA for creation of

adaptive DBF weights. Multiple beams are created when multiple SOIs are detected,

and a separate set of adaptive filter weights is created to estimate each SOI.

Processing the two functional blocks uses a single spectral estimate (multi-taper

method (MTM) estimation) and then three parallel paths. Path one determines the

number of detected signals in the environment using the AIC model order selection

algorithm and estimates the DOA of all detected signals in the environment. . Path

two determines the relative bandwidths of the signals in the RF environment. Path
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three separates the signals from the interference sources and provide the number of

interference signals and the DOA of each SOI.

Figure 7. A diagram of resource manager functionality showing the parameter vectors
φ and BW provided by the environment estimation and SOI detection functional blocks
to the selection algorithm.

While the provided RM architecture, to include the AIC, MTM, and generalized

likelihood ratio test (GLRT) algorithms can be used without further modification.

The framework, however, is flexible and allows for different model order selection al-

gorithms, different spectral estimation algorithms, and different detection algorithms.

The choice is based upon the desires of the receiver implementor. Applying the frame-

work with different estimation algorithm requires substituting the new algorithms

directly in the framework where the original algorithm was applied. Processing then

proceeds as if the original algorithms were in place.
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3.2.1 Environment Determination.

The RM classifies EM interference environments based on the number of signals,

the relative bandwidths of the signals, and the SOI of the signals; therefore the inter-

ference estimation algorithm must determine these two parameters. The interference

estimation algorithm must also determine any parameters required for the adaptive

DBF filter weights solution. Because the receiver is performing blind sensing, i.e. hav-

ing no a priori knowledge of the interference sources, the adaptive DBF algorithms

are chosen to require as few parameters as possible. The adaptive DBF algorithms

implemented in this study only require the DOAs of the SOI and interference sources

to be known. The interference estimation algorithm must then determine the number

of interference signals, the bandwidths of the interference signals, and the DOA of

each interference signal.

Referring again to Figure 7, the environment estimation algorithm operates along

two parallel paths. Path 1 determines the number of signals as well as the DOA for

each signal while Path 2 determines the bandwidths of the interference signals. The

algorithm does not associate a bandwidth with each signal and DOA. The LUT is ref-

erenced only by the relative2 bandwidths of the interference signals, i.e., whether there

are wideband signals, narrowband signals, or a mixture of wideband and narrowband

signals in the RF environment. The RM does not require knowledge of the bandwidth

of each interference signal to adaptively select the adaptive DBF algorithm.

3.2.1.1 Signal Detection and Bandwidth Estimation.

Bandwidth determination and signal detection require estimating the spectrum

of the environment. The spectrum is estimated using the MTM [109] of spectral

2Throughout the rest of the document determining whether there are widband signals, narrow-
band signals, or both wideband and narrowband signals present in the environment is referred to as
relative bandwidth determination.
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estimation. Classical estimation methods such as the Periodogram [47] and Bartlett

[47] estimators suffer from biased estimates due to spectral leakage from the choice of

windows used in the estimation. The MTM spectral estimator, however, through the

use of discrete prolate spheroidal sequence (DPSS) has low spectral leakage [31,109];

for this reason the MTM estimator is chosen for the RM algorithm.

Detection and bandwidth estimation of interference signals are implemented by

applying a GLRT to the spectral estimate S̄(mt) (f). The GLRT, which is fully devel-

oped in Section 2.5.3.2, is applied in spectral sub-bands and returns hypothesis H1

when a signal is present in the given sub-band, and returns hypothesis H0 when no

signal is determined to be present. The relative bandwidth of the signals is deter-

mined using the GLRT output. Determining the relative bandwidth requires that the

sub-band size is made sufficiently small such that narrowband signals are expected

to mostly fill a sub-band. Signals that span multiple sub-bands are declared to be

wideband signals; signals that encompass a only a single sub-band are declared nar-

rowband signals. Using the methodology it is possible that two narrowband signals

are present such that when the GLRT is applied the combined output of the two sig-

nals is declared to be a wideband signal. Also, it is possible that narrowband signals

are hidden in wideband signals. These errors could lead to the mis-characterization

of the RF environment.

Consider how the RF environment may be mis-characterized. In both cases nar-

rowband signals are confused for wideband signals. If no other narrowband signals

are determined present in the environment the environment is declared to only have

wideband signals present. This error leads to beamformers being chosen that are

best for wideband environments. As will be demonstrated for the receiver framework

instantiation used for demonstration in this work when the LUT is fully developed,

wideband DBF algorithms always produce a higher SINR improvement than narrow-
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band algorithms. In all cases when narrowband signals are confused for wideband

signals the resulting adaptive DBF algorithm is capable of providing the required

SINR improvement. It is possible, however, that a more efficient adaptive DBF algo-

rithm would be chosen if the correct relative bandwidth was declared. The effect of

the error for other instantiations is dependent upon the types of adaptive DBF algo-

rithms implemented and the decision rules used to determine the best algorithm. In

all cases, however, wideband algorithms are able to beamform in scenarios with nar-

rowband interference signals and the resulting receiver system is capable of meeting

the mission requirements regardless of how often the error occurs.

A GLRT is chosen over other detection techniques because it satisfies the Neyman-

Pearson criteria of maximizing the probability of detection for a given probability

of false alarm given the available data. A standard likelihood ratio test that also

satisfies Neyman-Pearson criteria [45] is not applicable, because the test statistics for

the environment estimation algorithm are formed from estimated data, and so the

exact probability density functions of the data samples are not known.

3.2.1.2 DOA Estimation.

The directions of arrival of the interference signals are found through standard

wideband direction of arrival estimation algorithms. As with the spectral estimation,

a consistent estimator of the directions of arrival is desired. It is also desired that the

estimator operate on multiple signals simultaneously. The method of Kaveh [122] is

capable of locating the direction of arrival of multiple sources each to within 1o when

applied to a uniform linear array (ULA) and when the number of interference signals

does not exceed the degrees of freedom of the array. Furthermore, the method is able

to differentiate the DOA of correlated sources. These desirable properties make the

method of Kaveh a good choice of DOA estimator for the RM algorithm.
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.

3.2.2 Signal Of Interest Detection.

The third parallel path of the resource manager is the signal of interest detection.

The signal of interest detector, as did the environment estimator for detection of

interference signals, utilizes a MTM spectral estimator and the GLRT detector to

determine if a signal of interest is present in the environment. The GLRT is able to

search over portions of the spectral estimate. Because the type of signal of interest

is known a priori, the spectral region of the SOI is known. The MTM estimated

samples for this region are used as input into the GLRT to determine if a SOI is

present.

Detection of SOI proceeds by first spectrally filtering the array channel data to

include only those frequencies where the SOI is known to exist. Second, a DOA

estimation algorithm is applied to the spectrally filtered data. If only a single DOA

is returned, then a single SOI is assumed to exist and the detection block exits,

providing the DOA of the single SOI to the RM. If multiple DOAs are returned, the

spectrally filtered array channel data is used in a signal disambiguation algorithm

that applies a three-of-three detection algorithm to the signal represented by each

returned DOA. The three-of-three detection algorithm separates interference signals

from the SOIs. The signal disambiguation algorithm returns the number of SOIs and

a DOA for each.

3.2.2.1 Signal of Interest Disambiguation.

SOI disambiguation is required, because SOI detection is based upon a signal

having spectral content in a desired spectral region. The DOA estimation algorithm

is applied to the data filtered to contain only this spectral region. It is possible
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interference signals also have spectral content in this same region. Such interference

signals provide a DOA when the estimation is performed. If an adaptive algorithm

was applied in the direction of each estimated DOAs, beamformers would be applied

to estimate interference signals wasting receiver resources. Signal disambiguation

separates the SOI from any interference signals with overlapping spectral content.

Operation of the disambiguation algorithm is diagrammed in Figure 8. Data

used in the disambiguation algorithm has been spectrally filtered to coincide with

the desired frequency range of the SOI. The processing first applies a filter bank of

frequency invariant spatial beamformers, where only the directions collocated with

an estimated direction of arrival are implemented. At this point there are three

possibilities for each spatial beam. The first case is only a signal of interest is present

in the beam. The second case is both a signal of interest and an interference signal

with frequencies overlapping that of the signal of interest are located in the spatial

beam. The third case is only interference signals with frequencies similar to the SOI

are present in the spatial beam. The output of the RM and the overall computational

complexity are dependent upon which case is selected. The RM only selects an

adaptive DBF algorithm for cases one and two. No adaptive DBF algorithm is selected

for case three as no SOI is present in the environment.

After application of the frequency invariant beamformer (FIB) filter bank, a MTM

spectral estimator is applied to each beamspace output of the filter bank. The spectral

estimate is used in a three-of-three (TOT) detection algorithm. The TOT algorithm

is an inherently space-time procedure. The spatial domain is set by using a single

FIB beam. The spectral domain is previously set by applying a frequency filter to

only cover the spectral region of interest. For each spatial beam, the SOI spectral

region of the MTM spectral estimate is divided into thirds, and a GLRT detection

algorithm applied to each third. If a SOI is present in the environment, all three
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Figure 8. Diagram of the signal of interest disambiguation functional block showing the
three-of-three algorithm for each spatial sub-band formed toward each DOA estimated
by the DOA estimator of the SOI detection functional block. The Flag is set to one
when a SOI is present and zero when no SOI is present.
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sub-band GLRTs should return H1. If only noise and interference sources are present

in the environment, at least one of the three sub-band GLRT is likely to return H0

indicating no signal present. The TOT detection algorithm is designed to only return

that a SOI is present if all three sub-band GLRT return H1.

It is possible that a spatial beam containing only noise and interference is returned

as a false positive; this is unavoidable if the interference source overlaps more than

66% of the SOI frequency band. In this case the receiver would mistake an interference

signal as an SOI, select an adaptive DBF algorithm from the LUT, and apply the

adaptive DBF algorithm to attempt to estimate the false signal. It would be up

to the data processing of the receiver to determine if the received data contained

an actual signal or interference. If more than three sub-bands were used in the

detection algorithm, the probability of false alarm could be reduced further, with a

corresponding increase in complexity for the additional GLRT. Three sub-bands are

chosen as they decrease the probability of false alarm over only using a single GLRT

in the desired frequency range while not adding intolerable computational burden.

An area of future research would be to determine the optimal number of sub-bands

for signal disambiguation which may depend on SOI.

The three-of-three detection algorithm completes the signal disambiguation. Prior

to application of the three-of-three detection algorithm the RM considers all signals

that have any spectral overlap with the known SOI spectrum as SOI. Thus DOA for all

such signals are passed to the three-of-three detection algorithm. The disambiguation

algorithm chooses which DOA correspond to actual SOI. With the number of SOIs

and their respective DOA determined, the RM has knowledge of both the interference

environment and all SOIs present in the environment. This information is used to

select the proper adaptive DBF algorithm from the LUT for implementation by the

receiver.
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3.3 Receiver Efficacy

The proposed receiver framework is designed to have better performance across a

wider variety of electromagnetic environments, in terms of SINR improvement than

a standard ES receiver, while also increasing the efficiency of algorithm employment.

Using an RM the proposed framework selects the most efficient, in terms of com-

putational complexity, adaptive DBF algorithm capable of meeting a required SINR

improvement level. Selecting the most efficient algorithm, however, requires addi-

tional computational complexity to estimate the number of interference signals and

the bandwidths of the interference signals in the electromagnetic environment. In

order for the proposed receiver framework to have improved efficiency over standard

receivers, the added complexity cannot add significantly to the receiver processing

timeline.

It is assumed that all multi-beam receivers must perform some amount of SOI

disambiguation to properly form multiple simultaneous beams. The proposed receiver

framework, within the context of the RM, performs the newly required environment

parameter estimation tasks at the same time as the SOI detection. The processing is

split between computational resources using parallel processing.

Parallel processing involves breaking the processing required for an algorithm into

different threads, which are all run independently at the same time [14, 50]. Some

overhead processing is required to first parse the required data for the parallel paths

and to reconstruct the data after the completion of the parallel paths; however, the

complexity improvement over processing threads in series far outweighs the extra

processing required for parallel processing overhead [14,50].

Thus, by performing the environment parameter estimation and SOI detection

in parallel, the run time of receiver processing is not increased by an amount equiv-

alent with the computational complexity of the “extra” processing. In fact, if the
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computational complexity of the environment parameter estimation is less than the

computational complexity of the SOI detection process there is no increase in timeline

over that of a standard receiver for the proposed receiver framework. Conversely, if

the environment parameter estimation process took more time than the SOI detection

process there would be an increase in overall receiver processing timeline. Processing

that does not increase the run time of a receiver employing the proposed receiver

framework when compared to a standard receiver is predicated upon the standard

receiver being capable of forming multiple digital beams. While the exact complex-

ity of the detection processing required for multiple beams differs between receiver

implementations, some level of effort and amount of complexity must be required to

perform the processing. The framework is designed to use efficient algorithms to de-

termine the RF environment so any complexity difference between the SOI detection

and the RF environment detection is minimized.

3.3.1 Resource Manager Computational Complexity.

The overall computational complexity of the resource manager is the maximum

complexity of either parallel branch. The first parallel branch is the electromagnetic

environment determination. The first step in this determination is a MTM spectral

estimate. The MTM estimate first solves for the DPSS sequences. An N ×N matrix

is formed where the ith, jth element is given as

Ai,j =
sin (2πB (i− j))

π (i− j)
(132)

and B is the bandwidth of the spectral estimate. Considering that each computation

of the sine function requires constant time for computation, the complexity of this

matrix calculation is N2. The DPSS values are the first ∆ eigenvectors of matrix A,

where ∆ is the number of DPSS sequences used in the MTM estimate. Each eigenvec-
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tor and its corresponding eigenvalue are found using EISPACK3 in N3 operations [4].

The total complexity for the DPSS is then ∆N3. The total number of DPSS used

during experimentation in Chapter 5, is always calculated as less than 10; the total

complexity of the DPSS computation is therefore O (N3).

Each DPSS is then applied to a periodogram estimate of the spectrum, and a

weighted average, using the eigenvalues as weights, is computed. The cost of each

periodogram is N logN where log is logarithm base 2. The total cost of the weighted

average is then O (N logN). This complexity is an order of N less that that required

to solve for the DPSS, thus the overall complexity of the MTM spectral estimator is

O (N3) where N is the number of data points used for the estimate.

The second operation required for environment determination is the GLRT, which

is applied to the MTM estimate. Multiple instances of the GLRT must be applied to

determine if a signal is present over each sub band. If P sub bands are used then P

instances of the GLRT need to be applied. Each GLRT is a comparison test. The test

statistic can be computed in constant time, and the comparison is done in constant

time so each GLRT adds little to the complexity. In the worst case scenario a GLRT

will be taken for each sample in the MTM and thus the complexity of the GLRT

would be O (N).

The third component of the environment estimation is the direction of arrival

estimation. Using the designator P to denote sub bands again, the method of Kaveh

[122] forms P focusing matrices to focus the wideband multi-rank covariance matrices

to rank one matrices. Each of the P transformation matrices requires an N×N matrix

computed as

Rj,k = 2µi sinc
[(
d
µi
c

)
[(j − 1) (2πfc)− (k − 1) (2πf)]

]
(133)

3The computational complexity is dependent upon the actual algorithms used in receiver imple-
mentation; this dissertation implements algorithms using MATLAB, which in turn uses EISPACK.
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where µi is the angle extent over which the search is to occur. This angle is dependent

upon the spatial surveillance area of the array. The focused frequency is fc and f (p)

is the center frequency of the pth sub band being focused. The complexity of forming

matrix Rj,k is O (N2). A singular value decomposition is applied to the matrix at

a cost of O (N3). The sensor data is also placed through a band pass filter and the

sample matrix inversion technique used to determine the frequency domain covariance

matrix for each frequency band. Each band requires O (N3) calculations for the

covariance matrix. The total cost for the focussed matrix is then O (PN3). The

MUSIC method is then applied to the focused covariance matrix at a cost of O (N3).

The total computational complexity for the Kaveh method of DOA estimation is

then O (PN3). If further revisions are required for improved accuracy, each revision

requires O (N3) computations. This increases the multiplication constant in the big

O notation, but the overall complexity remains the same.

The environment estimation requires a single MTM estimate, followed by multiple

GLRT implementations as well as a DOA estimate. Each of the algorithms has a

complexity of at least O (N3) with the most complex requiring a multiplication factor

of P . Thus the total complexity for the environmental estimator is O (PN3).

The complexity of the signal detection functional block is dependent upon whether

there is a single SOI or multiple SOIs. A complexity analysis deals with the worst case

scenario the analysis will be done as if there are multiple SOIs present. The algorithm

starts with N complex multiplications to apply the bandpass filter followed by a a

PN3 DOA estimate. Now consider thatK signals are present in the environment. The

next processing is application of K spatial filters for a total complexity of O (KN).

The signal disambiguation algorithm applies K spectral estimates for O (KN3) com-

plexity. The three-of-three detector applies three constant time GLRT algorithms

to each estimate adding only O (N). The complexity is now O (KN3 + PN3). For
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a given receiver, the number of possible detectable signals is limited by the number

of array channels. Contrast this with the number of sub-bands used in the DOA

estimation. The number of sub-bands is on the order of an fast Fourier transform

(FFT) computation using greater than 512 samples [122]. While large arrays exits

this research assumes that the array will have less than 512 elements and so P > K.

The number of signals of interest is absorbed in the hidden multiplication factor of

the Big-O notation making the total complexity of the signal detection algorithm

O (PN3), which is the same as for the environment estimation algorithm.

When equating computational complexities using big-O notation the hidden mul-

tiplication factors may differ between the compared complexities. For the case of

the environment determination algorithm and the signal detection algorithm, how-

ever, the resulting complexities are due to an equivalent number of MTM spectral

estimates and GLRT applications. As the operations performed are the same the

resulting multiplication factors are also the same. This analysis demonstrates that

if parallel processing is used, there is no heavy penalty to pay for implementing a

receiver architecture that intelligently senses the environment. Thus any process-

ing gain achieved from selection of the most optimal algorithm can be used to form

additional independent spatial beams as is desired.

At first glance it might seem as if the complexity analysis would be incorrect

when there is only one signal of interest and the disambiguation algorithm does not

need to be run. In this case the complexity is reduced by a factor of K. However,

there are a limited number of signals of interest present in any environment. Even

when a global system for mobile (GSM) system is considered, because a cell can only

handle a given number of users, and only a portion of the cell is under surveillance,

the number of possible users will be several factors below that of the number of data

points used. Even if only 1024 samples are used at any one time, 50 users would
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still be two factors below the size N . Furthermore, consider that if many parallel

processors were available, such as on a graphics processing unit (GPU), then each of

the K calculations are done simultaneously and there would be no inherent reduction

in complexity from only having a single SOI present.

3.3.2 Receiver Complexity Considerations.

As stated above the computational complexities of both functional blocks in the

RM are equivalent. Because both parallel paths have an equivalent complexity, the

new receiver architecture does not have any added timeline over a receiver employing

a single adaptive DBF algorithm in multiple independent beams for multiple SOI

meeting the increased efficiency requirement of the proposed receiver framework.

It should be noted that while both algorithms have the same “Big O” complexity,

the actual run times of each algorithm will not be exactly the same. Omitted from

the notation is a multiplication factor on the PN3 which could be large or small. The

notation assumes that the multiplication factors are less than N and so the differences

between the complexities of the two algorithms are roughly equivalent. Further,

depending upon the receiver hardware being used for algorithm implementation, the

O (PN3) complexity may or may not be “fast” enough for real time operation. That

determination needs to be made on a system-by-system basis. This research assumes

that hardware exists such that real time requirements are able to be met with the

O (PN3) complexity.

3.4 Resource Manager Review

The addition of intelligence to an ES receiver requires that perception beget action

based upon the perception. The RM provides the perception and action by classify-

ing the EM environment represented by the sampled array channel data and using
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the EM environment classification to select an adaptive DBF algorithm from an a

priori determined LUT of adaptive DBF algorithms. The addition of intelligent ac-

tion through an RM is a major contribution of this dissertation and has not been

demonstrated prior to tis research.

This chapter described the main two portions of the RM. The third portion of

the RM is the selection of the best adaptive DBF algorithm from the LUT. From the

perspective of the RM, once the RF environment parameters are estimated, the type

of adaptive DBF to apply only requires a reference to a table. The adaptive DBF

algorithms are implemented by the receiver outside of the RM. Therefore, from the

perspective of the RM the LUT is considered a priori knowledge, determined before

receiver operation. For this reason the full description and development of the LUT

are afforded their own discussion, provided next in Chapter IV.
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IV. Look Up Table Development

The resource manager (RM) of the proposed receiver architecture operates on

samples of the electromagnetic environment received by an array. By applying digital

signal processing (DSP) the RM is able to parameterize the electromagnetic environ-

ment according to the number of interference signals in the environment and their

respective bandwidths. The RM also determines the number of signals-of-interest

(SOIs) present in the environment and their respective directions-of-arrival (DOAs).

Using the estimated parameters, the RM selects the most optimal adaptive digital

beamforming (DBF) algorithm on a per SOI basis, from a predetermined look-up-

table (LUT) of adaptive DBF algorithms. Selection of the best adaptive DBF al-

gorithm is based upon selection criteria determined by the receiver designer1. The

RM then supplies the optimal algorithm and any parameters required for adaptive

DBF implementation to the electronic support (ES) receiver where the ES receiver

implements the chosen adaptive DBF algorithms.

Choice of adaptive DBF algorithm optimality criteria is based upon the aims of

the proposed receiver framework designer. The current framework under study is

designed to improve both beamforming performance and receiver efficiency over stan-

dard ES receivers. Receiver efficiency is gauged in terms of adaptive DBF computa-

tional complexity. Many adaptive DBF algorithms are capable of estimating the SOI

waveform but if the algorithms are overtly complex the receiver system is inefficient.

Beamforming performance is usually measured in SINR improvement [70,113]. SINR

improvement is a measure of the increase in SINR due to adaptive DBF algorithm

implementation. Greater SINR improvement corresponds to greater beamformer per-

formance. Section 4.5 describes how the performance measures of SINR improvement

1This research uses signal-to-interference-plus-noise ratio (SINR) improvement and computa-
tional complexity as the selection criteria for a representative receiver implementation.
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and computational complexity are used to select the adaptive DBF algorithms for

the LUT.

There are myriad environmental parameters that can be estimated and used to

select the optimal adaptive DBF algorithm from the LUT. The larger the number of

parameters required to access a solution in the LUT the more complex the environ-

ment estimation algorithms must be. Furthermore, the performance of the adaptive

DBF algorithms is not sensitive to changes in all parameters. Developing the LUT

requires knowledge of what minimal set of environment parameters suffices to differ-

entiate the adaptive DBF algorithm’s performance against different electromagnetic

environments. Knowledge of the minimal set of environment parameters is gener-

ated empirically by performing a sensitivity study of signal bandwidth, number of

interference signals in the environment, and the directions of arrival of the interfer-

ence signals. These three parameters are chosen because they are easily estimated

using known DSP techniques. Other environment parameters such as interference

signal power could also be estimated. Signal power estimation, however, requires

greater signal processing and increases the system complexity. Because the goal of

the proposed receiver framework implementation is to estimate the SOI as efficiently

as possible, parameters whose estimation increases the computational complexity of

the environment estimation are not considered further.

To create the LUT based upon the number of interference signals, the interfer-

ence signals’ bandwidths, and their respective DOAs, a number of interference envi-

ronments are simulated, varying one or more of the parameters for each successive

simulated scenario. The performance of a set of adaptive DBF algorithms, in terms

of SINR improvement and computational complexity when applied to each simulated

scenario are compared. The decision rule for the receiver framework instantiation

presented in this research forms a subset of considered DBF algorithms that provide
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the required SINR improvement and selects the adaptive DBF from the subset that

has the lowest computational complexity.

Each adaptive DBF algorithm chosen for listing in the LUT is referenced by the

environment parameters associated with the simulated scenario for which the algo-

rithm was determined to be best. Operationally, the RM estimates the environment

parameters required to select an adaptive DBF algorithm from the LUT. The RM

also estimates the DOA of the SOI and of each interference signal. The RM then

chooses the best adaptive DBF algorithm from the LUT using the estimated envi-

ronment parameters. The chosen adaptive DBF algorithm is best not only for the

canonical radio frequency (RF) environment used to develop the LUT but for any

RF environment similar to the canonical environment with respect to the estimated

environment parameters. The selected best adaptive DBF algorithm wight he number

of SOIs and DOA for each SOI are then used to form multiple independent beams

and provide estimates of the sought after SOIs waveform.

The remainder of this chapter details creation of the LUT. First is a listing of

the five adaptive DBF algorithms considered for inclusion in the LUT. Second, each

of the eight simulated interference scenarios are described to include the number,

bandwidth, and DOA of all interference signals and the SOI. Third, the results of

each of the five adaptive DBF algorithms when used to estimate the SOI in each of

the eight interference scenarios are listed. This same section also discusses how the

results are interpreted to form the LUT. The chapter concludes with the LUT listing.

4.1 Adaptive DBF Algorithms

As with parameters able to characterize an electromagnetic environment, there

are a panoply of different adaptive DBF algorithms that can be applied to estimate

an SOI. In any receiver implementation, even receivers capable of applying multiple
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adaptive DBF algorithms, a choice must be made of which algorithms to implement.

The receiver designer may choose a set of algorithms based upon the desired outcome

of the receiver implementation and the decision rules used to select the best algorithms

for inclusion in the LUT. The receiver designer should consider selecting a set of

adaptive DBF algorithms that are known to be effective against the RF scenarios the

receiver framework is expected to operate against. The effectiveness of the adaptive

DBF algorithms should be in terms of the LUT decision rule criteria which are in

terms of desired receiver framework outcomes. Greater variability in the algorithm

considered best requires multiple decision criteria when selecting algorithms for the

LUT.

Returning again to the purpose of this research effort, that is developing and

demonstrating the applicability of a new receiver framework, the algorithms chosen

for the current framework implementation need not be state-of-the-art. The chosen

algorithms must meet the stated receiver desires of providing a required SINR im-

provement with low computational complexity. Furthermore, the chosen algorithms

should span the range of adaptive DBF algorithms with respect to computational

complexity and SINR improvement.

Not all adaptive DBF algorithms discussed in the available literature are applicable

to the current receiver framework implementation. Algorithms such as least mean

squares (LMS), minimum mean squared error (MMSE), and the Kalman filter all

require knowledge of the SOI [35,70,114], which is unavailable in the current receiver

framework. The five adaptive DBF algorithms selected for the current effort are thus

those adaptive DBF algorithms that are proven effective in the literature while at the

same time do not require signal knowledge unavailable to the receiver.

Based on the above qualifications, a set of five adaptive DBF algorithms com-

monly found in the adaptive DBF literature are used. The algorithms include the
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linearly constrained minimum variance (LCMV) beamformer [21], the generalized dis-

crete Fourier transform (GDFT) beamformer [65], the time reversal method (TRM)

beamformer [56, 57], and the least squares space-time beamformer (LSSB) beam-

former [134, 135]. The fifth and final algorithm is a narrowband implementation

of the LCMV algorithm [21]. As previously stated, this set of beamformers is not

intended to be all inclusive or to be applicable in all possible ES receiver implementa-

tions but chosen to be representative for demonstrating the possibility of processing

gain from applying the new receiver framework.

4.2 LUT Parameters

Parameterization of the electromagnetic environment is based on a subset of the

possible RM estimable environment parameters. An initial limitation of the parame-

ter set is based upon what parameters are readily estimated from array data without

a high computational burden. Three such parameters are the number of signals in

the environment, the bandwidths of the signals in the environment, and the spatial

separation of each signal in the environment with respect to the SOI. Algorithms

exist in the literature for each of these parameters and are readily implemented. The

question then is: are all three parameters required, or is there a subset of these three

parameters that is adequate? Any parameter set must be such that changing one

or more of the parameters affects the performance of the available adaptive DBF

algorithms in a measurable way. A sensitivity analysis of each of the three parame-

ters determines which parameters have the most impact on adaptive DBF algorithm

performance. The sensitivity analysis is performed by simulating scenarios, each con-

taining a single SOI, where two of the three parameters are held constant while the

third parameter is varied. The mean-squared error for each of the five adaptive DBF

algorithms is plotted with respect to the varying parameter. For each beamformer
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the mean-squared error is defined by

εMSE = ‖xs (t)− y (t) ‖2 (134)

where xs (t) is the SOI and y (t) is the beamformer output signal. In practice the

mean-squared error is found by element-wise squaring the difference between the

output vector given by

y = [y [1] , y [2] , · · · , y [8000]] (135)

which is the difference between the simulated input signal and output signal for all

8000 points. The mean square error (MSE) is the average of (135) squared over the

8000 data points

εMSE =
y2

8000
. (136)

The MSE values are normalized by first creating a vector of errors for each adaptive

DBF algorithm where the elements are the MSE for each sensitivity analysis scenario.

This normalized error is found by element-wise dividing the error vector by the max

error value of that vector given by

εnorm =

[
εMSE [1]

max εMSE

,
εMSE [2]

max εMSE

, · · · , εMSE [# of scenarios]

max εMSE

]
. (137)

Algorithm performance is also presented as a percentage change in error. The per-

centage change in error is constructed by finding the difference in error, for a given

DBF algorithm, between each sensitivity analysis scenario and the error for the sce-

nario with the least error. The difference for each scenario is then divided by the
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least error used to determine the difference as

PEC =

[
εMSE [1]−min εMSE

min εMSE

,
εMSE [2]−min εMSE

min εMSE

, · · · ,

εMSE [# of scenarios]−min εMSE

min εMSE

]
.

(138)

The parameters with the greatest sensitivity are indicated by large changes in

error of the estimate as the parameter changes. It is possible that a combination of

two or more of the parameters causes a greater sensitivity when changed in tandem

than when a single parameter is changed. Such sensitivities are important to consider

when implementing an operational system. For the current effort, however, as only

the applicability of the proposed receiver framework is being considered, sensitivity

due to combinations of parameters with respect to adaptive DBF sensitivity is not

tracked. This would be an area of further study.

All sensitivity analyses are done simulating a 64-element array with array spacing

of 0.2 meters. The array spacing is based on d = λ/2 spacing where λ = 0.4 meters

for a maximum frequency of 750 MHz. Each of the array channels has a 20-tap

finite impulse response (FIR) filter, where the time delay between taps is equal to

the sample time of the array: Ts = 1.5 Gsamp/sec. The sensitivity analyses are

empirical studies, where each of the five adaptive DBF algorithms are applied to each

generated data set used to form the sensitivity analysis. Results are given in plots

of normalized error power for the array output plotted against the parameter being

tested for algorithm performance sensitivity. The error normalization is applied for

each adaptive DBF algorithm separately so the error results for all beamformers range

between zero and one.

In the sensitivity analyses that follow, the figures are formed by applying each

of the five adaptive DBF algorithms to a number of RF environments. A single

data point is the squared error for a beamformer applied to a single RF environment
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averaged over 8000 time samples. The input signal to each beamformer is a stochastic

signal from (3). All sources in the stochastic signal are zero-mean Gaussian sources;

therefore, the input signal is ergodic in the mean [46]. Also, the adaptive DBF

algorithms are linear filters, so the output signal y (t) is also ergodic in the mean [46].

Given that both the input signal and the output signal are ergodic signals, the error

is also an ergodic signal. The ergodicity of the signals means that averaging across

8000 time samples is equivalent to averaging across multiple realizations; therefore

the plot of a single realization is equivalent to plotting the outcomes of a Monte-Carlo

simulation. All data plots for the sensitivity analyses are then statistically equivalent

to plots performed using a Monte-Carlo analysis.

The first parameter studied is interference signal spatial separation from the SOI.

To test the effect of interference spatial separation, an environment with a wideband

SOI at 0 degrees (broadside) and a single wideband interference signal is created. All

signals have equivalent power. Each interference signal has 200 MHz instantaneous

bandwidth and the SOI has 300 MHz instantaneous bandwidth. The direction of

arrival of the interference signal is varied from -60 degrees to -5 degrees in 5 degree

increments with a final 2.5 degree increment to the minimum DOA of -2.5 degrees.

Positive angles are not tested as the array is a uniform linear array, and by symmetry

the performance of the beamformer with signals separated in the positive direction

is identical to performance from negative separation. The minimum difference of 2.5

degrees was set because at that point the interference signal was within the approxi-

mately 2.6 degree half-power main beamwidth [5] of a 64-element array. Furthermore,

this angular separation was proven to be adequate based upon the simulation results.

The interference signal spatial separation sensitivity analysis results are given

in Figure 9. The figure plots the normalized mean-squared error from each adaptive

DBF algorithm for spatial separations equal to the interference signal DOA. The plots
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in Figure 9 demonstrate the error trends for the beamformers across all sensitivity

analysis scenarios and no comparison of adaptive DBF performance is possible from

the figure. Figure 9 demonstrates that none of the five adaptive DBF algorithms are

sensitive to changes in interference source spatial separation from the SOI until the

DOA of the interference signal is within the half power beamwdith of the array. The

percentage change in error of the beamformers, with respect to the minimum error of

each beamformer, plotted again as a function of angular separation between the SOI

and interference signal in Figure 10, reinforces the observation of the error plots in that

the percentage increase in error is minimal until the interference signal is within the

half power beamwidth of the array for the wideband beamformers. The narrowband

beamformer exhibits increasing error for interference signals within ten degrees of

the SOI. While the reasons for the greater error of the narrowband beamformer with

respect to spatial separation is not specifically considered in this research, it is most

likely due to the wideband nature of the SOI causing a spread in the eigenvectors of

the covariance matrix used in the narrowband beamformer.

The result from the spatial separation sensitivity analysis is beneficial in that it

simplifies the design of the following sensitivity analyses. As there is no effect on

beamformer performance from changing the DOA of interference signals, the signals

used in the bandwidth and number of interference signal sensitivity analysis are placed

at arbitrarily generated angles. As long as the interference signals are not placed

within one half-power beamwidth of the array design, the spatial location of the

interference signal with respect to the spatial location of the SOI is inconsequential

to adaptive beamformer performance.

The number of interference signals an array can handle is dependent upon the

number of degrees of freedom of the array. For a simple linear array the number of

degrees of freedom is the number of array elements. The sensitivity analysis utilizes a
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Figure 9. Mean-squared error of adaptive beamformers plotted as a function of angle
of arrival with respect to the direction of arrival of the signal of interest. The plot
demonstrates algorithm error trends and is not meant for beamformer comparison.
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Figure 10. Percentage change of mean-squared error of adaptive beamformers plotted
as function of angle of arrival with respect to the direction of arrival of the signal of
interest.
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64-element array and theoretically can cancel 63 interference sources. The purpose of

this study is not to determine the maximum number of interference sources the array

can cancel, regardless of interference source bandwidth or source spatial distribution,

so the number of sources used in the study is less than 63. Figure 11 shows two

inflection points in the error profile of the narrowband LCMV algorithm and the

TRM algorithm, with respect to the number of SOIs. The first inflection point is at

five interference signals and the second break point is at ten signals of interest. Also

present in the figure is an inflection point at ten interference sources for the GDFT

and wideband LCMV beamformers. Figure 12 plots the percentage change in error,

with respect to the minimum error encountered at one interference signal, of the

beamformers with respect to the number of interference signals. The two inflection

points at five and ten signals of interest are again present in the data for the respective

beamformers, reinforcing the sensitivity of three of the beamformers to changing the

number of SOIs. While there are inflection points for all but the LSSB algorithm

the change in error is much greater than for the other beamformers. However, the

RM will select the best adaptive DBF algorithm for each scenario and even a slight

change in performance could change the selected beamformer, especially when the

computational complexity is taken into account. For this reason LUT table scenarios

are created with less than five interference signals, between five and ten interference

signals and greater than ten interference signals. Varying the number of signals to

encompass all three regions should illuminate how the best adaptive DBF algorithm

varies with respect to the number of interference sources.

The bandwidth sensitivity analysis uses a broadside, wideband SOI and a single

interference source incident from -30 degrees. The instantaneous bandwidth of the

array under test is 750 MHz. To keep within the instantaneous bandwidth of the ar-

ray the bandwidth of the interference source is capped at 650 MHz. The interference
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Figure 11. Mean-squared error of adaptive beamformers plotted as a function of the
number of interference signals in the electromagnetic environment.
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Figure 12. Percentage change in mean-squared error of adaptive beamformers as a
function of the number of interference signals in the environment.
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source bandwidth starts at 10 MHz, then 25 MHz, then 50 MHz, and is further varied

from 50 MHz to 650 MHz in 50 MHz increments. The bandwidth sensitivity analysis

results are given in Figure 13. The results indicate that wideband adaptive DBF

algorithms are insensitive to the bandwidth of the interference sources. As would

be expected, however, the narrowband adaptive DBF algorithm has rapidly decreas-

ing performance of signals with bandwidths of greater that 50 MHz. Figure 14, a

plot of percent error change for each algorithm, corroborates both the insensitivity

of the wideband adaptive DBF algorithms with respect to interference signal band-

width, and the increasing error of the narrowband adaptive DBF algorithm with

increasing interference signal bandwidth. Because of the large difference between the

performance of narrowband and wideband adaptive DBF algorithms for signals of

increasing bandwidth, the LUT contains electromagnetic environments with interfer-

ence signals that are narrowband and wideband. It should be noted that the absolute

bandwidth of the interference sources is immaterial. The RM algorithm only needs

to determine if the interference signals are narrowband or wideband.

4.3 Interference Power Considerations

While the powers of the interference signals in the electromagnetic (EM) environ-

ment are not considered for LUT algorithm selection parameters, interference power

does affect adaptive DBF performance. The adaptive DBF algorithms implemented in

this research are standard algorithms from the literature and are only able to mitigate

the effects of interference sources below a given power level. When the interference-

to-signal-ratio (ISR) becomes too large, no adaptive DBF algorithm can accurately

estimate the SOI present in the environment. Figure 15 shows the MSE for the four

implemented wideband adaptive DBF algorithms as a function of ISR. Above an ISR

value of 35 dB, all algorithms errors increase by over 40 percent and in simulation no
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Figure 13. Mean-squared error of adaptive beamformers as a function of the bandwidth
of a single interference signal.
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Figure 14. Percentage change in mean-squared error of adaptive beamformers as a
function of the bandwidth of a single interference signal.
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accurate estimate of the SOI is possible.
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Figure 15. The mean-squared error of four adaptive DBF algorithms as a function of
ISR showing a breakdown in algorithm performance for high interference power levels.

4.4 LUT Development Scenarios

The interference environments are developed based upon the results of the en-

vironment parameter sensitivity analysis presented above. Scenarios are developed

where the number of signals and bandwidths of the signals are varied between sce-

narios. Because narrowband algorithms perform poorly with wideband interference

sources, scenarios consisting of strictly narrowband interference signals are created.

Likewise scenarios of strictly wideband interference sources are created. A third type

of scenario, containing both narrowband and wideband interference sources was not

directly accounted for in the sensitivity analysis. However, to provide an analysis of

wider applicability such scenarios are included in the LUT development.

For LUT development, the five adaptive DBF algorithms are applied to eight dif-
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ferent simulated electromagnetic environments. All environments contained a single

wideband SOI incident from broadside (0 degrees). The SOI is a linear frequency

modulated signal with a 300 MHz up-chirp from 300 MHz to 600 MHz. Additive

complex white Gaussian noise with a power 10 dB below the SOI signal power of 1

Watt is included in each scenario. The signal of interest is 1 Watt to simplify ISR

calculations. The ISR is defined as:

ISR =
Interference Power

Signal of Interest Power
. (139)

A description of the interference sources present in each of the eight scenarios is

presented in Table 2. For each scenario the table provides the interference number,

bandwidth of the interference source, center frequency fc of the interference source,

DOA of the interference source, and interference-to-noise-ratio (INR) of the interfer-

ence source.

For all scenarios the interference sources DOAs angles are chosen to span a −70o

to 70o field-of-view (FOV) for the array. The field of view of the array is chosen to be

representative of the Air Force Research Laboratory (AFRL) MUD-WASP testbed

that has a FOV from −60o to 60o. The center frequencies are chosen to ensure that

all interference signals are in the frequency range of 100 MHz to 700 MHz. This

frequency range is desired to keep the signals within the instantaneous bandwidth of

the array without taxing the array to operate at its frequency limits.

4.5 Algorithm Performance and LUT Listing

The LUT is developed by ranking the adaptive DBF algorithms based upon a

decision rule applied to the algorithm performance. The algorithm performance is

measured with respect to the receiver framework implementor’s choice of performance
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Table 2. Interference Scenario listing for LUT development

Interference # Bandwidth fc DOA INR Relative Bandwidth
Scenario 1

1 200 MHz 300 MHz −60o 20 dB wideband

Scenario 2
1 200 MHz 300 MHz −60o 20 dB wideband
2 200 MHz 500 MHz 20o 20 dB wideband

Scenario 3
1 200 MHz 250 MHz −60o 5 dB wideband
2 200 MHz 300 MHz −45o 5 dB wideband
3 200 MHz 400 MHz −30o 5 dB wideband
4 200 MHz 500 MHz 20o 5 dB wideband
5 200 MHz 600 MHz 50o 5 dB wideband

Scenario 4
1 200 MHz 250 MHz −65o 5 dB wideband
2 200 MHz 300 MHz −55o 5 dB wideband
3 200 MHz 400 MHz −45o 5 dB wideband
4 200 MHz 500 MHz −35o 5 dB wideband
5 200 MHz 600 MHz −25o 5 dB wideband
6 200 MHz 350 MHz 20o 5 dB wideband
7 200 MHz 450 MHz 30o 5 dB wideband
8 200 MHz 550 MHz 40o 5 dB wideband
9 200 MHz 500 MHz 50o 5 dB wideband
10 200 MHz 625 MHz 60o 5 dB wideband

Scenario 5
1 10 MHz 400 MHz −60o 20 dB narrowband

Scenario 6
1 10 MHz 400 MHz −60o 20 dB narrowband
2 200 MHz 600 MHz 45o 20 dB wideband

Scenario 7
1 10 MHz 400 MHz −20o 20 dB narrowband
2 200 MHz 600 MHz 45o 20 dB wideband

Scenario 8
1 10 MHz 250 MHz −60o 5 dB narrowband
2 200 MHz 300 MHz −45o 5 dB wideband
3 10 MHz 450 MHz −30o 5 dB narrowband
4 200 MHz 500 MHz 20o 5 dB wideband
5 10 MHz 650 MHz 50o 5 dB narrowband
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measures. The chosen adaptive DBF algorithms are ranked for each interference sce-

nario chosen by the framework implementor. The current demonstration instantiation

of the framework uses eight interference scenarios. The performance criteria used to

rank the adaptive DBF algorithms are SINR improvement and computational com-

plexity. Each algorithm’s computational complexity is determined analytically using

the big-O notation from Sections 2.4.3.1-2.4.4.1. Computational complexity for each

algorithm is based upon the number of channels in the receiver, the number of FIR

filter taps per channel, and the number of sub-bands chosen for each algorithm. All

of these parameters are held constant across all interference scenarios allowing for the

computational complexity to be calculated once for each adaptive DBF algorithm and

used for all algorithm comparisons. Each algorithm’s SINR improvement, however,

varies for each interference scenario and is calculated empirically for each scenario.

An empirical study is applied to allow for greater variations in interference scenario

type without the burden of completely determining the second-order statistics of each

interference scenario that would be required for an analytical analysis.

The adaptive ES receiver estimates the SOI for all time samples collected by the

receiver. Each adaptive DBF algorithm is implemented using a block of data, used

to estimate a block of data, then recalculated for the next incoming block of data.

To ensure that the algorithm chosen is optimal for all time, the SINR is formed by

integrating the SINR across all data samples in a given block. The exact formulation

is derived by writing the covariance matrix of the sampled array channel data as a

superposition of the signal, interference, and noise covariance matrices

Rdata = Rsignal + Rinterference + Rnoise. (140)

Beamformer implementation is handled separately from beamformer filter weight gen-

eration in the receiver framework. As mentioned in Section 2.2 the filter weights are
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determined using a block of receiver data. Once the filter weights are determined

they are applied to the next incoming block of array data, while the receiver frame-

work determines the next “best” set of adaptive DBF filter weights. The output

signal of the beamformer for a given block of data is given by y = wHX, where X is

from (6). Using the form of output from the beamformer the output power from the

beamformer is given as

pout = wHRdataw. (141)

By substituting (140) into (141) and then separating the signal power from the in-

terference and noise powers the SINR output from a given adaptive DBF is given

by

SINR =
wHRsignalw

wH (Rinterference + Rnoise) w
. (142)

The input SINR requires the transmitted signal powers which are computed by sub-

stituting w = [1, 0, . . . , 0] into (142). This weight vector selects the R (0, 0) term of

each covariance matrix corresponding to the power of the SOI, interference signals,

and noise.

Based upon discussion in Appendix B, SINR as described in (142) provides a

measure of the ability of an adaptive DBF algorithm to estimate the SOI. The current

receiver framework instantiation, however, uses SINR improvement as the decision

metric. To understand the selection rule used for LUT implementation, recall the

purpose of the ES receiver, which is to detect and classify signals of interest in the

environment. The adaptive DBF algorithm applied at the array interface is only one

part of processing for ES receivers. Typically, receivers are required to “interpret”

the received signal waveform such as communication processing for communication

reception receivers or pulse descriptor word (PDW) generation for radar warning

receiver (RWR) receivers. After the SOI is processed by the adaptive array, it is used
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as the input to a second processing algorithm that performs the communication signal

decoding or the PDW generation.

Performance of ES receiver processing performed after the initial adaptive DBF

algorithm application is dependent upon the SINR of the signal provided by the DBF

algorithm. It is incumbent upon the proposed receiver architecture to provide an

output signal with adequate SINR. Furthermore, the adaptive DBF algorithm chosen

for a given parameter set must provide the required output SINR for all scenarios

with similar parameters. As interference signal power is not a measured parameter,

the same and similar parameter sets can have vastly different input SINR levels. Each

adaptive DBF algorithm chosen for the LUT must be able to provide the required

output SINR for all possible combinations of SOI and interference signal power levels

that exist for a particular parameter set.

Because the SOI and interference signal power are unknown, choosing the best

adaptive DBF algorithm requires more problem domain knowledge in the form of a

receiver design requirement. The requirement specifies the lowest input SINR the

receiver is designed to detect and estimate. The required SINR for beamformer post

processing is also known a priori. Using these two pieces of data the required SINR

improvement for adaptive DBF algorithms chosen for the LUT is

required SINR improvement =
SINRrequired out

SINRworst case
. (143)

Any adaptive DBF algorithm chosen for inclusion in the LUT must provide the re-

quired SINR improvement. Not all adaptive DBF algorithms considered for LUT

inclusion will meet the SINR output requirement, limiting the total number of avail-

able adaptive DBF algorithms for possible LUT inclusion. The final choice for LUT

inclusion is made based upon the second performance criterion of computational

complexity. The adaptive DBF algorithms chosen for inclusion in the LUT are the
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adaptive DBF algorithms that meet the required SINR improvement level for a given

interference environment that have the lowest computational complexity.

Remember this decision rule for algorithm selection is valid only for the particular

receiver framework implementation used herein for discussion purposes. The receiver

framework implementor must create a decision rule based upon the desired perfor-

mance outcomes of their receiver implementation. The chosen decision rule may take

into consideration more than two performance criteria for better adaptive DBF algo-

rithm differentiation. Exact number and type of performance criteria, along with the

accompanying decision rule are provided by the receiver implementor.

Returning to the demonstration receiver instantiation, because the computational

complexity of each algorithm, with the exception of a multiplication factor that varies

for recursive algorithms, is dependent only upon the array architecture, the LUT

entries vary based upon which algorithms have the best SINR improvement for the

particular electromagnetic environment considered. It should be noted the adaptive

DBF algorithm chosen for a scenario is not necessarily the algorithm that has the

best SINR improvement. This is better understood when the second performance

criterion, computational complexity is considered. If an algorithm has good SINR

improvement but is computationally infeasible, then it is not the best algorithm for

implementation. The receiver architecture chooses the algorithm that gives a “good

enough” SINR improvement while having a manageable computational complexity.

The SINR improvement in dB for the five adaptive DBF algorithms, for each of the

eight scenarios of Table 2 is provided in Table 3.

The computational complexity of each of the five algorithms for the simulated

receiver is given in Table 4. The complexity results are for a 64-element linear array

with 20 FIR taps per channel. For the LCMV algorithms, 100 constraints were

used. In the GDFT algorithm the spectrum was divided into ten sub bands, and
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Table 3. SINR improvement in dB for each adaptive DBF algorithm when applied in
a given scenario number where the interference environments of the scenarios are de-
scribed in Table 2. The boldface type indicates those beamformers chosen for inclusion
in the look-up-table.

Scenario 1 2 3 4 5 6 7 8
NB LCMV -0.48 -5.77 -5.81 -10.90 18.13 16.72 13.89 6.84
WB LCMV 14.83 9.58 20.10 18.78 21.41 16.98 14.45 2.21
TRM 30.87 28.57 21.84 5.00 53.65 37.88 37.59 30.28
GDFT 13.87 6.84 18.10 16.73 -7.05 -7.08 -12.18 -0.54
LSSB 57.60 53.23 60.34 40.81 78.12 49.30 48.26 36.68

LCMV algorithms with two filter taps per sub band were applied. In the LSSB

implementation each of the spatial and temporal frequency bands are subdivided into

100 discrete frequency and spatial points respectively. The narrowband LCMV uses

two filter taps per channel as was applied in the GDFT algorithm.

Except for the choice of 64-elements, chosen to represent the MUD-WASP receiver

hardware, the receiver values are one of an infinite set of possible combinations. The

number of filter taps and LCMV constraints are chosen to reduce processing time as

would be required in an actual receiver implementation. To understand how vary-

ing these receiver characteristics influences the LUT creation consider the following

four points. First, increasing the number of filter taps and constraints increases the

computational complexity for the wideband LCMV and TRM beamformers while

also increasing their accuracy. Second, the number of filter taps for the narrowband

LCMV and GDFT algorithms are kept low precisely because they are narrowband.

Increasing the number of filter taps would increase the complexity of both algorithms

eliminating their design motivation [70,114]. Third, the number of sub-bands is cho-

sen to keep the number of required LCMV beamformers low while ensuring each

sub-band is narrowband. Fourth, as the number of array channels is a dominant fac-

tor in the computational complexity of all algorithms, changing the array size affects

the computational complexity of all the algorithms equally. Based upon the preced-
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ing four points changing the array size, number of filter taps per algorithms, and the

number of sub-bands for the GDFT algorithm does not affect the resulting LUT for-

mation. Changing the simulation parameters would change the SINR improvement

and computational complexity numbers but not the relation of the adaptive DBF

algorithms to one another.

Table 4. Computational complexity, constant across all interference environments, of
all five adaptive DBF algorithms in units of computational cycles where the constant
factor for “big O” notation is ignored.

DBF Algorithm Computational Complexity
Narrowband LCMV O(3.948x106)
Wideband LCMV O(1.794x108)
TRM O(1.796x108)
GDFT O(1.873x108)
LSSB O(1.849x1010)

One last design parameter is required before the LUT listing can be completed.

As discussed above, the LUT is designed around a receiver specification that lists

a required SINR improvement factor. For demonstration purposes this effort will

consider an SINR of 10 dB to be sufficient. Applying the chosen algorithm selection

criteria, the algorithm that provides at least 10 dB SINR improvement with the lowest

complexity is chosen for implementation by the receiver for the given environment,

and thus inclusion in the LUT. Remember this decision rule is chosen for demonstra-

tion purposes and is not designed to be an optimal decision rule. Algorithms with

close complexities such as the TRM and wideband LCMV can vary by as much as

15 dB in terms of SINR improvement. If the computational complexity is close and

one algorithm severely outperforms the other in terms of SINR improvement it would

make sense to pick the more accurate adaptive DBF algorithm. When the final form

of the LUT is discussed the decision rule is changed slightly to better balance the

algorithms SINR improvement and computational complexity.

To generate the final form of the LUT table refer again to Table 3. For Scenario
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One, the four wideband adaptive DBF algorithms, wideband LCMV, GDFT, TRM,

and LSSB provide an adequate SINR improvement. The wideband algorithm with

the lowest complexity is the wideband LCMV algorithm and it is the first entry in

the LUT. For Scenario Two, only two algorithms provide the required SINR improve-

ment, so the TRM with two orders of magnitude lower complexity than the LSSB

algorithm is chosen. In Scenario Three all wideband adaptive DBF algorithms again

provide the required SINR and so the wideband LCMV algorithm is chosen. In Sce-

nario Four, a similar situation occurs, except the TRM does not provide adequate

SINR improvement; the wideband LCMV algorithm is again chosen. Scenario Five

contains only narrowband interference sources. The narrowband LCMV is chosen

for the LUT in Scenario Five as it provides adequate SINR improvement against the

narrowband interference sources while having a computational complexity two orders

of magnitude below that of the other algorithms. Scenarios Six and Seven contain

both narrowband and wideband interference sources; however, in both cases the nar-

rowband LCMV algorithm provides adequate SINR improvement with the lowest

computational complexity. In all such cases the narrowband LCMV is chosen for

inclusion in the LUT. In the final scenario only two algorithms provide the required

SINR improvement. The TRM algorithm has the lowest computational complexity

of the two and is the final entry into the LUT.

One point to note about the LUT creation is the power levels of the interference

sources were varied between a large number of moderate power sources and a few high

power sources. Previously the sensitivity analysis demonstrated a sensitivity to the

algorithms with regard to the power of the interference. This sensitivity is manifest in

the LUT generation data. For instance, the wideband LCMV algorithm was optimal

for a single high power source and for multiple moderate power sources, but was not

optimal for two high power sources. The TRM algorithm, however, performed well
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in all cases with less than five interference sources. For this reason even though the

wideband LCMV algorithm had a slightly lower complexity in big-O notation, the

LUT will include the TRM for all wideband interference scenarios with less than five

interference sources. The LCMV will be used for all cases with greater than five

interference sources. This seemingly arbitrary nature of this decision rule change is

removed when the nature of the computational complexity performance criteria is

considered. The complexity is in big-O notation; therefore the exact complexities are

not known. Because of the closeness of their computed values, the computational

complexity of the wideband LCMV and the TRM can be considered equal. The

decision rule would then default to the algorithm with the highest SINR improvement.

Future research needs to consider the power of the interference sources as received

at the array and the overall effect of the new required power parameter on receiver

operation, to include the additional complexity required of the resource manager.

The final results to the LUT are given in tabular form in Table 5.

Table 5. LUT providing the name of the adaptive DBF algorithms chosen for all
scenario sets derived from the algorithm sensitivity analysis.

Wideband SOI
NB Signals WB Signals Mixed BW Signals

< 5 Signals NB LCMV TRM NB LCMV
≥ 5 Signals NB LCMV WB LCMV WB LCMV

Narrowband SOI
NB Signals WB Signals Mixed BW Signals

< 5 Signals NB LCMV NB LCMV NB LCMV
≥ 5 Signals NB LCMV NB LCMV NB LCMV

4.6 Chapter Review

This completes the description of both the RM and the LUT generation. The RM

portion of the receive framework is intended to be used by all implementors of the

framework. The environment and SOIs detection and estimation techniques provide
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a way to fully characterize the RF environment in terms of the types of interference

signals as well as the number of SOI and their respective DOAs. Each framework

implementor, however, is required to perform the analysis provided in the current

chapter to design a LUT of adaptive DBF algorithms based upon the performance

selection criteria of interest to the receiver implementer. This chapter provided an

example LUT development to indicate how the design should proceed.

The next chapter provides a performance analysis of the proposed receiver frame-

work using the LUT developed herein. Application of the RM is first validated

through the use of simulated RF environments. After the validation the performance

is verified against data collected on two receiver systems at AFRL. Verification en-

sures that the algorithms performed as designed when used against simulated data,

i.e. it determines if the algorithms are mathematically correct. Validation ensures

that the receiver framework is viable for its intended mission. In this case validation

ensures that the receiver framework correctly detects the SOI and picks the correct

adaptive DBF algorithm from the LUT based upon the RF environment.
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V. Resource Manager Performance

The proposed receiver architecture intelligently chooses an adaptive digital beam-

forming (DBF) algorithm from a look-up-table (LUT) of adaptive DBF algorithms.

Algorithm selection is based upon both signal-to-interference-plus-noise ratio (SINR)

improvement and computational complexity of the algorithms. As no single adap-

tive DBF algorithm is optimal for all interference scenarios, intelligent selection of

algorithms, i.e. choosing algorithms based upon sensing the environment, improves

electronic support (ES) receiver performance. ES receivers applying the proposed ar-

chitecture are able to either apply computationally complex algorithms against a lim-

ited number of signals-of-interest (SOIs), obtaining the best possible signal estimate,

or apply less computationally complex adaptive DBF algorithms against an increased

number of SOI when the interference environment environment is less crowded.

The ability to select the best adaptive DBF algorithm for each scenario is derived

from decision rule used for algorithm selection. Neither of the two performance cri-

teria, however, are determined directly by the resource manager (RM). The adaptive

DBF algorithm achieving the optimal SINR improvement and computational com-

plexity for each interference scenario is stored in the LUT and referenced based upon

the estimated parameters of the environment. Therefore, performance of the pro-

posed receiver framework is predicated on the RM’s ability to correctly parameterize

the electromagnetic environment. If the environment is correctly parameterized, the

algorithm chosen from the LUT developed in Chapter 4 is considered best in terms of

SINR improvement and computational complexity. Making the assumption that the

LUT is properly developed, the receiver architecture’s performance is based upon the

ability of the RM to correctly parameterize the interference environment and isolate

each SOI from all interference sources as well as additional SOIs.

Parameterizing the electromagnetic (EM) environment and disambiguating the
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different SOIs through digital signal processing (DSP) allows performance analysis

of the RM to focus on the ability of the chosen DSP to affect the desired outcomes.

RM operation is verified by creating simulated SOI and interference scenarios and

determining if the chosen algorithms correctly parameterized the electromagnetic en-

vironment and correctly disambiguated all SOI. The verification stage employs four

scenarios with differing SOI bandwidths and interference sources to ensure proper

parameterization across a range of scenario types. After the receiver framework is

verified to work as designed, the RM is validated against two scenarios formed from

measured array data. The validation scenarios are portions of tests run at Air Force

Research Laboratory (AFRL) Sensors Directorate on two receiver testbeds. The val-

idation is performed by applying the adaptive environment estimation algorithms of

the receiver framework’s RM to data collected from the two receiver testbeds. The

first validation scenario uses data collected on the AFRL Sensors Directorate McWess

array testbed [57]. The second validation scenario uses data from the AFRL MUD-

WASP sensor testbed. Proper function of the receiver framework requires a successful

completion of both the verification and validation phases.

The verification scenarios consider only a single SOI. Estimation of the number of

SOIs and their respective directions-of-arrival (DOAs) is performed through the signal

disambiguation algorithm. The single SOI case extends to the multiple SOIs case

by considering that the disambiguation process is the same for all spatial sub-bands

considered in the disambiguation. When multiple SOIs are present the disambiguation

algorithm indicates that multiple signals are present and returns their DOAs. As the

processing is the same for each SOI only the method of disambiguation is required to

be verified. The second validation scenario does indicate how the processing occurs

for multiple SOIs. The validation shows that the disambiguation algorithm considers

all the signals to be SOIs and returns their respective DOAs.
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5.1 Receiver Framework Verification

The receiver framework is designed to beamform on both narrowband and wide-

band signals of interest requiring verification scenarios with both wideband and nar-

rowband SOI. Three of the verification scenarios have a wideband SOI and one verifi-

cation scenario has a narrowband SOI. The first verification scenario has a wideband

SOI and all wideband interference sources, the second verification scenario has a wide-

band SOI and only narrowband interference sources, the third verification scenario

has a wideband SOI and both wideband and narrowband sources. The final verifica-

tion scenario has a narrowband SOI and both wideband and narrowband interference

sources. This set of verification scenarios is not exhaustive but provides an indica-

tion of RM performance across a variety of scenarios that provide confidence in RM

performance against all EM environment types.

The array system being simulated for the verification scenarios has a sample fre-

quency of 1.5 Gsamp/sec and samples at baseband. The sampling frequency gives

the system a 750 MHz instantaneous bandwidth. Array inter-element spacing is

equivalent to one half wavelength of the maximum allowable frequency, which due to

baseband processing is 750 MHz, giving an inter element spacing of d = 0.1 meter. A

data record of 8000 samples is generated for each channel and used in all algorithms

and DSP.

5.1.1 Wideband SOI Scenario Performance.

The first three verification scenarios contain a 300 MHz bandwidth pseudo-noise

signal of interest centered at fc = 450 MHz, incident from broadside (direction of

arrival of 0 degrees). The wideband interference signals are pseudo-noise signals with

an interference-to-signal-ratio (ISR) of 10 dB. Narrowband interference sources are 20

dB ISR continuous wave signals. Each scenario also contains circularly complex white
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Gaussian noise. The power of each SOI and interferer provides a signal-to-noise-ratio

(SNR) of 10 dB. Table 6 provides the bandwidths, center frequencies, and DOAs for

all interference signals.

Table 6. Frequency and DOA listing for the baseband interference signals implemented
in the three wideband SOI RM verification scenarios.

Scenario 1 Bandwidth fc DOA Relative Bandwidth
Signal 1 100 MHz 300 MHz −45o wideband
Signal 2 200 MHz 400 MHz −20o wideband
Signal 3 200 MHz 500 MHz 15o wideband
Signal 4 100 MHz 500 MHz 30o wideband
Scenario 2 Bandwidth fc DOA Relative Bandwidth
Signal 1 10 MHz 200 MHz −15o narrowband
Signal 2 10 MHz 400 MHz −30o narrowband
Signal 3 10 MHz 450 MHz −45o narrowband
Signal 4 10 MHz 550 MHz 20o narrowband
Signal 5 10 MHz 650 MHz 50o narrowband
Scenario 3 Bandwidth fc DOA Relative Bandwidth
Signal 1 200 MHz 500 MHz −45o wideband
Signal 2 10 MHz 550 MHz −30o narrowband
Signal 3 10 MHz 450 MHz 20o narrowband
Signal 4 200 MHz 300 MHz 50o wideband
Signal 5 10 MHz 650 MHz −15o narrowband
SOI 300 MHz 450 MHz 0o wideband

Presentation of the RM verification follows the functional blocks laid out in the

RM block diagram of Figure 7. The environment estimation functional block output is

presented first, followed by the signal detection functional block output. Presentation

order does not dictate actual ordering in operational use. When implemented as

part of the proposed receiver architecture the environment determination and signal

of interest detection functional blocks are performed in parallel. The output of the

environment estimation and signal detection functional blocks are presented in tabular

form. Supporting graphical representations of the data, when available, provide the

basis for the table generation.

125



5.1.1.1 Wideband SOI Environment Estimation.

The environment estimation functional block detects signals in the EM environ-

ment and determines their DOA. Signal detection uses an multi-taper method (MTM)

spectral estimate of the environment as developed for cognitive radio (CR) [31]. The

spectral estimate is used as input data for the generalized likelihood ratio test (GLRT)

detection algorithm. The results of the GLRT algorithm are then used to determine

the relative bandwidths of all signals in the environment. Direction of arrival esti-

mation algorithms are applied directly to the array channel data and processing is

separate from the signal detection algorithm. The DOA estimation algorithm also

estimates the number of interference signals in the environment.

Figures 16-18 are the initial MTM spectral estimates for the wideband SOI with

wideband interference scenario, narrowband interference scenario, and mixed band-

width scenario respectively. The spectral content from 200 MHz to 650 MHz in

Figure 16 indicates the presence of wideband interference sources as the signal of

interest is only present at frequencies greater than 300 MHz. Also, only wideband

interference signals are present as no narrowband interference sources are visible in

the spectral estimate. Contrast the estimate of Figure 16 with Figure 17 where five

narrowband interference signals are present above the wideband SOI present in the

expected frequency range. The MTM spectral estimate of the mixed bandwidth in-

terference environment, given in Figure 18 is a mixture of the spectra from Figure 16

and Figure 17, where a wideband interference source is present in spectral data lower

than 300 MHz and the narrowband signals are present at various frequencies with

spectral power of higher magnitude than the SOI.

The spectral estimates are analyzed by the RM using a GLRT algorithm. Fig-

ures 19-21 are graphical representations of the GLRT output for Figures 16-18 respec-

tively. The constant output of Figure 19 indicates the presence of spectral content in
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Figure 16. MTM power spectrum estimate of the four wideband interference signals
and the wideband SOI in interference scenario 1.
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Figure 17. MTM power spectrum estimate of the five narrowband interference signals
and the wideband SOI in interference scenario 2.
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Figure 18. MTM power spectral estimate of the two wideband interference sources,
three narrowband interference sources, and the wideband SOI in interfernece scenario
3.

all frequency bands from 200 MHz to 650 MHz as shown in Figure 16 above. Figure 20

indicates the presence of two narrowband interference sources in the spectrum. Sce-

nario 2 contains five narrowband interference sources. In this present case three of the

sources are hidden in the wideband SOI. The fact that there are narrowband interfer-

ence sources co-located in frequency with the SOI is resolved by the disambiguation

algorithm. Figure 21 incidates that wideband and narrowband signals are present, to

include the SOI. The algorithm knows that there are wideband interference signals

because there is wideband spectral content from 200 MHz to 300 MHz where the

SOI spectral content begins. The narrowband signal present at 650 MHz indicates

that the radio frequency (RF) spectrum contains both narrowband and wideband

interference signals.

Figures 22-24 plot the multi-signal classification (MUSIC) spectrum from the DOA

estimation algorithm for the wideband interference scenario, narrowband interference

scenario, and mixed bandwidth scenario respectively. Each MUSIC spectrum is able

to locate the DOA of all signals in the environment within one degree of the actual
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Figure 19. The GLRT output of the RM for interference scenario 1 indicating that there
is signal power present in all frequencies from 200 MHz to 600 MHz. A continuous
GLRT output of greater than 50 MHz indicates a wideband signal present in the data.
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Figure 20. The GLRT output of the RM for interference scenario 2 showing signal
energy present across a wideband region and two narrowband regions. The wideband
region encompasses the SOI and eclipses three narrowband interference sources.
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Figure 21. The GLRT output of the RM for interference scenario 3 showing the wide-
band interference source and SOI from 200 MHz to 600 MHz and a narrowband in-
terference source at 650 MHz.Wideband signals are identified by power existing across
contiguous spectral regions of greater than 50 MHz.

transmitted DOA. The Akaike information criteria algorithm is able to correctly esti-

mate the number of signals in each case. Table 7 provides the angles returned by the

DOA, the bandwidths of the interference signals detected, and the number of signals

detected in the environment, to include the SOI.

Table 7. Output of the environment estimation functional block showing the relative
bandwidth of the signals in the environment and the DOA estimates for each signal in
the environment to include the SOI and interference signals.

Scenario Bandwidth # Signals DOA
1 WB 5 −45.00o, −20.03o, 0o, 14.94o, 29.72o

2 NB 6 −45.00o, −30.06o, −14.94o, 0o, 20.03o, 49.99o

3 Mixed 6 −44.82o, −30.06o, −14.94o, 0o, 20.03o, 49.57o

The data of Table 7 indicates that scenario 1 has five or greater wideband signals.

From the LUT the best1 adaptive DBF algorithm for scenario 1 is the wideband

1The term best is in terms of SINR improvement and computational complexity
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Figure 22. The MUSIC spectrum of scenario 1 formed using a coherently focused
covariance matrix showing the DOA for the four interference sources and the SOI.
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Figure 23. The MUSIC spectrum of scenario 2 formed using a coherently focused
covariance matrix showing the DOA for the five interference sources and the SOI.
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Figure 24. The MUSIC spectrum of scenario 3 formed using a coherently focused
covariance matrix showing the DOA for the five interference sources and the SOI.

linearly constrained minimum variance (LCMV). Verification that the RM chooses

the correct adaptive DBF algorithm is given by Table 8 that provides the SINR output

for each of the five implemented adaptive DBF algorithms when applied to each of

the three wideband SOI verification scenarios. When a SINR threshold of 10 dB

is considered for adaptive DBF selection, as was considered in LUT generation, the

first row indicates that all algorithms except for the narrowband LCMV provide an

adequate level of SINR. Of the four algorithms the wideband LCMV has the lowest

computational complexity and is the optimal algorithm for scenario 1.

Similarly to the output from scenario 1, the SINR output from Table 7 indicates

that scenario 2 has greater than five narrowband interference sources where the LUT

provides the narrowband LCMV as the most optimal algorithm. The SINR output

for all adaptive DBF algorithms except the generalized discrete Fourier transform

(GDFT) provide adequate SINR out; the narrowband LCMV algorithm has the lowest

computational complexity indicating that the RM chooses the best DBF from the
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LUT for scenarios containing only narrowband interference sources. Performance of

the RM is also verified against a scenario with wideband and narrowband sources as

can be shown again looking at the SINR output numbers from Table 8. As with the

output for scenario one, all algorithms except the narrowband LCMV provide SINR

output levels above the required 10 dB threshold. The wideband LCMV has the lowest

computational complexity of the four adaptive DBF algorithms and is therefore the

best. The RM chooses the wideband LCMV algorithm for mixed bandwidth scenarios

with five or greater interference signals completing the verification.

Table 8. SINR in dB output for each adaptive DBF algorithm when applied to each of
the three interference scenarios where the boldface quantities are those chosen by the
resource manager.

Scenario WB LCMV GDFT TRM LSSB NB LCMV
1 22.484 22.068 19.054 45.674 4.064
2 12.257 5.754 20.269 33.047 13.062
3 19.065 15.612 17.481 37.841 3.787

5.1.1.2 Wideband Signal of Interest Detection.

The SOI detection functional block is designed to detect any signals of interest in

the electromagnetic environment, and if signals are detected to determine the DOA

for each SOI. The presence of any SOI and their respective DOA are included in

the environment estimation functional block results. When the environment was

parameterized, however, no association was made between signals and the measured

DOA. Only the reported environment parameters are required to choose the best2

adaptive DBF algorithm from the LUT precluding the requirement to associate a

signal with a DOA. Implementing the adaptive DBF algorithm chosen from the LUT

requires knowledge of the DOA for each SOI requiring the additional processing of

the SOI detection functional block.

2Algorithm performance is in terms of algorithm SINR improvement and computational com-
plexity
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The array data is first passed through a bandpass filter to isolate the spectral

region where the SOI is known to exist. Figures 25-27 show the MTM spectral

estimates of the spatially filtered array data for each of the three wideband SOI

interference scenarios. In all three wideband SOI scenarios spectral content exists in

the a priori known SOI spectral region and thus the SOI is declared to be present

by applying a GLRT as was shown in the discussion of the environment estimation

functional block.
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Figure 25. The MTM power spectrum estimate of the array data bandpass filtered
between 300 MHz and 600 MHz to include only the spectral region occupied by the
SOI for scenario 1.

As discussed in Chapter 3, if only a single DOA is found in the filtered array

data then a single SOI is declared to exist and processing continues. If multiple

DOA are found, the signals corresponding to each DOA must be disambiguated from

each other. The results of applying the DOA estimation algorithm of Kaveh [122]

to the filtered array data for each scenario are given in Figures 28-30. In all three

wideband SOI scenarios, multiple DOA are found, requiring the RM to perform signal
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Figure 26. The MTM power spectrum estimate of the array data bandpass filtered
between 300 MHz and 600 MHz to include only the spectral region occupied by the
SOI for scenario 2.
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Figure 27. The MTM power spectrum estimate of the array data bandpass filtered
between 300 MHz and 600 MHz to include only the spectral region occupied by the
SOI for scenario 3.
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Figure 28. The MUSIC spectrum of scenario 1 where the data has been bandpass
filtered to only contain the SOI occupied spectral region from 300 MHz to 600 MHz
for scenario 1. The MUSIC spectrum is formed from a coherently focused wideband
covariance matrix and shows five DOA as each interference signal has spectral content
in the 300 MHz to 600 MHz spectral region.

Signal disambiguation spatially sub-bands the filtered array data and then applies

the three-of-three detection algorithm discussed in Section 3.2.2.1 to each spatial

sub-band. Each sub-band consists of one array half-power beamwidth about the

estimated DOA for the SOI under consideration. Three-of-three detection algorithm

output is based upon spectral content being present in each third of the SOI spectral

region. Figures 31-34 provide a MTM spectral estimate of each spatial sub-band3

for the wideband interference scenario. The vertical dashed lines divide the spectral

region into thirds and the horizontal dashed line provides the threshold level for signal

detection. Only the first spatial sub-band, corresponding to the SOI, has spectral

3Each spatial sub-band is formed to correspond to a direction from the DOA estimate. Each sub-
band covers one half-power beamwidth which for a 64 element array with an inter-element spacing
of 0.1 meter is 3o for a midpoint frequency of 375 MHz.
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Figure 29. The MUSIC spectrum of scenario 2 where the data has been bandpass
filtered to only contain the SOI occupied spectral region from 300 MHz to 600 MHz
for scenario 2. The MUSIC spectrum is formed from a coherently focused wideband
covariance matrix and shows four DOA as only three interference signals have spectral
power in the 300 MHz to 600 MHz spectral region.
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Figure 30. The MUSIC spectrum of scenario 3 where the data has been bandpass
filtered to only contain the SOI occupied spectral region from 300 MHz to 600 MHz
for scenario 3. The MUSIC spectrum is formed from a coherently focused wideband
covariance matrix and shows five DOA where four interference signals have spectral
power in the 300 MHz to 600 MHz spectral region
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content in each third of the spectral region. When a GLRT is applied to each of the

spatial sub-sections in the three-of-three detection algorithm, only the first sub-band

returns a positive indication for all three spectral regions and detects the SOI. A

complete breakout of the three-of-three detection GLRT outcomes is given in Table 9

where a one indicates that a signal is present and a zero indicates that no signal is

present.
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Figure 31. The MTM spectral estimate of the signal in the first spatial sub-band for
signal disambiguation in scenario 1. There is power located in each third of the spectral
region from 300 MHz to 600 MHz. Spectral power in all three regions indicates that
the signal in the first sub-band is an SOI.

Table 9. Scenario 1 Thee-of-three detection algorithm results showing that only the
first sub-band contains an SOI and that the other three sub-bands contain interference
signals. A one indicates that a signal is present in the given sub-band and a zero
indicates that no signal is present.

Spatial Beam sub-band 1 sub-band 2 sub-band 3
1 1 1 1
2 1 0 0
3 1 1 0
4 0 1 1

139



300 350 400 450 500 550 600
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Frequency in MHz

N
o
rm

al
iz

ed
 M

T
M

 S
p
ec

tr
u
m

 i
n
 d

B

Figure 32. The MTM spectral estimate of the signal in the second spatial sub-band
for signal disambiguation in scenario 1. There is only spectral power in the first third
of the 300 MHz to 600 MHz spectral region indicating that the signal in the second
sub-band is an interference signal.
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Figure 33. The MTM spectral estimate of the signal in the third spatial sub-band for
signal disambiguation in scenario 1. There is only spectral power in the first two-thirds
of the 300 MHz to 600 MHz spectral region indicating that the signal in the third
sub-band is an interference signal.
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Figure 34. The MTM spectral estimate of the signal in the fourth spatial sub-band for
signal disambiguation in scenario 1. There is only spectral power in the last two-thirds
of the 300 MHz to 600 MHz spectral region indicating that the signal in the fourth
sub-band is an interference signal.

Figures 35-38 plot the spectral estimates for each spatial sub-band in the three-of-

three detection algorithm for the narrowband interference case. Figures 39-43 likewise

are the three-of-three spectral estimate plots for the mixed bandwidth interference

scenario. As with the wideband interference scenario, in the narrowband and mixed

bandwidth scenarios only the spatial sub-band corresponding to the SOI has spectral

content returning a signal’s SOI present in each scenario. The three-of-three detection

GLRT outcomes for the narrowband scenario and the mixed bandwidth scenario are

given in Table 10 and Table 11 respectively. Differences in the number of sub-bands

processed by the three-of-three algorithm are due to the number of signals removed

from consideration by the initial band-pass filter applied at the start of the signal

detection functional block.
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Figure 35. The MTM spectral estimate of the signal in the first spatial sub-band for
signal disambiguation in scenario 2. There is power located in each third of the spectral
region from 300 MHz to 600 MHz. Spectral power in all three regions indicates that
the signal in the first sub-band is an SOI.

Table 10. Scenario 2 Thee-of-three detection algorithm results showing that only the
first sub-band contains an SOI and that the other three sub-bands contain interference
signals. A one indicates that a signal is present in the given sub-band and a zero
indicates that no signal is present.

Spatial Beam sub-band 1 sub-band 2 sub-band 3
1 1 1 1
2 0 0 0
3 0 0 0
4 0 0 0

Table 11. Scenario 3 Thee-of-three detection algorithm results showing that only the
first sub-band contains an SOI and that the other four sub-bands contain interference
signals.

Spatial Beam sub-band 1 sub-band 2 sub-band 3
1 1 1 1
2 0 1 1
3 0 0 0
4 0 0 0
5 1 0 0
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Figure 36. The MTM spectral estimate of signal in the second spatial sub-band for
signal disambiguation in scenario 2. The signal is narrowband at 400 MHz with lesser
energies for other narrowband signals with energy reduced by the spatial filter creating
the spatial sub-band. There is not enough energy in any third of 300 MHz to 600 MHz
to return a signal indicating that the signal is an interference signal.
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Figure 37. The MTM spectral estimate of signal in the third spatial sub-band for
signal disambiguation in scenario 2. The signal is narrowband at 550 MHz with lesser
energies for other narrowband signals with energy reduced by the spatial filter creating
the spatial sub-band. There is not enough energy in any third of 300 MHz to 600 MHz
to return a signal indicating that the signal is an interference signal.
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Figure 38. The MTM spectral estimate of signal in the fourth spatial sub-band for
signal disambiguation in scenario 2. The signal is narrowband at 450 MHz with lesser
energies for other narrowband signals with energy reduced by the spatial filter creating
the spatial sub-band. There is not enough energy in any third of 300 MHz to 600 MHz
to return a signal indicating that the signal is an interference signal.
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Figure 39. The MTM spectral estimate of the signal in the first spatial sub-band for
signal disambiguation in scenario 3. There is power located in each third of the spectral
region from 300 MHz to 600 MHz. Spectral power in all three regions indicates that
the signal in the first sub-band is an SOI

300 350 400 450 500 550 600
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Frequency in MHz

N
o
rm

al
iz

ed
 M

T
M

 S
p
ec

tr
u
m

 i
n
 d

B

Figure 40. The MTM spectral estimate of the signal in the second spatial sub-band for
signal disambiguation in scenario 3. There is only spectral power in the last two-thirds
of the 300 MHz to 600 MHz spectral region indicating that the signal in the second
sub-band is an interference signal.
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Figure 41. The MTM spectral estimate of signal in the third spatial sub-band for
signal disambiguation in scenario 3. The signal is narrowband at 550 MHz and there
is lesser energy from the other wideband and narrowband interference sources with
power reduced by spatial filtering. There is not enough energy in any third of 300
MHz to 600 MHz to return a signal indicating that the signal is an interference signal.
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Figure 42. The MTM spectral estimate of signal in the fourth spatial sub-band for
signal disambiguation in scenario 3. The signal is narrowband at 450 MHz and there
is lesser energy from the other wideband and narrowband interference sources with
power reduced by spatial filtering. There is not enough energy in any third of 300
MHz to 600 MHz to return a signal indicating that the signal is an interference signal.
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Figure 43. The MTM spectral estimate of the signal in the fifth spatial sub-band for
signal disambiguation in scenario 3. There is only spectral power in the first third of
the 300 MHz to 600 MHz spectral region indicating that the signal in the fifth sub-band
is an interference signal.

5.1.2 Narrowband SOI Scenario Performance.

The narrowband SOI verification scenario contains a continuous wave (CW) SOI

at fc = 375 MHz incident from broadside (direction of arrival of 0 degrees). The

wideband interference signals are again pseudo noise signals with an ISR of 10 dB.

Narrowband interference sources are again 20 dB ISR continuous wave signals. Ta-

ble 12 provides the bandwidths, center frequencies, and DOA for all interference

signals.

5.1.2.1 Narrowband SOI Environment Estimation.

Figure 44 is the MTM spectral estimate of the EM environment for the narrow-

band SOI verification scenario. The SOI is present as a peak above the wideband

interference sources at 375 MHz. The narrowband interference sources are also present
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Table 12. Frequency and DOA listing for the baseband signals implemented in the
Narrowband SOI RM verification scenario.

Scenario 4 Bandwidth fc DOA
Signal 1 200 MHz 500 MHz −45o

Signal 2 10 MHz 550 MHz −30o

Signal 3 10 MHz 450 MHz 20o

Signal 4 200 MHz 300 MHz 50o

Signal 5 10 MHz 650 MHz −15o

as peaks at 450 MHz, 550 MHz, and 650 MHz respectively. The RM detects signal

energy at the a priori known SOI frequency of 375 MHz as well as across multiple

other frequencies indicating both narrowband and wideband interference sources as

shown in the GLRT output of Figure 45. The DOA of all the signals in the envi-

ronment, as well as the exact number of signals in the environment is determined

through wideband DOA estimation and application of the Akaike information crite-

ria (AIC). The DOA estimation result is plotted in Figure 46. There are six DOA

in Figure 46 which is the number of signals in the environment corroborated by the

AIC algorithm output. The DOA estimation completes the environment parameter

estimation summarized in Table 13.

Table 13. Output of the environment estimation functional block for the RM applied
to scenario 4 showing the relative bandwidth of the signals in the environment and the
DOA estimates for each signal in the environment to include the SOI and interference
signals .

Scenario Bandwidth # Signals DOA
4 mixed 6 −44.82o, −30.06o, −14.94o, 0o, 20.03o, 49.59o

The output of the RM environmental estimation functional block presented in

Table 13, for a wideband SOI causes the RM selection algorithm to choose the wide-

band LCMV from the LUT. The SOI in scenario four, however, is narrowband. For

narrowband SOI the RM chooses the narrowband LCMV algorithm for all scenarios

because the narrowband algorithm is designed to estimate narrowband signals even

with wideband interference sources. This choice is confirmed by the data in Table 14
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Figure 44. The MTM power spectral estimate of the two wideband interference sources,
three narrowband interference sources, and the narrowband SOI in interference sce-
nario 4.
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Figure 45. The GLRT output of the RM for interference scenario 4 indicating that
there are wideband signals present from 200 MHz to 600 MHz as well as narrowband
signals indicated by the spike at 650 MHz. The SOI is considered present as there is
signal energy present at 375 MHz; if this energy is due to an interference source or an
actual SOI is determined by the disambiguation algorithm.
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Figure 46. The MUSIC spectrum of interference scenario 4 formed using a coherently
focused covariance matrix showing the DOA for the five interference sources and the
SOI.

that indicates that all adaptive DBF algorithms implemented in the LUT are capa-

ble of providing an adequate level of SINR improvement; however, the narrowband

LCMV algorithm has the lowest computational complexity of all algorithms and is

therefore best for scenario four.

Table 14. SINR improvement in dB for each of the five adaptive DBF algorithms ap-
plied to scenario four containing a narrowband SOI, two wideband interference sources,
and three narrowband interference sources where the boldface quantities are those cho-
sen by the resource manager.

WB LCMV GLRT TRM LSSB NB LCMV
26.45 31.42 23.85 53.75 14.06

5.1.2.2 Narrowband Signal of Interest Detection.

As was performed for SOI detection in the scenarios having wideband SOI the first

step in detection is spectrally filtering the array data. The MTM spectral estimate

for the bandpass filtered scenario 4 data is given in Figure 47. Both the filtered
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wideband interference signal present at 375 MHz and the SOI are present in the data.

Performing a DOA estimation confirms that only two signals are present in the filtered

data as shown in Figure 48.

Because the SOI is narrowband the three-of-three detection algorithm in practice

divides a 50 MHz spectral region into thirds. As the data used in the scenario is

simulated, there is a narrow peak covering only a couple of MHz. The entire 50 MHz

region that would nominally be considered is shown between the vertical dashed lines

in Figures 49 and 50. Each of the figures is a spatial sub-band corresponding to a DOA

from Figure 48. If only the three-of-three detection criteria is applied, both sub-bands

return a SOI present as energy is present across the entire a priori known SOI spectral

region for each spatial sub-band. If, however, further a priori knowledge about the

signal bandwidth is applied, i.e. that the SOI is narrowband, a determination that

the signal present in one of the two spatial sub-bands is wideband is used to reject

the interference source returning only the narrowband SOI and its DOA.

5.1.3 RM Validation Review.

Sections 5.1.1 and 5.1.2 demonstrated the ability of the RM for the proposed

receiver framework to properly parameterize the electromagnetic environment for

adaptive DBF selection from the LUT and to detect and disambiguate signals of in-

terest in the environment across four different interference environments. The four

environments are chosen to represent a wide variety of possible RF interference envi-

ronments. All environments contain a wideband or a narrowband SOI. All scenarios

also contain either wideband interference sources, narrowband interference sources,

or a combination of both. The RM is able to properly parameterize the environment

against the basis set and therefore against all possible scenarios. The RM for the

proposed receiver architecture is therefore a valid structure for ES receiver implemen-

153



0 100 200 300 400 500 600 700 800
−50

−40

−30

−20

−10

0

10

20

30

40

Frequency in MHz

M
T

M
 S

p
ec

tr
u
m

 i
n
 d

B

 

 

MTM

Truth

Figure 47. The MTM power spectrum estimate of the array data for scenario 4 band-
pass filtered between 350 MHz and 400 MHz to include only the spectral region occu-
pied by the SOI.
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Figure 48. The MUSIC spectrum of scenario 4 where the data has been bandpass
filtered to only contain the SOI occupied spectral region from 350 MHz to 400 MHZ.
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Figure 49. The MTM power spectral estimate of the signal in the first spatial sub-
band for signal disambiguation in scenario 4. The power is present only at 375 MHz
indicating a narrowband signal at the SOI frequency.
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Figure 50. The MTM power spectral estimate of the signal in the second spatial sub-
band for signal disambiguation in scenario 4. The power is present across the entire 50
MHZ region and is classified as an SOI. The a priori knowledge of a narrowband SOI
is used to reject the second spatial sub-band as containing an SOI.
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tation.

5.2 Receiver Framework Verification

Verification of the receiver framework uses measured data from the McWESS

and MUD-WASP receiver test beds. The first verification scenario creates a SOI

and interference signals from a data set collected on the McWESS receiver testbed,

provided by AFRL Sensors Directorate. The data set contains continuous wave signals

incident from −60o to 60o in one degree increments for signals transmitted at 5.0 GHz,

5.1 GHz, and 5.2 GHz. The signals were all collected during the same array test with

the receiver at thermal equilibrium. From linear systems theory the environment is a

superposition of all signals in the environment [83]. To verify the receiver framework

a scenario is created by summing one 5.0 GHz signal incident at broadside and two

5.1 GHz signals incident from −450 and 30o forming a superposition equivalent to

an environment containing all three signals. The McWESS array downconverts the

frequency of 5.0 GHz to an intermediate frequency (IF) of 1 GHz and 5.1 GHz to an

IF of 1.1 GHz before sampling at 1.33 Gsamp/sec. The 1.33 Gsamp/sec sampling

rate provides a 666 MHz instantaneous bandwidth. As a result of the processing the

signals at 5.0 GHz are aliased to 333 MHz and the signals at 5.1 GHz are aliased to

233 MHz in the data [39,57].

The second verification scenario uses a data set from the MUD-WASP receiver

testbed, also provided by AFRL. MUD-WASP is designed to form multiple indepen-

dent simultaneous beams across multiple frequency sub-bands. The receiver array

has 64-elements where there are four independent sub-arrays that can be applied

to different frequency ranges. This verification effort uses data from one set of 16-

elements. The center frequency of the array is 9.49 GHz which is downconverted to

an IF of 1125 MHz. The array data is sampled at 1.5 Gsamp/sec giving the receiver
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an instantaneous bandwidth of 750 MHz. The MUD-WASP verification scenario has

three signals all consideredSOIs. The signals are all narrowband signals with the

same frequency of 9.55 GHz. The signals are incident from −20o, 0o, and 50o. After

downconversion and digitization, the signals are aliased to 315 MHz in the array data.

The environment of the three SOIs is created using the same superposition technique

as with the McWESS scenario data.

Both the McWESS array and the MUD-WASP array data are digitized using real

measurements of the signal amplitude. Because of this “real” sampling all phase data

from the signals are lost. This loss of phase data causes beamforming algorithms and

DOA estimation algorithms to form beams/peaks in both the actual direction where

the signal exists as well as the negative of the actual arrival angle. To eliminate the

false signals from the McWESS data only the positive frequencies from the data are

used. No manipulation was performed on the MUD-WASP data and so both the

actual DOA are shown along with their negative values.

5.2.1 McWESS Environment Estimation.

Processing of the verification scenario data follows that of the three scenarios

used for receiver validation. The environment estimation functional block is con-

sidered first. An MTM spectral estimate of the verification scenario is presented in

Figure 51. The spectral estimate shows that signals with both of the two expected

aliased frequencies of 233 MHz and 333 MHZ are present in the data. Signals at the

two frequencies are detected by the GLRT as evidenced in Figure 52. Because the

GLRT output contains “spikes” only narrowband interference sources are declared

present in the environment corresponding to the actual signals in the environment.

The DOA estimates for the McWESS data are given in Figure 53. All three

signals’ DOA are represented in the figure. The accuracy of the estimates are within
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Figure 51. MTM power spectral estimate of the McWess data validation scenario
showing the two narrowband spectra corresponding to the SOI and interference signals.
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Figure 52. McWess validation scenario GLRT output showing the SOI at 333 MHz and
the interference signals at 233 MHz.
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two degrees of the DOA indicated in the data collection test matrix. This accuracy is

less than produced by the RM using the simulated data. Such a decrease in accuracy,

however, is expected as the McWESS scenario has the effects of an imperfect array

embedded in the data. Furthermore, the McWESS array has highly coupled elements

which can reduce the accuracy of DOA estimation methods like MUSIC used in the

RM. The accuracy of within two degrees is therefore considered adequate. As with the

simulated data, the AIC determines the correct number of signals in the environment.

This completes the processing of the environmental estimation functional block. The

estimated parameters of the functional block are given in Table 15. As with the

simulated data the RM is again able to correctly parameterize the electromagnetic

environment and thus select the best adaptive DBF from the provided LUT.
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Figure 53. MUSIC spectrum of the McWess validation scenario using a coherently
focused covariance matrix showing three DOA.

The RM output of Table 15 shows that the McWess data scenario has less than

five interference signals and all interference sources are narrowband. For this output

the RM selects the narrowband LCMV algorithm according to Table 5. As the exact
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Table 15. Output of the environment estimation functional block for the McWess vali-
dation scenario providing the bandwidth and DOA for all three signals in the scenario.

# of signals signal bandwidths DOA
3 narrowband −45.18o, −0.90o, 26.01o

signal and noise powers incident upon the receiver are not known for the McWess

receiver data a SINR comparison for each adaptive DBF algorithm is not possible;

however, for a scenario with all narrowband sources the narrowband algorithm is

proven to provide adequate SINR output from the verification scenarios. Further-

more, the narrowband LCMV algorithm is known to have the lowest computational

complexity and thus is the optimal algorithm to apply to the McWess scenario data.

5.2.2 McWESS Signal of Interest Detection.

The signal of interest detection functional block again begins with applying a

GLRT to the MTM spectral estimate of the array data. Actual processing uses the

MTM spectral estimate of Figure 51, where the signal is determined to be present as

indicated in Figure 52. The MTM spectral estimate of the spectrally filtered array

data, following the processing of the signal of interest functional block, is given as

Figure 54 where the SOI is again shown and detected at the correct frequency of 333

MHz.

DOA estimation of the spectrally filtered data provides the MTM spectrum of

Figure 55. There is only one DOA in the MUSIC spectrum indicating a single SOI.

At this point the processing for the RM algorithm is complete. As there is only a

single DOA present in the MUSIC spectrum only one signal is declared to exist as the

SOI and the DOA is returned for further ES receiver processing. It is possible that the

single DOA corresponds to an interference signal with the same spectral content as the

SOI. In a situation where an interference signal has the exact frequency coverage of

the SOI the three-of-three detection method classifies the interference signal as a SOI.
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Figure 54. MTM power spectral estimate for the McWess validation scenario data
bandpass filtered to only include the RF frequency of 5.0 GHz. The McWess SOI is
downconverted to a baseband frequency of 233 MHz.
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Figure 55. MUSIC spectrum of the McWess validation scenario data bandpass filtered
to include only the baseband SOI frequency of 233 MHz. The MUSIC spectrum is
generated using a coherently focused covariance matrix and shows only a single signal.
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This is not a failure of the receiver framework as the algorithms employed separate the

SOI from the interference signals based upon their spectral content. If an interference

signal is classified as a SOI it is left to the post adaptive DBF algorithm processing

to reject the interference signals.

5.2.3 MUD-WASP Environment Estimation.

Real receiver systems such as McWESS and MUD-WASP do not have ideal ar-

rays nor ideal receiver hardware. Physical influences such as mutual coupling, array

channel imbalances, and nonlinearities corrupt the collected data such that DOA esti-

mation algorithms and adaptive DBF algorithms have difficulty resolving the different

signals in the environment. The effect of the non-ideal receiver structure is shown

in Figure 55 where the MUSIC spectrum for a single signal produces sidelobes that

could be mistaken for signals.

The deleterious effects of an actual array are mitigated by using the time reversal

method (TRM). As opposed to removing the channel delays to a signal arriving from

off array broadside, however, the TRM is used to remove any effect of the physical

array. Determining the impulse response of the array hardware and RF channels

allows for the inverse channel response to be determined. Applying the inverse channel

response to the sampled array data removes the effects of physical array processing

and provides the sampled array data that would be present if the RF environment

were sampled at the front of the array. AFRL determined the inverse response for the

MUD-WASP receiver and this inverse response is applied to the sampled MUD-WASP

array data prior to application of the RM algorithms.

Figure 56 is the resulting MUSIC spectrum for DOA estimation using the MUD-

WASP data. There are five peaks in the MUSIC spectrum. Three peaks are in the

correct positions for the three signals at −20o, 0o, and 50o. The other two peaks are
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at −50o and 20o due to the strictly real sampled array data; there is no sixth signal

present as −0o = 0o and only appears once in the MUSIC spectrum. The algorithm is

able to find three angles as expected from the scenario composition. Figure 57 shows

the MTM spectral estimate of the MUD-WASP scenario data. There is only one

narrowband frequency represented in the estimate. This is because all three signals

in the scenario are considered narrowband SOI and have the same frequency. As

there is only spectral content at one frequency the GLRT is able to detect that a

narrowband SOI is present in the data. The GLRT results are shown in Figure 58,

presenting a line at the frequency sub-band corresponding to 333 MHz where the

MTM estimate of Figure 57 indicates the SOI in the data exists.
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Figure 56. MUD-WASP validation scenario MUSIC spectrum indicating direction of
arrival of the three SOI in the MUD-WASP data scenario.

The last parameter required of the RM environment estimation functional block is

the number of signals in the environment. Because of the strictly real array data, the

number of non-noise eigenvectors and eigenvalues in the covariance matrix of the data

is twice that of the true number of signals. Because the AIC criterion is based upon

163



0 100 200 300 400 500 600 700

−70

−60

−50

−40

−30

−20

−10

0

Frequency in MHz

M
T

M
 S

p
ec

tr
u
m

 i
n
 d

B

 

 

MTM

Truth

Figure 57. MTM power spectral estimate of the MUD-WASP data validation scenario
showing the single narrowband spectrum corresponding to the SOI and interference
signals.
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Figure 58. The GLRT output from the MUD-WASP MTM spectral estimate indicating
that only narrowband signals exist in the data.
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the eigenvalues and eigenvectors of the array data covariance matrix it incorrectly

doubles the number of signals present. The digitization scheme of the receiver is

known a priori to receiver implementation. It is incumbent upon the receiver designer

to take this into consideration and when the number of signals present is even, half

that number of signals. If the number of signals is odd, than a signal is present at

zero degrees and only has a single eigenvalue used in the AIC model order selection.

The correct number of signals present from the AIC model order selection is found

through
(
Nsig−1

2

)
+ 1 where Nsig is the number of signals returned from the AIC

model order selection algorithm. There is no simple method for determining which

of the estimated are the true DOA and which are the “phantom” signals. In practice

all five angles are passed to the SOI estimation functional block and the correct DOA

are determined by the signal disambiguation algorithm.

The estimated parameters for the MUD-WASP verification scenario are summa-

rized in Table 16. The correct number of signals is indicated due to knowledge of the

type of receiver digitization. The DOA, however, are listed as +/− to indicate the

true polarity of the DOA is unknown at this point in the RM processing. All DOA

estimates are within 1o of actual indicating good performance of the DOA estimation

algorithm.

Table 16. Output of the environment estimation functional block for the MUD-WASP
validation scenario providing the bandwidth and DOA for all three signals in the sce-
nario.

# of signals signal bandwidths DOA
3 narrowband ±50.97o, ±0o, ±19.70o

Similar to the McWess verification scenario, the RM environment estimation al-

gorithm returns an environment with less than five signals where all signals are nar-

rowband. From Table 5, the RM is known to select the narrowband LCMV algorithm

for this environment. Also as discussed for the McWess scenario, the exact signal and
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interference powers are not known for the MUD-WASP verification scenario prevent-

ing a by SINR comparison; however, also similar to the McWess verification scenario

in narrowband environment the narrowband LCMV algorithm is known to produce

adequate SINR output levels and has the lowest computational complexity making it

the most optimal algorithm for the MUD-WASP verification scenario.

5.2.4 MUD-WASP Signal of Interest Detection.

All three signals in the environment are considered SOI. Because the signals have

the same frequency, filtering the array data in the frequency domain does not eliminate

any of the signals. Therefore, when the DOA estimation algorithm is applied to the

filtered data the result is the same as Figure 56. The signal disambiguation algorithm

separates the data into five spatial sub-bands corresponding to the five estimated

DOA. Two of the spatial sub-bands contain noise and are discarded when the three-

of-three detection algorithm is applied. Figure 59 plots the MTM spectral estimate

of the three signal-containing sub-bands, showing that the spectral content of the

three sub-bands are similar as expected. When a GLRT is applied to these spectra

the correct number of SOI are detected. The end result from the RM is the correct

identification of the three SOI with their correct relative bandwidth and DOA.

5.2.5 RM Verification Review.

The purpose of the RM verification is to ensure that the proposed receiver frame-

work not only applies the implemented algorithm as designed, i.e. are valid, but that

the receiver is capable of performing the task that it is designed to perform. Indeed

the RM is able to correctly parameterize the electromagnetic environment collected

by a physical receiver. The RM is able to use the estimated environment parameters

to correctly choose the best4 adaptive DBF algorithm for each scenario. Also, the

4Performance is determined by SINR improvement and computational complexity
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Figure 59. MTM power spectra of the three spatial sub-bands containing signals from
the MUD-WASP array data. The signals in all three sub-bands have the same spectral
content and are therefore all considered SOI.

RM is able to detect the signals of interest and perform any required signal disam-

biguation on the signals present in the measured array data. The RM is thus able

to perform the tasks it was designed to perform using measured array data and is

verified.
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VI. Conclusions

Electronic support (ES) receivers are designed to detect and estimate signals-of-

interest (SOIs) in a congested electromagnetic (EM) interference environment. Tra-

ditional ES receivers apply a single adaptive digital beamforming (DBF) algorithm

in all interference environments. The adaptive DBF algorithm implemented by the

ES receiver is chosen a priori to receiver operation based upon the receiver’s oper-

ational requirements. Pre-selection of the adaptive DBF algorithm limits the types

of interference environments the receiver is able to accurately operate in. Regardless

of the severity of the interference environment the receiver is only able to apply a

limited number of simultaneous beams. In interference environments with multiple

wideband interference sources the algorithm may be unable to improve the signal-to-

interference-plus-noise ratio (SINR) by an acceptable amount.

This dissertation presented a new receiver framework designed to intelligently

select an adaptive DBF algorithm from a set of algorithms chosen by the receiver

designer. Algorithm choice is made based upon the interference environment in which

the SOIs are embedded. The interference environment is parameterized with regard

to the relative bandwidths of the signals in the environment and their directions-of-

arrival (DOAs). An adaptive DBF algorithm is chosen for each SOI from a look-

up-table (LUT). Selection from the LUT is based upon the estimated environment

parameters.

Chapter 3 presented the design and implementation of a resource manager (RM)

used to estimate the environment parameters and determine the number of SOIs and

estimate their respective DOA. The algorithm is labeled a RM because the output

of the algorithm has a direct impact on the receiver resources used to estimate the

SOIs. The output of the RM is an adaptive DBF algorithm choice for each SOI. The

number of SOI present and the adaptive DBF algorithm chosen to estimate each SOI
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determine the amount of computational resources the receiver is required to employ.

The set of adaptive DBF algorithms contained in the LUT are determined by the

receiver designer. Algorithms are chosen based upon the type of SOI and the type

of interference environments incident upon the receiver’s array. The receiver designer

develops the LUT based upon a selection rule that ensures the designer’s goals are

met. Demonstration of the receiver framework requires a representative LUT of

adaptive DBF algorithms be created. Chapter 4 created a LUT of algorithms based

upon the performance criteria of SINR improvement and computational complexity.

The decision rule chose for inclusion in the LUT the adaptive DBF algorithm for each

radio frequency (RF) environment that met a required SINR threshold while having

the lowest computational complexity of all algorithms that provided the required

SINR improvement.

Chapter 5 determined the performance of the receiver framework against both

simulated RF environments and data collected on two receiver testbeds at Air Force

Research Laboratory (AFRL). The simulated RF environments demonstrated that

proposed receiver framework algorithms were mathematically correct and provided

the expected output. The collected RF data demonstrated that the receiver frame-

work is able to process actual signals and provide the best adaptive DBF algorithm,

from the pre-selected set of algorithms, for estimating the SOI.

6.1 Future Research

The receiver architecture described in this dissertation employs only a limited

set of adaptive DBF algorithms. Algorithms are chosen from the LUT based on

their SINR improvement and computational complexity. Future research should focus

on considering additional adaptive DBF algorithms for the LUT. The study should

include the development of new selection rules. In this research only three algorithms
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of five are included in the LUT. Work should be conducted to determine if a new

selection rule would include more algorithms in the LUT. Inclusion of new algorithms

should allow for inclusion of more algorithms in the LUT with the current selection

rule. The new rule with old algorithms should be compared with designs using the

old rule with new algorithms as well as the new rule with new algorithms.

In conjunction with the additional DBF algorithms, additional environment pa-

rameters should be investigated. A further extension of considering more environment

parameters is to determine the sensitivity of the adaptive DBF algorithms to chang-

ing more than one interference environment parameter at once. The addition of an

interference parameter and the inclusion of changing combinations of interference en-

vironment parameters expands the types of interference environments the RM has

to identify. This, in turn, should allow for a greater variety of adaptive DBF algo-

rithms to be considered optimal for a given environment and allow for the meaningful

inclusion of more adaptive DBF algorithms.

The additional parameter that should be considered first is the power of the inter-

ference sources. An empirical study shown in Chapter 4 indicated a definite sensitivity

of adaptive DBF performance with regard to interference signal power. Signal power

was not chosen as a parameter for the initial study as the addition would have added

computational complexity to the environment estimation functional block of the RM.

Any additional interference parameter considered by the RM of adaptive DBF selec-

tion requires additional computations in the RM that have to be considered when

determining the benefits of the new receiver architecture.

An additional area for future research is implementing the RM framework on

the AFRL MUD-WASP receiver testbed. This additional research task requires the

rewriting of the chosen adaptive DBF algorithms in a language that can be imple-

mented on an field programmable gate array (FPGA). The research also involves
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interfacing a computing system with existing MUD-WASP hardware to host the RM

architecture and pass the adaptive DBF algorithm selected from the LUT, along with

any required data and parameters, to the MUD-WASP for filter weight implementa-

tion. A first step toward MUD-WASP implementation is to create formulations of the

adaptive DBF algorithms that work, independent of each other, on the MUD-WASP

architecture. From there the development of the RM on a separate computational

platform can commence.

One other possible future research area is to improve the structure of the RM

algorithms. The formulations of the estimators in the RM implementation are chosen

for ease of implementation and applicable background literature. There are other

possible algorithmic implementations of all portions of the RM and another imple-

mentation could reduce the complexity of the RM or increase the accuracy of the

estimation algorithms used. This line of research can also carry over to the choice of

adaptive DBF algorithms used in the LUT. The adaptive DBF formulations chosen

for this dissertation were the standard versions found in the literature for each algo-

rithm. Within the literature there are various versions of each adaptive DBF that

are more robust, more accurate, less complex, or have some other improvement over

the standard form. Research would implement each algorithm and test the new im-

plementation against all the scenarios used for LUT generation. If the algorithm was

considered optimal for any scenario it would be included in the LUT. This line of rea-

soning should be extend to testing the algorithms developed in a computing language

other than MATLAB. The speed of the algorithm implementations should increase

when coded in a language such as C, however, there could be new implementation

issues that occur in the new language.
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6.2 Final Thoughts

Radar and communication systems research is progressing toward more dynamic

systems. Cognitive radios are used to make better use of the limited RF spectrum

[31]. Likewise, research is progressing towards more “aware” radar systems such

that transmit and receiver patterns are amended real time to account for changing

environment conditions [31]. This research presents a method for ES receivers to

become more aware of their electromagnetic environment and use this knowledge to

improve the receiver performance. The RM has only knowledge of the desired signal

type and is otherwise operating blind. The ability to intelligently select an appropriate

adaptive DBF algorithm for a given electromagnetic environment is of use in its own

right. It also provides a starting place to attempt to use information other than the

environment parameters to improve the selection of receive weight patterns.
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Appendix A. MUSIC

The DOA of the SOI and any interference sources are estimated using the Multiple

Signal Classification (MUSIC) method. MUSIC is a subspace processing method first

described by Schmidt in [91]. In the notation of Schmidt, MUSIC assumes the data

model 

x1

x2

...

xM


= [v (φ1) v (φ2) · · ·v (φD)]



f1

f2

...

fD


+



n1

n2

...

nM


(144)

where the D waveforms {f1, · · · , fD} are received by an M element array. Each of

the n are vectors of noise samples. The data model can be rewritten as

X = VF + Ñ. (145)

Each of the column vectors v (φi) are steering vectors of the transmitted data. The

covariance matrix of the received data is found by

R = E
[
XXH

]
= VE

[
FFH

]
VH + E

[
ÑÑH

]
(146)

where E [·] indicates the expected value of the enclosure.

The form of (146) illuminates that the covariance matrix is composed of the sum

of signal and noise subspaces. A spectral decomposition of R is given by

R =
M∑
m=1

λmΦmΦH
m, (147)

where the {λ1, · · · , λM} are the M eigenvalues of R and the {Φm} are the corre-

sponding eigenvectors corresponding to eigenvalues λm. The spectral decomposition
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of R presents the covariance matrix as the sum of M orthogonal subspaces. Fur-

thermore, there are D subspaces associated with the signals in X and M −D noise

subspaces. MUSIC development proceeds by splitting the M eigenvectors Φm into

two groupings representing a basis for the signal subspace and a separate basis for

the noise subspace. The two subspace eigenvector matrices are written as

Usignal ,

[
Φ1

...Φ2
... · · · ...ΦD

]
, (148)

and

Unoise ,

[
ΦD+1

...ΦD+2
... · · · ...ΦM

]
, (149)

Because the noise subspace is orthogonal to the signal subspace, the projection of

any vector from the signal subspace onto the noise subspace returns zero. MUSIC

forms a set of steering vectors v (φ) spanning the possible range of signal directions of

arrival and projects each signal onto the noise subspace. The result of all projections

as a function of direction is referred to as the null spectrum of the correlation matrix

R. Then null spectrum is formed using the noise eigenvector matrix of (149) and an

angle dependent steering vector as

QMU = vH (φ) UnoiseU
H
noisev (φ) , (150)

where the MU subscript indicates that this is the MUSIC null spectrum. In theory all

signal projections into the null space would result in exactly zero output, in reality

due to imperfect sensors and having to estimate the covariance matrix R the null

spectrum never reaches zero. Nevertheless, the minima of the null spectral result at

the angles corresponding to the directions of arrival of all signals in the environment.

The MUSIC spectrum, which is the final result of the MUSIC algorithm, is found by
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taking one over the null spectrum

MUSIC (φ) =
1

QMU (φ)
. (151)
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Appendix B. SINR as a Metric

Receivers apply beamformers to estimate a signal-of-interest (SOI) embedded in

noise and interference sources. Beamformers operate by forming spatial-temporal

beams that increase the gain of a signal of interest while forming nulls to reduce the

gain of interference signals and noise. The resource manager (RM) is designed to

estimate parameters characterizing the electromagnetic (EM) environment incident

upon the array and choosing the most optimal adaptive digital beamforming (DBF)

algorithm for the estimated environment parameters from a look-up-table (LUT) of

adaptive DBF algorithms. Algorithm optimality is determined by a decision rule

where the two criteria are algorithm performance and algorithm computational com-

plexity.

The first decision rule criteria is algorithm performance. There are multiple meth-

ods for measuring adaptive DBF performance. The primary performance measure-

ments in the literature are signal-to-interference-plus-noise ratio (SINR) improvement,

mean square error (MSE), integrated sidelobe ratio (ISLR), and peak sidelobe ratio

(PSLR). Both of the sidelobe ratio performance measures are applied to synthetic

aperture radar (SAR) performance and pulse compressed radar waveform perfor-

mance but are not usually applied to beamformer performance [76,104]. In a survey

of beamforming literature presented in Chapter 2 the SINR output of a beamformer

was the most commonly used measure of beamformer performance.

Given that the purpose of the adaptive DBF algorithm is to estimate a SOI em-

bedded in white Gaussian noise and directional interference sources the most natural

performance measure is MSE. The requirement for post processing algorithms such

as pulse descriptor word (PDW) generation algorithms and communication decoding

algorithms are given in terms of SINR output. This difference between the most

natural, i.e. the most logical performance measure, and the performance measure
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most widely used is remedied by Goldstein et al. in [25]. Goldstein shows mathe-

matically that the performance measures of SINR out and MSE are equivalent for

constrained beamformers. For this research effort the five chosen adaptive DBF al-

gorithms - wideband linearly constrained minimum variance (LCMV), generalized

discrete Fourier transform (GDFT), time reversal method (TRM), and narrowband

LCMV - are constrained beamformers. Therefore, the SINR metric is an appropriate

metric to used for beamformer performance in the RM.

The algorithm chosen by the RM for each wideband scenario of Chapter 5 is

verified as being the correct algorithm based upon both SINR improvement and MSE

using Table 17. The table provides the SINR improvement and MSE for the three

beamformer types contained in the LUT. From Table 6, scenario one had multiple

wideband interference sources and the RM chose the wideband LCMV1 algorithm

for beamforming. Table 17 shows that the wideband LCMV algorithm had a higher

SINR improvement and lower MSE than the narrowband LCMV algorithm. The

TRM method had a lower SINR than the wideband LCMV algorithm, but also lower

MSE which appears to contradict the notion that MSE and SINR are equivalent

metrics. This difference is attributable to the TRM method applying a pre-steering

algorithm to the data before application of a constrained beamformer. This implies

that the analysis of Goldstein is only strictly valid when only purely constrained

beamformers are being compared.

For the current analysis, both the wideband LCMV and the TRM meet the SINR

out threshold. At first it appears that the RM chooses the wrong algorithm as the

TRM has slightly lower MSE, although both are of the same order of magnitude and

an order of magnitude lower than the narrowband LCMV. The algorithm selection,

however, is based on two performance criteria and the computational complexity must

1The wideband LCMV applied is Frost’s algorithm and the two terms are used synonimously.
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be considered. The complexity of the TRM is higher than the wideband LCMV and

so the failure of the SINR-MSE equivalence does not affect the RM choice. This

indicates that if two SINR and MSE are of the same order of magnitude, as for the

case of scenarios one and three where the best SINR does not equate to the best

MSE, SINR output/improvement is still the correct choice as both algorithms will

provide the required SINR out threshold and the computational complexity objective

will allow for proper selection between the two.

The idea that the order of magnitude of the SINR and MSE are equivalent for all

constrained beamformers and choosing either allows for correct algorithm selection is

corroborated with the output of scenario two as given in Table 17. For the particular

scenario the TRM SINR and MSE are an order of magnitude better than either

LCMV algorithm. The two LCMV algorithms (purely constrained algorithms) have

comparable SINR out and MSE values where the algorithm with the better SINR

out has the better MSE as predicted by Goldstein [25]. In this case the RM selects

the narrowband LCMV algorithm as all algorithms have an SINR out that meets

the threshold and the narrowband LCMV has the lowest computational complexity.

The results from scenario one are repeated for scenario three where the wideband

LCMV algorithm provides the best MSE and SINR of the constrained algorithms.

Once again the TRM has a lower SINR and MSE with the difference attributable to

the the algorithm not being a purely constrained beamformer. The results again, i.e.

choosing the wideband LCMV algorithm, are correct because the wideband LCMV

algorithm has a lower computational complexity than the TRM algorithm.

The analysis of the data from the three scenarios given above demonstrates that

SINR out is an appropriate metric for comparing adaptive DBF performance. This

is because the post processing algorithms that use the beamformer output require a

given SINR output level to properly operate, which may justify the use of SINR out-
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Table 17. A comparison of the MSE and SINR improvement metrics for use in evalu-
ating adaptive DBF performance.

Scenario 1
WB Frost TRM NB Frost

MSE 3.785×10−3 1.657×10−3 7.199×10−2

SINR 22.48 16.08 4.06
Scenario 2
WB Frost TRM NB Frost

MSE 7.140×10−3 4.793×10−4 3.221×10−3

SINR 12.26 20.01 13.06
Scenario 3
WB Frost TRM NB Frost

MSE 4.416×10−3 1.528×10−3 6.440×10−2

SINR 19.07 15.77 3.78

put as a metric by itself. When MSE and SOI estimate accuracy are considered, the

work of Goldstein taken with the above empirical results indicate that the algorithm

with the highest SINR output will provide and estimate with the lowest possible order

of magnitude MSE compared to all other algorithms. When used for algorithm selec-

tion the second objective of computational complexity ensures the correct adaptive

DBF algorithm is chosen when the other criteria is SINR improvement even when

Goldstein’s analysis is not applicable.
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Acronyms

ADC . . . . . . . . . . . . . . . . . . . analog to digital converter

AFRL . . . . . . . . . . . . . . . . . . . Air Force Research Laboratory

AIC . . . . . . . . . . . . . . . . . . . . Akaike information criteria

ASP . . . . . . . . . . . . . . . . . . . . algorithm selection problem

CR . . . . . . . . . . . . . . . . . . . . cognitive radio

CRLB . . . . . . . . . . . . . . . . . . . Cramer-Rao lower bound

CW . . . . . . . . . . . . . . . . . . . . continuous wave

DBF . . . . . . . . . . . . . . . . . . . digital beamforming

DFT . . . . . . . . . . . . . . . . . . . discrete Fourier transform

DOA . . . . . . . . . . . . . . . . . . . direction-of-arrival

DPSS . . . . . . . . . . . . . . . . . . . discrete prolate spheroidal sequence

DSP . . . . . . . . . . . . . . . . . . . . digital signal processing

EM . . . . . . . . . . . . . . . . . . . . electromagnetic

ES . . . . . . . . . . . . . . . . . . . . . electronic support

FFT . . . . . . . . . . . . . . . . . . . . fast Fourier transform

FIB . . . . . . . . . . . . . . . . . . . . frequency invariant beamformer

FIR . . . . . . . . . . . . . . . . . . . . finite impulse response
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FOV . . . . . . . . . . . . . . . . . . . field-of-view

FPGA . . . . . . . . . . . . . . . . . . field programmable gate array

GDFT . . . . . . . . . . . . . . . . . . generalized discrete Fourier transform

GLRT . . . . . . . . . . . . . . . . . . . generalized likelihood ratio test

GPU . . . . . . . . . . . . . . . . . . . graphics processing unit

GSM . . . . . . . . . . . . . . . . . . . global system for mobile

HVT . . . . . . . . . . . . . . . . . . . high value target

IADS . . . . . . . . . . . . . . . . . . . integrated air defense system

IF . . . . . . . . . . . . . . . . . . . . . intermediate frequency

IFFT . . . . . . . . . . . . . . . . . . . inverse fast Fourier transform

IFT . . . . . . . . . . . . . . . . . . . . inverse Fourier transform

INR . . . . . . . . . . . . . . . . . . . . interference-to-noise-ratio

ISLR . . . . . . . . . . . . . . . . . . . integrated sidelobe ratio

ISR . . . . . . . . . . . . . . . . . . . . interference-to-signal-ratio

LCMV . . . . . . . . . . . . . . . . . . linearly constrained minimum variance

LMS . . . . . . . . . . . . . . . . . . . . least mean squares

LRT . . . . . . . . . . . . . . . . . . . . likelihood ratio test

LS . . . . . . . . . . . . . . . . . . . . . least squares
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LSSB . . . . . . . . . . . . . . . . . . . least squares space-time beamformer

LUT . . . . . . . . . . . . . . . . . . . . look-up-table

MIMO . . . . . . . . . . . . . . . . . . multiple-input multiple-output

MLE . . . . . . . . . . . . . . . . . . . maximum likelihood estimator

MMSE . . . . . . . . . . . . . . . . . . minimum mean squared error

MSE . . . . . . . . . . . . . . . . . . . mean square error

MTM . . . . . . . . . . . . . . . . . . . multi-taper method

MUSIC . . . . . . . . . . . . . . . . . . multi-signal classification

MVDR . . . . . . . . . . . . . . . . . . minimum variance distortionless response

PDW . . . . . . . . . . . . . . . . . . . pulse descriptor word

PSD . . . . . . . . . . . . . . . . . . . . power spectral density

PSLR . . . . . . . . . . . . . . . . . . . peak sidelobe ratio

RF . . . . . . . . . . . . . . . . . . . . . radio frequency

RM . . . . . . . . . . . . . . . . . . . . resource manager

RWR . . . . . . . . . . . . . . . . . . . radar warning receiver

SAR . . . . . . . . . . . . . . . . . . . . synthetic aperture radar

SDP . . . . . . . . . . . . . . . . . . . . semi-definite programming

SINR . . . . . . . . . . . . . . . . . . . signal-to-interference-plus-noise ratio
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SMI . . . . . . . . . . . . . . . . . . . . sample matrix inversion

SNR . . . . . . . . . . . . . . . . . . . . signal-to-noise-ratio

SOI . . . . . . . . . . . . . . . . . . . . signal-of-interest

SV . . . . . . . . . . . . . . . . . . . . . spatial variation

TOT . . . . . . . . . . . . . . . . . . . three-of-three

TRM . . . . . . . . . . . . . . . . . . . time reversal method

ULA . . . . . . . . . . . . . . . . . . . uniform linear array
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