1,072 research outputs found

    Earthquake Engineering

    Get PDF
    The book Earthquake Engineering - From Engineering Seismology to Optimal Seismic Design of Engineering Structures contains fifteen chapters written by researchers and experts in the fields of earthquake and structural engineering. This book provides the state-of-the-art on recent progress in the field of seimology, earthquake engineering and structural engineering. The book should be useful to graduate students, researchers and practicing structural engineers. It deals with seismicity, seismic hazard assessment and system oriented emergency response for abrupt earthquake disaster, the nature and the components of strong ground motions and several other interesting topics, such as dam-induced earthquakes, seismic stability of slopes and landslides. The book also tackles the dynamic response of underground pipes to blast loads, the optimal seismic design of RC multi-storey buildings, the finite-element analysis of cable-stayed bridges under strong ground motions and the acute psychiatric trauma intervention due to earthquakes

    Effects of thermal and seepage actions on seismic response of roller compacted concrete dams

    Get PDF
    Roller compacted concrete (RCC) dams have been developed for their rapid construction and low cost. However, some issues associated with the analysis and design of RCC dams are related to the seismically induced damages and possible failure of the dam, seepage due to the weakness of roller compacted layers and thermal stresses due to massive concreting. Large seismic events, in addition to the thermal and seepage effects, can cause the cracking and nonlinear behaviour where these cracks may expand further under the water pressure inside them to affect the stability of the structure. Therefore, developing a suitable constitutive material model and a reliable computational procedure for the safety evaluation and prediction of cracking risk of these structures has been a challenging and demanding task. This research aims to present a new comprehensive numerical procedure to evaluate the seismically induced cracking of RCC dams under the effects of thermal and seepage actions. It takes into account the coupling effect of water pressure and the crack formation during an earthquake. In addition, more relevant features of the behaviour of concrete such as ageing, temperature, confining pressure and adiabatic temperature effects have been considered in the analysis. A purposeful comprehensive numerical system consists of several individual features and in combination. The system includes a combination of field problems (thermal and seepage fields), continuum mechanics (stress analysis), seismic hazard assessment and safety evaluation. The combination uses finite elements to introduce compatible units capable of analysing infrastructure, such as RCC dams, to evaluate and predict level of safety in terms of crack pattern development. The method, which is based on a principle of birth and death process, is capable of simulating and assessing safety of RCC dams during the construction and the operation phase. The constitutive material model for concrete is based on the combination of damage mechanics and plasticity. The mathematical models for mechanical behaviour of materials are given in the form of constitutive equations. The proposed constitutive models have been reformulated and presented in convenient forms for RCC materials. Ageing, temperature and confining pressure effects were taken into account and implemented in the proposed constitutive models. All the developments and analyses are performed using coded subprograms written in FORTRAN and developed in finite element program ABAQUS. Then, the validity of the proposed computational procedures and models has been confirmed by analysing and comparing the results obtained based on available experimental and analytical evidences. After the verification process, the material nonlinearity and proposed models are applied to analyse and evaluate the related dam safety against the cracking of an existing full-size dam. Finally, conclusions are drawn and recommendations are made based on the present research. Based on the conclusions, it is revealed that the numerical procedure developed in this study for the seismic evaluation of RCC gravity dams under thermal and seepage actions provides a general framework for the analysis and design of these critical structures. The results of the evaluation indicate that different response patterns result when considering and neglecting THM (thermos-hydro-mechnical) model in seismic analysis, suggesting the significance of incorporating the thermal and seepage fields into the seismic assessment and design of concrete gravity dams

    Microgravity combustion science: Progress, plans, and opportunities

    Get PDF
    An earlier overview is updated which introduced the promise of microgravity combustion research and provided a brief survey of results and then current research participants, the available set of reduced gravity facilities, and plans for experimental capabilities in the space station era. Since that time, several research studies have been completed in drop towers and aircraft, and the first space based combustion experiments since Skylab have been conducted on the Shuttle. The microgravity environment enables a new range of experiments to be performed since buoyancy induced flows are nearly eliminated, normally obscured forces and flows may be isolated, gravitational settling or sedimentation is nearly eliminated, and larger time or length scales in experiments are feasible. In addition to new examinations of classical problems, (e.g., droplet burning), current areas of interest include soot formation and weak turbulence, as influenced by gravity

    Geologic and tectonic characteristics of rockbursts

    Full text link

    Aeronautical Engineering: A continuing bibliography (supplement 138)

    Get PDF
    This bibliography lists 366 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1981

    Feasibility Study of a Satellite Solar Power Station

    Get PDF
    A feasibility study of a satellite solar power station (SSPS) was conducted to: (1) explore how an SSPS could be flown and controlled in orbit; (2) determine the techniques needed to avoid radio frequency interference (RFI); and (3) determine the key environmental, technological, and economic issues involved. Structural and dynamic analyses of the SSPS structure were performed, and deflections and internal member loads were determined. Desirable material characteristics were assessed and technology developments identified. Flight control performance of the SSPS baseline design was evaluated and parametric sizing studies were performed. The study of RFI avoidance techniques covered (1) optimization of the microwave transmission system; (2) device design and expected RFI; and (3) SSPS RFI effects. The identification of key issues involved (1) microwave generation, transmissions, and rectification and solar energy conversion; (2) environmental-ecological impact and biological effects; and (3) economic issues, i.e., costs and benefits associated with the SSPS. The feasibility of the SSPS based on the parameters of the study was established

    Study of the effect of lateral inhomogeneities on the propagation of Rayleigh waves in an elastic medium

    Get PDF
    The use of geophysical testing methods has considerable potential to be a cost effective and accurate technique to assess near-surface soil conditions. Multi channel analysis of surface waves (MASW) test is a geophysical non-intrusive test that uses the dispersive characteristic of Rayleigh waves to estimate low strain shear modulus and damping coefficient of near-surface soil. Also, this technique is used to detect underground voids. Recently, MASW technique has gained more attention, partly because of its ease of use and partly because of the significant improvements in data acquisition systems. The theories of MASW test consider the effect of horizontal soil layering, though the effect of lateral inhomogeneities (i. e. cavities and voids), inclined layering and inverse layering (i. e. a layered system in which the top layers are stiffer than the bottom ones) are not addressed properly in these theories. The objective of this dissertation is to investigate the effect of lateral inhomogeneities on the propagation of Rayleigh waves in an elastic half-space excited by a transient loading. The results can be applied to locate underground cavities using MASW test and to improve the MASW analysis techniques. In lieu of theoretical solutions, two and three dimensional numerical models are constructed to simulate the MASW test. To assure the quality of the obtained data, numerical models are calibrated with Lamb solution. Voids with different sizes and embedment depths are inserted in the medium. Responses along the surface as well as inside the medium are recorded and analyzed in time, frequency, spatial and frequency-wave number domains. Different material types and sources are used to generalize the results. Afterwards, the combined effect of void and layered systems on the surface responses are studied. To verify the results, experimental field and laboratory data are presented and the trends are compared to the numerical results. It is found that the void starts to vibrate in response to the Rayleigh wave excitation. Due to the vibration of the void energy partitioning occurs. Part of the incident energy is reflected in the form of Rayleigh wave. Another part is converted to body waves, and spread into the medium. The transferred part of the energy is attenuated and has smaller amplitudes. Finally, a part of energy is trapped in the void region and bounces back and forth between the void boundaries, until it damps. The trapped energy is associated to higher modes of Rayleigh waves and excited Lamb waves. The effect of trapped energy is seen as a region in the vicinity of the void with concentrated energy, in frequency domain. The extents of this region depends on the void size, and the frequency content of the incident energy. Thus, in some cases it is possible to correspond the size of the model to the extents of the region with energy concentration. A new technique is proposed to determine the location of a void, and estimate its embedment depth. The technique is called Attenuation Analysis of Rayleigh Waves (AARW), and is based on the observed damping effect of the void on the surface responses. For verification, the results are compared to experimental field and laboratory data. The observations are in good agreement with the observed numerical results. Further, the AARW technique showed to be a promising tool for void detection

    Potential utilization of the NASA/George C. Marshall Space Flight Center in earthquake engineering research

    Get PDF
    Earthquake engineering research capabilities of the National Aeronautics and Space Administration (NASA) facilities at George C. Marshall Space Flight Center (MSFC), Alabama, were evaluated. The results indicate that the NASA/MSFC facilities and supporting capabilities offer unique opportunities for conducting earthquake engineering research. Specific features that are particularly attractive for large scale static and dynamic testing of natural and man-made structures include the following: large physical dimensions of buildings and test bays; high loading capacity; wide range and large number of test equipment and instrumentation devices; multichannel data acquisition and processing systems; technical expertise for conducting large-scale static and dynamic testing; sophisticated techniques for systems dynamics analysis, simulation, and control; and capability for managing large-size and technologically complex programs. Potential uses of the facilities for near and long term test programs to supplement current earthquake research activities are suggested

    Near-field blast vibration monitoring and analysis for prediction of blast damage in sublevel open stoping

    Get PDF
    The work presented in this thesis investigates near-field blast vibration monitoring, analysis, interpretation and blast damage prediction in sublevel open stoping geometries. As part of the investigation, seven stopes at two Australian sublevel open stoping mines were used as case studies. The seven stopes represented significant ranges in stope shapes, sizes, geotechnical concerns, extraction sequences, stress conditions, blasting geometries and rock mass properties.The blast damage investigations at the two mine sites had three main components. The first component was rock mass characterisation, which was performed using static intact rock testing results, discontinuity mapping, mining-induced static stress modelling and geophysical wave propagation approaches. The rock mass characterisation techniques identified localised and large-scale variations in rock mass properties and wave propagation behaviours in relation to specified monitoring orientations and mining areas. The other components of the blast damage investigations were blast vibration monitoring and analysis of production blasting in the seven stopes and stope performance assessments.The mine-based data collection period for the case studies lasted from January, 2006 to February, 2008. A key element of the data collection program was near-field blast vibration monitoring of production blasts within the seven study stopes. The instrumentation program consisted of 41 tri-axial accelerometers and geophone sondes, installed at distances from 4m to 16m from the stope perimeters. A total of 59 production firings were monitored over the course of the blast vibration monitoring program. The monitoring program resulted in a data set of over 5000 single-hole blast vibration waveforms, representing two different blasthole diameters (89mm and 102mm), six different explosive formulations and a wide range in charge weights, source to sensor distances, blasthole orientations and blasting geometries.The data collected in the blast vibration monitoring program were used to compare various near-field charge weight scaling relationships such as Scaled Distance and Holmberg-Persson prediction models. The results of these analyses identified that no single charge weight scaling model could dependably predict the measured near-field peak amplitudes for complex blasting geometries. Therefore, the general form of the charge weight scaling relationship was adopted in conjunction with nonlinear multivariable estimation techniques to analyse the data collected in the study stopes and to perform forward vibration predictions for the case studies.Observed variations in the recorded near-field waveforms identified that instantaneous peak amplitude such as peak particle velocity (PPV) did not accurately describe the characteristics of a large portion of the data. This was due to significant variations in frequency spectra, variable distributions of energy throughout the wave durations and coupling of wave types (e.g. P- and S-wave coupling). The wave properties that have been proposed to more accurately characterise complex nearfield vibrations are the total wave energy density (ED[subscript]W-tot), stored strain energy density (ED[subscript]W-SS) and the wave-induced mean normal dynamic strain (ε[subscript]W-MN). These wave properties consider the activity of the blast-induce wave at a point in the rock mass over the entire duration instead of the instantaneous amplitude.A new analytical approach has been proposed to predict blast-induced rock mass damage using rock mass characterisation data, blast vibration monitoring results and rock fracture criteria. The two-component approach separately predicts the extent of blast-induced damage through fresh fracturing of intact rock and the extent from discontinuity extension. Two separate damage criteria are proposed for the intact rock portion of the rock mass based on tensile and compressive fracture strain energy densities and compressive and tensile fracture strains. The single criterion for extension of existing discontinuities is based on the required fracture energy density to activate all macro-fractures in a unit volume of the rock mass.The proposed energy-based criteria for intact rock fracture and extension of discontinuities integrate strain rate effects in relation to material strength. The strainbased criterion for intact rock fracture integrates the existing mining-induced static strain magnitudes. These factors have not been explicitly considered in existing empirical or analytical blast damage prediction models. The proposed blast damage prediction approach has been applied to two stopes during the two mine site case studies
    corecore