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Abstract

The use of geophysical testing methods has considerable potential to be a cost effective

and accurate technique to assess near-surface soil conditions. Multi channel analysis of surface

waves (MASW) test is a geophysical non-intrusive test that uses the dispersive characteristic

of Rayleigh waves to estimate low strain shear modulus and damping coefficient of near-surface

soil. Also, this technique is used to detect underground voids. Recently, MASW technique has

gained more attention, partly because of its ease of use and partly because of the significant

improvements in data acquisition systems. The theories of MASW test consider the effect of

horizontal soil layering, though the effect of lateral inhomogeneities (i.e. cavities and voids),

inclined layering and inverse layering (i.e. a layered system in which the top layers are stiffer

than the bottom ones) are not addressed properly in these theories.

The objective of this dissertation is to investigate the effect of lateral inhomogeneities on

the propagation of Rayleigh waves in an elastic half-space excited by a transient loading. The

results can be applied to locate underground cavities using MASW test and to improve the

MASW analysis techniques. In lieu of theoretical solutions, two and three dimensional numerical

models are constructed to simulate the MASW test. To assure the quality of the obtained

data, numerical models are calibrated with Lamb solution. Voids with different sizes and

embedment depths are inserted in the medium. Responses along the surface as well as inside

the medium are recorded and analyzed in time, frequency, spatial and frequency-wave number

domains. Different material types and sources are used to generalize the results. Afterwards,

the combined effect of void and layered systems on the surface responses are studied. To verify

the results, experimental field and laboratory data are presented and the trends are compared

to the numerical results.

It is found that the void starts to vibrate in response to the Rayleigh wave excitation. Due

to the vibration of the void energy partitioning occurs. Part of the incident energy is reflected

in the form of Rayleigh wave. Another part is converted to body waves, and spread into the

medium. The transferred part of the energy is attenuated and has smaller amplitudes. Finally,

a part of energy is trapped in the void region and bounces back and forth between the void

boundaries, until it damps. The trapped energy is associated to higher modes of Rayleigh waves

and excited Lamb waves. The effect of trapped energy is seen as a region in the vicinity of the
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void with concentrated energy, in frequency domain. The extents of this region depends on the

void size, and the frequency content of the incident energy. Thus, in some cases it is possible

to correspond the size of the model to the extents of the region with energy concentration.

A new technique is proposed to determine the location of a void, and estimate its embedment

depth. The technique is called Attenuation Analysis of Rayleigh Waves (AARW), and is based

on the observed damping effect of the void on the surface responses. For verification, the

results are compared to experimental field and laboratory data. The observations are in good

agreement with the observed numerical results. Further, the AARW technique showed to be a

promising tool for void detection.
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Chapter 1

Foreword

1.1 Introduction

Detecting underground cavities beneath construction sites and urban areas is a crucial task for

many engineering projects. Each year, subsidence and surface soil failure due to underground

voids cause substantial damage around the world. Most of the seismic methods currently used

for cavity detection can successfully locate a void but not its embedment depth. In spite of suc-

cessful case histories, void detection is still a challenging problem because of the lack of a stan-

dard, quantitative void-detection technique. In addition, existing non-destructive techniques do

not consider the effect of lateral inhomogeneities, i.e., cavities, in the wave propagation. Thus,

the detection of underground cavities needs further study.

Each year, ground surface failure and subsidence due to underground cavities cause major

problems around the world by damaging buildings, foundations and infrastructure. Under-

ground voids can be created naturally by karst solution processes resulting in caves in carbonate

rocks or by tunnelling and mining processes. Abandoned mines are of particular concern as

maps indicating the location of underground excavations are generally not available, and few

organizations take responsibility for assessing the physical stability of abandoned mine works.

Turney [5] reports that subsidence over abandoned coal mines pose a potential hazard for ap-

proximately 13,000 people and 5,000 houses along the Front Range Urban Corridor, Colorado.

Vlcko [6] indicates that the major cause of historical heritage damage is mass movements of

earth caused by subsidence into abandoned excavations or natural cavities. Yaoru et al. [7]
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discuss the damage to structures and dams due to deformation of karstic cavities in China. In

general, the detection of cavities on construction sites is a priority in karst prone regions or

areas with subsurface excavation histories.

Engineering assessment of the stability of caverns depends upon successful cavity detection

and characterization, which is achieved by various intrusive tests (i.e., drilling, test pits, or

trenching) or by non-destructive tests (NDT) using geophysical methods. Hutchinson et al. [8]

provides a comparison of various geophysical approaches for void detection. With the recent

advances in equipment and data acquisition systems, the use of NDT has proven to be successful

in many cases and has gained greater acceptance in the industry [9].

Geophysical testing methods have considerable potential to provide cost effective and accu-

rate techniques to assess near-surface soil conditions. Most of these techniques are non-intrusive,

i.e. they do not alter the characteristics of the medium that they are being applied to. In com-

parison to conventional boring methods, geophysical techniques provide information about a

large area in a short time. Among these techniques the multi-channel analysis of surface waves

(MASW) test has gained attention in recent years. This attention is partly because of its ease

of use and partly because of the significant improvements in data acquisition systems.

The MASW test is a geophysical seismic technique that uses the dispersive characteristic of

Rayleigh waves to estimate low strain shear modulus and damping coefficient of near-surface

soil. Also, this technique is used to detect underground cavities. In the conventional MASW

test a number of geophones (or accelerometers) are deployed in a line along the surface, and

the ground is excited by a mechanical source, at the surface. The responses are recorded in

time domain, and transformed to frequency domain. The Rayleigh wave velocity profile of

the medium (Rayleigh wave velocity verses depth) is then inverted from the frequency data

(dispersion curve). Theoretical expressions are available that relate the Rayleigh-wave velocity

to shear-wave velocity, shear modulus, and consequently to elastic modulus and damping ratio

of the medium. Thus, the low strain mechanical properties of the soil are estimated from the

MASW test.

The theory of the MASW test was originated in 1960’s, and further developed in 1980’s

and 1990’s. This theory is based on the stiffness matrices developed for mechanical excitations

propagating in an elastic homogeneous and isotropic material. The system is assumed to be
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horizontally layered, and normally layered (top layers have smaller stiffness than the bottom

ones). In the application of this theory to soil, the above assumptions are valid only to some

limits. Soil is elastic at very low strains (in the order of 10−5 or less), and is not homogeneous.

In general, soil layers (boundaries with distinct changes in mechanical properties) are not hor-

izontal. Very often, inverse layering is observed in soil systems, specially in clayey deposits.

Further, lateral inhomogeneities such as cavities might be present in the soil layers. All the

mentioned shortcomings introduce difficulties in the interpretation of MASW test data.

The objective of this dissertation is to investigate the effect of lateral inhomogeneities on

the propagation of Rayleigh waves in an elastic medium. In general, the results of this investi-

gation can be used to interpret the MASW test results and to improve the analysis techniques

associated to the test. Specific application of the conducted study is in locating underground

cavities using the MASW test and estimating their boundaries.

1.2 Methodology and organization

The research methodology selected for this study is based on developing numerical models to

investigate the behavior of Rayleigh waves in the presence of lateral inhomogeneities, and to

verify the results with field and laboratory scale prototypes. The numerical modelling starts

with a homogeneous half-space that has rectangular voids inserted in them to model the lateral

inhomogeneities. The effect of the depth and size of the void on the surface responses are inves-

tigated by varying the void size and embedment depths. The next step consists of introducing

a void in layered systems. Two types of layering is considered. natural layering, in which the

top layer has a smaller stiffness than the bottom layer, and inverse layering, where the stiffness

of the top layer is higher than the bottom one. In both cases the void is located in the top

layer. Three dimensional models are developed in the next stage to investigate the effect of

lateral dimensions of the cavity on the surface responses. Finally, the field results over two

crown pillars, and the results obtained from a laboratory scale prototype, are utilized to verify

the observations and conclusions.

This thesis contains 10 chapters and is organized hereafter in the following order:

Chapter 2 begins with the theoretical examination of mechanical wave generation with
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the focus on Rayleigh waves. It discusses the governing dynamic equations, and the effect

of bounded and unbounded media on the propagation of mechanical energy. The concepts

of dispersion curves and phase velocities are introduced, and different types of damping and

attenuation are discussed. Finally, the Lamb problem is introduced and the details of its solution

is investigated.

Chapter 3 examines the signal processing methods used for analysis of the data. Time

and frequency domain techniques are discussed. The concept of Nyquist frequency is explained

and the effect of discretization on the signals are investigated. A detail review of the two-

dimensional Fourier transforms are provided. Details of the computational methods used for

evaluating the 2D-Fourier transforms are presented at the end.

Chapter 4 reviews the general principles of geophysical methods and their pros and cons in

comparison to conventional soil assessment techniques. The techniques that are commonly used

in the detection of underground cavities are introduced and the resistivity method is discussed

in more detail, as a representative. In-depth study of the MASW method is introduced in

this chapter. Details of the method and its historical development from 1930’s to present are

presented.

Chapter 5 reviews the principles of the finite differences technique that is used in this

study. Related concepts, such as stability, consistency, and artificial boundaries are introduced

in this chapter. The basic concepts of the numerical code (FLAC) that is used throughout this

investigation are presented. Lastly, the basics of the developed basic model are introduced and

the procedure followed to assure its stability and accuracy are presented.

Chapter 6 explains the results obtained from simulations of half-space in the presence of

a void and excited by a source applied to the surface. The surface responses, along with the re-

sponses around the void, and along vertical lines and arcs inside the medium are studied in time

and frequency domains. The 2D Fourier transforms of the surface responses are also presented.

In each case, the responses are compared to the corresponding responses in a homogeneous

half-space (without void).

Chapter 7 presents the studies conducted to investigate the effect of width and embed-

ment depth of the void on surface responses. This chapter continues with the results of the

investigation of the combined effect of void and layered medium on the surface responses. The
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three dimensional models are introduced next and the obtained results are discussed in detail.

Chapter 8 shows the details of a developed method for detecting a void and estimating

its embedment depth. The method is called Attenuation Analysis of Rayleigh Waves (AARW),

and is based on the damping effect of cavities on the surface responses. The validity of the

technique is investigated through its application to various models.

Chapter 9 explains the verification procedure used in this study. The real data collected

over two crown pillars in Sudbury, Ontario, are presented and the observations are explained

with reference to the results obtained from this study. Moreover, the results obtained from a

laboratory scale prototype are presented. These results are used to verify the applicability of

the AARW technique and the conclusions made in the previous chapters.

Chapter 10 summarizes the conclusions of this study. Further, recommendations for fur-

ther studies and researches are provided in this chapter.

Most of the contour and image plots presented in this study are in black and white format.

The corresponding figures in colored format and additional figures are presented in a compact

disk (CD) that is attached to this dissertation. Throughout the text, this CD is referred to as

Appendix CD.
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Chapter 2

Mechanical-wave propagation in

elastic media

2.1 Introduction

The study of the propagation of mechanical-waves (stress-waves) in elastic media goes back

hundreds of years, when the concern was mostly with musical instruments and water waves. The

related modern theories were developed in 19th century as an extension of theory of elasticity

to the problem of vibrating bodies. Due to its application in the field of geophysics, the interest

in the study of waves in elastic media gained momentum in the latter part of 19th century.

The profound contributions of Rayleigh, Lamb, Love and others gave a significant advancement

to the field in this era. At the beginning of 20th century, this field of study was disregarded

partly because of the interests in the new fields of physics, i.e. atomic physics, and partly

since the available theories at the time were far more advanced than the available experimental

techniques. The development of advanced electronic equipment and the application of the

theories in characterizing of the material has increased the interest in the theories of mechanical-

wave propagation in elastic, inelastic and imperfectly elastic materials. These theories have

applications in seismology, mechanical and civil engineering to practices such as detection of

nuclear explosions, nondestructive testing of materials, detection of buried objects, pile driving

and etc. Recent activities in this field are mostly concerned with the development of vibration

theories for plates and shells, analysis of situations with transient loadings, pulse propagation
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in half-space and propagation of waves in inhomogeneities materials. In rigid dynamics, it is

assumed that when a point of a body is subjected to a force, the result would be an instant

motion in all the points of the body. This force produces a linear acceleration of the body along

with an angular acceleration about its center of gravity (Newton’s laws of motion). On the

other hand, in theory of elasticity the body is assumed to be in a state of static equilibrium

and elastic deformations occur in the whole body. A combination of these two approaches leads

to the subject of propagation of mechanical-waves. This method of analysis should be utilized

when the load is applied in a short period of time or changes rapidly during the observation time

with respect to the natural vibration frequencies of the body. In general, when a solid body

is disturbed, body waves in the forms of dilatational waves (p-waves) and distortional waves

(s-waves) are produced. Shear waves (s-waves) cannot propagate in a liquid. At the surface

of a solid, two other types of waves can be generated: Rayleigh and Love waves. This chapter

introduces the basic governing equations, and the principles of the formation and propagation of

the fore mentioned waves, which will be referred throughout this dissertation. For conciseness,

some of the formulations are stated in two dimensional form, yet it will not affect the generality

of the discussions and results. Also, a brief discussion of energy dissipation mechanisms in

elastic solids is introduced. Unless otherwise stated, the coverage of this chapter is based on

the works presented in [10, 11, 12, 13].

2.2 Development of governing dynamic equilibrium equations

and their solutions

2.2.1 General elasticity equations

In the theory of elasticity, the change in the relative position of adjacent points in a body is

called strain and is defined as:

²ij =
1

2

µ
∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xi

∂ul
∂xj

δkl

¶
(2.1)

where ui stands for particle displacement in the direction i, xi is the unit vector in the direction

i, δkl is the Kroneker delta function, which is equal to 1 when k = l and 0 otherwise, and ²ij
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is the strain where the first subscript indicates the direction of the axis perpendicular to the

plane in question and the second indicates the direction of the strain. In most of the engineering

applications, small deformations are prevalent i.e. the magnitudes of the unit elongations and

strains are in the order of 10−3 or less. For small strains the second order terms in equation 2.1

are negligible. Thus, by disregarding the last term in equation 2.1 the general equation which

is applicable throughout this dissertation will be in the following form:

²ij =
1

2

µ
∂ui
∂xj

+
∂uj
∂xi

¶
(2.2)

Figure 2-1 represents, the components of stress and strain in a solid in the general form. Also the

displacements of any point “p” may be resolved parallel to the axes 1, 2 and 3 into components

u1, u2 and u3. In case of linear strains, it is assumed that a line element remains a straight line

Figure 2-1: Components of strain (a) and stress (b) acting on an infinitesimal rectangular
parallelpiped.

after the deformation. More precisely, For a linear elastic material, dilatation, which defines

the increment of volume per unit of volume, can be expressed as:

∆ = ε11 + ε22 + ε33 =
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

(2.3)
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In general the motion of a point in a body is governed by a combination of distortion effects

(2.2) and rigid-body rotation effects defined as:

Ωij =
1

2

µ
∂ui
∂xj
− ∂uj

∂xi

¶
(2.4)

If the process of deformation does not create cracks or holes in the body the deformation is

called compatible. Therefore, the body will remain continuous after the deformation. For

linear strain these limitations generate six independent equations (compatibility equations) in

the following form:
∂2²jk
∂xi∂xj

+
∂2²il

∂xj∂xk
− ∂2²ik

∂xj∂xl
− ∂2²jl

∂xi∂xk
= 0 (2.5)

all the parameters are defined before. Consider a body, which is in equilibrium under a system

of external forces Qi. Passing a fictitious plane through any point of this body, will divide it

into two parts, where each of them will be in equilibrium under the applied forces and the effect

of the separated part. This effect, called stress, is assumed to be continuous and distributed

over the surface of intersection. Considering Newton’s laws of motion the stresses (σij) at any

point should satisfy the following equilibrium equations:

∂σij
∂xj

+ Fi = ρai (2.6)

σi,j = σji (2.7)

where F i is the body force, ρ is the mass density of the body and ai is the component of

the acceleration in the direction i. Although the stress components exist only in the deformed

state of the body, for small deformations, it is assumed that there is no difference between the

pre-deformation and post deformation areas and element directions. The stresses and strains

are related through constitutive laws. For linear isotropic linearly materials this law is called

the Generalized Hook’s law and is given by:

σi,j = 2µεij + λδij∆ (2.8)
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where ∆ is the dilatation as defined in 2.3, δij is the Kronecer delta function. µ and λ are

Lame’s constants and are independent from each other. In engineering terminology the two

independent constants that are commonly used are E, Young’s modulus and ν, Poisson’s ratio.

In geotechnical engineering it is very common to use the shear modulus of the soil (G) and

the Poisson’s ratio (ν)as the two independent constants. The relation between various elastic

constants are tabulated in . The parameter K is called Bulk modulus and is a measure of the

change in volume per unit volume due a spherical stress.

Table 2.1: Relations between the various elastic constants

Constant Basic Pair
λ, µ = G E, υ K,µ

λ λ υE
(1+υ)(1−2υ)

3K−2µ
3

µ = G µ = G E
2(1+υ) µ

K 3λ+2µ
3

E
3(1−2υ) K

E µ(3λ+2µ)
λ+µ E 9Kµ

3K+µ

υ λ
2(λ+µ) υ 3K−2µ

6K+2µ

At each point, there are three equilibrium equations, six stress—strain relationships, and

six strain-displacement relationships. Therefore, the total number of available equations is 15.

Further, at each point there are six stress components, six strain components and 3 displacement

components. Thus at each point 15 unknowns and 15 equations exist. Navier substituted the

equations for strain (2.2) into the stress-strain relation (2.8) and that result into the stress

equations of motion. The results are called Navier’s equations and are vastly used in wave

propagation problems. The implicit form of the Navier equations is:

µ∇2u+ (λ+ µ)∇4+F = ρü (2.9)

where ∆ is dilatation as defined in 2.3, F is the vector of body forces, and the Laplacian

operator is defined as:

∇ = ∂

∂x1
+

∂

∂x2
+

∂

∂x3
(2.10)

Recalling the definition of rotation (2.4) the equation (2.9) can be rewritten as:
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(λ+ µ)∇4− 2µ∇×Ω+F = ρü (2.11)

The latter form displays the dialation and rotation in an explicit form and its results is valid

in any curvilinear coordinate system.

In general, a problem of elasticity consists of finding a function that satisfy the Navier

equations at any point within the body, and the boundary conditions. There is no need to

check the compatibility since the strains are obtained from the displacements. Commonly these

equations are solved by the aid of potential functions.

For linear materials subjected to small strains the principle of superposition is applicable.

This principle states that if the developed stresses in a linear elastic body subjected to a set of

external forces F i, is σij , and due to another set of external forces F’ i is σ0ij , then the stresses

developed in the body due to the combined effect of F i+F’ i will be σij + σ0ij .

In many practical cases, the behavior of three dimensional medium is studied in a 2D plane.

Two different plane states are defined in the theory of elasticity to estimate the behavior of

three dimensional medium. These states are plane-strain and plane-stress. Generalized plane

strain state requires that all the planes initially normal to Ox3 (2-1) remain normal to it and

that all straight lines initially parallel to Ox3 remain parallel to it after deformation. These

conditions are given by:

u1 = u1(x1, x2), u2 = u2(x1, x2) (2.12a)

u3 = u3(x3) (2.12b)

if u3=0 the body is in plain strain state; otherwise, it is in a state of generalized plain strain.

In the state of plane stress:

σ13 = σ23 = σ33 = 0 (2.13a)

σ11 = σ11(x1, x2), σ22 = σ22(x1, x2), σ12 = σ12(x1, x2) (2.13b)
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Beside the mentioned plain states, in some cases displacements may take place in planes

through an axis and be the same in all such planes[14]. This case defines an axisymmetric

condition and is best defined in cylindrical coordinates r, θ and z, by the equations:

uθ = 0 (2.14a)

∂ur
∂θ

=
∂uz
∂θ

= 0 (2.14b)

2.2.2 Waves in unbounded media

In an unbounded media, boundary interactions are not possible. Although this is not a real

case, it can be used to introduce the study of wave propagation. The equations of motion for the

infinite medium hold for any stress-strain relationship. For a linear elastic medium, the solution

of the Navier’s equations in the absence of body forces must satisfy all the necessary conditions.

By simple mathematical manipulations, the Navier equations yield the wave equations [10, 12]:

(λ+ 2µ)∇24 = ρ
∂24
∂t2

=⇒ ∇24 =
1

C2p

∂24
∂t2

(2.15a)

µ∇2
µ
∂ui
∂xj
− ∂uj

∂xi

¶
= ρ

∂2

∂t2

µ
∂ui
∂xj
− ∂uj

∂xi

¶
=⇒ ∇2Ω = 1

C2p

∂2Ω

∂t2
(2.15b)

Equation 2.15a describes a dilatational wave travelling with a velocity Cp in the interior of

an elastic body; whereas, equation 2.15b shows a rotational wave traveling with a speed Cs.

These velocities are defined as:

Cp =

s
λ+ 2µ

ρ
=

s
E

ρ

1− υ

(1 + υ) (1− 2υ) (2.16a)

Cs =

r
µ

ρ
=

s
G

ρ
(2.16b)

Any wave propagating through an isotropic elastic medium must travel with one of the

above velocities. The equations are uncoupled that means the two waves exist independent.
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Volumetric waves, involving no rotation, propagate at Cp; whereas, rotational waves, involving

no volume changes, propagate at Cs. Dilational waves are also called irrotational or primary

waves (p-waves), and rotational waves are named equi-voluminal, distortional, and secondary

waves (s-waves). Considering 0 ≤ ν < 0.5, it is concluded that always Cp > Csand their ratio

can be expressed as:

κ =
Cp
Cs

=

µ
λ+ 2µ

µ

¶ 1
2

=

µ
2− 2ν
1− 2ν

¶ 1
2

(2.17)

2.2.3 Waves in homogeneous semi-infinite media

It was shown that within an infinite elastic medium only two types of elastic waves can prop-

agate. However, the situation is quite different in a bounded media such as in a half- space.

When an elastic wave encounters a boundary, part of it’s energy is reflected back in the form

of the incident wave. Further, mode conversion occurs i.e. the incident wave converts into

other types of waves on reflection. In 1885, Lord Rayleigh [15] showed that due to the inter-

action between a surface and an incident elastic wave - no matter dialational or rotational -

in a homogeneous semi-infinite medium, another type of wave is generated that its motion is

concentrated in a shallow zone near the free surface. To describe the fore-mentioned behavior,

consider a plane harmonic wave, i.e. exp(iωt), propagating in a half-space x3 > 0 , the x1 − x2
plane (x3 = 0) is the free surface, and x3 directs downward, towards the interior of the body.

For plain strain case, u2 = ∂
∂x2

= 0 and Navier equations (2.9) can be solved with two potential

functions, Φ and Ψ defined as:

u1 =
∂Φ

∂x1
+

∂Ψ

∂x3
(2.18a)

u3 =
∂Φ

∂x3
− ∂Ψ

∂x1
(2.18b)

Substituting these equalities into the definitions of dialation (2.3) and rotation in x1 − x3
plain (2.4) gives:

13



∆ = ∇2Φ (2.19a)

Ω13 = ∇2Ψ (2.19b)

These equations show that Φ and Ψ are associated with dialation and rotation respectively.

Substitution of the expressions for u1and u3 (2.18) into Navier equations (2.11) with no body

force (F = 0) gives:

∇2Φ =
1

C2p

∂2Φ

∂t2
(2.20a)

∇2Ψ =
1

C2s

∂2Ψ

∂t2
(2.20b)

For the semi infinite media the boundary conditions are expressed as:

σ33 = 0 and σ21 = 0 at y = 0 (2.21)

General solution for the case of the above equations are in the form:

Φ = F (x3)e
i(ξx1−ωt) (2.22a)

Ψ = G(x3)e
i(ζx1−ωt) (2.22b)

where F and G are general functions of x3, i =
√
−1, ξ and ζ are wave numbers in horizontal

direction as shown in Fig. 2-2, and ω represents circular frequency.

Substitution of 2.22 into 2.20 results in two different cases. Case 1 gives the solution for

reflected waves, and case 2 leads to the surface wave solution. Each case will be studied

separately.
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Figure 2-2: Incident and reflected wave system for dialatational (a) and rotational waves (b)

Case1:

d2F

(dx3)
2 + α2F = 0 (2.23a)

d2G

(dx3)
2 + β2G = 0 (2.23b)

where

α2 =
ω2

C2p
− ξ2 (2.24a)

β2 =
ω2

C2s
− ζ2 (2.24b)

From Fig. 2-2 it is observed that α and β are the wave numbers in the vertical direction.
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Consequently, the plain wave solution for dialation and rotation will be:

Ω = AIe
i(ξx1−αx3−ωt) +ARe

i(ξx1+αx3−ωt) (2.25a)

Ψ = BIe
i(ζx1−βx3−ωt) +BRe

i(ζx1+βx3−ωt) (2.25b)

where all the parameters are explained before. A and B are the amplitudes of dialational

and rotational waves respectively. The subscription I corresponds to the incident wave and R

indicates the reflected wave. Thus, each of equations 2.25 shows an incident wave moving in +x1

and −x3 direction and a reflected wave moving in +x1 and +x3 direction (2-2). Introducing the

obtained results for Ω and Ψ into the boundary conditions (2.21) will give the ratios between

the amplitudes of the incident and reflected waves. Achenbach [13] provides details of the

corresponding amplitude ratios and partition of energy among each reflected wave.

Case2:

Another case can be considered in which:

α2 = −α2 (2.26a)

β
2
= −β2 (2.26b)

which results in:

d2F

(dx3)
2 − α2F = 0 (2.27a)

d2G

(dx3)
2 − β

2
G = 0 (2.27b)

The solution of 2.27 consists of two waves one with exponentially increasing and one with

exponentially decreasing amplitude with depth. As the exponentially increasing part violates

the principal of conservation of energy, it is disregarded, thus the solution for dialation and

rotation will be in the following form:
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Ω = Ae−α
2x3eiξ(x1−CRt) (2.28a)

Ψ = Be−β
2
x3eiζ(x1−CRt) (2.28b)

where A and B are the amplitudes, CR is the velocity of the generated surface wave, and

the rest of the parameters are defined before. Substitution of the obtained results for the

potential functions into the relations for displacements (2.18) results in the following forms of

displacement functions:

u1 =
³
iξAe−αx3 − βBe−βx3

´
eiξ(x−CRt) (2.29a)

u3 = −
³
αAe−αx3 + iξBe−βx3

´
eiξ(x−CRt) (2.29b)

and applying the boundary conditions (2.21) at the surface leads to the amplitude ratios:

A

B
=

2iβξ

β
2
+ ξ2

=
β
2
+ ξ2

2iαξ
(2.30)

consequently the surface waves frequency equation will be in the following form:

³
β
2
+ ξ2

´2
− 4αβξ = 0 (2.31)

substituting the expressions for α and β gives the following equation, from which the ve-

locity of surface waves CR is determined:

µ
2− C

2
R

C2s

¶2
= 4

µ
1− C

2
R

C2p

¶ 1
2
µ
1− C

2
R

C2s

¶1
2

(2.32)

For real media (0 < ν < 0.5), the above equation has only one real root that satisfies all

the physical and mathematical requirements [16]. The corresponding wave is called Rayleigh

wave that propagates with a velocity CR and is confined to depths close to the surface. Detail

review of major characteristics of Rayleigh waves will be provided later on in this chapter.
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2.2.4 Dispersion curves, group and phase velocities

Relations, which give the apparent velocity, Cx, as a function of angular frequency ω or hori-

zontal wave-number kx, are called dispersion relations or period equations [17]. ω is defined as

2π
f where f is frequency and kx is defined as

2π
λ where λ is the wave length. In linear problems,

dispersive waves usually are recognized by the existence of elementary solutions in the form of

sinusoidal wave trains:

φ(x, t) = Aei(ωt−kxx) (2.33)

To satisfy the equilibrium equations, ω and kx should be related by an equation as:

G(ω, kx) = 0 (2.34)

In each problem the function G is determined by applying boundary conditions and solving

the corresponding equations. Commonly, solution of equation 2.34 leads to different values of

kx for a single value of ω. These are called overtones or different modes. Physically, different

modes indicate that a specific frequency can propagate with different velocities. The velocity

with which a single frequency propagates in a media is called phase velocity (c) and is defined

as:

c =
ω

k
(2.35)

Further, in a wave that is composed of a narrow band of frequencies the packet of energy

travels with an apparent velocity which is called group velocity and is defined as:

U =
dω

dk
= c+ k

dc

dk
(2.36)

Equation 2.36 states that group velocity is the limit of phase velocity ([18]). Moreover, the

above equation shows the relation between the phase and group velocities. In a non-dispersive

media the phase velocities are the same for all frequencies, thus dc
dk = 0 and phase velocity is

equal to group velocity. In a dispersive media and in the presence of wave with a wide band

frequency, group velocity looses most of its applicability.
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2.3 Seismic waves: characteristics and behavior

2.3.1 Body waves

As stated in previous sections, two types of mechanical waves - p- and s-waves - can propagate

through the body of a media. The physical reason is that there are two fundamental ways

that an elastic body can be strained. First, by volume change without change of shape, i.e.

dilatation; second, by change of shape without change of volume„ i.e. distortion [19]. When a

wave traverses a media it generates a field along its path. In mechanical waves a displacement or

velocity field is generated. Therefore, each wave is characterized by two directions. One is the

direction of wave propagation and the other is the direction in which the field that propagates

changes [17].

P-waves generate successive compressions and elongations along their propagation path.

Their propagation path is parallel to the displacement field that they cause in the media (2-

3). These waves are associated with volume change, and are fastest waves that propagate

through a media. As shown in (2.16a) their velocity is a function of the elastic modulus (E),

density (ρ) and the Poisson ration of (υ) the media. In s-waves, the direction of propagation

is perpendicular to the direction of particle motion (Fig. 2-3). They cause pure rotation in

the media without any volume change. s-wave velocity is a function of shear modulus (G), and

density (ρ). Thus, they can not propagate through fluids, i.e. air or water, because fluids do

not have any shear resistance. Their velocity is about 60% of the p-wave velocity of the media.

Table 2.2 provides some typical values of the p-wave velocity in different materials. Generally,

there are two independent shear wave fields. SV and SH waves are vertically and horizontally

polarized , i.e. their displacement field is along the x3 and x2 directions, respectively (Fig. 2-2).

Table 2.2: typical p-wave velocities in earth materials

Material Cp (km/s) Material Cp (km/s)

Sand (dry) 0.2− 1.0 Granite 5.5− 6.0
Sand (Saturated) 1.5− 2.0 Gabro 6.5− 7.0

Clay 1.0− 2.5 Air 0.3

Glacial till (Saturated) 1.5− 2.5 Water 1.4− 1.5
Sandstones 2.0− 6.0 Steel 6.1

Limestones 2.0− 6.0 Concrete 3.6
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Figure 2-3: p-waves cause motion along the direction of propagation and s-waves cause motion
perpendicular to the propagation path.

2.3.2 Surface waves

In a semi infinite media other types of waves can exist, beside body waves. These waves are

generated due to the interaction of body waves and the surface and their energy is concen-

trated close to the surface. In 1885, Rayleigh [15] mathematically modeled the motion of plane

waves in an elastic half space, and predicted the existence of surface waves. Later in 1911,

Love [20] discovered another important surface wave, while investigating the mechanical wave

propagation in a half space overlaid by a layer. Rayleigh and Love waves may be regarded as

the result of interference of waves incident and reflected at the surface. As the surface waves

spread in two dimensions, geometrical damping affect them less than body waves, which spread

in three dimensions. Another important characteristic of surface waves is their dispersion. In a

nonhomogeneous semi infinite medium, both Rayleigh and Love waves are dispersive, i.e. dif-

ferent frequencies travel with different velocities. Generally, the apparent velocities of different

elastic waves in descending order is Cp > Cs > CL > CR; whereas, the resulted amplitudes at

the surface are in the reverse order. The following section explains the behavior of Love and

Rayleigh waves in more detail.
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Love waves

Interaction of SH waves and free surface in a media that its velocity increases with depth, gen-

erates Love waves. Love waves can not develop in a homogeneous half space. Their deformation

is parallel to the surface and decrease with depth exponentially (2-4). From a physical view

point, the generation of Love waves are due to the entrapment of SH waves energy near the

surface.

Figure 2-4: Surface deformation due to the propagation of Love waves
(http://www.geo.mtu.edu)

Love waves are dispersive. In the case of a half space overlain by a layer with a thickness of

h, the dispersion relation is in the form [17]:

tan (ωη) =

⎛⎝µ1
q
1− C2x

C2s2

µ2

⎞⎠µ h

Cxη

¶
(2.37a)

where η =
h

Cx

s
C2x
C2s1
− 1 (2.37b)

where µ1 and µ2 are the shear modulus of the layer and half space respectively, Cx is Love

wave velocity, Cs1 is the shear wave velocity in the layer, and Cs2 is shear wave velocity in the

21



half space. For energy to be trapped near the surface the calculated Love wave velocity should

be bounded as: Cs1 < Cx < Cs2. To show the application of equation 2.37 consider a half-space

overlaid by a 40 m layer (h). Shear wave velocity in the layer is Cs1 = 390ms and in the half

space is Cs2 = 520ms . The unit density of the layer is ρ1 = 2000 kg
m3 and of the half-space is

ρ2 = 3300 kg
m3 . Figure 2-6 shows the graphical solution of equations 2.37. Each set of graphs

corresponds to a single frequency. In each graph the dashed line show the right side of equation

2.37a and the solid line show the left side of the same equation. Thus, the points at which the

graphs cross each other represent a solution to the equation. For lower frequencies (Fig. 2-5a)

the wave propagates with a single frequency or in just one mode. As the frequency increases

the number of modes also increases. Thus, for a frequency of 19.1 Hz the wave propagates with

three different velocities (Fig. 2-5c). The figures show that as the frequency of the vibration

decreases the velocity of the fundamental mode of vibration (mode 1) gets closer to the velocity

in the half space. For a single frequency with different modes, the higher modes propagate with

a velocity close to the half-space velocity.
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Figure 2-5: Graphical solution of the dispersion of Love waves in a layer over a halfspace.
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Figure 2-6 depicts the deformation patterns corresponding to different modes and frequen-

cies. The figures are generated based on the equations obtained from [17]. The patterns show

that the deformations are confined to a relatively short distance below the surface. Comparing

the results with the calculated velocities (Fig. 2-5) shows that as the velocity increases the

deformations penetrate more into the half-space. Thus, the propagation characteristics of very

low frequencies and/or higher modes of propagation are mostly affected by underlying layers

and not the top ones. This behavior of surface waves is used in non-intrusive testing techniques

to assess the condition of the underlying soil layers.

210-1-2

-80

-60

-40

-20

0
-2 -1 0 1 2 -2 -1 0 1 2

Layer

Half-Space

Mode 1

Mode 1

Mode 2 Mode 1

Mode 2

Mode 3

De
pth

 (m
)

Displacement amplitude

a) f = 6.4 Hz
    = 61 m

b) f = 12.7 Hz
    = 30.7 m

c) f = 19.1 Hz
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Figure 2-6: Displacements due to Love waves in a half space overlaid by a 40 m deep layer.
Graph a shows the displacements due to low frequencies that only excites one mode. Graphs b
and c show that higher freuency Love waves can propagate in more than one mode.

Rayleigh waves

The second type of surface waves is called Rayleigh waves (Fig. 2-7). Their deformation is

retrograde at the surface that changes into prograde at deeper levels of the media. These waves
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are generated due to the interaction of p and SV waves with the free surface. They can exist in

a homogeneous half-space as well as in a layered one. As shown in the previous sections, only p

and SV waves are considered in the mathematical development of Rayleigh waves, because they

completely satisfy boundary conditions and do not interact with the SH waves. Equation 2.32

is the dispersion equation for Rayleigh waves in a homogeneous half-space. It can be seen that

in such a media, velocity is not a function of frequency; hence, Rayleigh wave is not dispersive

in a homogeneous media. Though, similar to Love waves, in a layered medium Rayleigh waves

are dispersive and can propagate in different modes.

Figure 2-7: Surface deformation due to the propagation of Rayleigh waves
(http://www.geo.mtu.edu)

To assure that energy is trapped near the surface, the mathematical solution should ensure

that energy does not propagate away from the free surface. This condition is satisfied when

Rayleigh wave velocity (CR) is smaller than the shear wave velocity (Cs) in the media [17]. In

a non-dispersive media, the following empirical relation gives good estimates of the Rayleigh

wave velocity [16]:

CR =
0.87 + 1.12υ

1 + ν
Cs (2.38)

Rayleigh waves have displacement components both in parallel and perpendicular directions
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to the free surface. Both components decay with depth as a function of e−kxz(equation 2.29)

where z is the depth and kx is the wave number in the direction parallel to the direction of wave

propagation. In fact, the only meaningful wavelength is the one parallel to the free surface,

because the harmonic wave solution applies only in this direction.
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Figure 2-8: Variation of Rayleigh wave displacements with depth. Curves 1 and 2 show vertical
and horizontal displacements respectively. The values of all displacements are normalized to
the value of vertical displacement at the surface. Vertical axis shows depth normalized to the
wavelength.

Figure 2-8 shows the pattern of the displacements due to Rayleigh wave excitations in a

homogeneous medium. after a depth of about 2λ the amplitudes are so small. Hence, it can

be concluded that practically the maximum penetration depth of Rayleigh wave is 2λ. At the

surface, the amplitude of horizontal displacement (curve 2) is about 65% of the amplitude of

vertical displacement. Horizontal displacement changes direction at a depth of about 0.2λ and

its maximum happens approximately at 0.4λ. The maximum of vertical displacement occurs

at a depth of about 0.12λ and the curvature of the displacement pattern changes at a depth of

25



approximately 0.4λ. From the figure it can be concluded that lower frequencies (longer periods)

penetrate deeper into the medium. Thus the properties of deeper layers have mode effects on

lower frequencies. As a rule of thumb Rayleigh waves are very sensitive to the mechanical

properties at depths about 0.4λ [19].

In time harmonic waves the flux of energy, which defines the rate at which energy is com-

municated per unit area, is proportional to material rigidity, and excitation frequency and

amplitude squared [13]. Thus, the power of an excitation and its rate of change at each depth

can be estimated by calculating the square of displacement amplitude at that depth. Summa-

tion of the values over depth results in cumulative energy flux, which is used to evaluate the

penetration depth of Rayleigh waves. Figure 2-9 is based on the following integral equation:

Pz =
1

Ptot

Z z

0
u (z)2 dz (2.39)

where Ptot =

Z zmax

0
u (z)2 dz

In equation 2.39 u(z) can be any displacement component as a function of depth (z), Ptot

is the total energy flux calculated between the surface and maximum depth of zmax. Figure

2-9 shows the cumulative energy flux calculated for horizontal (graph a) and vertical (graph

b) components of displacements. Graph c corresponds to the values calculated for the total

displacement, which is defined as
p
u2x + u

2
z. The upper limit of the integral (zmax) is chosen

to be 2.5λ. The figure shows that the curves are very steep up to a depth of about 0.7λ, after

that the slope decreases, and after a depth of about 1.2λ the curves remain almost with no

significant change. This behavior shows that the energy of Rayleigh wave is confined in a depth

of about 1.0λ to 1.2λ.Thus, it can be concluded that the propagation of Rayleigh waves are

almost irrespective of the properties of the layers located beyond a depth of 1.0λ.

2.4 Damping and attenuation is seismic waves

A decrease in the amplitude of a wave in time, space or both, is called attenuation or damping.

Generally, seismic waves attenuate due to six different processes: geometric or radiation damp-
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Figure 2-9: Variation of cummulative energy flux of Rayleigh wave with depth. Graph a corre-
sponds to horizontal displacement and graph b corresponds to vertical displacement. Graph c
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ing, reflection and transmission at interfaces, scattering, multi-pathing and intrinsic damping.

The first five processes are elastic in which energy is conserved. This means that the integral of

energy over the whole wave field remains constant. Alternatively, in intrinsic damping elastic

energy is not conserved and is converted into heat and other forms of energy. This process is

due to anelasticity, which implies that the permanent deformation of the medium converts part

of the kinetic energy of elastic wave motion into heat.

2.4.1 Geometrical damping

In spherical (i.e. p- and s- waves) or cylindrical (i.e. Rayleigh waves) waves, as the wave moves

forward the size of the wave front increases. Thus, conservation of elastic energy requires that

the density of energy at the surface of the wave front decreases. This phenomena is called

geometrical damping. As Rayleigh wave has a cylindrical front in a half-space, the growing

circumference of its front is a function of 2πr, where r is the distance from source. Thus, the
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energy per unit wave front decreases as a function of 1r to conserve energy, consequently the

amplitude decreases as a function of 1√
r
. In body-waves (p- and s-waves) the front is spherical,

and increases as a function of πr2. Hence, the energy per unit wave front decreases as 1
r2
, and

the amplitude as 1r .

Mathematically the decay in the amplitude of the particle motion (A) due to geometrical

damping between two points at distances r1 and r2 from the source can be expressed as [18]:

A2
A1

=

µ
r1
r2

¶ς

(2.40)

where ς is equal to 0 to plane waves, 0.5 for Rayleigh waves and 1 for body waves. In

conclusion, geometric attenuation attenuates body waves more rapidly than Rayleigh waves.

2.4.2 Reflection, transmission and scattering at interfaces

When a wave propagating through a medium encounters a discontinuity scattering of the wave

might occur. Discontinuity is referred to any change in stiffness or geometry of the media, such

as cavities, cracks, inclusions or free surfaces. Scattering could be in the form of reflection,

refraction, diffraction, and mode conversion. The scattered and transmitted waves have the

same angular frequency as the incident wave, otherwise continuity of the displacements at

interfaces will not be satisfied. Conversely, the transmitted, refracted, reflected and incident

waves might have different wavelengths and amplitudes [17]. In general, the relation between

the amplitudes of the incident and transmitted waves can be stated in the form [18]:

A2
A1

= T (2.41)

where A1 and A2 are the amplitudes of the incident and transmitted waves respectively,

and T is the transmission factor. For body waves encountering an interface, the difference

between the properties across the interface determines the relative amount of the scattered and

transmitted energy. Thus, the transmission coefficient (T ) depends on the product of density

and velocity - acoustic impedance (ρv) - of each media. In cases that body waves encounter

inclusions, such as cavities, the relative size of the cavity with respect to the wavelength of the

incident wave also affects the value of the transmission factor. When the size of the inclusion is

28



much greater than the wavelength (dÀ λ) scattering in the form of reflection, refraction and

mode conversion occurs. On the other hand, if the size of the inclusion is much smaller than the

wavelength of the incident wave (d¿ λ), the wave travels through a medium with properties

that reflects the combined properties of the media and inclusion. In this case energy scattering

is a function of d3ω4.

2.4.3 Intrinsic damping

Intrinsic damping is referred to the mechanisms which convert the mechanical energy into

other types of energy such as heat. This conversion could be because of the developed nonlinear

friction between the molecules and grains, viscoelastic behavior or non-elasticity of the material.

In the earth, intrinsic damping is relatively small specially for low frequencies [19]. Intrinsic

damping is commonly measured by a dimensionless parameter called quality factor as defined

by:

1

Q (ω)
=
∆W

2πW
(2.42)

Thus, Q - sometimes referred to as specific attenuation factor - represents the ratio between

the total stored energy (W ) to the dissipated energy (∆W ) per volume per cycle of vibration.

For high frequencies, Q can be regarded as nonelastic response of earth, and for low frequencies

as viscosity [19]. The amplitude (A) and frequency of vibration (ω) affect the value of Q. For

small strains - in the order of 10−5 or less - Q can be assumed to be independent of vibration

amplitude. Laboratory experiments have shown that in solids, up to relatively high frequencies,

Q is independent of frequency within the engineering accuracy. Thus, it is reasonable to assume

that for a homogeneous sample, Q is independent of frequency at low frequencies. In the upper

mantle of earth an average value of Q is 110 [21]. Q is inversely proportional to attenuation of

the wave, thus a large value of Q indicates a low loss medium and vise versa.

Another parameter that is used to assess the attenuation in a media is attenuation coefficient

as:

α =
ω

2cQ
(2.43)
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where ω is angular frequency, c is velocity and Q is quality factor. α is measured in space

and between two points. Thus, it represents the energy loss per wavelength of the excitation.

As an example, the value of α in granite is from 0.1 to 0.4 km−1. From 2.43 it is evident

that if Q is independent of frequency, α will be a function of first power of frequency. For the

propagation of sinusoidal waves, intrinsic damping is modelled as an exponential decay, thus in

lieu of any other type of damping the effect of intrinsic damping can be shown as:

A2
A1

= e−α(r2−r1) (2.44)

in which, A1and A2 are the amplitudes at locations 1 and 2 respectively, r1 is the distance

between location 1 and the source and r2 is the corresponding distance from location 2. similarly,

the attenuation can be defined as the energy loss per cycle of vibration. This type of attenuation

is called temporal attenuation coefficient and satisfies the following equality [18]:

αtT = αλ (2.45)

where T is the period of the excitation and λ is the wavelength.

Logaritmic decrement is also used to measure the attenuation in lossy media. The definition

as stated in structural dynamics is the natural logarithm of the ratio between the successive

amplitudes in a free vibrating system [22]. In mathematical form logaritmic decrement with

respect to time can be stated as:

∆t = ln

µ
un
un+1

¶
(2.46)

where un is the maximum amplitude at cycle n and un+1 is the maximum amplitude in

cycle n + 1. Likewise, equation 2.46 can be used to define logarithmic decrement in spatial

domain (∆x) . In the latter definition un will be maximum amplitude at location n and un+1

the maximum amplitude at location n + 1. With the above definitions, the relation between

the logarithmic decrement with respect to time and the attenuation factor will be [18]:

α =
∆t
λ

(2.47)
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Granular materials like soil, have very complex structure and no model can completely

describe their behavior under all loading conditions. Kjartansson [23] reviews the theories

related to the attenuation of waves in soil. For small strains two of the most commonly used

mathematical models are Maxwell and Kelvin-Voigt models [21]. In both of these models

a viscosity parameter (η) is defined and the stress-strain relations are adjusted to take into

account the effect of viscosity. The defined relations are:

d²

dt
=

1

µ

dσ

dt
+

σ

η
Maxwell model (2.48a)

σ = µ²+ η
d²

dt
Kelvin-Voigt model (2.48b)

where ² is strain component, σ is the corresponding component of stress, and µ is an elastic

constant in general that in this context it is the shear modulus G. Based on the above definitions

the quality factors are:

Q =
ωη

G
Based on Maxwell model (2.49a)

Q−1 =
ωη

G
Based on Kelvin-Voigt model (2.49b)

The aforementioned models are considered to be constant Qmodels. Thus, it concludes that

viscosity (η) is a parameter that changes with frequency [24]. The corresponding attenuation

factor in Maxwell model is frequency independent and in Kelvin-Voigt model is function of

second power of frequency. Hardin [25] has shown that for steady-state vibration the logarithmic

decrement with respect to time and space can be defined by:

∆t =

2π

½
1−

h
1−

¡ωη
G

¢2i 12¾
ωη
G

(2.50a)

∆x = 2π

⎧⎪⎨⎪⎩
h
1 +

¡ωη
G

¢2i 12 − 1h
1 +

¡ωη
G

¢2i 12
+ 1

⎫⎪⎬⎪⎭
1
2

(2.50b)

31



where all the parameters are defined previously. Combining the equalities 2.49 and 2.50, it

will be clear that for Maxwell and Kelvin-Voigt models the values of logarithmic decrement are

independent of frequency. Further, Hardin [25] shows that in sands subjected to small strains

and confining pressures larger than 2 psi (13.7 kPa) the values of ∆x and ∆t are very close and

can be used interchangeably.

2.4.4 Total attenuation

Based on the previous discussions, the combined contributions of all types of dampings can be

expressed in mathematical terms as [18]:

A1
A2

=

µ
r2
r1

¶ς

eα(r2−r1)T−1 (2.51)

For Rayleigh waves ς = 0.5, thus calculation of the logarithmic decrement of total attenua-

tion (equation 2.51) leads to:

∆x = 0.5Ln

µ
r2
r1

¶
+ α (r2 − r1)− Ln (T ) (2.52)

This relation shows that in soils where attenuation coefficient (α) is small, the effect of

intrinsic damping is conspicuous where r2 ≫ r1. Further, in a homogeneous media where

T = 1 the only term that affects the amplitudes in short distances is the geometrical damping.

Geometrical damping is the only parameter that has exact mathematical relation. Hence, to

remove its effect each response can be multiplied by a calculated factor based on the ratio

r2
r1
and the wave type (ς). In this way, in a nonhomogeneous media, by removing the effect

of geometrical damping and neglecting the effect of intrinsic damping for short distances the

logarithmic decrement can be used to study the effect of inhomogeneities on the responses.

2.5 Forced vibration of an elastic semi infinite media

The analysis presented in previous sections corresponds to the steady-state vibration of an

elastic half space. In many practical problems, the case of a forced vibration is more important.

Although the steady-state vibrations case can be solved fairly easily, the solution of forced
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vibrations involves complicated integrals that in many cases reduce to singular ones without

a closed formed solution. Hence finding a general solution for all the practical cases is not

possible.

The classical analysis in this area was performed by Lamb [26]. He considered a half space

subjected to line and point loads on the surface and within the medium. Harmonic loadings

were considered, and superposition technique was used to obtain results for pulse loadings.

Ewing et al. [27] presented a thorough review of the analysis of this problem. Appendix A,

contains the results of a few of these closed formed solutions.

In general, all the solutions confirm the existence of surface waves, which have larger compo-

nents at the surface, in comparison with p- and s-waves. Table 2.3 shows that the geometrical

damping is smaller for surface waves than for body waves because of the cylindrical nature of

the propagation of surface waves.

Table 2.3: Amplitude distance relations in Lamb’s problem (Bath 1984)

Force type Medium Rayleigh p- s-

Line Infinite N/A r−
1
2

Line (normal or tangential) Semi-infinite half-space r0 r−
1
2 ∗

Point Infinite N/A r−1

Point Semi-infinite half-space r−
1
2 r−1∗

∗- In the original table these values are stated differently and are modified here

Cases 3 and 7 of Table A-2 (Appendix A) are of special importance in this study. These

solutions are used to calibrate the developed numerical models. The surface displacements

at the surface of a 3D semi-infinite elastic media are shown in Figure 2-10. The media is

subjected to an axisymmetric loading (case 7 in Appendix A) and the presented displacements

correspond to the effect of Rayleigh waves only. Details of the equations used to calculate the

displacements in figure 2-10 are presented in Mathgram 2-1 (Appendix B). Farther from the

source, the decreasing trend of the amplitudes is due to the effect of geometric damping, which

is a function of r − 1
2 (Table 2.3). These solutions are only valid at large distances from the

source. Details of the loading function for this case are presented in Chapter 6.
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Figure 2-10: Lamb solution for forced vibration of a semi-infinite medium. Plot (a) shows
the horizontal displacements and plot (b) shows the vertical displacements at distance x from
source.
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Chapter 3

Signal processing techniques

A large number of the physical quantities can be represented by a function that varies with

one or more independent variables. The desired part of this function is called signal and the

undesired part is called noise. Usually, a signal contains information about the behavior or

nature of the phenomenon. For example, in geophysical techniques the displacement or velocity

of the ground is measured and recorded as a function of time and/or position. It is shown that

these recorded signals carry valuable information about the geological structure of the earth.

Signal processing deals with functions of time, frequency, space, and etc. without considering

the physical concepts behind them. In this context, if the signal is decomposed into shifted

and scaled impulses (or step functions) the study is performed in time domain. Likewise, if

the signal is decomposed into sinusoids with different frequencies, the study is conducted in

frequency domain [28].

3.1 Time domain analysis

In most of the engineering applications, signals are collected in time domain using a digital

data acquisition system (DAQ). Digital data are the ones sampled at discrete time intervals,

or they can be inferred as the intermittent observation of a continuous or discrete parameter.

In mathematical term, a digitized signal is represented by a continuos function multiplied by a

summation of delta functions repeated at a sampling interval ∆t (Comb function). Figure 3-1

shows the effect of under-sampling or aliasing on the recorded signal. As it is seen the recorded
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Figure 3-1: Effect of low sampling rate on the shape of the recorded signal.

digitized signal has a larger frequency than the actual one. To capture all the characteristics

of the actual signal the sampling rate should be sufficiently small. Generally, to avoid aliasing

in the recorded signal, the sampling rate (∆t) or sampling frequency (fs) should satisfy the

Nyquist criterion:

fs =
1

2∆t
> fNyquist =

2

T
(3.1)

where T is the largest period available in the signal. The sampling theorem states that

in order to regenerate a continuous signal from discrete observations, the function should be

sampled at least twice per period. In practice a minimum number of 10 sampling points per

wavelength is recommended [28].

An important concept that plays a major role in the time and frequency domain analysis is

the convolution integral as defined below:

x (t) ∗ y (t) =
Z +∞

−∞
x(τ)y(t− τ)dτ
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The convolution operator is cumulative, associative and distributive. Convolution, along

with other tasks, such as windowing, stacking, and smoothing using moving averages have

applications in smoothing the noisy signals, modulating amplitude and frequency, finding simi-

larities between the signals, removing unwanted reflections and refractions, separating different

events in a signal and etc. A discretized form of some of these applications will be covered later

in this chapter. Cartwright [29] provides a more in-depth review of the subjects.

3.2 Frequency domain analysis

In mathematics, transformations are used to change the study domains. This domain change,

enables us to perform some tasks in an easier manner, gain better insights into the behavior

of some parameters, or define and measure new parameters. Fourier transforms are used to

change the domain of the study from time to frequency. In a physical context, this transform can

represent a change from time to frequency, or from distance to wave-number (spatial frequency).

The basic assumption is that any time series can be decomposed into a sum or integral of

harmonic waves with different frequencies. When different harmonics behave differently, Fourier

analysis makes it possible to study the behavior of each individual harmonic. The general

definition of Fourier transform is:

f(t) =
1

2π

Z +∞

−∞
F (ω)eiωtdω Fourier transform (3.2a)

F (ω) =

Z +∞

−∞
f(t)e−iωtdt Inverse Fourier transform (3.2b)

in which ω is angular frequency, and F (ω) is the Fourier transform of the time signal f (t).

For real valued f(t) functions, the Fourier transform will be a complex number in the following

form:
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F (ω) = |F (ω)| eiφ(ω) (3.3a)

where

|F (ω)| =

q
Re [F (ω)]2 + Im [F (ω)]2 Amplitude spectrum (3.3b)

φ (ω) = tan−1
Ã
Im [F (ω)]2

Re [F (ω)]2

!
Phase spectrum (3.3c)

Equation 3.3 shows another advantage of using Fourier transforms. To completely describe

a cosine function in time domain a large number of points are required (i.e. 10 points per

wave-length), but representation of the same function in frequency domain requires just two

complex numbers [17]. Thus, the frequency domain description of a function is simpler.

The evaluation of Fourier integrals for discretized signals is performed by using discrete

form of Fourier transforms (DFT) or Fourier sums:

Xu =
N−1X
i=0

xie
−j(u 2πN i) (3.4a)

xi =
1

N

N−1X
u=0

Xue
j(u 2πN i) (3.4b)

where j =
√
−1, xi is the amplitude of the recorded signal at time i, N is the total number

of records, and Xu is the Fourier amplitude of the signal at frequency fu. The analysis equation

(3.4a) is used to transform the signals from time into frequency domain, and to perform the

inverse transformation the synthesis equation (3.4b) is used. In practice fast Fourier transform

(FFT), which is an efficient numerical procedure, is used to evaluate DFT sums [30]. The main

assumption in FFT is periodicity of the signals. In other words, any recorded signal has a

period of repetition equal to its recording duration. In some cases, this assumption might cause

some discrepancies in the evaluated frequency contents. In the FFT algorithm, the number of

available points in time should be a power of two.
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3.2.1 Properties of Fourier transform

The properties of Fourier transforms, presented here, are extensively used in signal processing.

These properties are recalled here without any proof. Hsu [31] and Kreyszig [32] provide more

coverage of the theoretical background of these properties. In all the following explanation f (t)

and g (t) are general time functions, F (ω) and G (ω) are the corresponding Fourier transforms,

a and b are constants, and z and z−1 are the Fourier and inverse Fourier operators respectively..

• Linearity: z [af (t) + bg (t)] =⇒ aF (ω) + bG (ω)

• Shift in time: z [f (t− t0)] =⇒ e−iωt0F (ω)

• Shift in frequency: z−1 [F (ω − ω0)] =⇒ eiω0tf (t)

• Scaling in time and frequency: z [f (at)] =⇒ 1
|a|F

¡
ω
a

¢
• Derivative: z

³
df(t)
dt

´
= iωF (ω)

• Convolution: f (t)∗g (t) = F (ω)G (ω) .Convolution in time is equivalent to multiplication

in frequency and vise versa.

• Parseval’s theorem:
R +∞
−∞ |f(t)|2 dt = 1

2π

R +∞
−∞ |F (ω)|2 dω. This theorem relates the energy

contents in time and frequency domains.

• Fourier transform of a signal + reflection: z [g (t) + ag (t− t0)] =⇒ G (ω)
¡
1− ae−iωt0

¢
.

Figure 3-2 explains the interpretation of this equality. In the bottom plots a signal in time

domain and its Fourier transform are depicted. In the top plots the same signal is shown

in time domain and a late reflection is added to it. As it is seen, the effect of reflection

in frequency domain is seen as successive peaks and valleys, though the general trend of

the Fourier responses is not changed.

3.3 System: definition and characteristics

Any mathematical model that transforms an input signal (excitation) into an output signal

(response) is called a system [31]. A system is called linear if it satisfies the following conditions:

39



Time Frequency

Am
pli

tu
de

Am
pli

tu
de

Signal g(t)

Signal g(t) + 
late reflection

Fourier transform 
of the signal

Fourier transform 
of the signal + reflection

Figure 3-2: Effect of reflection on the frequency response of a signal.

If Tx1 = y1 ∧ Tx2 = y2 then (3.5)

T (x1 + x2) = y1 + y2 and T (αx1) = αy1

Where T is the system operator. Equation 3.5 states that in a linear system the superposition

principle is valid. If a time shift in the input causes the same time shift in output, the system is

called time-invariant. In other words, in a time invariant system the response to a specific input

does not change with time. Almost all the civil engineering systems are inherently time-variant,

though for short perturbations they can be considered time invariant [28]. In general, when the

duration of the input signal is much smaller than the characteristic period of the system, the

system can be considered time-invariant. Another characteristic of a system is its stability. If

a bounded input results in a bounded output the system is called stable.
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Any linear time-invariant system (LTI) can be characterized by its response to an impulse

function -i.e. δi = 1 if i = 0 and δi = 0 otherwise. To rephrase, if the impulse output of an LTI

system (h (t)) is known, its output to any other excitation can be predicted. The output of an

LTI system is defined as:

y (t) = x (t) ∗ h (t) response in time domain (3.6a)

Y (ω) = X (ω)H (ω) response in frequency domain (3.6b)

where x (t) and y (t) are the input and output of the system in time domain, X (ω) and

Y (ω) are the Fourier response of the input and output respectively, and h (t) and H (ω) are

the impulse response of the system in time and frequency domains respectively. Equation 3.6

clearly shows the advantage of investigating the behavior of a system in frequency domain,

where instead of calculation of a convolution integral in time to obtain the output, the same

response can be obtained by a simple multiplication in frequency domain. Hsu [31] shows that

in an LTI system the amplitude and phase spectra (|Y (ω)| and φY (ω))of the output are related

to the corresponding values of the input and impulse response as:

|Y (ω)| = |X (ω)| |H (ω)| (3.7a)

φY (ω) = φX (ω) + φH (ω) (3.7b)

The function |H (ω)| is called the gain of the system. It can be easily shown that if a system

is to transmit the input without any change in the shape of the signal, i.e. just a change in the

amplitudes and shift in time, the gain and phase spectra of the system should be:

|H (ω)| = const. (3.8a)

φH (ω) = −jωt0 (3.8b)

The concept introduced in equation 3.8 is called distortionless transmission, and is used in
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the design of data acquisition systems and receivers to assure that the collected data are not

distorted. In practice, all the systems have a bandwidth in which distortionless transmission is

possible and beyond that the responses are distorted.

Generally, two types of problems can be defined with respect to the systems. Forward prob-

lems are the ones in which the input and the desired range of outputs are known in advance.

The objective of the analysis is to design the system parameters such that the responses fall in

the acceptable range. In civil engineering, this can be seen in the design of structures under

estimated loadings to satisfy the serviceability and strength requirements. The other type of

problem is called inverse problems, where the output and the input are available, or can be

measured, and the system parameters and characteristics are of interest. An important appli-

cation of this problem is in the non-intrusive evaluation of structures or soil. In non-intrusive

assessments, the structure is excited by a source and the responses are recorded. Processing of

the recorded signals along with the source information reveal the structure properties.

3.4 Processing of discrete signals

As mentioned before, almost all of the signals that are collected and processed are digitized.

Digitization is equivalent to multiplying a continuous function in time with a comb function, or

convolving it with a comb function in frequency domain. This task affects the amplitudes of the

impulse response of the system, thus the recorded amplitudes are a function of the sampling

frequency. It is well understood that as far as the Nyquist criterion is satisfied the frequency

content, the rate of energy loss, and the output for an input are irrespective of sampling rate

[28].

The length of a recorded signal determines its resolution in frequency. For a recorded signal

with sampling rate ∆t, and N number of recorded points the uncertainty principle states that

higher resolution in frequency (∆f) can be achieved, only in the expense of resolution in time.

In other words:

∆f ×∆t = 1

N
(3.9)

This principle infers that a longer signal in time will give a better resolution in frequency;

42



however, in practice the effect of noise on longer signals are more notable than on short ones. As

a solution to this problem, zeros are added to the tail of a signal (zero-padding) to increase its

fundamental period (N∆t). Zero-padding is also used to obtain the required number of points

for FFT algorithm. Further, zero-padding helps to solve the problems associated with the

periodicity assumption in FFT. Zero-padding results in a denser sampling-frequency; although,

it just performs a smooth interpolation within the range of actual resolution [17].

In a forward problem the input to the system (i.e. xi in time or Xu in frequency) and

the impulse response of the system (i.e. hi in time and Hu in frequency) are known. Then,

convolution operation is used to determine the output of the system (i.e. yi in time or Yu in

frequency). Convolution integral in its discrete form is demonstrated as:

yi =
N−1X
k=0

xkhi−k (3.10)

To obtain the time lag, or determine the similarities between two signals cross-correlation

can be used. Cross-correlation is the convolution between the first signal and the time reverse of

the second one. Similarly, in frequency domain cross-correlation is represented by multiplication

of the Fourier response of the first signal and the complex conjugate of the second signal. Figure

3-3a shows two signals in time domain. The first signal is a sinusoid and the second is the same

sinusoid modulated with a higher frequency and shifted in time. The calculated cross-correlation

function for the two signals is also depicted in the same figure. As can be seen, maximum of

the cross-correlation happens exactly at the beginning of the second signal. This behavior of

cross- correlation function is used to evaluate the time delay between different signals. In figure

3-3b, the Fourier amplitudes of the two signals along with the Fourier amplitudes of the cross-

correlation function (cross-spectral density) are depicted. It is observed that the notable amount

of energy of the cross-spectral density is concentrated in the region that the two signals have

common frequencies. Thus, cross-spectral density functions are used to evaluate the similarities

between different signals.

Cross-correlation of a signal with itself is called auto-correlation. Auto-correlation enhances

the information about the amplitude spectrum of a signal without taking into account phase

spectrum information [17]. The Fourier response of the auto-correlation function of a signal is:
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Figure 3-3: Cross correlation of two signals. Time delay between the two signals is shown as a
peak in the cross correlation function (dashed line).

AChxiu = |Xu|2 =
h
Re (Xu)

2 + Im(Xu)
2
i

(3.11)

Thus, functions with similar amplitude spectra and different phase spectra show similar

auto-correlations. Further, as the energy of the signal is related to the square of its amplitude,

the auto-correlation function is used as an indicator of the variation of energy with frequency.

The plot of auto-correlation function of the signal versus frequency is called auto-spectral den-

sity, or power-spectral density.

Due to the memory limitations of the DAQ systems any recorded signal is limited or trun-

cated in time. Energy leakage is a problem that is associated with the sharp truncation of

signals. Figure 3-4a depicts two sinusoids with same frequency and different recording times.

The frequency content of the signals (Fig. 3-4b) shows that due to truncation the energy is

leaked to different frequencies, and thus the frequency content of the two signals are different.

Very sharp cuts results in the leakage of energy to high frequencies. Further, truncation of

signals at the middle of their cycles leads to DC components - energy at 0 frequency or static
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component. Leakage happens because of the periodicity assumption in the FFT algorithm and

can be mitigated by using smooth truncation windows.

Frequency
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Signal 2: truncated after 10T

Signal 1: truncated after 400T

Frequency content 
      of Signal 2

Frequency content 
      of Signal 1

(b)

(a)

Figure 3-4: Energy leakage due to truncation of signals. Signal 1 has a record length equal to
400 times its period (T), and the recording length of signal 2 is 10 times its period.

Windowing is the task of multiplication of a signal by a predefined function in time or

frequency. Windowing is used to mitigate energy leakage, reduce the noise, eliminate unwanted

parts or enhance specific parts of a signal. Some of the most popular windowing functions are

as follows [28]:
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wi =

⎧⎨⎩ 0.5 + 0.5 cos
£
2π
E (i−M)

¤
if |i−M | ≤ E

2

0 otherwise
Hanning (3.12a)

wi =

⎧⎨⎩ 0.54 + 0.46 cos
£
2π
E (i−M)

¤
if |i−M | ≤ E

2

0 otherwise
Hamming (3.12b)

wi =

⎧⎨⎩ 1 if |i−M | ≤ E
2

0 otherwise
Rectangular (3.12c)

in the above relations E is the total length of the signal, andM is the center of the window.

Generally, windowing will reduce the energy of the windowed signal.

Filtering is a special type of windowing in frequency domain. Filtering is used to change or

eliminate the amplitudes of certain range of frequencies in a signal. Three types of filters are

used in signal processing. Low-pass filters are used to eliminate frequencies beyond a certain

range; whereas, high-pass filters are used to eliminate frequencies lower than a certain range.

Band-pass filters are designed to enhance the energy of certain frequency range. The amplitude

spectrum of ideal filters are as follows:

H (ω) =

⎧⎨⎩ 1 if |ω| < ω1

0 otherwise
low-pass (3.13a)

H (ω) =

⎧⎨⎩ 0 if |ω| < ω1

1 otherwise
High-pass (3.13b)

H (ω) =

⎧⎨⎩ 1 if ω1 < |ω| < ω2

0 otherwise
Band-pass (3.13c)

where ω1 and ω2 are limiting frequencies. In ideal filter to allow for distortionless transmis-

sion the phase spectrum should be φ (ω) = −ωt0.

Very often, bandwidth is used to quantify the range of frequencies in a signal that carries

most of the energy or power. The Half-Power bandwidth is defined as the difference between

the positive frequencies at which the amplitude spectrum drops to a value equal to |H(ω)|max√
2
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[31]. Figure 3-5 explains the concept of half-power bandwidth.
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Figure 3-5: Definition of Half-Power Bandwidth. A is the maximum amplitude of the spectrum.

3.5 Signal analysis in frequency-wavenumber domain

3.5.1 Two dimensional (2D) signals: characteristics and representation

In geophysical field, signals are collected in real time and at different spacial locations. Thus,

they have two independent dimensions, time and space. In many applications, i.e. determining

wave velocity, assessing soil properties, and etc., it is required to analyze these signals in two

dimensions. In graphical form, 2D signals can be represented in wiggle, contour or image,

isometric, and perspective plots [33]. In this study all the data are either shown in wiggle plots

or contour forms.

In figure 3-6a, wiggle plot is used to depict a set of data. In this form of representation
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Figure 3-6: Representation of signals in wiggle and contour plots. Figure a shows the wiggle
plot of a set of signals. In figure b the same data are shown in contour form.

the signals are all plotted on the same axes, with an offset. The offset is used to delineate

the distance between the recording points. In this plot, the group velocity of the wave can be

determined by connecting the peaks or valleys of the wave trains with a line; the slope of the

line is a measure of the wave velocity. A more informative form of presentation of 2D data is

the contour plot. In figure 3-6b the same set of data is plotted in contour form. The horizontal

axis is time and the vertical axis is the actual distance. Different values of the amplitude are

shown by different colors, and a color scale clarifies the contour levels. In this plot 4 different

events are distinguishable. Events A,B and C are traveling in the same direction with three

different velocities; whereas, event D is traveling in the opposite direction. The tangent of the

line passing parallel to each event is equal to the group velocity of that event.
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3.5.2 2D Fourier transform - FK transform

FK transform is referred to the 2D Fourier transform applied to a 2D signal with dimensions

of time and distance. In the continuos form the FK transform is represented as:

S (ω, k) =

Z +∞

−∞

Z +∞

−∞
s (x, t) e−iωte−ikxdtdx (3.14)

where s (x, t) is the set of data in time-distance, and S (ω, k) is the same data in FK domain.

Angular frequency is represented by ω = 2π
f and k =

2π
λ is the wavenumber or spacial frequency.

In almost all applications the amplitude spectrum of the FK transform is of interest. That is

because, the phase spectrum is very difficult to interpret. More specifically, the problem is with

the phase unwrapping [33]. From the definition of FK transform (equation 3.14) it is clear that

2D Fourier transform is similar to applying the 1D Fourier transform in one dimension and then

in the next dimension. Thus, most of the characteristics of 1D Fourier transform as defined in

latter sections, such as linearity, shifting properties, convolution, and etc., are applicable to the

FK transform with minor changes [34].

To investigate the behavior of FK transforms, a series of artificial signals are generated in

time-distance domain and the corresponding FK transforms are calculated. The contours in

figure 3-7a show half of a sinusoidal wave propagating from left to right. The corresponding

amplitude spectrum of the FK transform is depicted in plot a1. It is observed that a line in

time-distance domain transforms into a similar line with the same slope in FK domain. In both

domains, the slope of the line determines the velocity of the wave. Plot b depicts the same

half-sinusoid repeated five times in time. The corresponding FK transform (plot b1) shows one

line with different notches. A half-sinusoid with a late reflection is represented in plot c. In

FK domain (plot c1), the main event is transformed into a line in the first quadrant, and the

reflection into a line in the second quadrant. Always, waves propagating in different directions

transform into lines in different quadrants. Thus, FK transform is a very useful tool to separate

events with different velocities and/or different directions. Each event is transformed into a

separate line that passes through the origin, with a slope corresponding to the group velocity of

that event. The amplitude spectrum of FK transform of dispersive events do not pass through

the origin, and are curved rather than a straight line.
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Figure 3-7: Signals generated in time-distance domain and the correspong spectrum in FK
domain. Plot a shows half cycle of a sinusoid propagating from left to right. Plot b shows
the same half-sinusoid repeated 5 times. Plot c shows the same Half-sinusoid along with a late
reflection propagating from in the oposite direction. Plot d shows the half-sinusoid propagating
with a smaller velocity. Plots a1 to d1 show the corresponding FK transforms.
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Figure 3-7d shows the same half-sinusoid propagating with a smaller velocity. Consequently,

the slope of its FK transform is smaller. The lower velocity results in a split in the FK amplitude

spectrum, and in fact, the three events seen in plot d1, are the continuation of a single event

that passes through the origin. The split happens due to under-sampling of the signals, and

thus plot d1 shows an aliased signal in FK domain. In 2D Fourier analysis, aliasing could occur

in spatial, temporal or both domains. The sampling theorem, as stated before, is valid in both

domains, and the Nyquist frequency (fNyq) and wave-number (kNyq), and resolution of the

discrete 2D signal are defined as:

fNyq =
1

2∆t
and kNyq =

1

2∆x
(3.15a)

∆f =
1

Tmax
and ∆k =

1

Xmax
(3.15b)

where ∆t and ∆x are sampling rates in temporal and spatial domains, Tmax is the largest

available period, and Xmax is the largest available distance. In general, in under-sampled signals

if the velocity of an event is less than ωNyq
kNyq

, it will be aliased in wave-number domain, and if the

velocity is larger than ωNyq
kNyq

aliasing occurs in frequency domain. Aliasing in temporal domain

could be prevented by using anti-aliasing filters, but spatial aliasing is troublesome and special

techniques should be used to mitigate its effect [33].

3.5.3 Calculation technique

Mathgram 3-1 (Appendix B) shows the procedure of calculating FK transform for a set of

synthetic data. A 1024×30 data matrix (Data1) is generated, where the rows and columns

show recording points in time and space, respectively. The signal consists of 5 cycles of a

sinusoid (ω = 100 rad
sec ) that is predecented and tailed with zeros. Wavelenght of the signal is

assumed to be λ = 1.0 m. The temporal and spacial sampling rates (∆t and ∆x) are chosen

to have 10 sampling points per period, and per wavelength; therefore, the discrete signals are

not aliased. A similar matrix is regenerated (Data2) and is used as the reference. To alleviate

the effect of energy leakage and smearing the signals are multiplied by a Hanning window, both

in time and space (matrices wData1 and wData2). To simplify the final data representation
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optical transform is applied to the wData1. Optical transform in time-space domain is defined

as [35]:

Bi,,j = (−1)i+j Ai,,j (3.16)

where A and B are the original and the transformed matrix respectively, and i and j are rows

and columns. This multiplication in temporal-spacial domain is equivalent to a convolution in

FK domain, and redistributes the FK information as shown in figure 3-7. In plot a the 2D

Fourier transform is applied to the original data. It can be seen that the dispersion information

is scattered around the corners of the plot. Plot b shows the FK transform of the same data,

but the data is multiplied by optical transformation (equation 3.16) in time, and the 2D Fourier

transformation of the obtained data is calculated. It is observed that all the dispersion data

are transferred to the center of the plot, and the center of the matrix is the origin. After all

(Plot c), the data are flipped around zero frequency axis to ensure that the direct arrivals fall

to the right of the frequency axis.

To enhance amplitude spectrum, the obtained Fourier amplitudes are scaled based on the

following equation [36]:

Di,j = c log [α+ |Fi,,j |] (3.17)

in which, c and α are constants that are selected for each case, and |Fi,j | is the magnitude

of the 2D Fourier spectra. The mentioned procedure is called data reduction procedure and

is widely used to analyze dispersion data [37]. In Mathgram 3-1, the final values are divided

by the maximum of the matrix for normalization. Further, two plots are provided at the end

of Mathgram. In one, the data reduction procedure is followed to generate the amplitude

spectra, and for comparison in the other plot, the calculated values without any additional

transformation are depicted.
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Figure 3-8: Schematic of the effect of data reduction procedure on the FK data. Plot a shows
FK data obtained by applying 2D Fourier transform to a set of data. In plot b the data are
multiplied by optical transform prior to the application of 2D Fourier transform. Plot c is the
output in which data are flipped, and the reptitive data are eliminated.
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Chapter 4

Geophysical exploration techniques

4.1 Introduction

In general, the objective of geophysics is to utilize physical laws to investigate the interior

of the earth. This investigation could cover the whole or a substantial part of the planet

(pure geophysics), or just the earth’s crust and near-surface (applied geophysics). In recent

years, a new discipline in geophysical exploration has developed to meet the requirements in

environmental studies [38]. Thus, environmental geophysics deals with the investigation of

physicochemical phenomena in the near surface.

The objective of applied geophysics is to achieve a practical or an economic goal. Applied

geophysics is usually restricted to depths shallower than 300 m [38], and its objectives can be

classified (and not limited to) as follows [39, 1]:

• determine the thickness of the crust (i.e. in hydrocarbon investigation)

• investigate engineering sites (i.e. to determine soil mechanical properties, or predict site

amplification during earthquakes)

• explore groundwater, mines and other resources

• locate mine-shafts and buried cavities

• detect archeological inheritance

• find buried utilities (i.e. pipes, cables, water mains, etc.)
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The benefit of applied geophysics over other near-surface investigation methods (i.e. digging

boreholes) is that it provides information for a larger zone (rather than discrete locations) with

relatively low cost. Further, it assesses the in-situ condition without any disturbance (non-

intrusive method). Geophysical techniques do not provide a unique solution to the problem

in most cases. This ambiguity stems from the fact that these methods try to solve an inverse

problem, that is indeterminate. In these techniques the input and output are known and

the system properties, which are the earths properties, should be determined. Geophysical

methods are often used in combination, or along with other investigation methods to increase

the accuracy of the interpretations.

Table 4.1, lists the major geophysical methods that are currently in use [1]. The second

column of the table demonstrates the physical properties that the method is based on. Various

geophysical methods are sensitive to different properties of the geomaterials. These physical

properties determine the applicability range of the technique. For example, to locate a near

surface water resource the gravity method, which works based on the gravity contrast, is not a

good option. Because, there is not a big difference between the density of surrounding saturated

soil or rock, and the water basin. In this case, a seismic reflection or refraction method will work

better, because of the strong impedance contrast between the shear moduli of the water basin

and surrounding soil. Moreover, geophysical techniques can be classified as passive and active

ones. Passive methods are the ones that are sensitive to the natural fields associated with earth,

i.e. gravity or magnetic methods. In active methods a disturbance is generated artificially in the

ground and the responses are recorded, i.e. seismic or EM techniques. The main applications

of each method are marked in the rest of the columns of Table 4.1. The information is based

on reported or successful case histories, and should be used just as a general framework.

The objective of any geophysical survey is to extract subsurface information; however, the

success of a survey is sensitive to the site conditions. For each project, the main objective

(or objectives), and proper strategies should be specified in advance. In lieu of financial or

logistic constraints, it is recommended to try different geophysical methods at the same time to

determine the most appropriate technique and verify the results [1]. Darracott and McCann [40]

claim that in almost all the unsuccessful or less successful case histories, either the planning was

inadequate, or the technical specifications were not correctly chosen, or the personnel involved

55



Table 4.1: Geophysical methods, the physical property that they are based on, and their main
applications [1]
Geophysical method Physical Applications *

property 1 2 3 4 5 6 7 8 9 10
Gravity Density P P s s s s - - s -
Magnetic Susceptibility P P P s - m - P P -
Seismic refraction Elastic moduli; P P m P s s - - - -

Density
Seismic reflection Elastic moduli; P P m s s m - - - -

Density
Resistivity Resistivity m m P P P P P s P m
Spontaneous potential Potential - - P m P m m m - -

differences
Induced polarization Resistivity; m m P m s m m m m m

Capacitance
Electromagnetic (EM) Conductance; s P P P P P P P P m

Inductance
EM-VLF Conductance; m m P m s s s m m -

Inductance
EM- ground penetrating radar Permitivity; - - m P P s P P P

Conductivity
Magneto-telluric Resistivity s P P m m - - - m -
P = primary method; s = secondary method; m = may be used but not necessarily the

best approach, or has not been developed for this application
*-Applications

1 Hydrocarbon exploration (coal, gas, oil)
2 Regional geological studies (over areas of 100s of km2

3 Exploration/development of mineral deposits
4 Engineering site investigations
5 Hydrogeological investigations
6 Detection of subsurface cavities
7 Mapping of Leachate and contaminant plumes
8 Location and definition of buried metallic objects
9 Archeogeophysics
10 Forensic geophysics
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were not enough experienced. The outcome of a geophysical survey is a function of the size,

shape and the physical properties of the target. In geophysical terminology, any object with

a significant contrast in physical properties with the surrounding medium is called a target.

In a geophysical survey, the variation of the physical properties of the target, relative to the

background value is measured. Consequently, the boundaries and limits of the target are

determined.

To show the results of a geophysical survey, the common methods are profiling and mapping.

In profiling, a two dimensional cross section of the earth is chosen, and the variation of the

objective parameter is measured along the line at the surface. The results are depicted in a

graph in which the horizontal axis is distance along the surface, and vertical axis is depth. To

obtain satisfactory results, the best orientation of a profile is at right angles to the strike of

a target [1]. The width of the profile should be larger than the expected width of the target,

otherwise it will not be possible to determine the background values. As an example, the results

of resistivity techniques are usually presented in this format. In mapping, a set of parallel lines

or a grid across the ground surface are chosen, and the measurements are conducted. The

measured values are contoured between the points and a two dimensional map is prepared.

This technique is vastly used to depict the results of gravity surveys. Station is the term used

to refer to the points at which the measurements are made, and the distance between successive

measurements is known as station-interval. The larger the station interval is, the more high-

frequency data is lost (spatial aliasing). Contouring the data could also cause spatial aliasing.

As a general rule of thumb, any geophysical anomaly found in the profiles or maps are larger

than the feature causing it. Thus, the interpretation of profiles and maps need some expertise.

Signals collected in the field are contaminated with noise, which could be:

• Coherent noise: this type of noise happens systematically, i.e. the ones produced by power

lines. In most cases it is relatively easy to distinguish and eliminate them using filters.

• Incoherent noise: this noise occurs randomly, such as traffic noise, water waves breaking

at the shore, or the ones produced by wind. If the duration of the recorded signal is long

enough, it is expected that this noise can be cancelled by averaging.

In general, each type of geophysical survey is sensitive to a specific noise type and range.
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Table 4.2 lists the common geophysical techniques and the main sources of noise that affect

their results [1]. The techniques discussed in the previous chapter can be utilized to mitigate

the effect of noise on the contaminated signals.

Table 4.2: Sources of noise that affect different geophysical methods [1]
Geophysical method Sources of noise that affect the results
Seismic Engine/Ship noise; Sea state; Breaking wave;

Wind; Root vibration; Heavy rain; Vehicles
EM Vehicles; Fences (metal and electric);

Power lines; Electric and magnetic storms
Electrical Fences (metal and electric); Power lines;

Electric and magnetic storms
Magnetic Fences (metal and electric); Power lines;

Electric and magnetic storms

The primary geophysical techniques that are used to detect underground cavities are re-

sistivity, electromagnetic (EM) and EM ground penetrating radar (Table 4.1). As the main

focus of this dissertation is on the application of geophysical methods to cavity detection,the

mentioned techniques will be reviewed briefly in the following sections. The final section of this

chapter explains the basics and details of a seismic technique named multi channel analysis of

surface waves (MASW) test. This technique uses the dispersion of Rayleigh waves to assess

in-situ soil properties. The direct application of the results of this study is in MASW test to

detect underground cavities. Thus, to provide necessary background for the subsequent chap-

ters, an in-depth overview of the theoretical aspects, field procedures, numerical simulations,

and case histories of MASW test is presented.

4.2 Resistivity method

A group of geophysical techniques that use direct-currents (DC) or very low frequency alternative-

currents (AC) to investigate the electrical properties of subsurface are categorized under elec-

trical methods. The most common electrical methods are resistivity, induced-polarization, and

self-potential methods [41]. The purpose of this section is to introduce the basics of resistivity

method, and its applications in the detection of lateral subsurface inhomogeneities.

In resistivity method, electrodes are deployed at the surface to transmit artificially-generated
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currents into the ground. The resulting potential differences at the ground are measured.

Theoretically, the patterns of potential differences in a homogeneous medium are known, thus

the deviations of the recorded potential differences from the theories yield to information about

the existent inhomogeneities. generally, Resistivity (ρ) of a block of a material with cross section

(δA) and length (δL) and resistance (δR) is defined as:

ρ =
δR δA

δL
(4.1)

The SI unit of resistivity is Ωm, and the resistivity of geological materials shows one of the

largest ranges of all physical properties, from 1.6 × 10−6 Ωm for native silver to 1016 Ωm for

pure sulphur [1].

Table 4.3: Resistivity values and ranges for common geological materials [1].
Material Nominal resistivity (Ωm)
Granite 3× 102 to 3× 106
Granite (Weathered) 3× 10 to 5× 102
Clay 1 to 100

Alluvium and Sand 10 to 8× 102
Soil (40% clay) 8

Soil (20% clay) 33

For a general electrode configuration in a resistivity survey over a homogeneous half-space

(figure 4-1), combining Ohm’s law (V = RI where V is potential, R is resistance, and I is

current) and equation 4.1 leads to equalities in the following form:

ρa =
2π³

1
rA
− 1

rB

´³
1
RA
− 1

RB

´∆V
I
= K

∆V

I
(4.2)

where ρa is apparent resistivity, ∆V is the potential difference between the potential electrodes,

I is the induced current, K is geometric factor, and the rest of the parameters are as defined

in figure 4-1. For a homogeneous ground, K is independent of the location of electrodes, but

in layered media, or in the presence of any type of inhomogeneities geometric factor changes

with the choice of electrode configuration. Various electrode configurations along with the

corresponding relation for geometric factor has been developed [42, 43]. The penetration depth

of the current increases as the separation between the current electrodes increases. Thus, in
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the planning for resistivity survey, the current electrode separation should be chosen in a way

that the ground be energized to the required depth. The rule of thumb is the separation should

be at least equal to the depth of interest.

Figure 4-1: General electrode configuration in a resistivity survey.

Resistivity is conducted in two different forms:

• Vertical electrical sounding (VES): This form is used for studying horizontal interfaces

beneath the surface. The common practice is to keep the relative distance between the

current and potential electrodes constant. To increase the penetration depth, the whole

configuration is expanded about a fixed central point. Measurements are started at short-

est electrode separation, and progressively increased to larger spacings. The values of I

and ∆V are measured, and using appropriate geometric factors the apparent resistivities

are calculated. The results are plotted on a graph with the x-axis showing the electrode

separation (or its logarithm), and y-axis showing the apparent resistivities. Finally, data

inversion is performed.

• Constant separation traversing (CST): To asses the lateral variation of resistivity in an

area, CST method is used. The spacings between the electrodes are kept constant in
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this method, and the whole configuration is moved along the surface of a profile. At

each location, the apparent resistivities are measured. A plot of the variation of apparent

resistivities with respect to the distance along the surface is prepared. Any significant

variation in the plot shows the location of an anomaly with a salient change in resistivity.

The resistivity instruments are designed to measure the ratio ∆V
I (equation 4.2). The

equipment are able to measure very low level of resistivities. Although, the corresponding

theories are developed based on the assumption that DC current is used, what is used in

practice is low frequency AC currents (f ≈ 10− 100Hz). The reason is to avoid problems like

electrolytic polarization and telluric currents. Thus a frequency of about 100 Hz is used for

penetrations in the order of 10 m. For penetrations of up to 100 m frequencies less than 10Hz

are used, and for deeper penetrations DC currents are utilized. To receive the data either spike

electrodes or antennas are used [41].

Among the geophysical methods, the interpretation of resistivity data is one of the most

difficult ones. Also, it is less developed for CST technique than for the VES. Because of this

difficulties, the final results are ambiguous. Figure 4-2 shows a typical apparent resistivity

curve, expected for a layer overlain a half-space. When the separation is small the measured

apparent resistivity is close to the one of the top layer, and as distance increases the apparent

resistivity gets closer to the half space one. Theoretically, for a small electrode spread the

penetration depth is small, thus the potential is mostly affected by the properties of top layer.

As the spread increases the potential is affected by both layers, and finally for enough large

spreads the potential is almost affected only by the half space. For more complex geological

structures the curves, and therefore the interpretation, becomes more complicated. In practice,

different resistivity structures can result in similar curves, which is a source of ambiguity of

the interpretations. Noticeable resistivity boundaries may not necessarily coincide with the

lithological boundaries [1].

Initially, interpretations of VES field measurements were made by comparing them with

master graphs. More sophisticated interpretation techniques superseded the curve matching

method [44, 45]. In recent methods, the parameters of theoretical relations are adjusted in

to match field data curves with theoretical ones. The results are depicted in the form of

pseudosections (Fig. 4-3). With the aid of inversion techniques, the apparent resistivity data
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Figure 4-2: The variation of apparent ressitivity curve with electrode seperation over a halfspace
overlaid by a layer [41].

are converted into geoelectric profiles. In more recent methods, data are collected along parallel

spreads and 3D resistivity models are constructed. A key assumption in most of the available

inversion theories is that the layers are horizontal and isotropic. In practice, this assumption is

violated in the presence of dipping layers, or in cases that the resistivity in the horizontal and

vertical directions are different. In the upper layers, the thicknesses and measured resistivities

are accurate to between 1% to 10%, and the accuracy decreases for deeper layers [1].

To detect lateral resistivity inhomogeneities the CST technique is utilized. CST is based

on the fact that a vertical discontinuity distorts the direction of current flow, as a result the

distribution of the potential in its vicinity will be affected. CST survey is usually conducted on

grid lines that cover a surface area. Then, the results of CST lines are contoured onto a map,

and the extents of a 3D anomaly are determined. In order to detect 3D objects the top of the
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object should be close to surface and the traverses should be made directly over or near the

edges of the object [41].

Figure 4-3: Pseudosections to interprete the resistivity data. In each graph horizontal axis is
the distance along the surface and the vertical axis is the depth. Plot (a) shows the raw data
obtained from the field. Plot (b) shows the calculated resistivities for a theoretical model. Plot
(c) shows the inverted geological information, resulted from plots (a) and (b) [46].

The main limitations of resistivity methods are [41, 47, 1]:

• The interpretations could be ambiguous and subjective, specially for complex geological

structures

• The resistivity of top layers can mask the resistivity of underlain layers

• The maximum electrical power limits the depth of penetration.

• Out-of-line electrode arrays can result in erroneous apparent resistivities
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• The internal resistance of the potential measuring circuit should be higher than the ground

resistance between the electrodes

• The data are sensitive to small anomalies that are insignificant to the main target. For

instance, the presence of pipes, and sand lenses affect the quality of the data

• In the presence of buried pipes, or conductors that run parallel to the survey line, current

leakage happens

The most widely application of resistivity method is in hydrogeological investigations, it

has been also used to locate and monitor ground water pollution extents [48], and to determine

the bedrock depth for foundation purposes [49]. Successful application of CST method to detect

embedded anomalies are also reported:

• Reynolds reports the detection of a cavern in a small village east of Devon, UK [1].

• Prentice and McDowell proposed the application of CST to detect the locations of near

surface bedrock (that needed blasting) along the material through which a trunk sewer

was planned to be constructed [50].

• Osterkamp and Jurick report the detection of permafrost zones in Fairbanks, Alska [51].

• Reynolds and Taylor report the application of resistivity method to detect the location

and determine the embedment depth of two abandoned concrete foundations, in about

one meter below the surface [47].

4.3 MASW method

4.3.1 Development of the technique and related theories

Multi channel analysis of surface waves (MASW) is a seismic technique to assess subsurface

soil condition. MASW is a nondestructive testing method, e.g. it causes no damage to the

structure that it is applied to. It is performed from the surface and does not need any borehole

or access pit. Moreover, the test setup and procedure are simple and has the potential to be

fully automated [52]. MASW uses the dispersive characteristic of Raleigh wave to evaluate
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the low strain (in the order of 0.001% or less) elastic properties of different layers. Dispersion

could happen due to changes in geometry, i.e. layered system, or due to intrinsic damping of the

material. It is understood that when a smi-infinite media is excited at the surface with a vertical

load, about two thirds of the energy is carried parallel to the surface in the form of Rayleigh

waves. [53, 54]. Further, the effect of geometrical damping on the Rayleigh waves is less than

on body waves. These characteristics make Rayleigh waves very favorable for nondestructive

testing, because they can be generated with relatively small energy, and recorded at longer

distances.

In the last decade of 21st century, MASW evolved from the combination of SASW (spectral

analysis of surface waves) theories and experiences, and the advances in the data acquisition

equipment. Table 4.4 provides a bibliographic history of this evolution. The main difference

between SASW and MASW is that the former is performed with two receivers; whereas, the

latter uses several receivers (the use of 12 to 48 receivers are reported [55]. In compare with

SASW test, in MASW:

• The choice of optimum frequency range for phase velocity calculation is easier and more

accurate.

• Noise detection and filtering is easier with data obtained from several receivers [56].

• The errors are averaged and attenuated.

• The ability to separate different modes is improved.

• The capacity of recognition and separation of different events, such as reflections and

refractions.

The main objective of MASW is to determine the shear modulus or shear wave velocity

profile of the soil and pavement at low strains . The results of MASW is used to:

• design vibrating machine foundations

• be used as a reference level to evaluate dynamic soil performance or seismic site response

assessment
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Table 4.4: Historical development of MASW test
Year Development
1938 Records show that for the first time, German society of soil mechanics

used surface waves for soil assessment [57].
1946
to
1953

Several researchers used surface waves to generate soil profiles and assess
pavement conditions in Sweden & Holland [58]. Surface wave results
were compared to plate bearing test results [59].

1958 Jones proposed an analytical procedure to compute the moduli of differ-
ent layers in a pavement system using the steady-state Rayleigh wave
method [60].

1958
to
1984

The steady-state Rayleigh wave technique was applied broadly to deter-
mine elastic properties of soil in-situ, and appraise pavement condition
[61, 42, 62, 63]Ballard1964, . Solution techniques for the propagation
of waves in stratified media are developed [64, 65]. Data are published
that compares surface wave test results with other methods, such as res-
onant column test [66, 67]. Attempts have been made to facilitate field
procedure [68]. More than two receivers are utilized to record surface
waves to locate subsurface cavities and assesing soil condition [69, 70, 71].
Inversion techniques are developed to obtain soil profile from dispersion
curves [72]. f-k transforms are used to separate higher modes of propa-
gation [73].

1984 The works of Nazarian and Stokoe II had profound impact on the ad-
vancement of the theory and interpretation techniques of SASW test.
Also, they developed the first computer algorithm (INVERT) to deter-
mine stiffness profile from dispersion data [74, 75].

1985
to
1995

Passive sources are used for subsoil characterization [76, 77]. The effect
of higher modes of Rayleigh waves on the inversion results are studied
[78]. Verious inversion techniques are developed and applied to real sites
[79, 80, 81, 76, 82]Addo1992,. SASW terchnique is applied to different
cases such as hard to sample soils [83], and is compared with other
geophysical techniques [84].

1995
to
2005

The advances of electronic equippment resulted in the developement of
MASW test [56]. Inversion techniques are developed to consider several
modes of propagation in the MASW analysis [85, 86, 87]. Numerical
and experimental studies are performed to consider the effect of inverse
dispersion (soft layers overlain by stiff layers) on the MASW test results
[88]. Wavelet transforms are used to generate dispersion curves from
synthetic and experimental data [89, 90]. Attenuation characteristics
of soils are inverted from MASW test results [91, 92]. The effect of
lateral inhomogeneities on the propagation of Rayleigh waves, and the
application of MASW test to locate underground cavities are studied
using a combination of numerical and experimental models [93, 94, 95,
96, 97, 98, 99] .
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• evaluate liquefaction potential during earthquake shaking

• identify soft layers

• assess hard to sample deposits, in-situ

• analysis of pavement systems

• evaluate damping properties of soil

Current practice of MASW test consists of conducting field test, determining experimental

dispersion curve, and constructing the stiffness profile. The key point in a MASW field test is

to generate primary Rayleigh waves and measure the corresponding responses. In the field, a

broad band frequency source excites the ground surface, and several receivers - deployed in a

line at a distance from source - record its responses 4-4. The receivers could be geophones to

measure the velocity or accelerometers, though geophones are more common. A vertical low

frequency geophone (4.5 Hz) is a common receiver for MASW testing. For investigating depths

up to 50 m common receiver spacing (∆) are: 0.5, 1, 2, 4, 8, 16, 32 and 64 m. For pavement

investigations, the suitable receiver spacing is between 0.075 m to 2 m. Receiver spacing

determines the minimum reliable wavelength (λmin) that can be extracted from MASW data.

Park et al. [56] suggests that λmin = 2∆ to avoid spatial aliasing; whereas, Socco [55] suggests

that λmin = ∆. The receivers should [100]:

• have significant output over the frequency range of interest

• match with each other, thus the differences in phase can solely be associated with responses

• couple well with soil

• have same coupling for each receiver

The source could be a transient load, steady state vibrator, random noise (active), or am-

bient noise (passive). The source type (its frequency content), and its location influence the

energy partition between different Modes of propagation [55]. Common sources in MASW

testing are [100]:
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• for close receiver spacings: hand held hammer

• for receiver spacings between 2 to 8 m: sledge hammer or large drop weights (between 20

to 70 kg in weight)

• for receiver spacings larger than 8 m: dropped weights from 70 to 900 kg, bulldozers or

very large weights used for dynamic compaction

• For very deep surveys: passive sources such as micro-tremor or ambient noise [77].

Finally, the recording device should have several channels (a minimum of 12 is recommended

[56], have a minimum dynamic range of 100 dB, and have an anti aliasing filter. Three parame-

ters are of large importance in a swept frequency record: minimum frequency (fmin), maximum

frequency (fmax), and the length of the record or time window (T ). In the presence of rapid

changes in the near-surface properties, longer recording time (T ) is required. Further, the time

window should be long enough to record responses on all the receivers. For each receiver set

up 3 to 5 tests are conducted and their average values are used as the test result. Also, it is

a common practice to run the test from both sides of a receiver set up (forward and reverse

testing), and compare the results.

Two types of geometries are frequently used in the field 4-5. In common receiver midpoint

(CRMP) geometry, an imaginary midpoint is considered for the receiver array, and the array is

scaled up around that center line. In common source geometry, the location of the source is kept

constant, and the array length and offset is scaled up to cover larger areas. Studies on the effect

of array geometry for SASW shows that in a laterally homogeneous media both CS and CRMP

methods lead to similar results. Though, in the presence of lateral inhomogeneities CRMP

gives less scatter than obtained from CS geometry Hiltunen1989. So far, no comprehensive

research on the effect of the choice of geometry on MASW is published. For both geometries it

is recommended to apply the source to both sides of the array (reverse profiling) and compare

the results Nazarian1993.

The choice of total array length, offset value (D), and receiver spacings (∆) have significant

effect on the results. Array length has a direct relation with wave-number resolution (∆k) that

plays a role in the separation between different modes. On the other hand, short arrays are less

sensitive to lateral variations, produce better signal to noise ratios, and are less sensitive to high
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Figure 4-4: Schematic of the field layout of MASW test. Receivers aquire the surface responses
due to the excitation in time domain. The DAQ system could perform real time analysis or
save the data for future.

frequency attenuation (far field effect). For investigation depths of 20 to 30 m, typical array

length is 50 to 100 m. The offset value should be large enough to allow for large wavelengths to

be fully developed (near field effect). A rule of thumb is to set the offset value at least equal to

the required investigation depth. It is recommended to run the test with different offset values

[55]. According to Hiltunen and Woods [52], the factors that affect the offset value are:

• stiffness of the material to be tested

• desired depth of investigation

• working frequency range

• attenuation properties of the medium

• sensitivity of the instruments

It is understood that the maximum reliable wavelength that can be extracted from a set of

data is related to the offset value, but ambiguous criteria are stated to describe this nature. Al-
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Figure 4-5: Schematics of different geometries of MASW test. Plot a shows the CRMP geometry,
in which the imaginary middle point of the receivers arrayy is kept constant. Plot b depicts
the CS method, where the source location is constant and the array scale is increased.

Hunaidi [101] suggestion is to disregard wavelengths that do not satisfy the inequality 0.5D <

λRmax < 3D. Hiltunen and Woods [102] limits the upper bound to 2D, where D is the offset

value. This criteria guarantee that high frequencies (0.5D < λRmax) that might be affected by

noise (far field effect), and low frequencies (λRmax < 3D), which are not fully developed (near

field effect) are eliminated from the data. Based on their theoretical works, Sanchez-Salinero et

al. suggest a completely contradictory criteria λRmax < 0.5D [103]. Alternatively Park et al.

restate that in a MASW test, plain wave assumption can be assumed only when λRmax < 3D

[56]. Al-Hunaidi propose that Hitunen and Woods criterion is insufficient to ensure the presence

of only one mode of propagation, but the criterion suggested by Sanchez-Salinero et al. is more

likely to be valid. In brief, because of the different practical conditions, it is improbable to

come up with a generally applicable criterion with this respect.

To determine an experimental dispersion curve, the frequency content of the time response

at each station is calculated. For each frequency, the phase difference between the receivers are

calculated and the time delay (t (f)) for each frequency is estimated using:

t (f) =
φ (f)

2πf
(4.3)

where φ (f) is the phase difference in radian, and f is frequency in Hz. In SASW test where only
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two receivers are used, calculation of phase difference between the receivers is fairly straight-

forward [74, 104]. Whereas, in MASW for each frequency the phase difference between various

receivers might be different, hence more rigorous techniques should be utilized for φ (f) eval-

uation (see for example [97]). Another problem with phase difference calculation is phase

unwrapping. When the phases are calculated as stated in the previous chapter, the results are

stated as an angle in the range ±π
2 (wrapped phase). Thus, to obtain the correct phase for each

frequency an appropriate number of cycles should be added to the phase, in other words the

phase should be unwrapped (figure 4-6). The problem arises when due to the existence of noise,

or higher modes of propagation the phase has a jump and is spurious. In these cases the phase

unwrapping procedure could be erroneous and needs special attention. Shalito [105] reviews

phase unwrapping techniques and associated difficulties and problems. Afterward, spurious

cycles in one receiver geometry and spacing might not be spurious in other geometries [101].
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Figure 4-6: Calculated wrapped and unwrapped phases for a set of data.

Time delays are used to calculate the phase velocity (VR) for each frequency:

VR =
∆x

t (f)
(4.4)
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where ∆x is the receiver spacing (for non uniform receiver spacing t (f) and ∆x should corre-

spond to each other). Finally the wavelength (λR) is calculated as:

λR =
VR
f

(4.5)

a plot of the obtained values of VR verses λR is referred to as experimental dispersion curve.

The next step in a MASW test is to construct the shear modulus profile from the disper-

sion curve. In the early methods, it is assumed that most of the energy of Rayleigh wave is

concentrated in a depth equal to its wavelength. As a result, the velocity that each frequency

propagates with (VR), can be assumed to represent the properties of the material that lies about

half or one third of the wavelength
¡
λ
2or

λ
3

¢
deep, thus the wavelength is associated to depth.

By assuming values for Poisson ratio and density, Rayleigh wave velocity (VR) is associated to

shear wave velocity (Vs), and the latter to the shear modulus of the soil [106, 101].

More advanced techniques are developed based on the theoretical solutions for the propaga-

tion of plain waves in a horizontally layered media and the corresponding theoretical dispersion

curves [65, 64, 107]. In these techniques system parameters (Poisson ratio ν, shear wave velocity

Vs, density ρ, depth h, and number of layers) for a horizontally layered system are assumed. The

stiffness matrices for each layer are constructed and assembled into a global stiffness matrix.

By setting the determinant of the global stiffness matrix equal to zero, a relation between the

wavelength and Rayleigh wave velocity is obtained. The general form of the obtained relation

is [55]:

F (k, f) = 0 or FR [υ (z) , G (z) , ρ (z) , k, f ] = 0 (4.6)

Generally, the above function is a multi-valued function of wavelength, that it has more

than one solution for each wavelength. Thus theoretical dispersion curves are obtained for

the assumed system. Then, a comparison is made between the theoretical and experimental

dispersion curves. The assumed parameters are changed until a good match between the two

curves are obtained. As a result, the assumed parameter values in the last iteration will be a

representative of the soil profile. This iterative technique is called inversion. It is shown that the

choice of Poisson ratio (ν) and density of layers (ρ) have small effect on the results, thus they are
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usually assumed based on local material types, and kept constant throughout the procedure [82].

Two approaches are available for the inversion algorithms. In the velocity-inversion approach,

the layer thicknesses are assumed and the only variables are the shear-wave velocities. The other

approach is complete-inversion, in which both the layer thicknesses and shear-wave velocities are

assumed unknowns, and are changed during the iteration. The advantage of the first approach

is that more layers can be assumed; whereas, complete-inversion leads to smoother changes in

the shear-wave velocities of the layers [82].

As stated in table 4.4, various inversion techniques are developed and are in use. The

basis of all of these techniques are the same; however, their difference are in the optimization

techniques and parameters that they consider to match the two curves, their sensitivity to noise,

their stability, robustness, and their capacity to differentiate between different events [55]. The

common assumptions in almost all of the inversion techniques are:

• The predominant wave propagation mode is the first mode Rayleigh mode

• The problem is in the state of plain strain

• The media is laterally homogeneous and extend to infinity with respect to the source-

receiver configuration

• The layers are horizontally stratified.

For naturally deposited systems (stiffness increases with depth), the mentioned theories give

real valued stiffness matrices and the procedure is the same as noted. In systems where stiff

layers overlay softer ones, the matrices could be complex valued. More simplifying techniques

should be considered in these cases. Generally, the errors in the estimation of shear wave veloc-

ities of top layers will distribute to the bottom layers and cause a wrong answer. More often,

this distribution of error happens in models with stiffer layers on top. An equally important

issue in the interpretation of data is to distinguish the higher modes of propagation. If these

modes are not recognized in the theoretical models, larger shear wave velocities are estimated

for the layers, thus the elastic properties will be over estimated. For deep layers the acquired

data in the field, and the theoretical interpretation techniques loose their resolution. A rule of

thumb is that the thickness of each layer should be at least equal to one fifth of its depth to
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be differentiable [100]. Finally, it should be noted that the obtained values from MASW test

are global values (average values) and might not exactly match with the local values obtained

from bore holes or other in-situ testing techniques.

The successful application of MASW faces with several challenges and difficulties, such as:

• There is no standard interpretation method.

• It is limited to certain frequencies, and the results might not be continuos.

• Spurious cycles might be present in the phases that causes difficulties in the phase un-

wrapping procedure.

• In a vertically inhomogeneous media, Rayleigh wave propagation is a multi mode phenom-

ena. Thus, modal superposition occurs. Difficulties in distinguishing between different

Rayleigh modes impose ambiguity and complication in data interpretation. Further, the

experimental dispersion curve might not coincide with any branch of the modal curve.

• Uncertainties are present in the current criteria for the choice of receiver-to-source and

receiver-to-receiver spacings. This leads to erratic decisions about the reliable frequency

and wavelength ranges.

• Acquisition method, and lack of resolution or sensitivity to a certain target limit the

reliable investigation depth.

• Lateral inhomogeneities are not accounted for in the theories associated with MASW.
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Chapter 5

Numerical modeling of Rayleigh

wave propagation

5.1 Introduction

A number of different numerical schemes of varying complexity have been used to solve elastic

wave propagation problems. Alterman et. al. [108] and Berthholf [109] provided a brief review

of most of these methods. More involved methods, which are capable of following the motion

through regions of plastic, shock, or brittle behavior have been devised by researchers such as

Petschek [110]. The finite element (F.E.) method has also been used extensively in this field

[3]. Little attention has also been paid to the methods such as wave scattering method [111]

and the perturbation method (1970), though they are potentially valuable [2]. The usefulness

of any of the above schemes depends greatly on the characteristics of the problem to solve. The

best method is the one that gives reasonable answers in the shortest time.

The finite differences (F.D.) technique, is based on replacing the difference equations and the

boundary conditions by simple finite difference approximations in such a way that an explicit

recursive set of equations is formed. In this method, every derivative in the governing equations

is replaced directly by an algebraic expression in terms of the field variables at discrete points

in space and time; these variables are not defined within the elements [4]. The final result is a

time marching procedure that can be used to solve for the displacements at each grid point as
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a function of time given the motion at the first two steps [2].

Both of the finite differences and finite element methods produce a set of algebraic equations

to solve. Even though these equations are derived in different ways, in specific cases the resulting

equations are identical for the two methods. It is pointless, then, to argue about the relative

advantages of either of them because the resulting equations are the same [4].

Among the advantages of F.D. method are its ease to be programmed, its capability of

solving many different problems with only minor alterations to the scheme and its ability to

solve problems with transient loading. Also a very convenient feature is that displacements as a

function of time at a given site or pictures of the total wave field at a given time can be obtained

with equal ease [2]. This technique also has some limitations. For example it is most useful in

the near field region of sources, where the sources are real. Thus it would be impractical to use

the F.D. method to evaluate the surface displacements of a short period body wave incident

upon an irregular interface [2].

5.2 Principles of finite differences method

The F.D. technique is based on replacing differential operators by difference approximations.

A number of ways are available to find the governing differences schemes from which a few will

be presented and discussed here. This section is summarized mostly from Boore [2], Itasca [4]

and Strikwerda [112].

In the standard finite differences method, the continuous spatial-time domain (x,y,z and t)

is divided into rectangular blocks. The displacement field is then specified by a discrete set of

nodal points represented by the corner intersection of the blocks. For constant x, z and t spacing

∆x,∆z and∆t, any node is uniquely determined with reference to an arbitrary coordinate origin

by the indices m, n, and p. Hence upm,n = u(m∆x, n∆z, p∆t), where subscripts refer to spatial

location and superscripts to time. Also in the presence of two media, the subscripts 1 and 2

will be used to denote the respective medium.
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5.2.1 Derivative approximations

The standard approximations for the first and second derivatives and the corresponding error

functions can be derived using tailor expansions [113], [114]. The derived schemes are called

centered or single sided based on their symmetry about the expansion point. A single sided

scheme is called forward scheme if it evaluates the function at larger values of m, n or p,

otherwise it is called a backward scheme. Typical expansions of the most common schemes are:

µ
∂u

∂x

¶
m

' um+1 − um−1
2∆x

(5.1a)µ
∂u

∂x

¶
m

' um+1 − um
2∆x

(5.1b)µ
∂2u

∂x2

¶
m

' um+1 − 2um + um−1
∆x2

(5.1c)

Equations 5.1a and 5.1c are centered schemes, because they are symmetric around a center

point, whereas equation 5.1b is an example of a single sided-forward scheme. Generally, the

single sided schemes are less accurate than a centered scheme. With a few changes all of these

expressions can be applied to derivatives with respect to z and t. Formulations for non-constant

∆x, ∆z and ∆t can also be found in Lick [113] and Boore [2].

Finally an explicit F.D. scheme is any scheme that can be stated in the form:

upm,n = a finite sum of up
0

m,n with p
0 ≤ p (5.2)

5.2.2 Difference form of equation of motion for homogeneous medium

For a homogeneous medium, the general equation of motion (Chapter 2) is presented in this

section in difference form for the case of zero dilatation (∆ = 0) is presented. The simplified

differential equation is:

ρ
∂2u

∂x2
= µ∇2u (5.3)

Were∇2 is the Laplacian operator, ρ is density, µ is the shear modulus and u is the dis-

placement. Replacing the derivatives by difference approximations (equations 5.1 a & c) and
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rearranging gives:

up+1m,n = 2u
p
m,n− up−1m,n+C

2
s∆t

2

Ã
upm+1,n − 2u

p
m,n + u

p
m−1,n

∆x2
+
upm,n+1 − 2u

p
m,n + u

p
m,n−1

∆z2

!
(5.4)

where Cs is the shear wave velocity.

Equation 5.4 is a recursive, explicit equation in the displacement at new time level p + 1.

Using a forward time marching process it is easy to compute displacement at any time, given

the initial displacements at two consecutive time points.

5.2.3 Difference form of equation of motion for non-homogeneous medium

Equation 5.3 for a non-homogeneous medium is written as:

ρ
∂2u

∂x2
=

∂

∂x

µ
µ
∂u

∂x

¶
+

∂

∂z

µ
µ
∂u

∂z

¶
(5.5)

where µ(x, z) is the rigidity of the material and µ(x, z) is the density.

To solve this equation, the derivative with respect to time can be replaced by standard

difference equations. Similar difference schemes are developed For the spatial derivatives:

∂

∂x

µ
µ
∂u

∂x

¶
m

=
µm+1

2
um+1 −

³
µm+ 1

2
+ µm−1

2

´
um + µm− 1

2
um−1

∆x2
(5.6)

Tikhonov and Samarskii [115] developed a method which is more dependent on the variation

of µ(x, z). The following equation states their final conclusion:

∂

∂x

µ
µ
∂u

∂x

¶
m

=
Am+1um+1 − (Am +Am+1)um +Amum−1

∆x2
(5.7a)

where Al = ∆x

"Z xl

xl−1

dx

µ

#−1
(5.7b)

Equations 5.6 and 5.7 determine the equivalent values of rigidity at node points in the

computational zone. These formulas hold for any arbitrary rigidity i.e. when the rigidity has a

step change in value.
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5.2.4 Boundary and initial conditions

The condition that the dependent variable should satisfy around the boundary curve is termed

boundary condition. It is also usual for the variable distribution through out the medium to be

known at some particular instant, which is usually taken as zero time. This variable distribution

is called initial condition [114].

Two types of boundary conditions are common in F.D. models: physical boundaries and

artificial boundaries.

Physical boundaries

This type of boundary condition arises when an abrupt change in rigidity occurs at some inter-

face in the body. These conditions are expressed as the continuity of stress and displacement.

Also it is common to call them as displacement and velocity boundary conditions. In the

mathematical form they are expressed as:

u+ = u− (5.7c)µ
µ
∂u

∂n

¶
+

=

µ
µ
∂u

∂n

¶
−

(5.7d)

where u is the displacement and ∂ /∂n is the derivative normal to the interface. Equation

5.7c satisfies the continuity of displacements and equation 5.7d satisfies the continuity of velocity

at the interface.

Most published applications of the finite difference method to elastic wave propagation

involve plane rather than curved interfaces [116], [2] . These approximations are difficult to

generalize to complicated boundaries. In 1970s several methods based on the heterogeneous

wave equation (equation 5.5) have been developed which can be utilized for either curved or

plane boundaries with the same ease [2]. As stated in the previous sections one method is the

heterogeneous media approach that utilizes equation 5.7 to approximate the equivalent stiffness

of the node.

The other approach is called explicit continuous stress method that was developed by Boore

[2]. This method is based on expanding the Laplacian at the interface points in terms of an
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irregular mesh with short legs. The difference form of the Laplacian in this case is:

µ
∂2u

∂x2

¶
m

' 2
∙

um+1
∆x2 (∆x1 +∆x2)

− um
∆x1∆x2

+
um−1

∆x1 (∆x1 +∆x2)

¸
(5.8)

where u is displacement and ∆x1 and ∆x2 are the x distance between grid points m− 1,m

and m,m− 1 respectively.

A fictitious computation star is defined which involves displacements at actual grid points

and at curved points, defined by interface grid line intersections (Figure 2 1). Knowing the

displacements at times p and p-1, all the displacements for time p+1 can be generated except

for point D which the following procedure is used to calculate it:

• normal to the boundary curve is constructed at D

• displacement at the normal-gridline intersection C is determined by linear interpolation

between grid points A and B (and similarly for C‘).

• approximation to equation 5.7d is given by:

µ1
up+1D − up+1C

DC
= µ2

up+1C − up+1D

DC 0
(5.9)

In which u is the displacement, µ1 and µ2 are the rigidities of medium1 and medium 2

respectively and DC and DC‘ are as defined in Figure 5-1.

Equation 5.9 is used to determine the new curve point displacement up+1D .

Artificial boundaries

The wave propagation in an unbounded medium in any direction cannot be modeled directly,

because of the limitations of finite computer storage. Hence artificial boundaries should be

introduced. This places some definite constraints on the length of time for which the computed

solution can be considered free of contamination. The manner in which these boundaries are

treated is highly dependant on the problem and a general comment on all the models might

not be always applicable.

The simplest model is the one used for a symmetric structure. In this model half of the

region can be modeled provided that the condition ∂u/∂x = 0 is satisfied all along the line of
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Figure 5-1: A portion of the spatial grid near a curved boundary (after [2])

symmetry. Also the model can be prepared large enough that the compressional waves reflected

from the boundaries and the imaginary obstacles (in an axisymmetric model) do not reach the

recording points.

Lysmer and Kuhlemeyer [3] proposed a general method through which an infinite system

can be by a finite system with a special viscous boundary condition. The physical interpretation

of the method can be explained using Figure 5-2 which, shows a typical example of an infinite

system.

An imaginary convex boundary is considered that encloses all sources of disturbance and

irregular geometrical features. Propagation of the energy occur only from interior to the exterior

region and all the energy arriving at the boundary will pass to the exterior region. The effect
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Figure 5-2: a) Typical infinite system b) Typical equivalent bounded model (after [3])

of the exterior region on the interior region is thus similar to that of an energy- absorbing

boundary. This observation leads directly to the idea of determining the dynamic response of

the interior region from a finite model consisting of the interior region subjected to a boundary

condition, which ensures that all energy arriving at the boundary is absorbed. Analytically this

can be expressed by the following boundary condition:

σ = aρCp
•
w (5.10a)

τ = bρCs
•
u (5.10b)

Where σ and τ are the normal and tangential stresses respectively;
•
w and

•
u are the normal

and tangential velocities; ρ is the mass density; Cp and Cs are the p-wave and shear-wave

velocities respectively and b and a are constants.

The introduced boundary condition corresponds to a situation in which the boundary is

supported on infinitesimal dash pots oriented normal and tangential to the boundary. Numerical

investigation of the absorbing boundary method shows that for a given choice of a and b the

ratio between the reflected and absorbed energy depends on the incident angle θ and Poisson
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ratio υ. It has been shown that the absorption cannot be perfect over the whole range of

incident angles by any choice of b and a. Nearly perfect absorption is obtained for the range

θ > 30◦ for a = b = 1, while some reflections happen at smaller incident angles. For a choice

of a = b = 1 and ν = 0.25 they showed in that their method is 98.5% effective in absorbing

p-waves and 95% effective in absorbing s-waves. By using b and a varying with depth along

the boundary, this method is almost perfect in absorbing Rayleigh waves. Finally it should

be mentioned that this method is not frequency dependent and it can be applied to transient

waves as well as harmonic excitations.

The above methods are only approximate except for the symmetric condition. The difference

between the computed solution and the actual solution that would exists in the absence of

boundaries, acts as secondary sources and produce spurious reflections, which contaminate the

solutions at surface. At free surface, contamination usually is present only in later parts of time

records. This is because of the fact that the secondary sources are generated when the incident

waves have a chance to reach the artificial boundary and reflect back toward the free surface.

Incase of existence of several waves with different velocities, there is a chance for low velocity

waves to be contaminated by the reflections of high velocity waves. In general, contamination

is unavoidable and the more easily it is recognized the less chance there is of interpreting it as

real motion.

As a general comment it can be stated that in practice the artificial boundaries should be

placed as far from the region of heterogeneity as it is feasible. Numerical experiments, using

different distances to the sides and bottom are essential to define the space-time region that is

free of contamination.

Consistency, Stability and Convergence

The most basic property that a scheme must have in order to be useful is that its solutions

approximate the solution of the corresponding partial differential equation and that the approx-

imation improves as the grid spacing (∆x, ∆z and ∆t) tend to zero. This property is called

convergence of a scheme.

In general, direct attempt to prove that a given scheme is convergent is not easy. However

in practice this problem has been replaced by investigating the consistency and stability of the
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scheme. Lax proved mathematically [112] that a consistent finite difference scheme for a partial

differential equation is convergent if and only if it is stable. In this way in a finite difference

model it is necessary to assure that it is stable and convergent.

The truncation error of a difference equation measures how closely the exact solution of

the differential equation satisfies the corresponding difference equation. In a finite difference

approximation, a measure of truncation error is given by inserting the solution to the cor-

responding differential equation into the difference approximation. In general the truncation

error is a function of a power of grid spacing and is expected to vanish in the limit ∆x,∆z and

∆t→ 0. In the mathematical form it can be stated as:

ERROR = O (∆xα,∆zα,∆tα) −→ 0 as ∆x,∆z,∆t −→ 0 provided 0 ≤ t ≤ T

(5.11)

in which α is called the degree of accuracy of the difference scheme.

If the condition of equation 5.11 is satisfied the difference equation is said to be consistent

with the partial differential equation. In practice to assure the consistency of the partial dif-

ferential equation Pu = f , with a finite difference scheme Pk,hu = f it is sufficient to find a

smooth function φ(t, x, z) that satisfies the following condition [114]:

Pφ− Pk,hφ −→ 0 as k, h −→ 0 (5.12)

Stability of a difference approximation is the requirement that there should be a limit to

the extent to which any component of the initial function can be amplified in the numerical

procedure. During World War II, von Neumann [114] developed a way to investigate the

stability of a scheme. This method is based on the Fourier series method and uses a time

harmonic plane wave for the wave field, as follows:

ui (x, z, t) = ui (0, 0, 0) e
i(kxx+kzz)e−iωt (5.13)

in which, kx and kz are the wave numbers in x and z directions respectively, ω is the excitation

frequency and ui(0, 0, 0) is the initial condition. In the matrix form the propagation of the wave
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field in a homogeneous medium unbounded can be described as [117]:

U (t+∆t) = AU (t) (5.14)

Where U(t) denotes the generalized wave field which contains all wave field parameters that

are necessary to calculate the next time step. To ensure that the errors at some time step do

not become magnified with time, it is necessary for the eigenvalues of A to be less than one.

Mitchel [115] showed that for a general three level scheme whit 2 spatial dimensions the above

condition is satisfied when the following condition is fulfilled:

β
∆t

∆x
≤ 1√

2
(5.15)

where β is the equivalent wave velocities in the node points in the computational star sur-

rounding any arbitrary point at m∆x, n∆z. For a non-uniform grid β would be a non-constant

function over (x, z). In practice no instability occurs when the highest uniform media velocity

replaces β.

Stephen [118] used a less restrictive condition for stability of his proposed finite difference

scheme as follows:

∆t

∆x
≤ 1q

C2p + C
2
s

(5.16)

where Cp and Cs are the p- and s- wave velocities respectively. Also Saenger et al. (2000) used

the following stability condition for a standard staggered grid :

∆t

∆x
≤ 1

C2p
√
2
Pn
k=1 |ck|

(5.17)

where ck denotes the difference coefficients. This equation gives a more restrictive condition

than the one in equation 5.15.

Finally the following criterion was used by Otter et al. [119] to be used with dynamic

relaxation scheme , This equation is stated for m spatial coordinates:
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∆t

∆x
≤ 1

Cp

(µ
1

x1

¶2
+ ....+

µ
1

xn

¶2)−1
2

(5.18)

It should be reminded that von Neumann criteria has been developed for homogeneous,

elastic media with no damping. Stability limits and error analysis of finite difference schemes,

which include anisotropy and attenuation has never been performed [117]. Also application of

most of the developed conditions is restricted to the special schemes and grids that they are

associated with. So in general, they are sufficient and necessary for some of the schemes though

not necessary always [114]. In practice the above methods give useful results even when their

application is not fully justified.

Instability is seen to be rapid growth of high frequency modes in the solution of the finite

difference solution. This means that using initial data that contains larger amplitudes for

higher frequencies causes a sooner evidence of instability. Instability is a local phenomenon,

which propagates to other regions and usually starts at points of discontinuity [112].

Nyquist frequency

The minimum reliable frequency that can be extracted from a finite difference scheme is called

Nyquist frequency and is defined as:

fmax ≤ fNyq =
1

2∆t
(5.19)

where ∆t is the time increment of finite difference scheme.

Numerical dispersion

The term dispersion is associated with the phenomena of waves of different frequencies traveling

with different speeds. This causes the shape of the wave not to be preserved as the wave moves

away from the source. Despite of the stability condition, where the model is stable if the

stability condition is satisfied, numerical dispersion can only be reduced to some degree [117].

To control the numerical dispersion the following parameters are introduced [120]:
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γ =
√
2Cp

∆t

∆x
(5.20a)

H =
∆x

λ
(5.20b)

Equation 5.20a controls the numerical dispersion, which its maximum is defined with the

stability criteria (γmax), and equation 5.20b controls the number of nodes per wavelength of

the plane wave. Then the non-dimensional velocities (the ratio between the numerical phase

velocity to the true phase velocity) are defined as follows:

qp =

√
2

πγH
sin−1

∙
γ√
2

q
sin2 (πH cos (θ)) + sin2 (πH sin (θ))

¸
(5.21a)

qs =
Cp
Cs

√
2

πγH
sin−1

∙
Cp
Cs

γ√
2

q
sin2 (πH cos (θ)) + sin2 (πH sin (θ))

¸
(5.21b)

where equations 5.21a and 5.21b define the nondimensional p- and s-wave velocities,. re-

spectively. In above θ is the angle that the wave makes with horizontal axis, and the rest of

the parameters are defined previously.

Equation 5.21a implies that the dispersion of p-wave velocity does not depend on the Poisson

ratio though the dispersion of s-wave velocity depends on the Poisson ratio through the ratio

of Cp to Cs. Also maximum dispersion occurs when the incident angle is equal to 0◦ or 90◦.

Figure 5-3 shows the plot of non-dimensional p- and s-wave phase velocities for a case where

Cp = 114.9
m
s , ν = 0.2, γ = 2.031, and θ = π

20rad.

As it can be seen increasing the number of grid points per wavelength decreases the disper-

sion of the numerical approach. Virieux [120] suggested to use at least 10 nodes per wavelength

though other researchers proposed more restrictive conditions, i.e. Lysmer and Kuhlemeyer [3]

suggested 12 nodes per wavelength and Holberg [121] proposed 20 grid points per wavelength.

Figure 5-3 shows that for 10 nodes per wavelength (H = 0.1) the computed phase velocity

would be about 98% of the actual velocity. To reduce the numerical dispersion for a given

scheme the following procedures can be followed [117]:

• large wavelengths with respect to the grid spacing (minimizing H)
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Figure 5-3: Dispersion curve for non dimensional s-wave phase velocity.

• a small dispersion parameter γ with respect to γmax.

In a mathematical form the above conditions can be stated as:

∆x ≤ Ωλmin where λmin =
CP
fmax

(5.22)

Where Ω is a positive factor and fmax is defined in equation 5.19. In practice 10 to 15 nodes

per wavelength (Ω = 0.1 to 0.067) gives reasonable results. Combining equations 5.19 and 5.22

gives the following lower restricting boundary:

1

2ΩCP
≤ ∆t
∆x

(5.23)

Another approach that clearly defines the numerical dispersion phenomenon is based on

2D Fourier analysis method [122]. In this method displacement time histories are assembled

in a matrix and a 2D Fourier transform is applied to the array. Thus, the data are converted

into frequency-wave number (f-k) domain. The trends of the peaks in the f-k plots show the

dispersive characteristics of the finite difference mesh. This method will be utilized later in this

study to improve the mesh behavior.
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5.2.5 Description of finite differences program FLAC

As Itasca 2000 defines, FLAC is an explicit finite differences program that performs a Lagrangian

analysis. The purpose of this section is to introduce the basic features of the program that are

relevant to this study. This section presents a summary from Itasca [4] and other references

mentioned throughout the text.

Governing equations

The general governing equations are the equilibrium, ΣF = m.ä, and constitutive laws, σ =

f(²), (Chapter 1). Rearranging the mentioned equations and stating them in terms of velocities,

a set of first order differential equations is obtained, which is used in FLAC. As the strains are

calculated from displacements the compatibility condition is implicitly satisfied through the

cycle.

Figure 5-4: Basic explicit calculation cycle

Figure 5-4 shows the basic calculation cycle utilized in FLAC. The detailed formulations can

be found in Itasca [4] and Otter et al. [119]. A staggered grid in time is utilized, the stresses are

calculated at times n∆t and the corresponding velocities at times (n+ 1
2)∆t. The iteration can

be started from any compatible set of initial stresses and either stress or displacement boundary

conditions can be applied to the physical boundaries.
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Finite differences equations

The finite difference scheme used in FLAC follows the approach of Wilkins [123], because this

method can model non-straight boundaries. The user divides the medium into quadrilateral

elements. Then internally, FLAC divides each element into two overlaid sets of constant-strain

triangular elements (Figure 5-5).

Figure 5-5: a) Overlaid quadrilateral elements used in FLAC b) Typical triangular element
with velocity vectors c) Nodal force vector (after Itasca 2000 [4] with modifications)

The four triangular sub-elements are termed A, B, C and D. The force exerted at each node

is the average of the forces exerted by the overlaid quadrilaterals. At this stage FLAC imposes

a limitation on the shape of the elements, if the area of one triangle becomes much smaller than

the area of its companion, then the corresponding quadrilateral is not used. If both overlaid

sets of triangles are badly distorted, then an error message will appear.

The difference equations used in FLAC, are based on the generalized form of Guass’ di-

vergence theorem [124]. The utilized finite difference formulation for a triangular sub-element
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is:

¿
∂f

∂xi

À
=
1

A

X
S

hfini∆s (5.24)

where
D

∂f
∂xi

E
is the average derivative over the perimeter of the triangle, ∆s is the length of

a side of the triangle, and summation occurs over the three sides of the triangle. A is the area

of the triangle, < f > is taken to be average (in this study force) over the side and ni is the

normal vector to the side (Figure 5-5c).

Stability

The built in scheme in FLAC is not unconditionally stable. A time step must be small enough

so that the speed of the calculation front is greater that the speed of the faster existent wave.

Thus, a critical time step is defined as:

∆tcrit = min

µ
A

CP∆xmax

¶
(5.25)

where ∆xmax is the maximum zone dimension, which is usually a diagonal distance and A

is the area of the triangle. The min() function is taken over all zones. For a right angle triangle

with two equal sides (∆s = ∆x) the area would be equal to 1
2∆x

2 and the maximum dimension

would be equal to ∆x
√
2. Hence the following stability condition is obtained for a factor of

safety F.S. = 2:

∆t

∆x
≤ 1

4CP
√
2

(5.26)

This equation requires smaller time increments than the ones introduced in previous sec-

tions. however numerical dispersion should still be considered. Also this equation is set for a

homogeneous medium with no damping, hence it should be used cautiously.
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Chapter 6

Behavior of Rayleigh waves in the

presence of lateral and vertical

inhomogeneities

6.1 Introduction

6.1.1 Background

The study of the behavior of Rayleigh waves in an elastic medium with different boundary

conditions has gained attention in the past century. This attention is partly because of the

use of Rayleigh waves in nondestructive testing of soils and other materials. One specific

application is the use of MASW test for the detection of underground cavities or anomalies

and the estimation of their embedment depths and size. Another application is in the quality

assessment of materials (i.e. concrete, pavement, wood, etc.) by means of nondestructive

methods. In this case, the objective is to locate cracks or fractures within an element and

estimate their size. Further, with extension and modification of the aforementioned problem, it

is possible to explain the behavior of underground structures and utilities (i.e. tunnels, water

mains ...) while subjected to earthquake/explosion loadings or vibrations due to machineries

located at the ground surface.

The Lamb solution [26] relates the surface response of a homogeneous half-space to an
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arbitrary transient dynamic surface load. The solution is frequency independent, and shows

that geometrical damping is smaller for Rayleigh waves than for body waves. The propagation

of Rayleigh waves in layered media, where individual layers are homogeneous, is well understood

[12]. Thomson [65] and Haskel [125] describe the behavior of a horizontally layered medium

to dynamic loading by computing a stiffness matrix for the medium. As the derivation of

analytical solutions for the scattering of Rayleigh waves around heterogeneities is complicated

and cumbersome, researchers often perform experimental tests or develop numerical models to

study this problem [85, 126]. Watkins et al. [69] and Rechtien and Stewart [70] conducted

seismic field tests on sites with known embedded anomalies; they report disturbances in the

recorded time domain signals near the void. The numerical studies of Al-Hunaidi [101] reveal

that either plane or axisymmetric numerical models are justified for the simulation of wave

propagation, and that there is good agreement between field and numerical data in both cases.

Gucunski and Woods [127] show that for regular soil stratification (i.e., shear stiffness increases

with depth), the source-to-near receiver spacing has a strong effect on the dispersion curve. In

1996, Gucunski et al. [94] developed finite element models to investigate the effect of lateral

inhomogeneities on the dispersion curves from the recorded signals at the surface. They reported

reflections from the void (in time domain) and fluctuations in the dispersion curves for long

wavelengths. They tried to develop a simple mathematical model to predict the dispersion

curves. Leparoux et al. [128] applied the SASW test to locate two cavities: one embedded

at 3.0 m below the ground surface with a masonry lining, and the other one embedded at

about 8.0 m beneath the surface, without any lining. They developed finite differences models

to explain the field data, and they concluded that energy partitioning occurs as the Rayleigh

wave encounters a void. Part of the energy is reflected back, part of it travels around the void,

and part of it continues along its direct path. Thus, the reflections in time domain responses

can be used to locate a void. Further, they indicated that there is a relation between the

cavity depth and the frequencies that are affected. Deep cavities affect low frequencies and

shallow cavities affect high frequencies. This effect is shown through a comparison of dispersion

curves. Other researchers have also tried to associate the surface response of a medium to

the location and size of a void. Field tests, experiments on prototypes, and numerical studies

by Phillips et al. [129, 130, 97] show high energy concentrations in the Fourier spectra of
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the surface responses over different voids. Results from various numerical models with lateral

inhomogeneities [131, 94, 126] show that the presence of an anomaly causes rippled time signals.

The ripples are more conspicuous in the area between the source and anomaly, because the

obstacle reflects part of the energy of the incident wave. In general, field results and numerical

studies show good agreement. Phillips et al. conducted laboratory and field tests and studied

the results in the frequency domain. They detected regions with energy concentrations, in the

power spectral values obtained from responses recorded in the proximity of a void. Hence, they

proposed the use of power spectral density functions (PSD method) to detect voids. Shokouhi

and Gucunski [96] reported a similar phenomenon based on wavelet analysis of the responses.

They concluded that energy concentration and reflection peaks occur in front of the cavity.

They observed reflections from near and far boundaries of the cavity. Accordingly, a method

for evaluation of the width of the cavity was proposed, which is based on calculation of the

time difference between the reflections from near and far boundaries of the void. Lastly, they

observed that by increasing the depth of the void the observed responses at the surface are

mitigated. Hevin et al. [132] applied similar techniques to determine the depth of a surface

crack in a concrete element.

Despite of all the efforts, neither of the above researches was able to explain the physical

behavior of the cavity and medium that causes the observed behavior. Further, a clear re-

lationship between the surface responses and void geometry is not devised, and studies with

various layers are rare. In almost all of the numerical studies the three dimensional nature of

the problem is ignored for simplicity.

6.1.2 Statement of the problem

Relatively limited experimental and theoretical information is available that address the prop-

agation of mechanical waves in an inhomogeneous semi-infinite half space. Some solutions are

available to account for the effect of vertical inhomogeneities (i.e. layering) on the Rayleigh

wave fronts. Though, theoretical approaches to this problem have not led to a general solu-

tion. Further, the combined effect of lateral and vertical inhomogeneities on the propagation of

Rayleigh waves is not studied in detail, yet.

The studies referenced in the previous section are based on qualitative changes of the surface
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responses, without a physical interpretation of the observations. Thus, their applications are

limited to the studied cases or similar ones and are not versatile. Both field and numerical

studies confirm the occurrence of energy concentration (in different domains) in the vicinity of

the void. Though, some researchers reported that it happens over the void [129], and others

observed it in front of the cavity [96]. Moreover, its physical reason is not explained. The rela-

tion between the size and embedment depth of a cavity and the surface responses is still under

investigation, and the evaluation of the embedment depth of a void is not possible. Limited

information is also available that discuss the combined effect of void and horizontal layering on

the surface responses. In previous studies, the limitations and errors of the methods are not

clarified. Moreover, the detection of underground cavities is a three dimensional problem, and

the effect of third dimension has been neglected in most of the conducted numerical studies .

This chapter explains the results of a series of studies that have been conducted to investigate

the effect of lateral and vertical inhomogeneities (i.e. voids or a combination of void and layers)

on the propagation of Rayleigh wave fronts in an elastic medium. The main objective is to derive

physical relations between the responses at the surface of a medium and the characteristics of a

cavity. The relation between the location, size, and embedment depth of a cavity and the surface

responses is of a major concern. Further, the effect of the third dimension on the investigations

is considered. This work will provide a basis for the successful application of MASW technique

to detect underground cavities and evaluate their extents.
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6.2 Numerical experimental methodology

The numerical modelling activity in this research consist of five stages (table 6.1), where this

chapter explains the results of stage number S00. At this stage, two dimensional (2D) axisym-

metric finite differences models are constructed to simulate the propagation of Rayleigh waves

in an elastic half space in the presence of anomalies. The models simulate the MASW test

method in the presence of lateral inhomogeneities. The models are calibrated against the Lamb

([26]) solution (Chapter 5). Rectangular voids with different sizes, width to height ratios, and

embedment depths are incorporated into the medium. Figure 6-1 shows the model numbers

and the geometry of the voids. Each model is numbered as SXX_Y Y , where XX represents

a model type, and Y Y represents the study number. Table 6.1 shows the description of model

types used in this study. In each model type, voids with different sizes and embedment depth

are inserted. Same model types with different void sizes are distinguished by their study num-

ber (Y Y ). Thus, model number S00_05 corresponds to model type S00 (2D elastic half-space)

and study number 05 (void at a depth of 0.08 m, height of 0.08 m and width of 0.64 m). The

model S00_01 corresponds to the half-space without any void. The responses of this model

have been used as a reference for comparison of the results. All the values of the responses

obtained from different studies of types S00, S01, and S02 are normalized to the corresponding

maximum value of the study S00_01. In this way, a common scale is used for all the results.

Table 6.1: Model types used in this study
Model Type Description

S00 2D- elastic half-space
S01 2D- a layer underlain by a very stiff half space
S02 2D- a stiff layer underlain by a soft half-space
S03 3D- elastic half-space
S04 3D- a layer underlain by a very stiff half space

The responses along the surface, around the void, along several vertical, horizontal and

circular lines inside the models are studied. The recorded responses are analyzed in time-space,

frequency-space, and wavenumber-frequency domains. Snapshots of displacement fields of the

surface, around the void, and inside the medium at different times (2DSpace-time domain) are

also studied. The study in the 2D space-time domain allows for the correlation of the surface
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responses with the deformations of the void and inside the medium. Thus, it leads to a better

understanding of the governing physical phenomena.
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Figure 6-1: Model numbers and main characteristics of each model. Study numbers are stated
in the small box at the top left corner of each cell. In each cell the size and embedment depth
of the void, corresponding to that model, number is shown.

6.2.1 Model description

All the numerical models used in model type S00, are developed from the basic model repre-

sented in figure 6-2. The basic model consists of a uniform grid surrounded by a nonuniform

grid, to reduce the computation time. The left boundary is fixed in horizontal direction (X-

direction), thus represents an axis of symmetry. The bottom and right boundaries are free, and
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quieted boundary conditions are applied to them to mitigate the effect of reflections. To prevent

the free body motion of the model in vertical direction (Z-direction) the vertical displacement

of the bottom-left corner of the model is fixed in Z-direction. For more details of the model see

Chapter 5. The size of the model is 20.0 m in both the X- and Z- directions. The uniform grid

size is 8.0m in X-direction (1000 grid spaces), and 2.12m in the Z-direction (266 grid spaces).

Hence, the grid size in both X- and Z- directions for the uniform grid is ∆s = 0.008m.

Figure 6-2: Geometry and dimensions of the basic finite differences model used in this chapter.
Axis Z is the axis of symmetry.

The focus of this study is on R-waves; therefore, in each model the surface is excited by a

vertical Lamb source (Chapter 5) to transfer most of its energy to the medium in the form of

Rayleigh wave [54]. The Lamb source (Chapter 5) with the following parameters is chosen for

the input source:

98



ψ = 0.00075; Fb = 1000; Time Shift = 0.036s (6.1)

Figure 6-3 is a graphical representation of the used Lamb source in time and frequency

domains. This source has energy in a wide frequency range; though, about 50% and 97.5% of

its energy is concentrated in the frequency ranges below 150 Hz and 800 Hz, respectively.
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Figure 6-3: Representation of used Lamb source in time (a) and frequency (b) domains.

Material type I as introduced in table 6.2 is used in this phase. The P-wave (CP ), S-wave

(Cs), and Rayleigh wave (CR) velocities are 114.87, 70.34, and 64.08 m
s respectively. Following

the procedures explained in Chapter 5, the dynamic time step (∆t) and the maximum dynamic

time (tmax) are selected as 1× 10−5s and 0.185 s, respectively.

To simulate lateral inhomogeneities, rectangular voids are introduced into the model. Figure

6-4 shows the general geometry of the voids and their location relative to the source. The voids

are always centered at 5.592m from the source, thus the center of the void is not coincident

with the center of the receivers line at the surface, which is located at 5.992m from the source.

The width (b), height (a), and embedment depth (h) of the void change in each study. The
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width to height ratios ( ba ratio) are varied from 0.125 to 8 and the embedment depth to height

ratios (ha ratio) are varied from 0.125 to 4 (Figure 6-1).

Figure 6-4: General geometry of a model with void. The width (b), height (a), and embedment
depth (h) of the void are variables.

6.2.2 Recording points and analysis parameters

To record the surface responses, 101 recording points (R1 to R101) along the surface are chosen

(Figure 6-5a). R1 is 3.992m away from the source (offset value or Dx) and the distance between

R101 and the source is 7.992 m, thus the array length is Lx = 4.00 m. The receivers are located

far from the source to reduce the near field effect. The responses are recorded every other 5

grid points. Therefore, the distance between the receivers is ∆x = 0.04m. Both the horizontal

and vertical displacements (δx and δz) are recorded and analyzed.
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To enhance the study Rayleigh waves in the presence of a void, the responses inside the

medium are recorded and analyzed in conjunction with the surface responses (figure 6-5) In

the vertical direction five lines (V1 to V5), with 50 recording points are chosen (Fig 6-5a). The

horizontal distance between V1, V2, V3, V4, and V5 and the source are 3.992 m, 4.792 m,

5.592 m, 6.392 m, and 7.192 m, respectively. The first recording point on each vertical line is

located at the surface and the last recording point is located at a depth of −2.0 m, the vertical

distance between the consecutive receivers is 0.04 m. In the horizontal direction four lines (H1

toH4) are chosen at the depths of −0.04 m, −0.08 m, −0.16 m, and −0.20 m, respectively (Fig

6-5a). Similar to the surface, the responses are recorded at 101 points along each horizontal

line. The first receiver is located 3.992 m and the last receiver is located 7.992 m away from

the left boundary of the model. The distance between the recording points is 0.04 m.
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Figure 6-5: Location of recording points a) along the surface of the model, vertical lines, and
horizontal lines inside the medium b) along arcs, and d) around the void
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Figure 6-5b shows the recording points chosen along two arcs that start at the surface and

ends at a depth of −2.00 m. The radius of the first arc is 4.684 m and the second arc has a

radius of 6.50 m. Both arcs are located at the same horizontal distance from the middle of

the void. 51 points are chosen around the arc to record the responses. Finally, the responses

around the void are measured at 180 points. The numbering sequence of the points around the

void is shown in figure 6-5c, they increase in the clockwise direction. On each side of the void

the distance between the recording points is 0.008 m.

Preliminary investigations with different medium physical properties showed that the mea-

sured trends are independent of the medium properties. Therefore, all the studies in model

type S00 are performed with the material properties presented in table 6.2. The properties are

similar to the ones of the sand material that is used in the sand box test (Chapter 9).

Table 6.2: Material properties used in model type S00
Material Type I

Density (kg/m3) 1600

Poisson ratio (υ) 0.2

Modulus of Elasticity E (MPa) 19.0

Shear modulus G (MPa) 7.92

P-wave velocity Cp (m/s) 114.87

Shear wave velocity Cs (m/s) 70.34

Rayleigh wave velocity CR (m/s) 64.08

The dynamic time increment for all the models is ∆t = 1 × 10−5 s, which satisfies the

stability and accuracy conditions. The responses are saved every ten time steps; hence:

δt = Sampling time = 1× 10−4s and δf = Sampling frequency =
1

δt
= 10 kHz (6.2)

Thus, the Nyquist frequency is 5 kHz (fNyq = 1/(2δt)). The following sections present the

numerical results along with the discussions. Mathgram 6-1 (Appendix B) shows the details of

the calculations to assure the stability of the models. Mathgram 6-2 (Appendix B) explains

the procedures followed for the calculations in time, frequency, and FK domains. Samples of

the developed FLAC files are presented in Appendix C.
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6.2.3 Normalization and characteristic wavelength

To generalize the results, all the responses are normalized to the maximum or minimum of the

corresponding value from the model without void (model S00_01). The concept of character-

istic wavelength is also introduced as a benchmark for the measurement of time and distance.

The characteristic wavelength should reflect the energy input to the medium, and the filtering

effect of the medium. As explained in Chapter 5, the frequency spectrum of the applied source

is altered by the medium. Figure 6-6 shows the cumulative energy content of the source, and

the responses at a distance 3.992 m from the source (first receiver study S00_01). It shows

that lower frequencies (larger wavelengths) are filtered out by the medium. Therefore, a char-

acteristic wavelength is defined as the wavelength corresponding to a 50% cumulative energy of

the responses. The defined characteristic wavelength is a function of the source input energy,

medium elastic properties, and the offset distance (the distance between first receiver and the

source). Thus, characteristic wavelength (λch) for the defined configuration in model type S00

is:

λch = 0.36 m (6.3)

A characteristic time is defined as the time that it takes for the Rayleigh wave to travel a

length equal to the characteristic wavelength. Hence, characteristic time (tch) for material type

I is:

tch =
λch
CR

=
0.36 m

64.08 m
s

= 5.618× 10−3s (6.4)

Therefore, in model type S00, the grid spacing (∆x = 0.008 m) is 0.022λch, the offset

distance (D = 3.992 m) is 11.1λch, and dynamic time increment is 1.8 × 10−3tch. In the

following, the terms normalized depth, distance, and length are associated to the corresponding

values divided by λch. Similarly, normalized time is referred to the time divided by tch.
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Figure 6-6: Variation of the cumulative energy of the applied source, and the first receiver
responses with wavelength. The wavelengths are calculated based on the R-wave velocity of
material type I (CR = 64.08ms ).
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6.3 Time responses

6.3.1 Surface responses

Figure 6-7 shows the time responses recorded at the surface of model S00_01 (Homogeneous

medium with no void). Figures 6-7a and c show the traces of horizontal (x) and vertical (z)

responses recorded at different distances, respectively. The fluctuations at the end of the traces

are associated to the reflections by the transition between the uniform to nonuniform grid.

Same time responses are depicted in figures 6-7b and d in a contour format. The depicted

values are normalized to the minimum of responses, thus the minimum value in each contour

plot is equal to −1. In these contour plots the horizontal axis shows the time in seconds and

the vertical axis shows the distance from source in metres. Thus, the slope of each event

represent the parameter ∆d
∆t , which is the apparent velocity of the event. In this case the

measured apparent velocities of the first event and the following event are 113.8 m
s , and 64.23

m
s , respectively. These values are in good agreement with the theoretical p- and Rayleigh-wave

velocities, associated to the medium (table 6.2). Body-waves attenuate faster with distance

than R-waves (geometric damping); thus, as the result of the selected testing configuration,

the amplitudes of the recorded p-waves are much smaller than the amplitudes of R-waves. For

example, the ratio of maximum amplitude of the R-wave to the maximum amplitude of p-wave

at the first receiver (in figure 6-7b) is 27. As the particle motion of p-wave is perpendicular

to the direction of propagation, at surface the p-waves can be traced better in the horizontal

responses (figures 6-7a and b). In the responses in z direction, only the Poisson ratio effect is

visible. As s-wave and R-wave velocities are close (CRCs = 0.91), the large amplitude Rayleigh

wave overshadows the arrival of s-waves in recorded responses.

Fig. 6-8a and b show typical contour plots of the horizontal and vertical normalized surface

responses in the presence of a void. Dashed lines show projection of the void boundaries to the

surface. For these typical results, the width of the void (b) is 0.64 m ' 1.8λch (model S00_05),

and the void’s width to height ratio is equal to 8. The normalized amplitude values show that

in the presence of a void the values change significantly. In this case the minimum values are

more than doubled, though the changes in the maximum values are not conspicuous. Different

events are marked on the figures by capital letters. Event ’A’ shows the incident Rayleigh wave.

105



After the interaction between the incident Rayleigh wave and the near boundary of the void,

part of the energy is reflected back. A considerable amount of the reflected energy is in the form

of Rayleigh waves (event ’D1’); whereas, the rest is in the form of p-wave (event ’G1’). Event

’B’ represents part of the incident energy that is transmitted into the region with void. This

energy splits into three parts. One part travels faster than the other two, and its velocity is close

to the p-wave velocity of the medium (this part is more conspicuous in figure 6-8a). Another

part continues to travel with the Rayleigh wave velocity, and another part travels at a smaller

velocity. When event ’B’ encounters the void’s far boundary, the p-wave part passes without

any significant interaction, and it can be traced almost completely after the void. The Rayleigh

wave transmits part of its energy beyond the void region (event ’C’), though interaction happens

and part of it is transformed into p-wave (event ’G2’) and part of it is reflected back from the far

boundary. The slower part of event ’B’ reflects back almost completely, and is trapped between

the void boundaries (event ’E’). The measured velocity of event ’E’ varies between 49.1 to 31.1

m
s which is about 75% to 50% of the Rayleigh wave velocity of the medium. Thus, the velocity

of the trapped energy decreases after each interaction with the boundaries. The measured

velocities of event E corresponds to the velocities of anti-symmetric Lamb waves traveling on

a slab of equal thickness as the top of the void. The propagation of Lamb waves on the top of

the void is also suggested by results in the frequency domain; which are discussed in following

sections. This trapped energy bounces back and forth between the void boundaries, until it

attenuates completely. Part of this attenuation is due to geometrical damping and part of it is

due to late interactions with the boundaries that cause energy transfer beyond the void region

(events ’D2’ and ’F’). Both events ’D2’ and ’F’ are in the form of Rayleigh waves. In figures

6-8a and b, event ’H’ corresponds to the incident p-wave, which traverse the medium almost

without any significant interaction with the void. Experiments with different void sizes and

embedment depths confirm these observed trends. Experiments with different void sizes and

embedment depths confirm the observed trends. For brevity, the results of the other models

are presented in Appendix CD-Chapter6.
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Figure 6-7: Time responses at the surface of model S00-01. Figures (a) and (c) show time traces
of normalized vertical and horizontal responses. Figures (b) and (d) show the corresponding
the contours of normalized horizontal and vertical time responses at the surface.
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The normalized group velocities at the surface are depicted in Figure 6-9. The velocities

are normalized to the Rayleigh wave velocity of the medium (CR). The group velocities are

calculated as:

Vz =
dz
∆tz

(6.5)

where dz is the distance between receiver number z and the first receiver, and∆tz is the time

difference between the maximum response at receiver number z and the maximum response

at the first receiver. Theoretically, the measured velocities should be equal to the Rayleigh

wave velocity, i.e. a normalized value equal to 1. The values are in good agreement with the

theory. Smooth curves are used to eliminate numerical errors. The changes in the graph can

be associated to near-field effect. Up to the near boundary of the void (dashed line) there is a

good agreement between the results for the void and no void cases. Over the void (between the

dashed lines), a drop in the group velocity is observed, with the maximum difference close to

the far boundary of the void. After the void, the group velocity increases again, though even

after a distance of about two times the width of the void it is not still regained its original

value.

6.3.2 Responses inside the medium

If the surface of a homogeneous half-space is excited by a point load, Rayleigh waves are

generated. These waves propagate as a cylindrical front, with their base at the surface and

centered at the location of point load. If they are recorded along vertical lines inside the medium

the observed responses should show one event at a specific time. On the other hand, body waves

propagate as a spherical front. If they are recorded along a vertical line inside the medium,

they arrive to the top of the line sooner than to the bottom of it, i.e. their records inside the

medium should look like a curved event. Figure 6-10 (a, b, and c) shows the responses (in z

direction) inside the model S00_01 (homogeneous medium) along vertical lines V2, V3, and

V4. All the responses are normalized to the maximum of the response recorded along line V1,

from model S00_01. In each plot, the arrival of Rayleigh waves is observed as a strong event

in time, with its maximum at the surface. The curved lines in each plot show the arrival of

incident s-waves. Because of the chosen time frame, the arrival of p-waves is not seen. Figure
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6-10 (e, f, and g) shows the normalized time responses recorded in a medium with void (model

S00_08). Before the void, along the line V2 (plot ’e’), the incident wave arrivals are seen along

with late reflections in the form of Rayleigh waves. Along lines V3, and V4 (plots ’f’ and

’g’), the Rayleigh wave arrival are also clearly seen at the surface. The arrival of the incident

Rayleigh wave is delayed, and is more spread in time than in the corresponding cases without

void. Other visible events are the curved lines below the void, based on their arrival times,

these lines are associated to the generated body waves, specially p-waves. In a homogeneous

medium the amplitudes should decrease with distance due to geometric damping (in plots ’a’,

’b’, and ’c’ the maximum amplitudes are less than one). Though, the void cause the maximum

amplitudes increase and the minimum ones decrease over and after the void (plots ’f’ and ’g’,

respectively).

Similar trends are observed in the responses along arcs inside the medium (Figure 6-11).

Plots ’a’ and ’b’ correspond to the homogeneous medium (S00_01), and plots ’c’ and ’d’ cor-

respond to the responses in the presence of a void (model S00_09). In each plot, events A,

and B show the theoretical arrival time of the s- and Rayleigh waves, respectively. Due to

the interaction of Rayleigh waves with void, reflections from both the near and far boundaries

of the void occur. In plot ’c’, events C and D correspond to reflections from near and far

boundaries of the void. The amplitudes of these reflections are small in comparison with the

amplitudes of the incident Rayleigh wave. Theoretically, the time difference between the two

events is related to the width of the void. Theoretical arrival times of the reflections from near

and far boundaries of the void to arc R1 are computed as:

Near boundary: tnear =
2× 5.272− 4.684

64.08
+ 0.036 = 0.127s = 22.6tch (6.6a)

Far boundary: tfar =
2× 5.912− 4.684

64.08
+ 0.036 = 0.147s = 26.2tch (6.6b)

where 5.272 m and 5.912 m are distances from source to the near and far boundaries of

the void, respectively. The value 0.036s is the time for the maximum amplitude of the source,

64.08 is the Rayleigh wave velocity of the medium, and tnear and tfar are the arrival time of

the Rayleigh wave to the nearest and farthest boundaries of the void to the source, respectively.
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The direct measurement of the time of event ’C’ shows a good agreement with tnear (plot ’c’).

Though, the measured time for event D is 0.149s = 26.5tch, which is about 1.5% larger than

tfar. This difference is produced by the lower velocity of the reflected wave, while traversing

the void. Therefore, if the time difference between the two reflections is used for the calculation

of the void width, some errors are involved, which will increase with the increase of the width

of the void. Further, various experiments show that as the width of the void decreases, it

is more difficult to separate the two events. Plot ’d’ (after the void) shows that the arrival

of Rayleigh wave is delayed (event B1) with respect to the theoretical arrival time (event B).

This observation confirms that existence of a void affects the R-wave velocity in the void region.

Event E which is curved toward the direction of propagation of the wave, is an indication of

generated body waves.
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Figure 6-8: Time responses along the surface of model S00_05. Figure (a) shows the horizontal
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6.4 Frequency responses

6.4.1 Surface responses

Figure 6-12 shows the frequency content of the recorded surface responses in studies S00_01

and S00_13. All the frequency amplitudes are normalized to the maximum of the amplitudes

in S00_01. Plots ’a’ and ’b’ show typical traces recorded at different locations (different d)

along the surface. In a homogeneous media (plot ’a’) the traces are smooth and their shape

does not change with distance, though their amplitude decreases as they go farther from the

source. The peak energy occurs at a frequency of about 100 Hz, i.e. a wavelength of 0.6408

m = 1.78λch (λ =
CR
f ). If this is compared to the frequency content of the source (6-3), it can

be concluded that the medium filters some low frequencies. In the presence of void -plot ’b’-

the spectra are distorted. Different shapes of the frequency spectra indicate that the medium is

dispersive. Further, the change in the amplitudes is not uniform with distance. Contour plots

of the same data are depicted in plots ’c’ and ’d’. A comparison of these contour plots show

that in the presence of the void ripples occur in the responses before the void. According to

Fourier theory, these ripples show the presence of reflections in the recorded data ([133]). The

ripples are curved and are closer to each other at larger frequencies. The distance between the

consecutive ripples is a function of the time delay between the main signal and its reflection - i.e.

the larger the delay the closer will be the ripples to each other. Thus, the ripples in plot ’d’ point

out that different frequencies are reflected back from the void with different delay times. In the

region over the void, energy concentrations are observed and two main energy concentrations

are conspicuous. The first one corresponds to a frequency of 27 Hz (λ = 2.67m = 7.42λch)

and the second one to a frequency of 174 Hz (λ = 0.37m = λch). The latter value is close

to the embedment depth of the void, though the former value could not be associated to any

meaningful parameter. However, if the velocity of a Lamb wave propagating at the top of

the void is used (VL = 34.0 m
s ), this frequency (f = 27 Hz) exactly represents the period

of the trapped energy at the top of the void (event ’E’, 6-8). Similar trends are observed in

other models (see Appendix CD-Chapter6). In the region right after the void, a significant

attenuation is observed. Measured amplitudes (’c’, and ’d’) show that in the region over the

void higher amplitudes are recorded. This confirms that in the presence of void, not only energy

115



concentration occurs, but also amplification or attenuation happens in certain frequency ranges.

6.4.2 Responses along vertical lines inside the medium

To evaluate the penetration depth of the energy the data from line V1 of study S00_01 are

used to calculate the cumulative energy at different depths. the cumulative energy is calculated

as:

CEd =

P
aboveA

2P
depthA

2
(6.7)

where CEd is the cumulative energy above the depth d,
P
depthA

2is the square of the

spectrum area summed over the total length of line V1, and
P
aboveA

2 is the square of the

spectrum area over the length above depth d. Figure 6-13 shows the cumulative energy verses

normalized depth. About 50% and 95% of the energy is concentrated at a depth less than

depths of 0.26λch ' 0.1m and 2.5λch ' 0.9m, respectively. Therefore, most of the energy of the

propagating wave is concentrated in regions close to the surface. The decrease of energy with

depth explains the smaller interaction of the voids with the incident wave at larger depths.

Figure 6-14 shows the frequency spectra of the responses along vertical lines inside the

medium. Plots ’a’ to ’e’ corresponds to medium without void (S00_01). The difference in

the amplitudes in these plots are small, and the trends of the plots are almost the same. As

expected, these plots show that the penetration depth of each frequency decreases with the

increase in frequency. To express this fact quantitatively, the total energy of each frequency

(fj) along line V1 is calculated (Etotj). Similarly, the total energy of each frequency along

line V1, up to selected arbitrary depths are calculated (Etot_dj). The ratio of the latter value

to the former value is always smaller than one, and gives an estimation of the penetration

depth of each frequency. Thus. it is found that about 90% of the energy of each frequency is

confined to a depth that is equal to about 1.5 times the wavelength of that frequency (1.5λj).

Consequently, it is expected that each frequency (fj) to interact with inhomogeneities that are

embedded within 1.5λj below surface.

Figure 6-14( ’f’ and ’j’) corresponds to study S00_06 (a = b = h = 0.16 m = 0.44λch).

The top and bottom boundaries of the void are marked on figures by solid lines. The ripples in
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Figure 6-12: Frequency spectra at the surface of the medium. Plots (a) and (c) correspond to
study S00_01, and plots (b) and (d) correspond to study S00_13 (a = 0.08 m, b = 0.64 m,
h = 0.32 m). The parameter d in plots (a) and (b) represents the distance of the recording
point from the source. The dashed lines in plot (d) show the projected boundaries of the void
to the surface. In the contour plots the horizontal axis is frequency and vertical axis shows the
distance from source.
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the responses before the void (plots ’f’ and ’g’) are an indication of waves reflected back from

the near boundary of the void. The ripples in plot ’f’ are closer to each other than in plot ’g’,

because line V2 is closer to the void than line V1, and the delay time of reflections is shorter for

line V2 than V1. Plots ’a’, ’b’, ’f’, and ’g’ show that in the presence of a void larger amplitudes

are recorded - up to 60% larger in this case. Plot ’c’ corresponds to the middle of the void;

therefore, zero energy is recorded at the depths between the top and bottom boundaries of the

void. A region with high energy concentration is present in this plot. The central frequency

of this region is about 100 Hz (λ = 0.64m = 1.78λch), which is close to the central frequency

of the incoming wave (figure 6-12). The frequency spectra recorded after the void (plots ’i’

and ’j’) show that the presence of a void decreases the bandwidth and the amplitude of the

recorded energy. This means that the void filters the energy of some frequencies and attenuate

the energy of other frequencies. Further, the energy recorded below the void is considerably
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larger than in the other plots.

119



Figure 6-14: Frequency specta of the responses along vertical lines inside the medium. Plots (a)
to (e) correspond to model S00_01 (half space without void), and plots (f) to (j) correspond to
model S00_06. The values are normalized to the corresponding values in S00_01. In each plot
the horizontal axis is frequency in Hz, and the vertical axis is normalized depth below surface.
The solid arrows show the location of the top and bottom boundaries of the void.
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6.5 2D Fourier transforms

A powerful technique to study the seismic responses is the two dimensional Fourier transforms.

In the 2D Fourier transforms, data from the time-distance domain (t-d domain) is mapped

to frequency-wavenumber domain (f-k domain). A simple way to calculate the 2D Fourier

transform is to compute the standard transform of the time-domain data first, and then of

the space-domain data ([133]). Mathgram 6-2 provided in Appendix B shows the procedure

followed in this work to obtain the 2D Fourier transforms.

In the following examples, the sampling rates in frequency and wavenumber are δf = 0.61

Hz and δk = 0.0977 1
m , and the Nyquist frequencies are fNyq = 5.0 kHz and kNyq = 12.5

1
m ,

respectively. As explained in Chapter 3, the ratio between ω and k, defines a velocity. In these

cases the defined velocity is:

Vlim =
ωNyq
kNyq

=
fNyq × 2π
kNyq

=
5000× 2π
12.5

' 2500m
s

The velocity Vlim gives a measure to distinguish between the events aliased in frequency

and the ones aliased in wavenumber domain. Therefore, the events with a velocity less than

2500 m
s will get aliased in wavenumber domain sooner than in frequency domain; whereas, the

events with a velocity larger than 2500 m
s will get aliased in frequency domain sooner than in

wavenumber domain.

Figure 6-15 depicts the normalized 2D Fourier responses for models S00_01, and S00_12.

Plots ’a’ and ’b’ show the 2D Fourier transforms of horizontal and vertical components of

the homogeneous medium (model S00_01). The values are normalized to the maximum of

each plot. Chapter 3 showed that in the 2D Fourier plots events with different propagation

directions will show up in different quadrants. Thus, events A and B are propagating in the

same direction. The event A corresponds to the incident Rayleigh wave (CR = 64.08ms ) and

event B corresponds to the incident p-wave (Cp = 114.0ms ). The linearity of event A shows that

there is no numerical dispersion for the frequency-wavenumber range depicted in these figures

[122]. As the horizontal components of p-waves at the surface are larger than their vertical

components (vertical component is solely due to the Poisson effect), eventB is more conspicuous

in plot ’a’ than in plot ’b’. In both plots, the effect of noise is observed. This noise is associated
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to reflections from physical boundaries and the ones imposed by discretization of the medium.

Plots ’c’ and ’d’ correspond to a void case (a = h = 0.32 m = 0.89λch, b = 0.08m = 0.22λch). In

each plot, four events are observed. Events A, and B are the same as explained before. Events

C, and D are located in the second quadrant, which shows waves traveling in a direction

opposite to events A, and B. Event C travels with a velocity close to Rayleigh wave velocity of

the medium (VC = 63.8ms ), thus it can be associated to the Rayleigh wave reflected from the

void. The amplitude of the reflected wave (event C) is smaller than the amplitude of incident

wave (event A), which shows that only part of the incident Rayleigh wave is reflected. The

velocity of event D (VD = 113.5ms ) is close to the p-wave velocity of the medium . A qualitative

comparison of the amplitudes of events D and B shows that they are almost in the same order

of magnitude, thus event D can not be only associated with the reflection of incident p-wave

(event B). Event D can also be associated with the p-waves generated due to the interaction

of incident Rayleigh wave (event A) with the void. This interpretation is consistent with the

observations in time domain, as explained in previous sections.
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Figure 6-15: 2D Fourier amplitudes of surface responses. Homogeneous medium (plots a, and
b), and medium with void (plots c, and d).
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6.6 Discussions

The observations presented in the previous sections, along with the ones in Appendix CD-

Chapter6, show that a void interacts with the incident Rayleigh waves, and p-waves to a minor

extent. To comprehend the nature of this interaction, the displacements around the void are

recorded in time domain, and the corresponding frequency contents are evaluated. As a basis

for comparison, the responses around an imaginary boundary, similar to the void boundary,

inside a homogeneous medium (model S00_01) are also recorded.

Figure 6-16 shows the contour plots of the displacements in time domain around the imag-

inary boundary in model S00_01 (plots ’a’, and ’c’), and around the void in model S00_09

(plots ’b’, and ’d’). The height of the void is a = 0.08 m = 0.22λch, the width of the void is

b = 0.64 m = 1.78λch, its embedment depth is h = 0.16m = 0.44λch, and its width to height

ratio is R = 8. This high value of R is selected to study the effect of void rather than the effect

of the depth of the top and bottom boundaries.

Again, the responses are normalized to the maximum of the corresponding displacements

in model S00_01, thus the maximum of responses in plots ’a’, and ’c’ are equal to 1. The

boundaries of the void (bottom, near, top, and far) are marked with dashed lines. Plots ’a’ and

’b’, and in plots ’c’ and ’d’ show that, in general, the displacement in the presence of void are

larger than the corresponding responses in homogeneous model. In these plots, event A shows

the arrival of p-waves to the void. The amplitude of the p-wave is small with respect to the

amplitudes of Rayleigh wave, the p-wave does not cause significant interactions with the void,

thus its effect is not clearly seen in either of the plots ’b’ or ’d’. Events B (B-bot, B-near and

B-top) show the arrival of Rayleigh wave to the void. The Rayleigh wave front is cylindrical,

thus its arrival to the near and far boundaries of the void is observed as a single event in time

(vertical line event B-near). Correspondingly, its arrival to the top and bottom boundaries of

the void is observed as an inclined line (events B-bot and B-top). Events B-bot and B-top

show that the incident Rayleigh wave energy causes the top boundary of the void to vibrate.

This vibration is seen as event E in both plots ’b’ and ’d’. This vibration lasts for a relatively

long time (t = 10.2tch) with respect to the duration of the main event (t = 0.87tch). Due

to the interaction of Rayleigh wave with the near boundary of the void, part of the energy is

transformed into p-waves waves (event C). The incident Rayleigh wave show minor dispersion
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(spread in time), which is better observed when comparing events B-bot in plots ’a’ and ’b’.

The void causes some frequencies to travel with lower velocities. Events D1 and D2 show the

reflection of the incident wave from the far boundary. The trace of the reflections can be seen at

later times, indicating that some of the incident energy is trapped in the void region and bounces

back and forth between the boundaries until it is attenuated. Also, the induced displacements

at the top side of the void are larger and last longer than at the bottom boundary. The effect

of almost all of these events can be seen at the surface as explained in previous sections of this

chapter.

Figure 6-17 shows contour plots of the frequency spectra of the z displacements around the

void boundaries (models S00_01, and S00_09). In plot ’a’ (no void case) the variation of the

contours are smooth and more energy is spread along the top side of the region. The variation

of spectra is similar to the ones observed at the surface (figure 6-12). Whereas, in plot ’b’,

void case, a region with high energy concentration is observed almost at the middle of the top

boundary (event A) and along the left boundary, though the amplitudes at the top are larger.

This concentrated energy is associated to the effect of the trapped energy, which was observed

in the time domain plots (figure 6-16). The effect of reflection is seen on both top and bottom

boundaries as ripples. High frequencies are less present at the bottom than at the top boundary;

because, the penetration depth of higher frequencies is smaller than the penetration depth of

lower frequencies (plot ’a’). Also, part of this attenuation can be associated to the filtering

effect of the void (plot ’b’). Event B in plot ’b’, shows another energy concentration along the

top boundary. The main frequency of this event is equal to 350 Hz, with a wavelength equal

to 0.18 m (0.5λch). This wavelength is very close to the embedment depth of the void (0.16

m). Thus, not only the shape of the void, but also the embedment depth of the void, affects

the wave propagation.

To better understand the vibration of the void, the deformation of the void is depicted in

time domain in figures 6-18 to 6-21. Each figure consists of four snapshots that show the surface

responses along with the deformation of the void at the same time. For comparison, in each

plot the undeformed shape of the void is also shown with dotted lines. The plots ’a’ to ’p’ are in

timed sequence. Before the arrival of the main event (plot a) the void is in its initial undeformed

shape. Upon the arrival of the wave, the void starts to deform, with a pattern similar to the
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Figure 6-16: Time responses recorded around and imaginary boundary (S00_01) and a void
(S00_09). Dashed lines show the limits of the boundaries of the void. The void numbering
sequence is shown in figure 6-5c. Plots a, and c correspond horizontal (x) and vertical (z)
displacements in model S00_01, respectively. Plots b, and d correspond to the horizontal (x)
and vertical (z) displacements in model S00_09, respectively. For comparison, the responses
are normalised to the corresponding responses in model S00_01.
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Figure 6-17: Frequency responses around the void. Dashed lines show the void boundaries. The
numbering of recording points is shown in figure 6-5c. Plots a, and b correspond to vertical (z)
displacements in models S00_01 and S00_09, respectively. For comparison, the responses in
both plots are normalized to the maximum of S00_01.
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general pattern of the incident wave (plots ’b’, ’c’, and ’d’). The void starts to interact with

the wave, and part of the incident energy reflects back and part of it is transmitted (plots ’d’,

and ’e’). The void causes some frequencies slow down, while the others travel with the same

velocity (dispersion). This dispersion results in a distortion in the surface responses (plots ’e’

to ’g’). When the incident energy hits the far boundary of the void again part of the energy

reflects back and part of it travels beyond the void boundary (plots ’g’ and ’h’). At this time,

almost all of the void is vibrating, although the incident energy has passed (plots ’i’ and ’j’).

Vibration of the void, for a relatively long time after arrival of the incident wave, proves that

the void traps part of the energy. This trapped energy bounces back and forth between the void

boundaries until it is damped. Each time that this trapped energy hits the void boundaries,

part of it is transferred beyond the void region (plots ’j’ to ’p’). Therefore, late reflections are

observed in the surface responses.

6.7 Summary of the conclusions

This chapter investigated the interaction between a void and Rayleigh wave in a homogeneous

half-space. A commercial finite differences package FLAC was used to simulate the propagation

of Rayleigh wave. The numerical models were calibrated against theoretical solutions to assure

the quality of the obtained data. The surface responses of the medium were studied in com-

bination with the responses along vertical and horizontal lines, and arches inside the medium,

and around the void.

The concept of characteristic wavelength was introduced to generalize the results. The

introduced characteristic wavelength is a function of the frequency content of the source, as

well as the medium properties. The characteristic wavelength is used to describe the limits of

the observations.

The responses in time, frequency, and f-k domains showed that the void interacts with

the incident Rayleigh wave. The extents of this interaction depends on the void size, and

embedment depth, as well as the frequency content of the incident energy. The void starts to

vibrate in response to the Rayleigh wave excitation, which causes energy partitioning. Part of

the energy is reflected toward the source in the form of Rayleigh waves. The interaction of the
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Figure 6-18: Surface displacements and void deformations at times t = 0.11s to t = 0.12s. In
the figures a1 to d1 correspond to the surface responses in which the horizontal axis is distance
from source and vertical axis shows the normalized amplitudes. The vertical dashed lines show
the projected boundaries of the void. Plots a2 to d2 shows the corresponding deformed shape
of the void, where the horizontal axis is the distance from source and vertical axis is the depth
below surface. The associated time is shown in each figure.
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incident energy with the near and far boundaries of the void causes the conversion of part of

the energy into body waves. The body waves are mostly in the form of p-wave and propagate

inside the medium. Another part of the energy is trapped in the void region. The velocity of

this part of energy decreases as it bounces back and forth between the void boundaries. The

studies showed that this energy is in the form of antisymmetric Lamb wave that is produced in

the upper part of the void. The effect of the trapped energy is seen as energy concentration in

the vicinity of the void, in frequency domain. The dispersive effect of the void is also observed.

130



2.0

1.0

0.0

-1.0
87654

Y displacement

X displacement 2.0

1.0

0.0

-1.0
87654

Y displacement

X displacement

2.0

1.0

0.0

-1.0
87654

Y displacement

X displacement 2.0

1.0

0.0

-1.0
87654

Y displacement

X displacement

-0.24

-0.20

-0.16

-0.12

6.05.85.65.45.2

-0.24

-0.20

-0.16

-0.12

6.05.85.65.45.2

-0.24

-0.20

-0.16

-0.12

6.05.85.65.45.2

-0.24

-0.20

-0.16

-0.12

6.05.85.65.45.2

Figure 6-19: Surface displacements and void deformations at times t = 0.1225s to t = 0.13s. In
the figures e1 to h1 correspond to the surface responses in which the horizontal axis is distance
from source and vertical axis shows the normalized amplitudes. The vertical dashed lines show
the projected boundaries of the void. Plots e2 to h2 shows the corresponding deformed shape
of the void, where the horizontal axis is the distance from source and vertical axis is the depth
below surface. The associated time is shown in each figure.
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Figure 6-20: Surface displacements and void deformations at times t = 0.1325s to t = 0.14s. In
the figures i1 to l1 correspond to the surface responses in which the horizontal axis is distance
from source and vertical axis shows the normalized amplitudes. The vertical dashed lines show
the projected boundaries of the void. Plots i2 to l2 shows the corresponding deformed shape
of the void, where the horizontal axis is the distance from source and vertical axis is the depth
below surface. The associated time is shown in each figure.
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Figure 6-21: Surface displacements and void deformations at times t = 0.1425s to t = 0.15s. In
the figures m1 to p1 correspond to the surface responses in which the horizontal axis is distance
from source and vertical axis shows the normalized amplitudes. The vertical dashed lines show
the projected boundaries of the void. Plots m2 to p2 shows the corresponding deformed shape
of the void, where the horizontal axis is the distance from source and vertical axis is the depth
below surface. The associated time is shown in each figure.
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Chapter 7

Effect of cavity properties on surface

responses

7.1 Introduction

In Chapter 6, it was shown that cavities interact with propagating Rayleigh waves. This

interaction causes distortions in surface responses in time and frequency domains. It was proved

that in the presence of a void the medium is dispersive- i.e. different frequencies traverse the

medium with different velocities. Although, the provided studies and discussions are generally

valid for any void, the extent of the interaction depends on the geometrical and mechanical

properties of the void and the medium. The objective of the studies presented in this chapter is

to show that how various medium and void properties affect the surface responses of a medium

in the presence of a void. To be able to find the correlations between the properties and observed

responses, different properties are considered separately. This chapter is organized as follows:

• Section 7.2 discusses the effect of width of the void on the surface responses(case 1)

• Section 7.3 explains the effect of depth of the void on surface responses (case 2)

• Section 7.4 presents the methodology used to investigate the surface responses in the

presence of a void in a layered system. Further, the concept of characteristic wavelength

is extended for the layered systems.
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• Section 7.5 investigates the effect of medium with two layers - Natural Layering: Soft

layer overlying bedrock (case 3)

• Section 7.6 considers the effect of medium with two layers - Inverse Layering: Stiff layer

overlying soft layer (case 4)

• Section 7.7 discusses the effect of lateral dimension of the void - 3D effect of the cavity

(case 5)

The numbering system for the models developed for void in half-space (cases 1 and 2) are

as introduced in chapter 6. For the rest of the cases the numbering system will be introduced

in the corresponding sections. In this chapter sample plots are provided to show the trends.

A complete set of colored plots corresponding to each study number is provided in Appendix

CD-Chapter7.

7.2 Effect of width of the void (case 1)

Figure 7-1 shows contour plots of the vertical displacements recorded at the surface of four

different models. In each plot the vertical axis shows the distance from source in meters, and

horizontal axis shows the time in seconds. In all the models the depth to the top of the void is

0.16m (0.44λch), and the height of the void is 0.08m (0.22λch). The width of the void is 0.08m

(0.22λch), 0.16 m (0.44λch), 0.32 m (0.88λch), and 0.64 m (1.78λch) in plots ’a’, ’b’, ’c’, and ’d’,

respectively. All the responses are normalized to the maximum of vertical responses recorded

at the surface of study number S00_01 (half-space with no void). It is seen in all the plots

that when the Rayleigh wave encounters the void, it interacts with the near boundary of the

void. Due to this interaction part of the energy is reflected back and part of it is transformed

into p-waves (events ’A’ and ’B’). The amplitude of these first reflections are almost the same

in all the plots. Thus it is concluded that the width of the void does not have any effect on

the first interaction of the void and the incident wave. As the width of the void increases from

plot ’a’ to plot ’d’, the width of event ’A’ increases. This is due to the interaction of void with

the far boundary. In case that the width of the void is small, the time difference between the

reflections from near and far boundaries are relatively small. Therefore, the latter is seen as
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a continuation of the former. When the width of the void increases two separate events are

observed, each related to a reflection from a boundary - i.e. events ’A’ and ’C’ in plot ’d’.

The interaction of the incident wave with the far boundary becomes stronger as the width

of the void increases. This fact results in generated p-waves (event ’D’), and reflected waves

(event ’E’) at the location of far boundary, which can be seen in plot ’d’. This effect gets weaker

in other plots. It is seen that events ’F’ and ’C’ become wider in time as the width of the void

increases. Widening of these events indicate that the void emanates energy or vibrates for a

longer time, when the width of the void increases. Therefore, wider voids trap more energy.

Comparing the amplitudes of the surface responses shows that in the presence of wider voids

the maximum amplitude of the responses also increase. The latter can be associated to the

larger amount of energy trapped in the void region.

To demonstrate the effect of the width of the void on frequency responses, the frequency

content of the eight different models are depicted in figures 7-2 and 7-3. All the models have

the same properties as the ones shown above for time domain responses, except that the models

in figure 7-3 have a larger embedment depth of 0.32 m (0.88λch). Again, the vertical axis is

the distance from source in meter, and horizontal axis is frequency in Hz. All the contours

are normalized with respect to the maximum frequency amplitude of model S00_01 (half-space

with no void). Event ’A’ in all the plots shows the ripples before the void, which corresponds

to the effect of reflections in time domain - as explained in the previous chapters. In figure

7-2 the relative amplitude of the ripples decreases with the increase in void width up to plot

’c’, and increases in plot ’d’. Conversely, the relative amplitude of event ’B’, which is the

energy amplification over the void, increases from plot ’a’ to ’c’ and decreases in plot ’d’. This

observation indicates that the vibration of the void in plot ’c’ is stronger than in the rest of

the cases. In figure 7-3 the relative amplitude of the ripples and the energy concentration,

respectively decrease and increase from plot ’a’ to plot ’d’. The latter indicates that in this

case void vibration is stronger in plot ’d’. Strong void vibrations indicate that more energy is

trapped in the void region, thus the responses over the void overshadow other events. The above

observations show that the combination of void width and its embedment depth determines the

amount of the energy that is trapped by the void. In both figures, event ’B’ gets narrower

in frequency, and shifts toward lower frequencies as the width of the void increases. The
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interpretation is that the void tends to vibrate with its natural frequencies. As the void size

increases its natural frequencies shift toward lower frequencies. Meanwhile, as shown in the

previous chapter, most of the energy of the incident wave is concentrated in lower frequencies.

Therefore, larger voids interact more with the incident wave and trap more energy. In general,

when the incident wave carries enough energy in the frequency ranges that resonate with the

void, strong interactions occur, which is seen as regions with energy concentration over the

void. In this case the width of the region with energy concentration will be very close to the

width of the void.

Another event that is observed in some of the cases (plots ’b’ to ’d’ in figure 7-2 and plots

’c’ and ’d’ in figure 7-3) is event ’E’. This event is concentrated around frequency 350 Hz in

figure 7-2, and around frequency 175 Hz in figure 7-3. The corresponding wavelengths are

λ = 64.08
350 = 0.18m (0.5λch) and λ = 64.08

175 = 0.37m (1.0λch). The latter values are very close

to the embedment of the voids which are 0.16 m (0.44λch) and 0.32 m (0.88λch), respectively.

This observation shows that a relatively strong interaction occurs between the void and the

incident wave in the frequencies corresponding to the embedment depth of the void. In general,

it is concluded that events ’B’ and ’C’ define a bandwidth in which most of the interactions

occur. For voids, that their width is larger than their embedment depth, the lower limit of this

bandwidth is determined by the void width, and the upper limit of the bandwidth is influenced

by the embedment depth of the void. This observation will be taken further in the next section

of this chapter.

For the wide void (Fig. 7-13), energy concentration happens over the void; which have

spectral amplitudes larger than the amplitudes of the ripples before the void. In this case, the

width of the energy concentration region is close to the width of the void. The low frequency

associated with the energy concentrations (f = 25 Hz, Fig. 7-13c and d) corresponds to a large

wavelength λ = 2.56 m for a Rayleigh wave. The pulse introduced into the medium has low

energy at this wavelength (less than 2%). Thus, it is unlikely that an R-wave is responsible for

the spectral amplifications over the void. However, a Lamb wave with velocity CL = 31 m
s has

a wavelength λ = 1.24 m, which is close to two times the width of the void. This wavelength

is required to produce amplifications on a slab fixed at both ends (λ = 2w/i, where i is an

integer i=1, 2, 3,... [12]). Therefore, the frequency domain data confirms the observations on

137



time domain results about the propagation of Lamb waves over the void.
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Figure 7-1: Effect of the void width on the surface responses. Plots ’a’ to ’d’ show the contour
plots of the vertical responses recorded at the surface of models. The corresponding model
number is shown on each plot. All the responses are normalized to the maximum vertical
displacement recorded at the surface of study S00_01 (model with no void). Dashed lines show
the boundaries of the void projected to the surface.
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Figure 7-2: Effect of the width of the void on the frequency content of surface responses. Plots
’a’ to ’d’ show the contour plots of the frequency content of the vertical responses recorded at the
surface of models. The corresponding model numbers is shown on each plot. All the responses
are normalized to the maximum of the frequency content of the vertical displacements recorded
at the surface of study S00_01 (model with no void). Dashed lines show the boundaries of the
void projected to the surface.
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Figure 7-3: Effect of the width of the void on the frequency content of surface responses. Plots
’a’ to ’d’ show the contour plots of the frequency content of the vertical responses recorded at the
surface of models. The corresponding model numbers is shown on each plot. All the responses
are normalized to the maximum of the frequency content of the vertical displacements recorded
at the surface of study S00_01 (model with no void). Dashed lines show the boundaries of the
void projected to the surface.
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7.3 Effect of depth of the void (case 2)

An important parameter that influences the effect of the void on surface responses is the em-

bedment depth of he void. Figures 7-4 and 7-5 show how a change in depth affects the recorded

responses in time domain. The void height is 0.08m (0.22λch) and its width is 0.32m (0.88λch),

which are kept constant for all the plots. The depth of the void varies from 0.08 m (0.22λch),

to 0.64 m (0.1.78λch) as described in table 7.1.

Table 7.1: Embedment depth of the void in different studies
Model S00_04 S00_08 S00_12 S00_14 S00_15 S00_16

Embedment depth 0.08m 0.16m 0.32m 0.48m 0.56m 0.64m
(0.22λch) (0.44λch) (0.88λch) (1.33λch) (1.50λch) (1.78λch)

The trends are similar in all the plots. Reflections from near and far boundaries, trapped

waves, and generated body waves are observed in all the plots. However, by increasing the

depth, magnitude of the responses decreases, and the mentioned effects are not as conspicuous

for deeper voids as they are for shallower ones. As mentioned in the previous chapters, the

penetration depth of Rayleigh wave depends on its wavelength or frequency, i.e. more energy

is confined in the top layers. Therefore, stronger interactions occur between the void and the

wave, when the void is closer to the surface.

Figures 7-6 and 7-7 show the frequency content of the above studied cases. Similar trends

are observed in all the plots, and as mentioned above the amplitudes drop significantly with

the increase in depth. It is observed that event ’C’ shifts toward lower frequencies. As previ-

ously mentioned the wavelength of the central frequency of event ’C’ is directly related to the

embedment depth of the void. The reason that event ’C’ is not visible in plot ’a’ is that in

this case the frequency that its wavelength corresponds to the embedment depth of the void

(f =
64.08m

s
0.08m = 801 Hz) carries a small amount of energy. Thus, its effects are overshadowed

by the lower frequencies that carry more energy. From the plots it is concluded that events ’B’

and ’C’ define a frequency bandwidth in which major interactions between the void and the

incident wave occur. As the void’s embedment depth increases the amplitude of the reflections

and the trapped energy gets closer to each other. Therefore, for deep voids it is not possible
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to distinguish between the two effects. In conclusion the physical behavior of the void remains

the same as the void’s embedment depth increases. But, the combination of void size and

embedment depth, and the frequency content of the source determine how conspicuous is the

effect of the void on the surface responses. For the studied combination of void size and source

frequency content, the effect of the void is not observable after a depth of about 1.50λch.
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Figure 7-4: Effect of the void depth on the time responses at the medium surface. Plots ’a’
to ’c’ show the contour plots of the vertical responses recorded at the surface of models. The
corresponding model number is shown on each plot. All the responses are normalized to the
maximum of the vertical displacements recorded at the surface of study S00_01 (model with
no void). Dashed lines show the boundaries of the void projected to the surface.
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Figure 7-5: Effect of the void depth on the time responses at the medium surface. Plots ’a’
to ’c’ show the contour plots of the vertical responses recorded at the surface of models. The
corresponding model number is shown on each plot. All the responses are normalized to the
maximum of the vertical displacements recorded at the surface of study S00_01 (model with
no void). Dashed lines show the boundaries of the void projected to the surface.
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Figure 7-6: Effect of the void depth on the frequency content of the vertical displacements at
the medium surface. The corresponding model number is shown on each plot. All the responses
are normalized to the maximum frequency magnitude of the vertical displacements recorded at
the surface of study S00_01 (model with no void). Dashed lines show the boundaries of the
void projected to the surface.
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Figure 7-7: Effect of the void depth on the frequency content of the vertical displacements at
the medium surface. The corresponding model number is shown on each plot. All the responses
are normalized to the maximum frequency magnitude of the vertical displacements recorded at
the surface of study S00_01 (model with no void). Dashed lines show the boundaries of the
void projected to the surface.
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7.4 Effect of medium with two layers - Natural layering: Soft

layer overlying bedrock (case 3)

This section explains the results obtained from model type S01 with the study numbers shown in

figure 7-8. This model type consists of 2D axisymmetric finite differences models that simulate

the propagation of Rayleigh waves in an elastic medium overlying a very stiff layer, representing

bedrock. Material type I (as introduced in Chapter 6) is used for the elastic medium, and

bedrock is simulated by fixing vertical displacements of the bottom boundary of the model. As

no displacement is allowed at the bottom boundary its impedance is equal to infinity. Thus,

no energy transfer occurs across this boundary and all the energy bounces back into the elastic

medium. The minimum thickness assigned to the elastic layer is 0.232 m in models S01_02

and S01_03, which is doubled successively to a maximum of 1.856 m in models S01_08 and

S01_09. For each thickness of the elastic layer two models are constructed, one without void

and one with a void, i.e. the thickness of elastic layer is similar in models S01_02 and S01_03.

Thus, model type S01 simulates the MASW test method in the presence of lateral and vertical

inhomogeneities. The the void’s width, height and embedment depth are 1.00 m, 0.112 m, and

0.12 m, respectively that are kept constant in all the studies. Model characteristics (grid size,

dynamic time, time step, number and location of recording points) are the same as the ones

used in model type S00. For further reference, all the source flac files are presented in Appendix

CD-Chapter7.
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Figure 7-8: The numbering system for model type S01 along with the characteristics of each
model. Study numbers are stated in the small box at the top left corner of each cell. The
void size is 1.00 m (width) by 0.112 m (height) and is embedded at a a depth of 0.12 m below
surface.
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Figure 7-9: The cumulative energy verses wavelength for models with a soft layer overlying a
stiff layer (model S01_XX). The effect of filteration of low frequencies in models with shallow
elastic layer is observed in the plots.

The concept of characteristic wavelength, as defined in chapter 6, is utilized to normalize

the distances and void dimensions. Figure 7-9 shows the cumulative energy content of the

responses at the location of first receiver (3.992 m from source) obtained from four different

models of type S01. For comparison, the results obtained from model S0_01 (homogeneous half

space with no void) is included. The plots show that lower frequencies (larger wavelengths) are

absent in the models with shallower elastic layers, i.e. model S01_02 has less energy in longer

wavelengths than model S01_08. Thus, higher frequencies are filtered in models with shallow

depth of elastic layer. The wavelengths corresponding to 50% of cumulative energy are shown

in table 7.2.

Table 7.2: Model types used in this study
Model Type S00_01 S01_02 S01_04 S01_06 S01_08

Wavelength (m) 0.36 0.36 0.48 0.38

The corresponding wavelengths differ with the value of the characteristic wavelength, defined

based on model S00_01 (λch = 0.36), but the measured values are close to λch. Thus, for

consistency the same characteristic wavelength is used in this this section.

Responses of model S00_01 are used as a reference for the models without void. Model
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S01_01 represents a half-space containing a void with the above mentioned size. The responses

of this model are similar to the ones studied in detail in Chapter 6, and it is reproduced herein

as a reference for the models containing a void. All the response values, obtained from different

study numbers of model type S01, are normalized to the corresponding maximum value of study

S00_01. In this section, all the presented responses correspond to the vertical displacements

recorded at the surface of the models. Sample figures are presented in this section, and a

complete set of colored figures is provided in Appendix CD-Chapter7.

7.4.1 Time responses

Figure 7-10 shows contour plots of the time responses along the surface of models without void.

Plot ’a’ corresponds to the half-space without void (Study00_01). In the chosen time frame

only event A, which corresponds to the arrival of Rayleigh wave is visible. Plots ’b’, ’c’ and

’d’ show the responses recorded along the surface of models S01_02, S01_04, and S01_08,

where bedrock (fixed boundary) is located at 0.232 m (0.64λch), 0.464 m (1.29λch), and 1.856

m (5.15λch) below surface, respectively. In all the plots, event A shows the arrival of main

Rayleigh wave. A series of events are represented by B that occur before the arrival of main

Rayleigh wave. The common characteristic of the waves constituting event B is that their

velocity is larger than the Rayleigh wave velocity of the medium, and are associated to higher

modes of s-wave and p-waves. Another series of events occur after event A that are represented

by event C. The velocity of these waves gradually increases from Rayleigh wave velocity to

velocities larger than the s-wave velocity of the medium. These events can be associated to

higher modes of Rayleigh waves and Lamb waves. Both events B and C are generated due to

the interaction of the input energy with the fixed boundary. As the fixed boundary is moved

farther from the surface (from plot ’b’ to ’d’) the interactions are less; therefore, the number

of waves that constitute events ’B’ and ’C’ decrease. Due to destructive interference of the

generated waves, the maximum amplitude of surface responses in plots ’b’ and ’c’ are smaller,

than the ones in plot ’a’. It is known that energy does not radiate below the fixed boundary.

Hence, conservation of energy implies that the duration of surface vibrations be larger when

the fixed boundary is close to the surface. In general, the source gives significant excitation of

fundamental Rayleigh wave mode. Weaker high modes of Rayleigh waves are also excited due to
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the interaction of input energy with the reflecting bottom boundary. Two dimensional Fourier

transforms are utilized to further study the nature of these events that will be discussed later

in this section. Extensive theoretical studies have been published that address the behavior of

seismic waves in layered systems [134].

The plots in figure 7-11 depicts the trends of the surface responses of a soft layer overly-

ing bedrock, in the presence of a void. The void is located in the soft layer. Plot ’a’ shows

the responses of a half-space in the presence of the void that is reproduced here for compar-

ison. Plots ’b’, ’c’ and ’d’ show the responses recorded along the surface of models S01_03,

S01_05, and S01_09, where bedrock (fixed boundary) is located at 0.232 m (0.64λch), 0.464 m

(1.29λch), and 1.856m (5.15λch) below surface, respectively. These plots are comparable to the

corresponding plots in figure 7-10, where voids were not included in the medium. The general

trends that were discussed for the cases with no void are observed in these plots. Further, the

concepts of reflected energy from void boundaries and trapped energy in the void region (that

were discussed in Chapter 6) are also visible in these cases. When the fixed boundary is very

close to the surface, as in plot ’b’, the behavior of the surface responses are more similar to

the ones obtained from model S01_01 (figure 7-10 plot ’b’), rather to the responses in model

S01_01 (figure 7-11 plot ’a’). This behavior reveals that in this case the dominant vibration is

the vibration of the whole medium even in the vicinity of the void region. As the fixed bound-

ary moves farther than the surface the interaction between the void and the incident energy

becomes more conspicuous.
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Figure 7-10: Contour plots of the vertical displacements recorded at the surface of model type
S01. The presented plots correspond to models without void. The study numbers are shown
on each plot. In each plot the horizontal axis shows time in second and vertical axis shows
distance from source in meter.
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Figure 7-11: Contour plots of the vertical displacements at the surface of model type S01. The
presented plots correspond to models with void. The study numbers are shown on each plot. In
each plot the horizontal axis shows time in second and vertical axis shows distance from source
in meter. Dashed lines show the projection of the vertical boundaries of the void to the surface.
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7.4.2 Frequency responses

Figure 7-12 shows the behavior of the layered medium with no void in frequency domain. Plot

’a’ shows the spectrum of a half-space, and plots ’b’, ’c’ and ’d’ correspond to layered models.

In such systems lower frequencies are filtered by the medium. Table 7.3 shows the frequencies

below which are filtered from the spectrum of each model.

Table 7.3: Frequencies below which are filtered from models
Model Type S01_02 S01_04 S01_06 S01_08
Frequency (Hz) 100 50 29 16
Wavelength λ (m) 0.64 1.28 2.21 4.0
Layer depth d (m) 0.232 0.464 0.928 1.856

λ/d 2.76 2.75 2.60 2.16

Same table shows the corresponding wavelengths and depth of the top layer of each model.

The ratio between the wavelength and the layer depth shows that in each model wavelengths

larger than about 2.5 times the layer depth are filtered out. In the presented spectrum the

effect of reflections from bottom boundary are observed as ripples. The amplitudes (which are

normalized with respect to corresponding values in model S00_01) in the layered systems are

larger with respect to the ones in a half-space. As the depth of fixed boundary increases the

spectrum gets closer to half space spectrum.

Figure 7-13 shows the spectrum in the presence of a void. Plot ’a’ corresponds to a half-space

with void. The depth to the fixed boundary increases from plot ’b’ to ’d’. In plot ’b’ reflections

with large amplitudes in compare with plot ’a’, are observed before the void, but amplification

over the void is not seen. Thus, energy entrapment is not occurring in this case. In plot ’c’

reflections before the void is observed and minor energy entrapment over the void can be traced.

In plot ’d’ the amplitudes of the trapped energy is much larger than the amplitudes of reflected

waves. Even, the amplitudes in plot ’d’ are larger than the ones in plot ’c’. In all the above

models the dimensions of the void are the same, and the only difference is the depth to the fixed

boundary, which has a filtering effect on the input frequency. It is concluded that a very stiff

underlying layer acts as a filter, which can eliminate the frequencies that interact with the void.

Thus the presence of an anomaly (such as a layer) that interacts with the same frequencies

that the void interacts with, can overshadow the effect of the void on surface responses. This
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Figure 7-12: Contour plots of the spectrum of layered models. The values are mormalized to
the corresponding values in model S00_01 (Homogeneous medium with no void).

experience clearly proves that the vertical and horizontal sides of the void interact with different

wavelengths (frequencies). The relative amplitudes of the reflections from the boundaries with

respect to the amplitudes of the trapped energy, depends on the amount of the energy that is

carried in the corresponding frequency ranges.
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Figure 7-13: Contour plots of the spectrum of layered models with void. The values are
mormalized to the corresponding values in model S00_01 (Homogeneous medium with no void).
The dashed lines show the projected boundaries of the void. The depth to the fixed boundary
is 0.232 m, 0.464 m and 1.856 m, in plots ’b’, ’c’, and ’d’, respectively.

157



7.4.3 2D Fourier spectrum

Figure 7-14 shows the 2D Fourier responses of Type S01 models without void. In plot ’a’, which

corresponds to the homogeneous half-space the fundamental Rayleigh wave mode is observed

as an inclined line that passes through the origin. The effect of reflected wave from quiet

boundaries are also observed. In plots ’b’ to ’d’ the energy is split between the fundamental

and higher modes of Rayleigh wave. These higher modes are observed as lines that do not pass

through the origin. The higher modes are excited due to the presence of fixed boundary, and

are eliminated as the boundary gets farther than the surface. In plot ’d’ beside the fundamental

Rayleigh wave, strong p-wave and s-waves are observed which are associated to the multiple

interaction of incident wave with the fixed and free boundaries.

Figure 7-15 shows the 2D Fourier spectrum in the presence of void. Branches in the negative

wavenumber axis indicate that the energy is reflected. As observed, not only the fundamental

Rayleigh wave mode but also the higher modes interact with the void. These interactions are

observed a V shaped events in plots ’b’ to ’d’. These figures prove that even in the presence of

higher modes of vibration, which introduce difficulties in the interpretation of the data, the 2D

Fourier transform is a promising tool for the detection of cavities from the surface responses.
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Figure 7-14: 2D Fourier responses of layered models (Type S01) with no void. Plot (a) cor-
respond to the halfspace with no void. The effect of higher Rayleigh modes are observed as
branches that do not pass through the origin.
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Figure 7-15: 2D Fourier responses of layered models (Type S01) with void. Plot (a) correspond
to the halfspace with void. The effect of void is observed as reflections of fundumental and
higher modes of Rayleigh waves.
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7.5 Effect of medium with two layers - Inverse layering: Stiff

layer overlying soft layer (case 4)

The results of model type S02 are explained in this section, and the corresponding study

numbers are depicted in figures 7-16 and 7-17. This model type consists of 2D axisymmetric

models that simulate the propagation of Rayleigh waves in a stiff layer overlying a a soft layer.

In all the models material Type I is used for the underlying medium. In models S02_01 to

S02_08 the top layer consists of material Type II and in models S02_11 to S02_14 the top layer

is comprised of material Type III. The material properties are presented in the corresponding

figures. The depth of the top layer is varied between 0.504 m to 2.016 m. The stiffness of

the materials can be compared by using the concept of acoustic impedance [17]. The acoustic

impedance (z) is defined as the product of unit mass of the material (ρ) and wave velocity in

the material (v) and has the unit of ML−2T−1 (M,L, and T represent mass, length and time,

respectively):

z = ρv (7.1)

In layered systems, the acoustic impedance is used to determine the amount of energy that is

transmitted between the layers and the amount of energy that is reflected from the boundaries

between the layers. The reflection and transmission coefficients are defined as:

R1→2 =
z1 − z2
z1 + z2

=
ρ1v1 − ρ2v2
ρ1v1 + ρ2v2

(7.2a)

T1→2 =
2z1

z1 + z2
=

2ρ1v1
ρ1v1 + ρ2v2

(7.2b)

where R is the reflection coefficient, T is the transmission coefficient, and the symbol 1→ 2

means that the wave travels from material 1 to material 2. The Reflection coefficient represents

the ratio between the amplitudes of reflected wave and the incident wave. The transmission

coefficient shows the ratio between the amplitudes of the transmitted wave into the second

medium and the incident wave. Based on the above definitions the values of the acoustic

impedance for materials Type I, II, and II are 183‘792 kg
m2s

, 236‘646 kg
m2s

, and 368‘179 kg
m2s

,
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Figure 7-16: The numbering system for model type S02 along with the characteristics of each
model. Study numbers are stated in the small box at the top left corner of each cell. The top
layer consists of material Type II with the properties presented in the paper.
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Figure 7-17: The numbering system for model type S02 along with the characteristics of each
model. Study numbers are stated in the small box at the top left corner of each cell. In these
cases the top layer consists of material Type III with the presented material properties.
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respectively. The values of the reflection and transmission coefficients for the studied cases are

presented in the following table.

Table 7.4: Reflection and transmission ratios between the materials used in model type S02
Medium II→ I III→ I

R 0.125 0.33

T 1.125 1.33

Impedance ratio 1.29 2

The positive values of the reflection and transmission coefficients show that the incident,

and the reflected/transmitted waves have the same polarity. The reflection coefficients smaller

than one show that only a fraction of the incident energy is reflected back to the top layer and

part of it is radiated into the bottom layer.

Figure 7-18 shows the cumulative energy verses wavelength for model type S02. In plots

’a’ and ’b’ the impedance ration between the top and bottom layers are about 1.3, and 2.0,

respectively. For reference, the graph for study S00_01 (homogeneous half-space) is included

in plot ’a’. In general, the plots indicate that in compare to study S00_01 smaller wavelengths

(larger frequencies) are filtered out by the medium. The filtering effect is not very susceptible

to the depth of the stiff layer when the impedance ratio between the two layers is small. Thus

in plot ’a’, a characteristic wavelength of λch = 0.53 m can be defined for all the models with

sufficient accuracy. In the presence of significant difference between the impedance ratio of

the top and bottom layers, the range of the filtered wavelengths changes considerably with the

depth of the stiff layer. In plot ’b’ the horizontal segments of the graphs show the range of the

filtered wavelengths. The measured characteristic wavelengths for models S02_11, and S02_13

are λch = 2.45 m and λch = 0.63 m, respectively.

Figure 7-19 shows the representative time responses of the systems with inverse layering.

Plots ’a’ and ’d’ show the corresponding contour plots for the half-space. Plots ’a’, ’b’ and ’c’

correspond to cases without void, and plots ’d’, ’e’, and ’f’ correspond to models with void.

Interactions similar to the ones observed in cases S00 and S01 are observed herein. Reflections

from near and far boundaries and trapped waves bouncing back and forth between the void

boundaries are observed in the plots. By increasing the depth of the top stiff layer the interaction

trends get closer to the ones for half space. The interesting observation is that in plot ’e’ the
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Figure 7-18: The cumulative energy verses wavelength for models with a stiff layer overlying a
soft layer (model S02_XX). The effect of filteration of low frequencies in models with shallow
elastic layer is observed in the plots.

interaction of trapped energy with the void boundaries are stronger than in plot ’f’. The size of

the void is the same in both cases, and the only difference is the depth of the stiff layer that is

doubled in S02_14 with respect to S02_12. The physical reason for this behavior is explained

by investigating the corresponding spectrum.
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Figure 7-19: Contour plots of the vertical displacements at the surface of model type S02. Plots
(a), (b), and (c) correspond to models without void. The study numbers are shown on each
plot. In each plot the horizontal axis shows time in second and vertical axis shows distance
from source in meter. The dashed lines show the projected boundaries of the void.
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Figure 7-20 shows the spectrum of the responses from model type S02. Plots ’a’ and ’d’

correspond to the half-space and are presented for reference. all the responses are normalized

to the maximum of the spectrum of model S00_01 (half-space with no void). As the top layer

in S02 is stiffer than the material assigned to S00, the measured amplitudes in model S02 are

smaller than the ones in S00. The filtering effect of layered system is seen in plots ’b’ and

’c’. The filtered frequencies are centered around f = 200 Hz (λ = 0.51m) and f = 100 Hz

(λ = 1.03m), in plots ’b’ and ’c’, respectively. The wavelengths are calculated based on Rayleigh

wave velocity of top layer CR = 102.7 m
s . The latter wavelengths are very close to the depth of

the top layer. Thus, the inverse layered system filters frequencies with wavelengths in the range

of the depth of the top layer. Plots ’d’, ’e’, and ’f’ shows the spectrum in the presence of void.

In plot ’d’ (half-space) energy concentration is observed in the frequency range of 50 Hz to 100

Hz. As observed in plots ’b’ and ’c’, these frequency ranges are filtered in the inverse layered

systems. Thus, strong energy concentrations as observed in plot ’d’ are not seen in plots ’e’

and ’f’. The frequency range that is filtered by model S02_13 is closer to the frequency range

that interact with the void (f = 100 Hz), than the ones in model S02_11. Therefore, the

energy concentration over the void region is more conspicuous in plot ’e’ than in plot ’f’. This

observation explains the reason that in the time contours (7-19) stronger interaction between

the void and the wave were observed in plots ’e’ than in plot ’f’. Generally, it is concluded

that inverse layered systems filter some frequencies. The range of the filtered frequencies is a

function of the depth of the layer. When a void is present in the top layer, it interacts with the

available wavelengths and frequencies. If the medium filters the wavelengths that interact with

the void, then the effect of the void in surface responses might not be observable.
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Figure 7-20: Spectrum of the vertical displacements at the surface of model type S02. Plots
(a), (b), and (c) correspond to models without void. The study numbers are shown on each
plot. In each plot the horizontal axis shows time in second and vertical axis shows distance
from source in meter. The dashed lines show the projected boundaries of the void.
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7.6 Effect of lateral dimension of the void - 3D effect of the

cavity (case 5)

The problem of propagation of Rayleigh waves in the presence of lateral inhomogeneities is a

three dimensional problem, in nature. Chapter 6 discussed the available literature on the nu-

merical studies of this problem. So far, almost all of the conducted studies used two dimensional

simulations to investigate the problem. Because of the hardware and software limitations, sim-

plifying assumptions were made and the effect of out of plain dimension of the void is neglected.

By introducing high speed computers with large memory and hard drive capacities the hardware

limitations are solved to some extent. In parallel, new softwares are developed that could handle

dynamic finite element or finite differences problems in three dimensions. Among the commer-

cially available softwares ABAQUS (http://www.hks.com), ADINA (http://www.adina.com)

and FLAC3D (http://www.itascacg.com/flac3d.html) provide powerful tools for three dimen-

sional modeling of dynamic problems.

So far, all the discussions that have been presented in this research were based on axisym-

metric models (as explained in the Chapter 6 and the previous sections of this chapter). The

available 2D studies either assume that the problem is axisymmetric or plain strain. Inherent

in these assumptions is that the out of plain dimension of the void is much larger than its in-

plain dimensions. These assumptions might not be valid in all the circumstances. For example

cavities developed in karstic regions usually have limited extents in all directions. In this study

FLAC3D (Version 2.1) is utilized to simulate the effect of out of plain dimension of cavity on

surface responses. The following sections explain the results obtained from various developed

models.

7.6.1 Model description

Figures 7-21 and 7-22 describes the geometry of the 3D models that are developed in this

work. Study S03_00 shows the basic model that is used for calibration. It comprises of a cube

with dimensions 8.02 m, 5.0 m, and 5.0 m, in x, y, and z directions, respectively. The latter

dimensions are chosen based on the memory limitations of the available computers (2.0 MB

of RAM). The cube consists of 2 regions. Region 1 comprises of uniform grids in x− and

169



nonuniform grids in y− and z− directions. The size of the uniform grid is ∆sx = 0.035 m,

with 172 grid zones (total length of the region is 6.02 m). In this region, the nonuniform grids

comprise of a basic grid size of ∆sy = ∆sz = 0.035m. The grids expand at a rate 1.01 times the

previous grid size in the y− and z− directions, with a total of 68 grid zones in each direction.

In Region 2, the grid geometry in y− and z− directions are the same as in Region1. In x−

direction the grids expand at a rate 1.032 times the previous grid size, with the basic grid size

of ∆sx = 0.035 m. The dimensions of Region 2 are 2.0 m, 5.0 m and 5.0 m, in x−, y−, and

z− directions, respectively.

Material Type I (Chapter 6, table 6.1) is used for all the models. The boundary conditions

assigned to each boundary plain are shown in table ??. Symmetry boundary conditions are

defined along plains corresponding to x = 0 and y = 0. To mitigate the effect of reflected

waves quiet boundaries are defined along plains corresponding to y = −5.0 m and x = 8.02

m. Experiments with different types of boundary conditions show that reasonable results are

obtained by fixing the bottom boundary of the model (z = −5.0 m) in z direction. Thus, the

homogeneous model (S03_00) does not represent a half-space. Simulating a dynamic 3D half-

space, needs models with larger sizes, that consequently requires more sophisticated hardware

that were not available for this study. Experience with different models showed that the applied

quiet boundaries do not provide sufficient damping to eliminate reflections from boundaries.

Therefore to mitigate the effect of reflections, 2% of Rayleigh damping at a center frequency of

100 Hz is applied to the whole model.

Table 7.5: Boundary conditions assigned to different boundary plains in model type S03
Free Fixed Quiet

Plain Direction Direction Direction
x y z x y z x y z

x− z @ y = 0 m ? ? ?

x− z @ y = −5.0 m ? ? ?

x− y @ z = 0 m ? ? ?

x− y @ x = −5 m ? ? ?

y − z @ x = 0 m ? ? ?

y − z @ x = 8.02 m ? ? ?

The dynamic time increment for all the models is ∆t = 5 × 10−5 s, which satisfies the

stability and accuracy conditions. The responses are saved at every time steps; hence:
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δt = Sampling time = 5× 10−5s and δf = Sampling frequency =
1

δt
= 20kHz (7.3)
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Figure 7-21: Description of 3D models developed in this study (Study S03). The basic model
is S03_00, which consists of two regions. Region 1 consists of uniform grids in x- direction
and nonuniform grids in y- and z- directions. Region 2 has non uniform grids in all the three
dimensions. The geometry of thevoids considered in each study is presented in the associated
figure. at the bottom of the figure views of the models in y-z and x-z plains are shown.
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Figure 7-22: Description of 3D models developed in this study (Study S03). The basic model
is S03_00, which consists of two regions. Region 1 consists of uniform grids in x- direction
and nonuniform grids in y- and z- directions. Region 2 has non uniform grids in all the three
dimensions. The geometry of thevoids considered in each study is presented in the associated
figure. at the bottom of the figure views of the models in y-z and x-z plains are shown.
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Figure 7-23: Representation of the source aplied to model type S03. Plot (a) corresponds to
time domain and plot (b) shows the same response in frequency domain. The frequencies at
which 50% and 97.5 % decrease in frequency amplides occur ar marked on plot (b).

Thus, the Nyquist frequency is 10 kHz (fNyq = 1/(2δt)). The details of the referred calcu-

lations are presented in the mathgrams and calculation sheets in Appendix B. The maximum

dynamic time for these studies is set to tmax = 0.26 s. A Lamb source with ψ = 0.0025 and

maximum amplitude of 1 kN is applied at x = 0, y = 0, z = 0 in the −z direction. Figure 7-23

shows the representation of the applied source in time and frequency domains. In 3D models

the grid size is large with respect to the 2D models (ratio = 0.035
0.008 = 4.4), thus the source in

3D models contain more energy in low frequency range. The frequencies corresponding to 50%

and 97.5% amplitude decrease, are 48 Hz and 250 Hz, respectively.

In models S03_01, S03_02, and S03_03 cubical voids are inserted as shown in figure 7-21.

The void size in x− and z− directions are Lx = 0.525 m, and Lz = 0.496 m, and are kept

constant. The void size in y− direction (Ly) is 0.1 m, 0.5 m, and 2.5 m in the mentioned

models. As the x− z plain is a plain of symmetry the actual void size in y− direction is double

of the stated values. The distance of the source and the near and far boundaries of the void in

x− direction are 3.99m, and 4.515 m, respectively. The embedment depth of the void (distance

between the free surface and top of the void, in z− direction) is 0.541 m. 87 recording points

at the surface (receivers) are chosen along the x− axis in plain y = 0, the distance between the
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receivers is 0.035m, and the offset value and total array length is 3.01m. The objective of these

models is to observe the effect of the out of plain size of the void on the surface responses. To

comprehend the results, they are compared to the ones obtained from an axisymmetric model

(S03_19). The properties of the axisymmetric model is exactly the same as the ones that are

explained for 3D models.

In models S03_04, S03_05 and S03_06, the cubic void is located with an offset with respect

to the plain y = 0. In these models, the distance between the nearest void boundary and the

plain y = 0 is 0.5 m in y−direction. The void size in y-direction is Ly = 0.5 m in models

S03_04, and S03_06, and is 1.0 m in models S3_05. The receiver array are deployed with

an offset value of 1.014 m in y-direction with respect to the source in model S03_06. All

other properties of the models are similar to ones explained before. Model S03_17 is similar to

S03_02, with a larger void size in x- direction (Lx = 1.00 m).

The 3D model without void (S03_00) does not represent a half-space, because the bound-

aries are too close to the point of application of the source. Thus, it is not practical to compare

its results with Lamb solution. Thus, to evaluate the accuracy of the responses the obtained

surface displacements are compared to the corresponding responses obtained from an axisym-

metric model with the same grid, source and material properties (model S03_18). Figure 7-24

shows the comparison between the responses from 3D and 2D models with no void. Both dis-

placements in x− and z− directions are depicted. In these plots event A shows the arrival of

p-wave and event B corresponds to the arrival of main Rayleigh wave. Event C is associated to

the reflection of the energy from bottom boundary of the model. The responses are normalized

to the maximum of responses of model S03_00. In both x- and z- displacements a good match

is observed between the maximum positive responses. Though, slight differences are observed

between the negative amplitudes of the responses. This difference is more observable in the

displacements in z− direction. This difference could occur due to differences in the formulation

of Rayleigh damping in FLAC2D and FLAC3D. Though, the exact reason for this difference

is not clear. Figure 7-25 shows the frequency spectra of the same responses. To avoid the

observed discrepancy in the amplitudes, the responses in each plot is normalized with respect

to itself. Thus, the maximum amplitude in each figure is equal to 1. The frequency ranges

and the trends show good agreement. The highs and lows in the plots are associated to the
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Figure 7-24: Comparison between the time responses of 3D models and 2D axisymmetric mod-
els. Plots (a) and (b) correspond to displacements in x-direction and plots (c) and (d) correspond
to responses in z- direction. Study S03_00 is the 3D model without void, and Study S03_18
is the 2D axisymmetric model with the same properties as model S03_00.

reflections from boundaries.
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Figure 7-25: Comparison between the spectra of 3D models and 2D axisymmetric models.
Plots (a) and (b) correspond to spectra of x displacements and plots (c) and (d) correspond z-
displacement spectra. Study S03_00 is the 3D model without void, and Study S03_18 is the
2D axisymmetric model with the same properties as model S03_00.
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Figure 7-26: Cumulative energy verse wavelength in 3D models. The corresponding cummu-
lative energy from model S03_18 (2D axisymmetric model) is also depicted in the figure, but
the difference between the two graphs is negligible. The measured characteristic wavelength is
λch = 1.95 m.

Figure 7-26 shows the cumulative energy verses wavelength, calculated from the records of

the first receiver of models S03_00, and S0318. The two graphs match well and are almost

identical. The graph starts with a horizontal branch that continues to wavelengths of about

0.5 or 0.6 m, which indicates that short wavelengths carry small amounts of energy. The

characteristic wavelength, as defined in Chapter 6, is λch = 1.95 m, for 3D models.

The following sections present the obtained results along with the discussions.
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7.6.2 Effect of out of plain dimension of the void on surface responses

To evaluate the effect of out of plain dimension of the void (Ly) at the surface, the responses of

models S03_01, S03_02, and S03_03 are compared to the responses of axisymmetric model in

the presence of void (S03_19). The corresponding contour plots in time and frequency domains

are presented in figures 7-27 and 7-28, respectively. The responses of 3D models are normalized

to the maximum of corresponding responses of model S03_00, and the responses of 2D model

(S03_19) are normalized with respect to responses in model S03_18.

The time responses of model S03_01 (plot ’b’ Figure 7-27) do not show the effect of the void

at the surface, i.e. reflections from void boundaries. Similar observation is made in frequency

domain (plot ’b’ in Figure 7-28). As the out of plain dimension of the void increases, the effect

of void is more observable in time and frequency domains (plots ’c’ and ’d’ in Figures 7-27 and

7-28). Clear reflections from void boundaries, larger surface amplitudes in both frequency and

time domains, and energy concentration in the vicinity of the near boundary of the void can

be distinguished. These observations indicate that the surface responses are affected by all the

three dimensions of the void. In other words, the surface responses reflect a three dimensional

interaction of the incident energy and the cavity. In cases that out of plain dimension of the

cavity is small with respect to the other dimensions and/or the available wavelengths in the

incident wave, the void might not be detectable from surface responses. In the studied case

(S03_01) the out of plain dimension of the void is Ly = 0.2m (considering the plain of symmetry

at y = 0). As it was seen in figure 7-26, the incident wave does not carry a significant energy in

the wavelengths close to this value of Ly. Thus, the wave traverse the medium almost without

observing the cavity. By increasing Ly the trends of the responses get closer to the trends in

the axisymmetric case. In the studied cases the effect of cavity is observable for Ly = 0.5 m

(∼= 0.25λch) and more. Thus when the the out of plain dimension of the void is larger than

0.25λch two dimensional or three dimensional models should give similar results.
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Figure 7-27: Effect of out of plain dimension of the void on surface responses in time domain.
Plot (a) corresponds to the 2D axisymmetric model. The out of plain dimension of the void
(Ly) is 0.1 m, 0.5 m, and 2.5 m, in plots (b), (c), and (d), respectively.
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Figure 7-28: Effect of out of plain dimension of the void on surface responses in frequency
domain. Plot (a) corresponds to the 2D axisymmetric model. The out of plain dimension of
the void (Ly) is 0.1 m, 0.5 m, and 2.5 m, in plots (b), (c), and (d), respectively. The dashed
lines show the projected boundaries of the void to the surface.
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7.6.3 Effect of void offset on the surface responses

So far, the assumption in the conducted numerical studies was that the source, the receivers

array, and the void are aligned. The literature review in chapter 4, also shows that this assump-

tion was made in all the reviewed works. Due to the unknown location of the void in the field,

the alignment of void with the receiver array is not always possible. Thus, it is very probable

that an MASW test be performed in the vicinity of a void, and not over the top of it. Further,

in some cases it is possible that the source is not aligned with the receivers array. This case

might happen when passive sources (such as ambient noise) are used in the MASW test. The

latter problems are investigated by the aid of 3D modelling of the MASW test, and the results

are presented in this section. Chapter 9 compares the discussed numerical results with field

and laboratory scale results.

As explained in the previous sections, in models S03_04, S03_05, and S03_06, the void is

placed with an offset in the y− direction with respect to plain y = 0. In S03_04, and S03_05 the

source and the receivers array are aligned, and in model S03_06 the receivers array is aligned

with the void center, and the source has an offset (Figure 7-22). The contour plots in Figure

7-29 compares the results in time domain. All the presented responses are normalized with

respect to the maximum of model S03_00. Plot ’b’ shows that an offset equal to the size of the

void (0.5m or ∼= 0.25λch) causes a significant decrease in the amount of the observed reflections.

Reflections with small amplitudes are observed from near boundary, and the reflections from

far boundary are not seen. A comparison between plots ’b’ and ’a’ (in which the void is aligned

with the receivers array and source) shows that the maximum amplitudes are less in the, when

the void has an offset. Plot ’c’ shows the contour plot of responses in study S03_05, where the

void dimension in y− direction is doubled with respect to S03_04 (Ly = 1.0 m ∼= 0.5λch) and

the offset in y− direction is kept constant. As it is seen, even doubling the out of plain size

of the void can not compensate for the mitigating effect of the void offset with respect to the

receivers array line. In plot ’d’ the trends of the responses are more similar to the ones in plot

’a’. In both plots the receivers are aligned with the void center, but in ’d’ the source is not

in the same alignment. Reflections from both sides of the void, and amplitude increase with

respect to the responses in S03_00 are observed.

Figure 7-30 shows the same responses in frequency domain. All the responses are normalized
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with respect to the corresponding values of study S03_00. In plots ’b’ and ’c’ the effect of void

is observed as energy concentration close to the near boundary of the void. This effect is

observed as localized energy, without a significant amplitude amplification, as opposed to the

case without any void offset (plot ’a’). The obtained spectrum show significant differences (in

trends) in compare to the no void case (plot ’b’ figure 7-28), but the effect of the void is not as

conspicuous as it is when there is no void offset (plot ’a’ figure 7-30). This observation confirms

that responses in frequency domain are more sensitive to the existence of a void than time

domain responses. Plot ’d’ shows the spectrum when receivers array and the void center line

are aligned and the void is applied with an offset in y− direction (Study S03_06). The effect of

void is seen as energy concentration close to the near boundary of the void, and as amplitude

amplification. The amplification is slightly less than the ones observed in the reference study

S03_02.

Generally, the set of studies, presented in this section, indicate that void detection is very

susceptible to the alignment of the receivers array and the void center line. Even small mis-

alignments (in the order of the size of the void) can overshadow the effect of the void in the

time and frequency responses. Frequency responses are more prone to the effect of the void,

as observed in the previous sections and chapters. The detection of a cavity from surface re-

sponses is feasible, when the source is not in the same alignment with the void and receivers

array. Therefore, sources such as ambient noise can be used for void detection.
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Figure 7-29: Effect of void offset in time domain. Plot (a) correspond to the case that the void,
receivers array, and the source are in aligned. Plots (b) and (c) show that void offset from the
receivers array has a stong influence on the observed responses at surface. Plot (d) shows that
when the void is aligned with the receivers array, the void can be detected even when the source
is offseted.
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Figure 7-30: Effect of void offset in frequency domain. The effect of void is observed as energy
concentration in the vicinity of void in the spectrum.
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7.7 Summary of the conclusions

Chapter 7 presented the studies that were conducted to investigate the effect of different void

characteristics on the surface responses. The effect of width and depth of the void, and the

combined effect of void and natural and inverse layering of the medium were investigated. The

effect of out of plain dimensions of the void on the surface responses were examined, through

3D modelling of the void and medium.

The width of the void has a significant effect on the observed responses at the surface. As

the width increases more energy is trapped in the void region. The trapped energy is associated

to the excitation of antisymmetric Lamb waves. In frequency domain, the trapped energy is

seen as a region with energy concentration. When the width of the void is small in compare to

the main wavelengths of the incident wave, most of the interaction is in the form of reflections.

When the width of the void and the main incident wavelengths are comparable, most of the

interaction is in the form of trapped energy. Therefore, in the latter case the width of the region

with concentrated energy is comparable to the width of the void; whereas, in the former case

the width of this region is much larger than the width of the void.

The surface responses are very sensitive to the embedment depth of the void. It is found

that the combined effect of void size, embedment depth and the energy content of the incident

wave determines the detectability of the void. The frequency range that the void interacts with,

has a lower and upper bound. The lower limit is influenced by the void size, and the upper

limit is susceptible to the void depth. The concept of cut off frequency is introduced that can

be used to estimate the embedment depth of the void.

The effect of layered medium on the propagating energy reassembles to a high pass filter.

This filtering effect can overshadow the interactions of the void with the propagating energy.

The results confirmed that different sides of the void interact with different frequencies.

The three dimensional analyses showed that the size of the out of plain dimension of the

void has an observable effect on the surface responses. Hence, very narrow cavities are not

detectable by investigating their effect on the surface responses. Further, it was shown that the

alignment of the receivers array with the void is an important parameter in the detection of

the void.

186



Chapter 8

Attenuation Analysis of Rayleigh

Waves Method

8.1 Introduction

In Chapters 6 and 7, the behavior of Rayleigh waves in the presence of voids was studied in

detail. It was revealed that the void starts to vibrate with the medium when it is excited by

Rayleigh waves. Due to this interaction, part of the incident energy is reflected, part of it is

transformed into body waves, another part is trapped by the void, and the rest of the energy is

transmitted. At the surface, these effects are seen as ripples and energy concentrations in the

vicinity of the region that contains the void. Similar behavior was observed in the models with

two layers and in three dimensional models. All these observations imply that the transmitted

energy should be significantly attenuated with respect to the incident wave. Consequently, an

analysis technique is developed based on the evaluation of the attenuation of Rayleigh waves

at the surface. The technique is called Attenuation Analysis of Rayleigh Waves (AARW). The

objective of AARW method is to determine the location and embedment depth of a void using

the surface responses. The following sections describe the basic concepts of the method and

the details of the procedure. The procedure is applied to several numerical models and the

results are presented. To verify the AARW method, it is applied to the responses recorded at

the surface of a prototype (Chapter 9). The results show that AARW is a promising tool for

detecting underground cavities and estimating their extents.
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8.2 Development of the method

Figures 8-1 to 8-4 show the displacement fields in a media with two layers and a void (model

S02_14). The displacements are due to the transmission of energy in the form of Rayleigh

waves. As explained in the previous chapters the interaction of p- and s-wave fronts with the

void are not significant in compare with Rayleigh waves, thus their effect are neglected. The

R-wave velocity in the upper layer is CR = 102.7 m
s . The distance between the near and far

boundaries of the void and the source are 5.496 m, and 6.496 m, respectively. Therefore the

arrival time of the main R-wave event to the near (tnear) and far (tfar) boundaries of the void

are:

tnear =
5.496 m

102.7 m
s

+ 0.015 s = 0.0685 s (8.1a)

tfar =
6.496 m

102.7 m
s

+ 0.015 s = 0.07825 s (8.1b)

in the above calculations the 0.015 s is the time delay between the maximum amplitude of

the source and the start of the excitation.

Plot ’a’ shows the displacement field at time t = 0.030s. The body wave fronts are developed

and surface waves are generated. Plot ’b’ (t = 0.060s) shows that the R-wave front advanced

toward the void. As the R-wave goes farther from the source lower frequencies are developed

fully, and the R-waves penetrates deeper into the medium. The main R-wave event, correspond-

ing the peak of the source, is observed as vectors projected outward from the surface. Plots ’c’

and ’d’ show the displacement fields just before the arrival of main R-wave energy to the void

(t = 0.065s and t = 0.0675s, respectively). The surface displacements are observed as vectors

projecting out of the surface. The arrival of the initial fronts of the R-waves do not introduce

any significant interaction with the wave. Plots ’e’ and ’f’ show the interaction of main R-wave

front with the near boundary of the void. The void boundaries start to vibrate, that reflects

back part of the incident energy, and scatters another part into the medium. Plots ’g’ and

’h’ show the interaction of the R-wave front with the far boundary of the void. Again, energy

scattering and reflecting occurs. The plots in figure are adopted from the movies provided in
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Appendix CD-Chapter8.
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Figure 8-1: Displacement field in a two layered medium, and a void at different times. Due
to interaction of the main R-wave event with the void, energy partitioning occurs. Thus, the
transmitted energy is attenuated.
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Figure 8-2: Displacement field in a two layered medium, and a void at different times. Due
to interaction of the main R-wave event with the void, energy partitioning occurs. Thus, the
transmitted energy is attenuated.
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Figure 8-3: Displacement field in a two layered medium, and a void at different times. Due
to interaction of the main R-wave event with the void, energy partitioning occurs. Thus, the
transmitted energy is attenuated.

192



Figure 8-4: Displacement field in a two layered medium, and a void at different times. Due
to interaction of the main R-wave event with the void, energy partitioning occurs. Thus, the
transmitted energy is attenuated.
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Attenuation analysis

The previous analyses in the time and frequency domains show clearly that voids affect the

attenuation characteristics of the recorded signals. In the presence of a void, wave attenuation

accounts for reflections, refractions, and mode conversion of the wave fronts at void boundaries.

Furthermore, the trends of the frequency contour plots imply that this apparent attenuation

varies with frequency. The contour plots in figure 8-5 show representative spectrum of two

different models. After the void, a region with highly attenuated amplitudes can be distin-

guished in both plots (region ’C’). Further, the region ’C’ continues up to a frequency that is

named cut-off frequency (fcu). Experiments with different models, show that the wavelength

of the cut-off frequency is very close to the embedment depth of the void. In models S00_07

and S00_12 (figure 8-5a and b) the embedment depths of the voids are 0.16 m and 0.32 m,

respectively. The cut-off frequencies measured from plots ’a’ and ’b’ are 368 Hz and 193 Hz

with a corresponding wavelength of 0.17 m and 0.33 m, respectively. This trend is observed for

voids with embedment depths of up to 1.5λch(λch = 0.36m) .
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Figure 8-5: Frequency responses at the surface of two models (x displacements). The attenuated
region (region C) and the cut off frequency (fcu) are marked on the figures.
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In general, scattering and reflecting of the wave cause the energy to be spread in a larger

volume. Thus, a significant attenuation of surface responses is expected at the location of near

and far boundaries of the void. To evaluate the attenuation of waves different formulations are

defined and used ([18]). In this study the following three formulations are assessed for their

potential use in the AARW technique.

∆ = ln

¯̄̄̄
ui
ui+1

¯̄̄̄
(8.2a)

α =
∆

λ
(8.2b)

ξ =
1

2π
∆ (8.2c)

in equation 8.2, ui and ui+1 are any two successive peaks in time responses or frequency

spectra, λ is wavelength, ∆ is logarithmic decrement, α is attenuation coefficient, and ξ is

damping ratio. The above definitions are vastly used in soil dynamics [135]. Among the above

definitions, the logarithmic decrement (LD) is relatively easy to measure in practice, and showed

to have sufficient accuracy for the purpose of this study. Thus, it is used in the development

of AARW method. To account for the variation of the spectrum amplitudes with distance and

frequency the following form of LD values is used in this study:

LD = Ln

∙
Uj,z
Uj,z+1

¸
(8.3)

where Ui,z, and Ui,z+1 are the spectrum values at frequency fj and receivers z and z + 1,

respectively. Equation 8.3 evaluates the attenuation of the amplitudes of a single frequency with

distance. Based on the above definition, a positive LD value indicates that the ratio Uj,z
Uj,z+1

is

larger than 1, thus implies attenuation. Conversely, an LD value of less than 1 is an indication

of amplification.

Figure 8-6 shows the LD values for the horizontal component of the surface displacements for

two different locations and different models. The time corresponding responses are multiplied

by a gain function to eliminate the effect of geometrical damping. Figure 8-6 ’a’ and ’b’ show the

results for the model S00_01 (homogeneous half space); where the logarithmic decrement should
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be zero (no material damping or geometrical attenuation). The small fluctuations in these plots

are due to the reflections from the model boundaries. In the presence of a void (models S00_07

and S00_09), the measured values of attenuation or amplification before the void ( d = 4.352m)

are significantly larger than the values for the model S00_01; this indicates that the reflected

frequencies interact with the propagating front either constructively or destructively before

the void. Although, the LD values after the void ( d = 6.752m) fluctuate more than the

corresponding values in the model without void, the relative change are smaller than the changes

before the void.
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Figure 8-6: Calculated LD values for three different models, and two different locations. The
signals are multiplied by a gain function to remove the effect of geometrical damping. plots ’a’
and ’b’ correspond to model S00_01 (model with no void). The other plots correspond to two
different models with void. Strong fluctuation are observed in the LD values in the presence of
void.

The contour plot in figure 8-7 illustrates the LD values for model S00_09. In the presence of

a shallow void (embedment depth h ≤ 1.5λCH), the LD values change significantly with distance

and frequency. Before the void, lower frequencies are magnified as the distance from the void
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increases, whereas higher frequencies are magnified closer to the void. A possible explanation for

this behavior is that larger wavelengths need larger distances to develop completely; thus, the

influence of the reflected low-frequency components (larger wavelengths) are visible at farther

distances from the void. Consequently, the maximum magnification/attenuation curves are bent

asymptotically before the void. On the other hand, after the void the maximum attenuation

is almost parallel to the void boundary because the void attenuates all frequency components.

In front of the void, the waves are first magnified and then attenuated, whereas after the void

they are attenuated first and then magnified. This characteristic of the LD plots can be utilized

readily to locate an underground void. The LD values oscillate up to a cut-off frequency then

they tend to remain constant. Experiments with different embedment depths and void sizes

reveal that the wavelength of the cut-off frequency is close to the embedment depth of the void.

The physical interpretation is that a void interacts with the waves whose wavelengths are close

to or larger than its embedment depth. Consequently, smaller wavelengths propagate without

recognizing the inhomogeneities. As the embedment depth of the void increases, the pattern

of the LD values remains the same but the cut off frequency decreases. Therefore, the cut-off

frequency is a quantitative parameter that can be used for estimating the embedment depth of

a void.

8.3 Proposed method for detecting a void

It is concluded from the above observations that the energy content of the surface responses

is different before and after the void. Specifically, the surface responses recorded before the

void carry more energy than the ones after void. Part of this attenuation is due to geometrical

damping, and part of it is due to scattering/reflecting of the wave by the void. As explained

in Chapter 2, geometrical damping is frequency independent, and is conversely related to the

distance from source. Thus, to remove the effect of geometrical damping the signals in space

domain are multiplied by the following gain function:

gz =

r
dz
d1

(8.4)

where gz is the value of gain function at the location of receiver z, and dz and d1 are the
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Figure 8-7: Logarithmic decrement (LD) contour for model S00_09. Attenuation or amplifica-
tion occurs up to a cut off frequency, the corresponding wavelength is close to the embedment
depth of the void.

distances of receivers no z and 1 from the source, respectively. Figure 8-8 shows the gain

function and its effect on a typical response. As it is seen, the effect of the defined gain function

if to magnify the signal amplitudes. The magnification is more observable at larger distances

from source. As the gain function is defined in the space domain, it can be either applied to

time responses or frequency spectrum.

As the effect of amplification and attenuation is more observable in frequency domain re-

sponses (Chapter 6), the energy calculations are performed in the frequency domain. The

energy is a function of signals amplitude, thus the signal energy (Ez) at each receiver location

is estimated by:

Ez =
X
f

|Af,z|2 (8.5)

where |Af,z| is the amplitude of the spectrum at frequency f for receiver number z. The
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Figure 8-8: Representation of the gain function (top), original signal and the signal magnified by
the gain function (bottom). The signal corresponds to the surface responses of model S00_09
at time t = 0.15 s.

summation is performed over the reliable frequency range, which depends on the geometry of

the recording array, background noise, and etc. Physically, the parameter Ez is an indication

of the cumulative energy at the location of each receiver.

The normalized energy-distance parameter (NED) is defined as the cumulative spectrum

energy normalized to the maximum energy across the array:

NEDz =
Ez

max(Ez)
(8.6)

equation 8.6 indicates that 0 ≤ NEDz ≤ 1 and is a dimensionless parameter. The variation

of NED values with distance show the location of the void.
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To illustrate the application of NED parameters for the detection of cavities, the calculated

NED values for five different models are depicted in figure 8-9. The solid lines correspond to

horizontal displacements and the dashed lines correspond to vertical displacements. In all cases,

the responses are multiplied by the gain function in the space domain to eliminate the effect of

geometrical damping, and α = 4. For the homogeneous medium without void (model S00_01,

figure 8-9a) the calculated values for vertical and horizontal components are equal to one at all

the locations. Small variations in the values are due to the existing noise. In model S00_01,

the only source of energy attenuation was geometrical damping, and its effect was removed

by the application of gain function. Thus, in this case the NED values show that there is

no variation of energy with distance. In the other four cases the NED value increases to its

maximum (NED = 1) and then drops to a minimum, and again rises to another high. In all

the cases the maximum NED value occurs in the vicinity of near boundary of the void. The

second high in the NED values occurs in proximity of the far boundary of the void. The plots

in figure 8-9 show that the NED values obtained from horizontal displacements better reveal

the location of the void. When the width of the void is small in compare to the distance between

the receivers (’c’), the highs and lows might not be distinguishable. In such cases, the location

of near and far boundaries of the void can not be estimated. This technique works even in the

presence of different layers with different impedances (plots ’c’ and ’d’). With the increase in

the embedment depth of the void, the technique looses its accuracy, and it is estimated that

after a depth of about 1.5λch the method is not applicable.

8.4 Proposed method for estimating the embedment depth of

a void

As mentioned in the previous sections, a simple method to quantify the attenuation in the

presence of a void is to calculate the logarithmic decrement parameter which is commonly used in

engineering applications. In this section a procedure is defined to estimate the embedment depth

of a void. The new procedure is based on equation 8.3. Two new parameters are introduced:

the amplified logarithmic decrement (ALD) and its normalized cumulative summation (CALD):
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ALDj =
zmax−1X
z=1

∙
Ln

µ
Uj,z + α

Uj,z+1 + α

¶¸β
(8.7a)

CALDj =
1

Tot

jX
jj=1

(ALDjj) (8.7b)

and Tot =
X
j

ALDj (8.7c)

where fj refers to the jth frequency, zmax is the maximum number of receivers, Uj,z and

Uj,z+1 are the Fourier spectrum amplitudes at frequency fj for two consecutive receivers num-
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bered z and z+1. Two experimental constants are added to equation 8.7 to reduce the effect

of noise (parameter α) and to enhance the peaks (parameter β). The standard definition of

logarithmic decrement (equation 8.3) is sensitive to low values of the term Uj,z+1, and large

LD values can exist when the spectral amplitude tends to zero. To diminish this effect, the

constant α is added to the equation. The summation over the distance in equation (8.7a) is

used to obtain the average fluctuation of the amplifications or attenuations over the reliable

frequency range. When the values of Uj,z and Uj,z+1 are small, the ratio in equation (8.7a) tend

to 1; hence, the contribution to the ALD value tends to zero. β is an empirical even number

to magnify the peaks and to keep the ALD values positive. For this study, b = 4 and α = 0.5%

of the maximum value of the spectrum magnitude. The value Tot is the summation of ALD

values over the reliable frequency range. The CALDj parameter is the cumulative value of

ALDj and is function of frequency or wavelength. The CALD parameter varies between 0 and

1.

Numerical simulation results for different models show that the plot of the CALD parameter

versus wavelength is a useful tool to estimate the embedment depth of the void. The use of

the CALD parameter is justified by the experimental and numerical evidence showing that an

underground void produces surface amplifications at certain frequencies. Figure 15 presents

typical results for the variation of the CALD parameter as function of wavelength for different

models; the dashed lines show the top and bottom boundaries of the void. For comparison the

plot obtained for model without void (S00_01) is also included. The discontinuities in the plots

happen between the top and bottom boundaries of the void and the corresponding wavelength

gives a good estimation for the average depth of the void. Experiments with different void sizes

and embedment depths confirm this result. For shallow voids (models S00_07 and S00_09), the

estimated embedment depth has an error of 1.5%; however, the error increases with increasing

depth; for embedment depths larger than 1.5λCH , the error could be as large as 50%.

The particle displacements of R-waves show that the wave carries almost no energy after the

depth of one wavelength. Therefore, frequencies with wavelengths smaller than the embedment

depth of the void are almost unaffected; whereas, frequencies with larger wavelengths interact

with the void. The strongest interactions with the void occur at frequencies for which the

wavelengths are close to the embedment depth of the void, and the corresponding attenuation
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or magnification is more conspicuous.
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Figure 8-10: CALD values obtained from vertical and horizontal components of the surface
responses. The vertical axis shows the wavelength. The horizontal dashed lines show the top
and bottom boundaries of the void in each case. The discontinuities in the plots occur up to a
wavelength which is close to the embedment deoth of the void.

8.5 Summary of the Attenuation Analysis of Rayleigh Waves

(AARW)

TheNED and CALD parameters represent a promising tool for detecting a void and estimating

its embedment depth. The following procedure is proposed:

• Design of the MASW test. The general guidelines set by Hiltunen and Woods [52] and

Al-Hunaidi [101] can be used to select the spacing and source-transducer configuration.

A priori estimation of the size and embedment depth of the void will reduce the fieldwork
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significantly.

• Data collection. It is recommended that both the vertical and horizontal components of

the surface displacement should be collected. In addition, more accurate estimations of

the location and embedment depth of the void can be obtained by carrying out tests from

both sides of the array of transducers.

• Time domain analysis. From the time domain data, the group velocity of the main event

is calculated. This velocity is used to ensure that the main event corresponds to surface

waves without strong contamination from body waves.

• Plot of the normalized energy distance parameter (NED). The maximum peak in the

NED-distance plot corresponds to the location of the near boundary of the void. The

results are valid only for voids with an embedment depth smaller than 1.5λmax.

• Plot of the normalized cumulative logarithmic decrement values (CALD) verse wave-

length. This plot gives and estimation of the embedment depth of the void. The discon-

tinuities in the plot occur generally at a wavelength close to the embedment depth of the

void. The deeper the void is the smaller the accuracy of the procedure. For embedment

depths larger than 1.5λmax, errors larger than 50% are expected.
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Chapter 9

Verification of the results with

experimental data

9.1 Introduction

This chapter explains the results MASW field tests conducted over 2 crown pillars in Sudbary,

Ontario. Further, it explains the results of laboratory scale MASW tests performed on a sand

box prototype. The objective is to verify the numerical results by comparing them to the

practical data. The discussions provided in previous chapters are used to explain the field

and laboratory observations. The test results are utilized to verify the numerical observations,

explained in Chapters 6, 7 and 8. The experiments consist of

9.2 Abandoned mine detection at INCO mine site

9.2.1 Site description

Crown pillars are horizontal pillars of rock and soil left above underground stopes mined near

the ground surface. These pillars may fail, sometimes suddenly and catastrophically, leaving a

hole through to the ground surface [136]. To maintain the stability, crown pillars are usually

backfilled with sand. Schematic of a typical crown pillar is depicted in figure 9-1. Failure

or collapse of crown pillars might cause surface subsidence or failure. Figure 9-2 shows a

catastrophic failure of crown pillars in Crawford Mountains, Crawford, Utah [137]. Thus,
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detection of the crown pillars and delineation of their extents are crucial for industry.

Over burden

Rock
Mass

Crown Pillar Thickness

Span

Sand fill

Ground surface

Figure 9-1: Schematic of a typical crown pillar.

MASW tests were performed over two near-surface mine workings to determine if geophysical

methods could be used to accurately locate crown pillars, and assess the condition of the

overlying geological medium [129]. The copper-nickel mine site is contained within a steeply

dipping shear system (60◦ to 80◦) consisting of felsic and mafic norite, meta sediments, and

greenstone. The sulphide deposit was first developed in the early 1900’s and has been mined

intermittently. Mining is still active in the deposit. The studied crown pillars were developed

in the 1940’s. Due to the incompetence of the rock in the hanging wall, caving failures were

observed during mining of one of the two investigated workings, which was backfilled later

with hydraulic sand to provide support and minimize further collapse. Glaciofluvial deposits,

consisting of sand and silt, overlie the bedrock in the area to a depth of approximately 20 m.

Figure 9-3 shows an aerial map of the investigated mine site. Directly above the crown pillar 2,

there is an old railway that runs adjacent to the mine property. The surface condition over this

crown pillar consists of a combination of slag rock, and mine waste rock from the creation of a

mine road adjacent to the site. Relatively, the presence of the mine did not affect the surface

conditions over crown pillar 1, which consists of a sand/soil overburden supporting small trees
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Surface failure

Figure 9-2: Crown pillar failure in Crawford Mountains, Rich County, Utah.

and brush. The minimum depth to void is 50 m for both crown pillars. The width of crown

pillar 1 is approximately 30 m and the width of crown pillar 2 is about 15 m. These crown

pillars have known location, geometry, and surface conditions. Phillips et. al. [130] summarizes

the results from seismic and resistivity surveys over crown pillar 1. This study uses the results

obtained over the two crown pillars to verify the conducted numerical studies.

9.2.2 Experimental methodology

MASW tests were performed along three lines over each crown pillar, one to either side and one

directly above the crown pillar. The instrumentation consisted of a 24-channel seismograph and

8 Hz geophones. The geophone to geophone distance is 5 meters, for a total geophone spread

length of 115meters. Tests with different source types showed that with the available equipment,

the only source that can provide enough energy in the low frequency range is passive source.

Conventionally, in an MASW test, the R-waves travel parallel to the survey line. Moreover,

it is better to know the location of the source to estimate the maximum reliable wavelengths

available in the recorded spectra. Therefore, as passive source does not always satisfy these

conditions, the use of passive energy is not always feasible. On the other side, passive seismic
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Figure 9-3: Aerial map of the investigated mine site. The testing lines are shown by solid lines
over the crown pillars. The rose diagram shows the direction and relative intensity of observed
passive seismic energy sources ([129]).

source, if present, often contains significant low frequency energy. Passive seismic sources were

present at the study site, in the form of a well traveled highway and active gravel pit, to the east

of the site, and an active mine site to the north-west. To determine the direction from which

the passive seismic energy was traveling, a 60 m diameter circle of geophones was setup and

passive seismic energy was measured 30 times (figure 9-3). A total of 47 separate seismic events

were identified from the collected seismic traces. The measurement shows that the majority

of the passive seismic energy is coming from the east, and it is a combination of gravel pit

operations and highway traffic. Only four events were identified as coming from within the

mine site. This is because the seismic surveys were performed during a period of time in which

the mine was shut down, and these events were attributed to maintenance operations that were

being performed near the geophysical testing site. Measurements along the survey lines show
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that the majority of the passive source energy is in the frequency range of 12 to 18 Hz. The

active energy results show that the Rayleigh wave velocity in the overburden sand deposit is

about 240 m
s . No information is available about the wave velocities in the underlying sand

layers and the rock mass.
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9.2.3 Experimental results

The surface responses at the site, due to passive source, are collected in time domain. Figures

9-4 and 9-5 show typical time responses recorded along the survey line over crown pillars 1 and

2. The total length of the survey line is 235 m, and the distance between the beginning of the

survey line and the center of cavity is cavity is x = 150 m. The total recording time is 0.25 s,

and the sampling time and frequency are:

δt = Sampling time = 0.25 ms and δf = Sampling frequency =
1

δt
= 4 kHz (9.1)

Plot ’a’ (figures 9-4 and 9-5) shows typical time traces at different distances from the begin-

ning of the survey line (d), and plot ’b’ shows typical contours of the recorded responses. All

the responses are normalized with respect to the maximum of the matrix. Thus, the maximum

contour value is 1. The continuous lines show the limits of the boundaries of the crown pillar

projected to the surface. The time traces recorded over the cavity have relatively larger ampli-

tudes than other records (amplitudes at x = 150 m, Figures 9-4 and 9-5). Magnified amplitudes

can be distinguished over the void and the nearby region. Because of the complex nature of

ambient vibrations, no distinct event is visible in the time traces; thus, the apparent velocity

cannot be calculated from the data.
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Figure 9-4: Recorded responses over crown pillar 1. Plot (a) shows typical traces recorded at
different distances from the begining of the array (d). Plot (b) shows the same responses in
contour form. The known center of crown pillar is at 150 m from the begining of the array.
The cavity boundaries (' 30m) are shown by solid lines in plot (b).
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Figure 9-5: Recorded responses over crown pillar 2. Plot (a) shows typical traces recorded at
different distances from the begining of the array (d). Plot (b) shows the same responses in
contour form. The known center of crown pillar is at 150 m from the begining of the array.
The cavity boundaries (' 30m) are shown by solid lines in plot (b).
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Figure 9-6 shows the frequency spectrum for the passive source test over crown pillars 1 and

2. A significant high-energy region at frequencies close to 15 Hz is visible, centered at x = 150

meters along the survey line, which is the known location of the center of the mine working.

Amplifications occur at some of the frequencies that carry significant amount of energy (15Hz is

the estimated central frequency of the ambient sources [129]. The width of the zone that shows

significant energy amplification is approximately w = 35 m in plot ’a’, which is comparable to

the width of crown pillar 1. However, in plot ’b’ the width of the zone is about w = 40 m,

which is significantly greater than the known width of the void (w = 15 m). Another region

with energy concentration is seen close to the void boundaries but after the void at f = 20 Hz.

Various passive tests on crown pillars 1 and 2 show that the width of the energy concentration

region gives a good estimation of the width of the cavity; however, it is not always the case.

The above observations are in good agreement with the numerical observations, explained

in Chapters 6 and 7. The void traps some energy, thus amplitude amplifications in the time

domain data, and energy concentration in the frequency spectrum are observed. The trends of

the frequency spectrum are comparable to the ones presented in figures . Energy concentration is

observed at different frequencies, corresponding to different modes of vibrations and interactions

of the energy with different sides of the void.

The previous chapters concluded that in frequency domain, the trapped waves produce a

region of high energy concentration. If the width of the void is larger than the main wavelengths

present in the incoming R-waves, the void traps more energy and generates more conspicuous

amplifications in the frequency domain. The width of the amplification region can be used

to estimate the width of the void. If the void size is relatively small with respect to the main

wavelengths of the excitation, the frequency spectra show amplifications before the void because

of the reflected R-waves. In this case, the width of the void is difficult to estimate from the

measurements. The above conclusion explains the reason that the width of crown pillar 1 could

be estimated with reasonable accuracy from the recorded data. In the case of crown pillar 2,

the width of the cavity is smaller than the wavelength of the main energy. Therefore,

Figure 9-7 shows the application of AARW technique to two sets of data recorded over

crown pillar 1. The figure shows the variation of NED values with distance from the beginning

of the survey line. Location of void boundaries are depicted by arrows. The peak of the graph
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occurs over the void, with smaller peaks at the two sides of the void. As the source was not

in-line with the receivers array, the variation of geometrical damping with distance is not a

simple function, as discussed in chapter 8. Thus, the sets of data are not multiplied by a gain

function. This observation, shows the applicability of the proposed method for detection of the

void. The reason that the peak does not occur at the beginning of the void, as observed in

chapter 8, is associated to the difference in the geometry of the cavity than the ones assumed in

the numerical models, and the source-receiver array offset. The depth estimation based on the

proposed method is not possible with the available set of data. The source-receivers array offset

imposes a complicated pattern of attenuation that is different than the one used for calculation

CALD values. Thus, the method is not applicable to this case. These results confirm that the

MASW test associated with AARW technique is a promising tool for locating a void.
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Figure 9-6: Spectrum of the responses over crown pillars. Plots (a) and (b) show the cntours
over crown pillars 1 and 2, respectively. The known center of crown pillar is at x = 150 m from
the begining of the survey line. The cavity boundaries are shown by dashed lines in the plots.
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9.3 Sandbox prototype

9.3.1 Prototype description

Laboratory scale MASW tests were carried out on a sand box prototype (Fig. 9-8). The sand

box was filled with fine sand with mean grain size D50 = 0.15 mm, to a height of about 55.0

cm above the bottom of sand box. The bottom sand layer was overlain by about 23.0 cm of

cemented sand. The Rayleigh wave velocity of the underlying sand layer is estimated to be 240.0

m
s [129]. The cemented sand consisted of fine sand mixed with about 10% cement. Resonant

column tests on this material showed that the Rayleigh wave velocity of the material is about

1000 m
s Khan2004. During the placement of material in the sandbox, an inflated balloon was

placed at the middle of the sandbox in the cemented sand layer to introduce an air filled cavity

beneath the surface. The walls of the sand box are covered with a layer Styrofoam, about 6.0

cm thick, to reduce reflections from the boundaries. Figure 9-9 shows the geometry of the sand

box and the location of the void [138].
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Figure 9-8: Picture of the sandbox used for the test.
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Figure 9-9: Sketch of the sand box prototype and the corresponding dimensions. Plot (a) shows
the plan view, and plot (b) depicts a section of the prototype. The location of the void, receivers
array, and the source are shown in the sketch.
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9.3.2 Experimental methodology

In this experiment surface responses were collected along two survey lines parallel to the length

of the sand box. Survey line 1 was located between the void and sandbox boundary, and survey

line 2 was located along the center line of the void. The laboratory test set up is depicted

in figure 9-9. The distance between the two survey lines was about 10.0 cm. A Hewlett

Packard 33120A function/waveform generator was used to trigger a signal pulse of 1 Hz that

was transferred to the medium through a shaker type source mounted on a 5.0 cm diameter

cylindrical metal base. Accelerometers (PCB 356B08) with a linear frequency response between

0.5Hz to 5.0 kHz, were used to measure surface accelerations in three dimensions. The distance

between the source and the first receiver (offset value) was 10.0 cm, the distance between the

consecutive receivers was 2.0 cm, and a total of 35 recording points were chosen along each

survey line. The total receivers array length was 68 cm. The measurements were performed

with three accelerometers. For each measurement along the the survey lines, the first and last

receivers were fixed in their locations and the middle receiver was moved along the survey

line. The fixed receivers were used to assure that the signals recorded at different locations are

coherent.

The sampling time (δt) and sampling frequency (δf) was:

δt = 9× 10−6s thus δf = 111 kHz (9.2)

The trace length was 4096 points in time. The experiments at each location were repeated 9

times, and the results were averaged to reduce the effect of random noise. The response at the

location of receiver 1 is used to calculate the critical wavelength (λch). Figure 9-10 shows the

variation of cumulative energy with wavelength. The measured critical wavelength is λch = 0.22

m, which is very close to the depth of the top layer.

9.3.3 Experimental results

Figure 9-11 shows the contours of the vertical responses recorded along lines 1 and 2 (plots ’a’

and ’b’, respectively), at the sand box surface. The main event correspond to Rayleigh wave,

with a measured velocity of 1080 m
s , which matches well with the reported values for cemented
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Figure 9-10: Cummulative energy at the location of first receiver along line 2 at the surface of
sand box. The critical wavelength, wavelength that corresponds to 50% of cummulative energy,
is 0.22 m.

sand [139]. Reflections from the sand box boundary are observed in both plots (event A). The

reflections are stronger along line 1, because it is closer to the longitudinal boundary of the

sand box. In plot ’b’ the projected boundaries of the cavity are depicted by dashed lines. Some

reflections, and minor amplifications can be distinguished in the vicinity of the void (event B),

though they are not very strong events.

Figure 9-12 shows the spectrum of the sand box responses. The spectrum are multiplied by

a gain function in distance, to enhance the peak values (Chapter 8). Both plots are normalized

to the maximum of responses along line 1. Thus the maximum of plot (a) is 1. Event A in both

plots correspond to the reflections from boundaries, which is stronger along line 1. Event B

shows amplifications over the cavity and along its boundaries. The amplitude of the spectrum

along line 2 is about 20% larger than the amplitudes along line 1.
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Figure 9-13 shows the application of AARW technique to the data obtained along line 2

(over the void). Plot ’a’ shows the variation of NED value with distance, and the arrows

show the location of the cavity. The maximum of the NED value occurs at the beginning of

the void, and a local peak is observed around the center of the void. The peaks at farther

distances correspond to the high energies due to reflections. Plot ’b’ shows the variation of

CALD value with wavelength. The plot does not show any significant discontinuity, thus

the CALD calculation fails to estimate the embedment depth of the void in this case. This

observation can be explained by recalling that the embedment depth of the void is about 0.08

m, corresponding to a frequency of f = 1080
0.08 = 13500 Hz. The latter frequency is beyond the

linear range of the used accelerometers, thus they could not be detected accurately. Further,

in this test acceleration at the surface was recorded, and the CALD value was developed based

on displacement records. Thus, it is expected to encounter larger cut off frequencies in the

acceleration records, which is again beyond the linear range of the used accelerometers.

In general, the sand box results are in good agreement with the results obtained from

numerical models. It was shown in Chapter 7 that the behavior of void in a medium with inverse

layering is similar to one in a half space, which is verified by the sand box test. Although, the

shape of the cavity in the sand box test was different than the ones considered in the numerical

models, energy concentration was observed in the vicinity of the void. This observation, confirms

that due to the interaction of the void with Rayleigh wave, energy partitioning occurs, and part

of the energy is trapped on the void region. The 3D modeling showed that when the void

is not in-line with the receivers array, the effect of the void is not observed in the recorded

responses. The records along line 1, which was not in the same alignment with void, confirm

the latter observation. The AARW technique showed to be a powerful technique to detect a

void. Though, due to limitations in the collected frequency ranges, the applicability of the

AARW method for estimating the embedment depth of the void could not be verified, with the

sand box test.
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Figure 9-11: Contours of the surface responses of the sand box. Plots (a) and (b) correspond
to lines 1 and 2, respectively. The dashed lines in plot (b) show the boundaries of the cavity
projected to the surface.
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Figure 9-12: Spectrum of the surface responses of the sand box. Plots (a) and (b) correspond
to lines 1 and 2, respectively. The dashed lines in plot (b) show the boundaries of the cavity
projected to the surface.
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Figure 9-13: Application of AARW method to the sand box data. Plot (a) shows the variation
of NED value with distance. Plot (b) shows the variation of CALD value with wavelength.

9.4 Summary and conclusions

This chapter explained the procedures that were followed to verify the conducted studies in

this research. The data collected over two known crown pillars were presented and investigated

in time and frequency domains. Further, the results of a series of tests that were performed

on a sand box prototype were discussed. The field and laboratory data showed to be in good

agreement with the numerical results. Energy concentration was observed in the vicinity of the

cavities both in time and frequency domains. It was shown that the width of the region with

energy concentration can be used to estimate the extents of the cavity, in some cases. The

concept of characteristic wavelength (λch) was used to evaluate the energy content of the data.

AARW technique was applied to the data to detect the cavities. It was shown that AARW

provides good results for the detection of void. The applicability of the AARW technique to

estimate the embedment depth of the void could not be demonstrated, by the available data.
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Chapter 10

Conclusions and Recommendations

10.1 Conclusions

The major conclusions and contributions of this study are summarized as follows:

1. Two and three dimensional numerical models were developed to investigate the behavior

of Rayleigh waves in the presence of lateral (void) and vertical (layers) anomallies.

2. The void interacts with the incident Rayleigh wave. Due to this interaction energy par-

titioning happens. Part of the incident energy is reflected back, part of it is transformed

into other types of waves (mode conversion), part of it is entrapped in the void region,

and part of it is transmitted.

3. The majority of reflected wave is in the form of Rayleigh wave. Reflection occurs from

both the near and far boundaries of the void (The near boundary is defined as the one

which is closer to the source).

4. Due to the interaction of void and the Rayleigh wave part of the energy is transformed

into body waves, most of which is in the form of p-wave. The generated p-wave is observed

in the regions before and after the void, and inside the medium.

5. Part of the incident energy is entrapped in the void region. This entrapped energy excites

antisymmetric Lamb waves, which are observed in the traces over the void. This part of

the entrapped energy bounces back and forth between the void boundaries until it totally
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attenuates due to geometric damping, scattering and other existing damping mechanisms.

The measured velocities of the anti symmetric Lamb waves are less than the Rayleigh wave

velocity of the medium.

6. Part of the entrapped energy causes the void to vibrate. This void vibration lasts much

longer than the surface vibrations due to the main event. Therefore, late energy emissions

from the void are observed. These late energy emissions can be measured at the surface,

though due to their small amplitudes

7. Due to reflection, mode conversion, scattering, and entrapment of incident energy, the

amplitudes of the responses in the regions after the void are attenuated.

8. The measured group velocities in the presence of a void are slightly smaller than the

Rayleigh wave velocity of the medium. The measured differences in difference cases is

about 2% to 3%. Therefore, a delay is observed in the transmitted waves.

9. The reflections from the far boundary of the void are delayed in compare to the theoretical

arrival times. Therefore, the measurement of void size based on the time delay between

the reflected waves from near and far boundaries of the void results in larger void size

than the actual void size.

10. The concept of characteristic wavelength (λch) is defined. Characteristic wavelength is

defined as the wavelength that 50% of the wave energy is concentrated at wavelengths

smaller than that, and is calculated based on the recorded amplitudes at the first receiver.

Characteristic wavelength can be measured in the field, and can be used to quantify the

wave properties.

11. The entrapped energy is observed as regions with concentrated energies over the void, in

frequency domain. The interaction of the void with the Rayleigh wave occurs in a certain

frequency bandwidth. In cases that the embedment depth of the void is less than or

equal to the embedment depth of the void the lower boundary is defined by the width of

the void (excited Lamb wave modes), and the upper boundary is defined by embedment

depth of the void.
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12. Cut off frequency is defined as the frequency with a wavelength equal to the depth of the

void. The interaction of the void with the incident energy occurs to a frequency close to

the cut off frequency.

13. Cavities with larger widths trap more energy. Therefore, in frequency domain energy

concentration is observed over the void, and the width of this region is comparable to the

width of the void. This phenomena is observed for cavities with widths larger than λch.

14. In frequency domain a region with highly attenuated amplitudes is observed after the void

region.

15. It is found that the average penetration depth of the source energy is about 2.5λch.

16. Investigation of 2D Fourier transforms showed that the presence of a void does not excite

higher modes of Rayleigh wave.

17. 2D Fourier transforms show some dispersions in the presence of void. Thus, it is proved

that the medium is dispersive in the presence of a void.

18. The effect of void on the surface decreases with the increase of on the embedment depth

of the void. It is estimated that after a depth of about 1.3 to 1.5λch the amplification

effect on the surface is not observed and void effect on the surface is not significant.

19. The presence of underlying stiff layers, close to the bottom boundary of the void, over-

shadows the effect of the void at the surface.

20. The effects void in the surface responses are observed as reflections and energy concen-

tration; whereas, the effect of horizontal layers with different mechanical properties are

observed as higher modes of vibration. Therefore, 2D Fourier transforms can be utilized

to distinguish between the two effects.

21. Three dimensional (3D) models of a medium with cavity were developed. The 3D models

allowed to investigate the effect of out of plain dimension of the void, and the effect of

misalignment of the void-receivers array on the surface responses.
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22. The out of plain dimension of the void has a significant effect on the surface responses.

For out of plain dimensions larger than 0.25λch, the results of 2D axisymmetric models

and 3D models are similar.

23. The alignment of the cavity with the receivers array is a crucial limitation that determines

the success of MASW test in void detection.

24. The Attenuation Analysis of Rayleigh Wave Method (AARW) was developed. AARW

is an analysis technique to detect underground cavities and estimating their extents and

embedment depths.

25. The results of this study were verified by investigating the recorded responses over two

crown pillars. The location of crown pillars were observed as regions with energy con-

centration in the frequency domain data. The width of the region was comparable to

the width of the cavity in one case and it was larger than the width of the cavity in the

second case. These observations were explained using the concepts of entrapped energy

and characteristic wavelength.

26. The results obtained from a laboratory sandbox prototype were investigated. The re-

sponses verified the existence of regions with energy concentration in the vicinity of the

void.

10.2 Recommendations for future works

This study showed that the MASW test is a promising tool for detecting underground cavi-

ties. For further improvement of the technique and continuation of this study the following

recommendations are made:

• Designing and conducting more field and laboratory scale tests to investigate the limita-

tions of the observations made in this work and the applicability of the AARW method

for void detection;

• Studying the effect of the shape of the cavity on the surface responses;
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• Investigating the effect of surface topography on the recorded responses in the presence

of a cavity;

• Quantifying and generalizing the application of 2D Fourier transforms for detecting un-

derground cavities;

• Continuing the studies with more advanced 3D numerical models;

• Understanding the effect of source-receiver and receiver-receiver distances, void size, and

total array size on the delectability of the void by MASW method;

• Investigating the application of MASW test in detection of underground anomalies such

as boulders; and

• Developing a software to analyze the collected data based on AARW and PSD methods.
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Appendix A

Selected closed form solutions

This appendix contains a selection of the closed formed solutions derived by different researchers

for the propagation of mechanical waves in an elastic half space. These formulations are adopted

from Graff [12], Lamb [26], and Miller & Pursey [53]. Table A.1 defines the parameters in the

other two tables. Table A.2 defines the loading and medium conditions for the cases shown in

table A.3.

Table A.1: Definition of the parameters used in the closed form solutions

Jn(x) = xn
∞P
m=0

(−1)mx2m
22m+nm!(m+n)!

H = − ξ(2ξ2−k2−8α1β1)
F 0(ξ) and K = − k2α1

F 0(ξ)

α1 =
p
ξ2 − h2, β1 =

p
ξ2 − k2, ξ2 = ω2

C2R
, h2 = ω2

C2p
, k2 = ω2

C2s

F (ξ) = (2ξ2 − k2)2 − 4ξ2αβ
F 0(ξ) = 8ξ

h
(2ξ2 − k2)−

p
ξ2 − h2

p
ξ2 − k2 − ξ2

2

³q
ξ2−k2
ξ2−h2 +

q
ξ2−h2
ξ2−k2

´i
υ = a tan( t−crτ ) where t is time in second, c is the corresponding velocity,

r is the distance from source, and τ is the time factor
Q,Q,Z,and P are load amplification factors
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Table A.2: Model properties and loading conditions for the studied cases
Case Properties of Loading Loading
No. the medium conditions σzz σzx
1 Semi infinite, at H,DL: 0

Elastic plain z=0 Zeiξxeiωt

2 Semi infinite, at line z=x=0, H,LL : 0

Elastic, Large
x

inward −Q
Ã
+∞R
−∞

eiξx

2π dξ

!
eiωt

3 Semi infinite, at 0 H,DL:
Elastic plain z=0 Zeiξxeiωt

4 Semi infinite, at line z=x=0, 0 H,LL :

Elastic, Large
x

inward −P
Ã
+∞R
−∞

eiξx

2π dξ

!
eiωt

5 Semi infinite, at plain z=0, H,DL: 0
Elastic Inward, 3D axisym. ZJ0(ξr)

6 Semi infinite, at point x=y=z=0, H,PL: 0
Elastic Inward, 3D axisym. Amplitude −Q

7 Semi infinite, at point x=y=z=0, PL 0

Elastic Inward, 3D axisym. Q
π

τ
τ2+t2

Table A.3: Surface displacements for the studied cases
Case Surface displacements
No. V ertical (u3,0 = v0) Horizontal (u1,0 = u0)

1 k2α
F (ξ)

Z
µ e
i(ξx+ωt) iξ(2ξ2−k2−2αβ)

F (ξ)
Z
µ e
i(ξx+ωt)

2 − iQµ Kei(ωt−κx)+ −QµHei(ωt−κx)+
2Q
µ

q
2
π

q
1−

¡
h
k

¢2 iei(ωt−kx−π
4 )

(kx)
3
2

Q
2µ

q
2
π

q
1−

¡
h
k

¢2 iei(ωt−kx−π
4 )

(kx)
3
2

+ Q
2µ

q
2
π

h2k2

(k2−2h2)2
iei(ωt−kx−

π
4 )

(hx)
3
2

−Qµ
q

2
π
h3k2

√
h2−k3

(k2−2h2)3
iei(ωt−kx−

π
4 )

(hx)
3
2

3
−iξ(2ξ2−k2−2αβ)

F (ξ)
X
µ e

i(ξx+ωt) k2βX
F (ξ)µe

i(ξx+ωt)

4 −PµHei(ωt−κx)+ − iPµ Kei(ωt−κx)+
P
µ

q
2
π

q
1−

¡
h
k

¢2 iei(ωt−kx−π
4 )

(kx)
3
2

2Q
µ

q
2
π

q
1−

¡
h
k

¢2 iei(ωt−kx−π
4 )

(kx)
3
2

−Pµ
q

2
π
h3k2

√
k2−h2

(k2−2h2)3
iei(ωt−kx−

π
4 )

(hx)
3
2

+ Q
2µ

q
2
π

h2k2

(k2−2h2)2
iei(ωt−kx−

π
4 )

(hx)
3
2

5 k2α
F (ξ)J0(ξr)

Z
µ e
iωt ξ(2ξ2−k2−2αβ)

F (ξ) J1(ξr)Zµ e
iωt

6 Rayleigh : f( 1
r
1
1
) p and s waves : f( 1

r2
)

7 KQCR
4πµτ2

q
2τ
CRr

cos(π4 −
3
2υ) cos

3
2 (υ) −HQCR4πµτ2

q
2τ
CRr

sin(π4 −
3
2υ) cos

3
2 (υ)

Q
π

τ
τ2+t2

245



Appendix B

Developed MathCAD
R°
work sheets

This appendix contains the developed MathCAD
R°
work sheets that were used for the calcu-

lations.

Mathgram 2-1: shows the Lamb solution and calculates the corresponding displacements

Mathgram 3-1: Shows the method used for calculating the 2D Fourier transforms

Mathgram 6-1: Shows the followed procedure for checking the stability of the numerical

models
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Mathgram 2-1:
Lamb Solution

References: Kramer (1996) , Bath (1984)

ORIGIN 1:=

Functions:
Do_FFT x( )

Out j〈 〉
FFT x j〈 〉( )←

j 1 cols x( )..∈for

Out

:=

Function F -3:

Input Data:
Material properties:

Poisson ratio: ν 0.2:= Elastic modulus: E 19:= MPa Bulk density: ρ 1600:= Kg/m3

Time parameters :

Number of points in time: Nt 28
:= i 1 Nt..:= ∆t 2.5 10 4−

⋅:= ti i 1−( ) ∆t⋅:=

Frequency parameters:

Number of points in frequency : Nf
Nt
2

1+:= j 1 Nf..:= ∆f
1

Nt ∆t⋅
:= ∆f 15.625=

fj j 1−( ) ∆f⋅:= fnyq
1

2 ∆t⋅
:= fnyq 2000= Hz

Maximum meaningful frequency: fmax 5:=

Computations:

Shear modulus: G
E

2 1 ν+( )⋅
:= Constraint modulus: M

1 ν−

1 ν+( ) 1 2 ν⋅−( )⋅
E⋅:=

Bulk modulus: K
E

3 1 2 ν⋅−( )⋅
:= P-wave velocity: Cp

M 106
⋅

ρ
:=

S-wave velocity: Cs
G 106

⋅

ρ
:= Rayleigh wave velocity: CR

0.87 1.12 ν⋅+

1 ν+
Cs⋅:=

G 7.917= Mpa M 21.111= Mpa K 10.556= Mpa

Cp 114.867= m/s Cs 70.341= m/s CR 64.128= m/s
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Lamb source and solution - Axisymmetric - 3D :

Parameters : Source amplitude: Qbar 1000:= Source f content: τ 0.00075:=

a
1

Cp
:= b

1
Cs

:= c
1

CR
:= Wave slowness

ωmax 2 π⋅ fmax⋅:= h ωmaxa⋅:= k ωmaxb⋅:= χ ωmax c⋅:= Wave numbers

α1 χ
2

h2
−:= β1 χ

2
k2

−:=

Derivative of
 Rayleigh equation:

F' ζ( ) 8 ζ⋅ 2 ζ
2

⋅ k2
−( ) ζ

2
h2

− ζ
2

k2
−⋅−

ζ
2

2
ζ
2

k2
−

ζ
2

h2
−

⋅−
ζ

2

2
ζ
2

h2
−

ζ
2

k2
−

⋅−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅:=

ν x t,( ) atan
t c x⋅−

τ
⎛⎜
⎝

⎞
⎠

:= K
k2

− α1⋅

F' χ( ):= H
χ− 2 χ

2
⋅ k2

− 2 α1⋅ β1⋅−⎛
⎝

⎞
⎠⋅

F' χ( ):=

Source function: Q t( )
Qbar

π

τ

t2 τ
2

+

⋅:= Delay 750 ∆t⋅:= qi Q ti Delay−( ):=

Vertical  surface
displacement 
far from source:

u30 x t,( )
K Qbar⋅ c⋅

4 π⋅ G⋅ τ
2

⋅

2 τ⋅

c x⋅
⋅ cos

π

4
3
2

ν x t,( )⋅−⎛⎜
⎝

⎞
⎠

⋅ cos ν x t,( )( )

3

2
⋅:=

Horizontal surface
displacement 
far from source:

u10 x t,( )
H− Qbar⋅ c⋅

4 π⋅ G⋅ τ
2

⋅

2 τ⋅

c x⋅
⋅ sin

π

4
3
2

ν x t,( )⋅−⎛⎜
⎝

⎞
⎠

⋅ cos ν x t,( )( )

3

2
⋅:=

Fourier transform of the 
source:

FQ Do_FFT q( ):= AmpFQj FQj

→⎯
:=

Distance from source (m): Di 1 3..:= d1 0.75:= d2 1.125:= d3 1.5:=

Discretized displacements: Du30i Di,
u30 dDi ti,( ):= Du10i Di,

u10 dDi ti,( ):=

Saving Displacements: out 1〈 〉
t:= out Di 1+〈 〉

Du30
Di〈 〉

:= out Di 4+〈 〉
Du10

Di〈 〉
:=
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Graphs:
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20
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qi

ti

0 100 200
0

10

20

Lamb Source

Frequency (Hz)

AmpFQ j
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MathGram 3-1:  
2D Fourier calculation

References: Kramer (1996) , Bath (1984) ORIGIN 1:=

Functions :

ZeroPadd_2D x N, M,( )

out i j, 0←

j 1 M..∈for

i 1 N..∈for

out i j, xi j,←

j 1 cols x( )..∈for

i 1 rows x( )..∈for

out

:=

Function F -36:

Hanning tmax ∆t,( ) E
tmax
∆t

1+←

M 0.5 E⋅←

out i 0.5 0.5 cos
2π

E
i M−( )⋅⎡⎢

⎣
⎤⎥
⎦

⋅+ i M−
E
2

≤if

0 otherwise

←

i 1 E..∈for

out

:=

Function F -34:

Input Data and defined indices:

Defined indices

Nt 10:= Nttot 2Nt
:= Total number of points after zero padding

Number of points in frequency : Nftot Nttot:= jf 1 Nftot..:=

Nd 30:= Ndtot Nd:= Total number of spatial points after zero padding

Number of points in wavenumber : Nktot Ndtot:= jk 1 Nktot..:=

i 1 Nttot..:= k 1 Ndtot..:=

Max no. of receivers: Receiver_max Ndtot:=
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z 1 Receiver_max..:= zz 1 Receiver_max 1−..:=

Assumed frequency: ω 100:=
rad
s

Assumed wavelength: λ 1:= m

f
ω

2 π⋅
:= f 15.915= Hz T

1
f

:= T 0.063= s ∆t
T
10

:= ∆x
λ

10
:=

Temporal sampling rate: ∆t 0.006283= Spacial sampling rate: ∆x 0.1=

Time parameters :
ti i 1−( ) ∆t⋅:=Original number of points in time for numerical solution:

Frequency parameters:

∆f
1

Nttot ∆t⋅
:= ∆f = fjf jf 1−( ) ∆f⋅:= Fnyq

1
2 ∆t⋅

:= Fnyq = Hz

ωnyq 2 π⋅ Fnyq⋅:= ωnyq =
rad
s

Wave-number parameters:

∆k
1

Ndtot ∆x⋅
:= ∆k = Ndtot = kjk jk 1−( ) ∆k⋅:= knyq

1
2 ∆x⋅

:=

knyq = 1/m max k( ) =

Spatial parameters:

Receiver_max = mid 0.5 Receiver_max mod Receiver_max 2,( )−( )⋅ 1+:=

xz z 1−( ) ∆x⋅:= max x( ) =
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Generated signals:

Synthetic data: a sinusoid with 5 cycles
SDatai z, 0 ti 2 T⋅<if

10sin ω ti⋅( ) 2 T⋅ ti≤ 7 T⋅≤if

0 otherwise

:=

Final Signals:

Data1 SData:= Data2 SData:=

Plot of the synthetic data

0 50 100
20

0

20

40

60

Data2i 1,

Data2i 10, 20+

Data2i 20, 40+

i

Wiggle plot of the synthetic data
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Data1

Contour plot of the synthetic data

Computations:

Generating Hanning window in temporal and spatial domain:

maxt max t( ):= maxx max x( ):= wt Hanning maxt ∆t,( ):= wd Hanning maxx ∆x,( ):=

wini z, wti wdz⋅:=

Windowing the signals in time and space:

wData1i z, wini z, Data1i z,⋅:= wData2i z, wini z, Data2i z,⋅:=

Optical transformation of the Data1:

owData1i z, 1−( )i z+ wData1i z,⋅:=

Zero padding the signals in time and spatial domain:

zowData1 ZeroPadd_2D owData1 Nttot, Ndtot,( ):=

zwData2 ZeroPadd_2D wData2 Nttot, Ndtot,( ):=
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Frequency computations :

fzowData1 cfft zowData1( )T:= fzowData2 cfft zwData2( )T:=

Calculating the magnitudes:

MData1 jk jf, fzowData1Nktot jk− 1+ jf,:= MData2 jk jf, fzowData2jk jf,:=

Plotting the data:

Amp 10:= α 10 10 2−
⋅:= lim1 1:= lim2 Nftot:=

qmin α max MData1( )⋅:=

Dum1 submatrix MData1 1, Nktot, lim1, lim2,( ):= Plot1 Amp log qmin Dum1+( )
→⎯⎯⎯⎯⎯⎯⎯

⋅:=

qmin α max MData2( )⋅:=

Dum1 submatrix MData2 1, Nktot, lim1, lim2,( ):= Plot2 Amp log qmin Dum1+( )
→⎯⎯⎯⎯⎯⎯⎯

⋅:=

Normalizing the data:

MAX1 max max Plot1( ) min Plot1( ),( ):= MAX2 max max Plot2( ) min Plot2( ),( ):=

NPlot1
Plot1

MAX1
:= NPlot2

Plot2
MAX2

:=

NPlot2

FK transform of the data
without optical transformation

254



NPlot1

FK transform of the data with
optical transformation
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Mathgram 6-1:
Stability conditions foe the numerical models:

Refferences: Kramer (1996), Comprehensive Proposal (Ali) ORIGIN 1:=

Input Data:
Material Properties: Material Type III (Medium Sand)

Description: Material type I : Loose sand

Poisson ratio: ν 0.2:= Elastic modulus: E 61:= MPa Bulk density:ρ 2000:= Kg/m3

Model Geometry:

Overal model dimensions D 20:= m H 20:= m

Dimensions of the uniform part of the model D1 8:= m H1 8:= m

Location of receivers and anomallies: x0 3.992:= m x1 4:= m S 3:= m

No. of grid points in uniform grid: NG 1000:= Total No. of grid points: TNG 600:=

"J:\Ali\Thesis20060124\Figures\Chapter6\Model-Sizing.bmp"
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Calculations:
Material Properties:

Shear modulus: G
E

2 1 ν+( )⋅
:= Constraint modulus: M

1 ν−

1 ν+( ) 1 2 ν⋅−( )⋅
E⋅:=

Bulk modulus: K
E

3 1 2 ν⋅−( )⋅
:= P-wave velocity: Cp

M 106
⋅

ρ
:=

S-wave velocity: Cs
G 106

⋅

ρ
:=

Rayleigh wave velocity:

CR
0.87 1.12 ν⋅+

1 ν+
Cs⋅:= Approximate value used for the guess valueCR 102.773=

Cmin 0.95 CR⋅:= Cmax 1.05 CR⋅:= Max and min of guessed values

Calculation of the Rayleigh wave velocity from the exact equation:

F C( ) 2
C
Cs

⎛
⎜
⎝

⎞
⎠

2
−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

2

4 1
C
Cp

⎛
⎜
⎝

⎞
⎠

2
−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

1
C
Cs

⎛
⎜
⎝

⎞
⎠

2
−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅⋅−:= * CR root F C( ) C, Cmin, Cmax,( ):=

Final Reults for the material properties:
G 25.417= Mpa M 67.778= Mpa K 33.889= Mpa

Cp 184.089= m/s Cs 112.731= m/s CR 102.698= m/s
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Model parameters Calculations:

Grid distance in uniform part:
∆s

D1
NG

:= ∆s 0.008= m

Time increment according to stability condition: ∆tmax
∆s

4 2⋅ Cp⋅
:= ∆tmax 7.682 10 6−

×= s

Chosen time increment: ∆t 5 10 6−
×:= s

Lower limit for Dynamic time :tmin max

2 x0⋅ x1−

CR

x1 S+

CR

⎛⎜
⎜
⎜
⎜
⎜⎝

⎞
⎟
⎟
⎟

⎠

⎛⎜
⎜
⎜
⎜
⎜⎝

⎞
⎟
⎟
⎟

⎠

:= tmin 0.068= s

Upper limit for Dynamic time : tmax min

2 D⋅ x1− S−

CR

2 x0⋅ x1+

CR

4 H2
⋅ x1

2
+

CR

⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

:= tmax 0.11669= s

Note: This condition for tmax can be overwrited by using absorbing boundaries.

Chosen dynamic time: t 0.21:= s

Required No. of time dynamic steps: Nt
t

∆t
:= Nt 42000=

Near field effects: λmax
x1
2

:= λmax 2= m

Minimum frequency that can be extracted: fmin max

CR
λmax

1
t

⎛
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟

⎠

⎛
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟

⎠

:= fmin 51.349= Hz

Minimum wavelenght which is not affected by
numerical dispersion:

λmin 10∆s:= λmin 0.08= m
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Maximum frequency that can be extracted: fmax min

1
2 ∆t⋅

CR
λmin

⎛
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟

⎠

⎛
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟

⎠

:= fmax 1283.7= Hz

Summary of the Results:

∆t 5 10 6−
×= s ∆s 0.008= m t 0.21= s

tmax 0.117= s fmin 51.3= Hz

tmin 0.068= s fmax 1283.7= Hz
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Appendix C

Selected FLAC
R°
input files

C.1 FLAC input file for model S00_02:

(Two dimensional model)

;########################################

;#

;# Objective:

;#

;# Investigating the effect of a void in a half space

;# Effect of void on the responses along vertical lines

;#

;# Revision date: August 25, 2005

;#

;# Formulation References :

;#

;# PHD comprehensive proposal (Ali)

;#

;# Units: m , s & N

;#

;# Material type I: Loose sand
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;#

;# Poisson Ratio= 0.2, E = 19 MPa,

;# Density= 1600 kg/m3, G= 7.92 MPa

;# Bulk Modulus= 10.556 MPa

;#

;# Cp=114.87 m/s, Cs=70.34 m/s, CR= 64.13 m/s

;#

;# Damping not activated, void size: 0.08 x 0.08m, h=0.08 m

;#

;#

;#############################################

new

config axisymmetry Dynamic

grid 1150,416

model elastic

gen 0,-20 0,-2.12 8,-2.12 8,-20 &

rat=1,0.986 i=1,1001 j=1,151

gen 0,-2.12 0,0 8,0 8,-2.12 &

rat=1,1 i=1,1001 j=151,417

gen 8,-20 8,-2.12 20,-2.12 20,-20 &

rat=1.0143,0.986 i=1001,1151 j=1,151

gen 8,-2.12 8,0 20,0 20,-2.12 &

rat=1.0143,1 i=1001,1151 j=151,417

; # properties:

prop dens=1600 bulk=10.6e6 shear=7.92e6 i=1,1151 j=1,417

fix x i 1

apply xquiet yquiet i 1151

apply xquiet yquiet j 1

; +++++++ Fish Functions +++++++++++++++++++++++

;*** FISH Function to Define Model Running Loop
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def run_model

Initialize_Data

command

apply yforce -1 hist inpwave i=1 j=417

end_command

loop n (1,1)

command

step 32000

end_command

end_loop

end

def run_model_movie

Initialize_Data

command

apply yforce -1 hist inpwave i=1 j 417

end_command

loop n (1,movieshots)

command

step moviesteps

; plot bou red vel yel apply green

end_command

end_loop

end

;###### Setting initial values

def Initialize_Data

command

Set dydt = 1e-5

set dytime = 0

history nstep=10

history 6000 inpwave
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history 5999 unbal

history 5998 dytime

end_command

moviesteps=1000

movieshots=32

SetupDispHistories

end

;*** Setup Displacement Histories

Def SetupDispHistories

; ***** Displacements along Vertical line @ d=3.992 m

;# Y diaplacement histories

loop ii (1,51)

jjval = 167+5*(ii-1)

command

history ydisp i 500 j jjval

mark j=jjval i=500

endcommand

end_loop

;# Y diaplacement histories

loop ii (1,51)

jjval = 167+5*(ii-1)

command

history ydisp i 600 j jjval

mark j=jjval i=600

endcommand

end_loop

;# Y diaplacement histories

loop ii (1,51)

jjval = 167+5*(ii-1)

command
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history ydisp i 700 j jjval

mark j=jjval i=700

endcommand

end_loop

;# Y diaplacement histories

loop ii (1,51)

jjval = 167+5*(ii-1)

command

history ydisp i 800 j jjval

mark j=jjval i=800

endcommand

end_loop

;# Y diaplacement histories

loop ii (1,51)

jjval = 167+5*(ii-1)

command

history ydisp i 900 j jjval

mark j=jjval i=900

endcommand

end_loop

;# ******** X Displacement histories *********s

;# x diaplacement histories

loop ii (1,51)

jjval = 167+5*(ii-1)

command

history xdisp i 500 j jjval

mark j=jjval i=500

endcommand

end_loop

;# x diaplacement histories
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loop ii (1,51)

jjval = 167+5*(ii-1)

command

history xdisp i 600 j jjval

mark j=jjval i=600

endcommand

end_loop

;# X diaplacement histories

loop ii (1,51)

jjval = 167+5*(ii-1)

command

history xdisp i 700 j jjval

mark j=jjval i=700

endcommand

end_loop

;# X diaplacement histories

loop ii (1,51)

jjval = 167+5*(ii-1)

command

history xdisp i 800 j jjval

mark j=jjval i=800

endcommand

end_loop

;# X diaplacement histories

loop ii (1,51)

jjval = 167+5*(ii-1)

command

history xdisp i 900 j jjval

mark j=jjval i=900

endcommand
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end_loop

; ***** Displacements along the surface

;# Y diaplacement histories

loop ii (1,101)

iival = 500+5*(ii-1)

command

history ydisp i iival j 417

mark i=iival j=417

endcommand

end_loop

;# x diaplacement histories

loop ii (1,101)

iival = 500+5*(ii-1)

command

history xdisp i iival j 417

endcommand

end_loop

end

; ###### Saving Displacements

def History_save

loop ii (h1,h2)

command

history write ii

end_command

end_loop

end

;*** defining Lamb source

def inpwave

deltat=1e-5

sai=0.00075
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Fb=1000

tf=dytime-3600*deltat

inpwave=(Fb*sai/(3.1415*(tf^2+sai^2)))

end

save e:\flac\dum.sav

; ########## End of functions

model null j=397,406 i=695,704

run_model

; Y displacements along Vertical lines

set hisfile e:\flac\Y_V1.txt

set h1=1

set h2=51

History_save

set hisfile e:\flac\Y_V2.txt

set h1=52

set h2=102

History_save

set hisfile e:\flac\Y_V3.txt

set h1=103

set h2=153

History_save

set hisfile e:\flac\Y_V4.txt

set h1=154

set h2=204

History_save

set hisfile e:\flac\Y_V5.txt

set h1=205

set h2=255

History_save

; X displacements along Vertical lines
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set hisfile e:\flac\X_V1.txt

set h1=256

set h2=306

History_save

set hisfile e:\flac\X_V2.txt

set h1=307

set h2=357

History_save

set hisfile e:\flac\X_V3.txt

set h1=358

set h2=408

History_save

set hisfile e:\flac\X_V4.txt

set h1=409

set h2=459

History_save

set hisfile e:\flac\X_V5.txt

set h1=460

set h2=510

History_save

; Along the surface

set hisfile e:\flac\SurfY.txt

set h1=511

set h2=611

History_save

set hisfile e:\flac\SurfX.txt

set h1=612

set h2=712

History_save

save e:\flac\s00.sav
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C.2 FLAC input file for model S03_01 (Three dimensional

model):

********************************************************************

; 3D model of a semi infinite medium

;

; Prepared by: Ali Nasseri-Moghaddam

; ************ Date: 04 May 2005 **************

; Material properties: Model elastic

;

; Material properties: ?= 0.2, E=19 MPa, ?=1600 kg/m3

; Wave velocities: Cp=114.87 m/s, Cs=70.34 m/s, CR=64.08 m/s

;

; Units: m, s, kg

;

; Damping not activated

;

;********************************************************************

;

New

Config dynamic

; ****** Defining the geometry

;

;

set directory e:\flac3d

; Defining model size

Gen zone brick &

P0 0 0 0 p1 6.02 0 0 p2 0 -5 0 p3 0 0 -5 &

Size 172 68 68 &

Rat 1 1.01 1.01
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Gen zone brick &

p0 6.02 0 0 p1 8.02 0 0 p2 6.02 -5 0 p3 6.02 0 -5 &

Size 33 68 68 &

Rat 1.032 1.01 1.01

;*** Assigning range names

;

Range name=fine x=-0.005,6.02 y=-5.0,0.005 z=-5.0,0.005

Range name=coarse fine not

Range name=Origin x=0 y=0 z=0

; Assigning range names to boundary planes

;

Range name=joint x=6.01,6.03

Range name=Xstart x=0,0

Range name=Xend x=8.02,8.02

Range name=Ystart y=-5.0,-5.0

Range name=Yend y=0,0

Range name=Zstart z=-5.0,-5.0

Range name=Zend z=0,0

; Assigning void range

Range name=void x=4,4.5 y=-0.1,0 z=-1,-0.5

attach face range=joint

;*** Assigning material properties

;

M e

Prop dens=1600 bulk=10.6e6 shear=7.9e6

;*** Assigning boundary conditions

;

Fix x range=Xstart ; Symmetry condition at x=0

Fix y range=Yend ; Symmetry condition at y=0

Fix z range=Zstart ; Base of the model fixed in veritcal direction
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Apply dquiet squiet nquiet range=Xend

Apply dquiet squiet nquiet range=Ystart

;*** Defining Lamb source

;

def inpwave

deltat=5e-5

sai=0.0025

Fb=-1000*3.1415*sai

tf=dytime-1000*deltat

inpwave=(Fb*sai/(3.1415*(tf^2+sai^2)))

end

;*** Defining histories

;

hist id=3000 inpwave

hist id=3001 unbal

hist id=3002 dytime

;*** Z displacement histories @ y=0 and z=0

def Zdisp_history

loop ii (1,87)

xval = 2.975+(ii)*0.035

his_id=ii

command

history id=his_id nstep=1 gp zdisp xval,0,0

endcommand

end_loop

end

;*** X diaplacement histories

def Xdisp_history

loop ii (1,87)

xval = 2.975+(ii)*0.035
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his_id=200+ii

command

history id= his_id nstep=1 gp xdisp xval,0,0

endcommand

end_loop

end

;*** z displacement histories around the void

def VZdisp_history

loop ii (1,16)

GPNumber = 215125+(ii-1)*2

his_id=1000+(ii-1)

command

history id= his_id nstep=1 gp zdisp id=GPNumber

endcommand

end_loop

loop ii (1,8)

GPNumber = 203216-(ii-1)*11937

his_id=1016+(ii-1)

command

history id= his_id nstep=1 gp zdisp id=GPNumber

endcommand

end_loop

loop ii (1,16)

GPNumber = 107662+(ii-1)*2

his_id=1024+(ii-1)

command

history id= his_id nstep=1 gp zdisp id=GPNumber

endcommand

end_loop

loop ii (1,8)
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GPNumber = 119629+(ii-1)*11937

his_id=1040+(ii-1)

command

history id= his_id nstep=1 gp zdisp id=GPNumber

endcommand

end_loop

end

def VXdisp_history

loop ii (1,16)

GPNumber = 215125+(ii-1)*2

his_id=2000+(ii-1)

command

history id= his_id nstep=1 gp xdisp id=GPNumber

endcommand

end_loop

loop ii (1,8)

GPNumber = 203216-(ii-1)*11937

his_id=2016+(ii-1)

command

history id= his_id nstep=1 gp xdisp id=GPNumber

endcommand

end_loop

loop ii (1,16)

GPNumber = 107662+(ii-1)*2

his_id=2024+(ii-1)

command

history id= his_id nstep=1 gp xdisp id=GPNumber

endcommand

end_loop

loop ii (1,8)
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GPNumber = 119629+(ii-1)*11937

his_id=2040+(ii-1)

command

history id= his_id nstep=1 gp xdisp id=GPNumber

endcommand

end_loop

end

save e:\flac3d\dum.sav

;****************************************************

;****************************************************

;*** Model t8: model with 2% mass damping at f=100 Hz

;****************************************************

;****************************************************

; *** Function for saving historiess

def ZHistory_save

command

history write 1 2 3 4 5 6 7 8 9 vs 3002 &

fi=e:\flac3d\t11zdisp01.txt

history write 10 11 12 13 14 15 16 17 18 19 &

fi=e:\flac3d\t11zdisp02.txt

history write 20 21 22 23 24 25 26 27 28 29 &

fi=e:\flac3d\t11zdisp03.txt

history write 30 31 32 33 34 35 36 37 38 39 &

fi=e:\flac3d\t11zdisp04.txt

history write 40 41 42 43 44 45 46 47 48 49 &

fi=e:\flac3d\t11zdisp05.txt

history write 50 51 52 53 54 55 56 57 58 59 &

fi=e:\flac3d\t11zdisp06.txt

history write 60 61 62 63 64 65 66 67 68 69 &

fi=e:\flac3d\t11zdisp07.txt
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history write 70 71 72 73 74 75 76 77 78 79 &

fi=e:\flac3d\t11zdisp08.txt

history write 80 81 82 83 84 85 86 87 &

fi=e:\flac3d\t11zdisp09.txt

end_command

end

def XHistory_save

command

history write 201 202 203 204 205 206 207 208 209 vs 3002 &

fi=e:\flac3d\t11xdisp01.txt

history write 210 211 212 213 214 215 216 217 218 219 &

fi=e:\flac3d\t11xdisp02.txt

history write 220 221 222 223 224 225 226 227 228 229 &

fi=e:\flac3d\t11xdisp03.txt

history write 230 231 232 233 234 235 236 237 238 239 &

fi=e:\flac3d\t11xdisp04.txt

history write 240 241 242 243 244 245 246 247 248 249 &

fi=e:\flac3d\t11xdisp05.txt

history write 250 251 252 253 254 255 256 257 258 259 &

fi=e:\flac3d\t11xdisp06.txt

history write 260 261 262 263 264 265 266 267 268 269 &

fi=e:\flac3d\t11xdisp07.txt

history write 270 271 272 273 274 275 276 277 278 279 &

fi=e:\flac3d\t11xdisp08.txt

history write 280 281 282 283 284 285 286 287 &

fi=e:\flac3d\t11xdisp09.txt

end_command

end

def VZHistory_save

command
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history write 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 vs 3002 &

fi=e:\flac3d\t11Vzdisp01.txt

history write 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 vs 3002 &

fi=e:\flac3d\t11Vzdisp02.txt

history write 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 vs 3002 &

fi=e:\flac3d\t11Vzdisp03.txt

history write 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 vs 3002 &

fi=e:\flac3d\t11Vzdisp04.txt

history write 1040 1041 1042 1043 1044 1045 1046 1047 vs 3002 &

fi=e:\flac3d\t11Vzdisp05.txt

end_command

end

def VXHistory_save

command

history write 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 vs 3002 &

fi=e:\flac3d\t11Vxdisp01.txt

history write 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 vs 3002 &

fi=e:\flac3d\t11Vxdisp02.txt

history write 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 vs 3002 &

fi=e:\flac3d\t11Vxdisp03.txt

history write 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 vs 3002 &

fi=e:\flac3d\t11Vxdisp04.txt

history write 2040 2041 2042 2043 2044 2045 2046 2047 vs 3002 &

fi=e:\flac3d\t11Vxdisp05.txt

end_command

end

; **** printing grid positions around the void

def Print_Position

loop ii (1,16)

GPNumber = 215125+(ii-1)*2
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command

print gp pos range id=GPNumber

endcommand

end_loop

loop ii (1,8)

GPNumber = 203216-(ii-1)*119377

command

print gp pos range id=GPNumber

endcommand

end_loop

loop ii (1,16)

GPNumber = 107662+(ii-1)*2

command

print gp pos range id=GPNumber

endcommand

end_loop

loop ii (1,8)

GPNumber = 119629+(ii-1)*11937

command

print gp pos range id=GPNumber

endcommand

end_loop

end

;*** Model t11_1: Running the model

set dyn damp rayleigh 0.02 100

m n range=void

set log on logfile=e:\flac3d\pos.txt

Print_Position

set log off

set dynamic dt=5e-5
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set grav 0 0 0

apply zforce 1 h=inpwave range x=0 y=0 z=0

Zdisp_history

Xdisp_history

VZdisp_history

VXdisp_history

plot his 1, 30, 65 vs 3002

solve age=0.26

Save e:\flac3d\t11_1.sav

ZHistory_save

XHistory_save

VZHistory_save

VXHistory_save
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