30 research outputs found

    A MILP model for an extended version of the Flexible Job Shop Problem

    Full text link
    A MILP model for an extended version of the Flexible Job Shop Scheduling problem is proposed. The extension allows the precedences between operations of a job to be given by an arbitrary directed acyclic graph rather than a linear order. The goal is the minimization of the makespan. Theoretical and practical advantages of the proposed model are discussed. Numerical experiments show the performance of a commercial exact solver when applied to the proposed model. The new model is also compared with a simple extension of the model described by \"Ozg\"uven, \"Ozbakir, and Yavuz (Mathematical models for job-shop scheduling problems with routing and process plan flexibility, Applied Mathematical Modelling, 34:1539--1548, 2010), using instances from the literature and instances inspired by real data from the printing industry.Comment: 15 pages, 2 figures, 4 tables. Optimization Letters, 201

    Scheduling model for systems with complex alternative behaviour

    Get PDF
    In this paper we propose a flexible model for scheduling problems, which allows the modeling of systems with complex alternative behaviour. This model could for example facilitate the step from process planning model to optimization model. We show how automatic constraint generation can be performed for both Constraint Programming and Mixed Integer Linear Programming (MILP) models. Also, for the MILP case, a new formulation for mutual exclusion of resources is proposed. This new formulation works well for proving optimality in systems with multiple capacity resources. Some benchmarks for such job shop scheduling problems as well as systems with a large number of alternatives are also presented

    An approach for the production scheduling problem when lot streaming is enabled at the operational level

    Get PDF
    By means of the present work, the production scheduling and the lot streaming problems are simultaneously addressed at flexible manufacturing environments. The proposal is based on a Constraint Programming (CP) formulation that can efficiently tackle the scheduling of manufacturing operations and the splitting of lots into smaller sublots. The approach is capable to define the number of sublots for each lot and the number of parts belonging to each sublot, as well as the assignment of the operations on sublots to machines, with their corresponding start and completion times. The CP model can be easily adapted to cope with different problem issues and several operational policies, which constitutes the main novelty of the contribution. A set of case studies were solved in order to validate the proposal and good quality solutions were found when minimizing the makespan.Sociedad Argentina de Informática e Investigación Operativ

    An approach for the production scheduling problem when lot streaming is enabled at the operational level

    Get PDF
    By means of the present work, the production scheduling and the lot streaming problems are simultaneously addressed at flexible manufacturing environments. The proposal is based on a Constraint Programming (CP) formulation that can efficiently tackle the scheduling of manufacturing operations and the splitting of lots into smaller sublots. The approach is capable to define the number of sublots for each lot and the number of parts belonging to each sublot, as well as the assignment of the operations on sublots to machines, with their corresponding start and completion times. The CP model can be easily adapted to cope with different problem issues and several operational policies, which constitutes the main novelty of the contribution. A set of case studies were solved in order to validate the proposal and good quality solutions were found when minimizing the makespan.Sociedad Argentina de Informática e Investigación Operativ

    An approach for the production scheduling problem when lot streaming is enabled at the operational level

    Get PDF
    By means of the present work, the production scheduling and the lot streaming problems are simultaneously addressed at flexible manufacturing environments. The proposal is based on a Constraint Programming (CP) formulation that can efficiently tackle the scheduling of manufacturing operations and the splitting of lots into smaller sublots. The approach is capable to define the number of sublots for each lot and the number of parts belonging to each sublot, as well as the assignment of the operations on sublots to machines, with their corresponding start and completion times. The CP model can be easily adapted to cope with different problem issues and several operational policies, which constitutes the main novelty of the contribution. A set of case studies were solved in order to validate the proposal and good quality solutions were found when minimizing the makespan.Sociedad Argentina de Informática e Investigación Operativ

    A hybrid algorithm for flexible job-shop scheduling problem with setup times

    Get PDF
    [EN] Job-shop scheduling problem is one of the most important fields in manufacturing optimization where a set of n jobs must be processed on a set of m specified machines. Each job consists of a specific set of operations, which have to be processed according to a given order. The Flexible Job Shop problem (FJSP) is a generalization of the above-mentioned problem, where each operation can be processed by a set of resources and has a processing time depending on the resource used. The FJSP problems cover two difficulties, namely, machine assignment problem and operation sequencing problem. This paper addresses the flexible job-shop scheduling problem with sequence-dependent setup times to minimize two kinds of objectives function: makespan and bi-criteria objective function. For that, we propose a hybrid algorithm based on genetic algorithm (GA) and variable neighbourhood search (VNS) to solve this problem. To evaluate the performance of our algorithm, we compare our results with other methods existing in literature. All the results show the superiority of our algorithm against the available ones in terms of solution quality.Azzouz, A.; Ennigrou, M.; Ben Said, L. (2017). A hybrid algorithm for flexible job-shop scheduling problem with setup times. International Journal of Production Management and Engineering. 5(1):23-30. doi:10.4995/ijpme.2017.6618SWORD233051Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with setup times/costs. European Journal of Operational Research, 246(2), 345-378. doi:10.1016/j.ejor.2015.04.004Azzouz, A., Ennigrou, M., & Jlifi, B. (2015). Diversifying TS using GA in Multi-agent System for Solving Flexible Job Shop Problem. Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics. doi:10.5220/0005511000940101Azzouz, A., Ennigrou, M., Jlifi, B., & Ghedira, K. (2012). Combining Tabu Search and Genetic Algorithm in a Multi-agent System for Solving Flexible Job Shop Problem. 2012 11th Mexican International Conference on Artificial Intelligence. doi:10.1109/micai.2012.12Bagheri, A., & Zandieh, M. (2011). Bi-criteria flexible job-shop scheduling with sequence-dependent setup times—Variable neighborhood search approach. Journal of Manufacturing Systems, 30(1), 8-15. doi:10.1016/j.jmsy.2011.02.004Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search. Annals of Operations Research, 41(3), 157-183. doi:10.1007/bf02023073Cheung, W., & Zhou, H. (2001). Annals of Operations Research, 107(1/4), 65-81. doi:10.1023/a:1014990729837Fattahi, P., Saidi Mehrabad, M., & Jolai, F. (2007). Mathematical modeling and heuristic approaches to flexible job shop scheduling problems. Journal of Intelligent Manufacturing, 18(3), 331-342. doi:10.1007/s10845-007-0026-8González, M. A., Rodriguez Vela, C., Varela, R. (2013). An efficient memetic algorithm for the flexible job shop with setup times. In Twenty-Third International Conference on Automated, pp. 91-99.Hurink, J., Jurisch, B., & Thole, M. (1994). Tabu search for the job-shop scheduling problem with multi-purpose machines. OR Spektrum, 15(4), 205-215. doi:10.1007/bf01719451Imanipour, N. (2006). Modeling&Solving Flexible Job Shop Problem With Sequence Dependent Setup Times. 2006 International Conference on Service Systems and Service Management. doi:10.1109/icsssm.2006.320680KIM, S. C., & BOBROWSKI, P. M. (1994). Impact of sequence-dependent setup time on job shop scheduling performance. International Journal of Production Research, 32(7), 1503-1520. doi:10.1080/00207549408957019Moghaddas, R., Houshmand, M. (2008). Job-shop scheduling problem with sequence dependent setup times. Proceedings of the International MultiConference of Engineers and Computer Scientists,2, 978-988.Mousakhani, M. (2013). Sequence-dependent setup time flexible job shop scheduling problem to minimise total tardiness. International Journal of Production Research, 51(12), 3476-3487. doi:10.1080/00207543.2012.746480Naderi, B., Zandieh, M., & Fatemi Ghomi, S. M. T. (2008). Scheduling sequence-dependent setup time job shops with preventive maintenance. The International Journal of Advanced Manufacturing Technology, 43(1-2), 170-181. doi:10.1007/s00170-008-1693-0Najid, N. M., Dauzere-Peres, S., & Zaidat, A. (s. f.). A modified simulated annealing method for flexible job shop scheduling problem. IEEE International Conference on Systems, Man and Cybernetics. doi:10.1109/icsmc.2002.1176334Nouiri, M., Bekrar, A., Jemai, A., Niar, S., & Ammari, A. C. (2015). An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem. Journal of Intelligent Manufacturing, 29(3), 603-615. doi:10.1007/s10845-015-1039-3Oddi, A., Rasconi, R., Cesta, A., & Smith, S. (2011). Applying iterative flattening search to the job shop scheduling problem with alternative resources and sequence dependent setup times. In COPLAS 2011 Proceedings of the Workshopon Constraint Satisfaction Techniques for Planning and Scheduling Problems, pp. 15-22.Pezzella, F., Morganti, G., & Ciaschetti, G. (2008). A genetic algorithm for the Flexible Job-shop Scheduling Problem. Computers & Operations Research, 35(10), 3202-3212. doi:10.1016/j.cor.2007.02.014Sadrzadeh, A. (2013). Development of Both the AIS and PSO for Solving the Flexible Job Shop Scheduling Problem. Arabian Journal for Science and Engineering, 38(12), 3593-3604. doi:10.1007/s13369-013-0625-ySaidi-Mehrabad, M., & Fattahi, P. (2006). Flexible job shop scheduling with tabu search algorithms. The International Journal of Advanced Manufacturing Technology, 32(5-6), 563-570. doi:10.1007/s00170-005-0375-4Vilcot, G., & Billaut, J.-C. (2011). A tabu search algorithm for solving a multicriteria flexible job shop scheduling problem. International Journal of Production Research, 49(23), 6963-6980. doi:10.1080/00207543.2010.526016Shi-Jin, W., Bing-Hai, Z., & Li-Feng, X. (2008). A filtered-beam-search-based heuristic algorithm for flexible job-shop scheduling problem. International Journal of Production Research, 46(11), 3027-3058. doi:10.1080/00207540600988105Wang, S., & Yu, J. (2010). An effective heuristic for flexible job-shop scheduling problem with maintenance activities. Computers & Industrial Engineering, 59(3), 436-447. doi:10.1016/j.cie.2010.05.016Zandieh, M., Yazdani, M., Gholami, M., & Mousakhani, M. (2009). A Simulated Annealing Algorithm for Flexible Job-Shop Scheduling Problem. Journal of Applied Sciences, 9(4), 662-670. doi:10.3923/jas.2009.662.670Zambrano Rey, G., Bekrar, A., Prabhu, V., & Trentesaux, D. (2014). Coupling a genetic algorithm with the distributed arrival-time control for the JIT dynamic scheduling of flexible job-shops. International Journal of Production Research, 52(12), 3688-3709. doi:10.1080/00207543.2014.881575Zhang, G., Gao, L., & Shi, Y. (2011). An effective genetic algorithm for the flexible job-shop scheduling problem. Expert Systems with Applications, 38(4), 3563-3573. doi:10.1016/j.eswa.2010.08.145Zhang, G., Shao, X., Li, P., & Gao, L. (2009). An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem. Computers & Industrial Engineering, 56(4), 1309-1318. doi:10.1016/j.cie.2008.07.021Zhou, Y., Li, B., & Yang, J. (2005). Study on job shop scheduling with sequence-dependent setup times using biological immune algorithm. The International Journal of Advanced Manufacturing Technology, 30(1-2), 105-111. doi:10.1007/s00170-005-0022-0Ziaee, M. (2013). A heuristic algorithm for solving flexible job shop scheduling problem. The International Journal of Advanced Manufacturing Technology, 71(1-4), 519-528. doi:10.1007/s00170-013-5510-zZribi, N., Kacem, I., Kamel, A. E., & Borne, P. (2007). Assignment and Scheduling in Flexible Job-Shops by Hierarchical Optimization. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 37(4), 652-661. doi:10.1109/tsmcc.2007.89749

    A multistage graph-based procedure for solving a just-in-time flexible job-shop scheduling problem with machine and time-dependent processing costs

    Get PDF
    This paper deals with a new flexible job-shop scheduling problem in which the objective function to be minimised is the sum of the earliness and tardiness costs of the jobs and the costs of the operations required to perform the jobs, the latter depending on the machine and the time interval in which they are performed (as happens in many countries with the costs of electric power or those of manpower). We formalise the problem with a mathematical model and we propose a heuristic procedure that is based primarily on constructing a multistage graph and finding in it the shortest path from the source to the sink. We also describe the generation of the data-set used in an extensive computational experiment and expose and analyse the obtained results.Peer ReviewedPostprint (author's final draft

    MILP model for the planning of a computerized numerical control lathes machining plant

    Get PDF
    This work introduces the formulation and application of a MILP model to solve the problem of planning the weekly production of a machining plant using numerical control lathes to manufacture spare parts for agricultural machines. The machining plant works under a Flexible Job Shop system and it has reduced workforce with different skills to operate the various high-complexity lathes and to carry out setup operations in each machine. The developed model is based on a basic formulation for the classic problem and we introduce some flexible adjustment for the various situations that may arise from different scheduling problems. The model is applied to various scenarios; and we include a discussion of the improvements brought about by the analysis.Fil: Kañevsky, Federico. Universidad Tecnológica Nacional. Facultad Regional Santa Fe; ArgentinaFil: Franco, Maria Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Galli, Maria Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentin
    corecore