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Abstract 

This work introduces the formulation and application of a MILP model to solve the problem of 

planning the weekly production of a machining plant using numerical control lathes to 

manufacture spare parts for agricultural machines. The machining plant works under a Flexible 

Job Shop system and it has reduced workforce with different skills to operate the various high-

complexity lathes and to carry out setup operations in each machine. The developed model is 

based on a basic formulation for the classic problem and we introduce some flexible adjustment 

for the various situations that may arise from different scheduling problems. The model is 

applied to various scenarios; and we include a discussion of the improvements brought about 

by the analysis. 

 

Keywords: Flexible job shop; MILP; setup; workforce 

 

1 Introduction 

Metallurgical machining plants or companies devoted to producing items in equipment that uses computerized 

numerical control (CNC) and are characterized by the need of skilled workforce to operate and start up the various 

pieces of the highly complex equipment involved in their production processes. Machining plants must daily undertake 

their production scheduling to satisfy clients’ demands on settled dates with their scarce resources. This problem 

becomes even more complex as products are more assorted and manufacturing processes grow in variety.  

Such is the case of a machining plant that manufactures agricultural machines in the city of Santa Fe, Argentina, which 

is the object of study in the present work. This company is characterized by a wide range of customized products in 

relatively small batches. It counts on computerized numerical control lathes that allow accomplishing the various 

turning tasks involved in manufacturing each spare part. The manufacturing process of each item requires a different 

set of operations and is accomplished in a particular sequence. Each machine setup and operation (material load and 

download) require trained workforce, and this is a scarce resource in the company. Not all workers are qualified to carry 

out all required operations.  
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It is currently noticed that during the working week, several machines remain without operation for quite long time 

periods, thus turning the production process quite inefficient. Delivery timelines for finished products are probably 

affected by constraints that derive from the scarce skilled workforce.  

With the aim of analyzing this problem, we compared current timelines for executing production orders with the optimal 

times provided by planning mathematical models which consider some specific constraints found in the company under 

analysis. 

A classic Flexible Job Shop problem (FJSP) is a sequencing problem in which a set of jobs must be processed in a set 

of machines where each job consists of a set of operations to be carried out in a preestablished order in any of those 

machines, including various alternative machines for each operation  [1]. 

Many authors have presented mathematical models to represent either the classic problem or the problem with 

additional considerations [2]. In general, those formulations do not consider significant set-up times for machines. These 

times are included in a batch processing time. Some authors have considered sequence-dependent set-up times [3]. 

Others have considered constraints on two types of resources [4]: overlapping operations [5] or batch division [6]; in 

general, each characteristic is considered in isolation. 

In the company under study, set-up times are very significant and thus they must be carefully considered in the model, 

even though it is not necessary to consider setup as sequence-dependent. Workers can simultaneously operate two lathes 

when the processing time for each item is longer than the time required for transportation between lathes. The existence 

of transfer batches should be also considered, which implies the startup of an operation without completing the whole 

batch in the preceding operation. Published models do not consider all these conditions simultaneously. 

This work presents a reasonably sized mixed integer linear programming model (MILP) that can be adjusted to the 

introduction of different kinds of constraints, so that the simultaneous consideration of all characteristics of the 

operation planning problem in the machining plant is feasible without considerably increasing the formulation 

complexity.  

The rest of the paper is structured as follows. Section 2 presents a literature review on the problem. Section 3 presents 

the notation being used in the model formulation for the classic FJSP problem developed in Section 4. The previous 

model adjustment to overlapping operations is shown in Section 5. Section 6 discusses the introduction of workforce 

constraints into the classic problem; and Section 7 addresses sequence-independent set-up times. Section 8 analyzes the 

characteristics of the various formulations; and Section 9 depicts the application of the most complete formulation to 

the resolution of the machining plant involving CNC lathes. Section 10 presents a discussion of the results obtained 

from the real case analysis. Finally, conclusions are drawn in Section 11. 

 

2  Literature Review 

The FJSP is one of the most difficult-to-solve problems in the production planning area since both job routing and 

operations scheduling are to be considered. It is well known that this problem is NP-hard.  Due to this complexity, 

much of the existing literature deals withasorte heuristics and metaheuristics [7,8,9,10,11,12,13].  

Even though mathematical programming models cannot compete with metaheuristic tools designed to solve large 

problems they help to better understand the structure of the problem and are easy to implement, replicate, and modify. 

As Fanjul et al. state [14], MILP models can benefit from continuous improvements in MILP solvers. Mathematical 

programming formulation is the first key step prior to developing an effective heuristic [15]. 

The mathematical modeling techniques used to solve production scheduling problems can be classified according to 

three paradigms: position-based, time-based, and sequence-based, originally proposed by Wagner [16], Bowman [17] 

and Manne [18], respectively. These variants of modelling paradigms have been separately extended for regular job 

shop scheduling problems. The main difference between these paradigms lies in the definition of the binary variables 

used to determine the sequencing problem. 

- position-based paradigm: Yijhm identifies whether operation i of job j is scheduled on the h-th processing 

position on machine m. [1,12,16] 

- time-based paradigm: Yijmt identifies whether operation i of job j is processed by machine m during time-unit 

t. [17, 19, 20] 

- sequence-based paradigm: Yijhkm identifies whether operation i of job j precedes operation h of job k (not 

necessarily immediately) on machine m. [3, 12, 18] 

Demir and Kürsat [15] compared different mathematical models developed under the three paradigms in terms of 

objective Cmx (minimum completion time for all operations), CPU time, number of variables, and constraints by 

using the test problems randomly generated by Fattahi et al. [1]. They recommended using precedence variable-based 

models among them, especially those proposed by Özgüven et al. for FJSP [21]. 

From these formulations, some extensions have been developed, which allows considering situations that occur in the 

industrial practice. 

Few authors present MILP models for FJSP considering the possible overlapping of operations [5]. Most papers 

propose metaheuristic algorithms to solve this kind of problems [5, 22, 23, 24]. 

Another extension of the FJSP considers that machines and workers represent potential capacity constraints on the 

shop, which is referred to as a Dual-Resource Constrained Flexible Job Shop Problem (DRCFJSP). It consists of three 
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subproblems: (i) Assigning operations to machine resources (ii) Assigning operations to worker resources (iii) 

Sequencing the operations on machines with workers in mind to optimize performance measurement [25]. In [26], the 

problem is both to determine the problem is formally described using a non-linear integer model and developing a 

genetic algorithm to solve it. In [27] and [28], a MILP is for the job shop problem with skilled operators without 

considering the existence of parallel machines. In [29], a MILP multiple criteria is developed considering three issues: 

company profit, client satisfaction, and the labor environment but for the aggregate production planning problem.  

The most studied extension has been FJSP with sequence-dependent set-up times [30]. The model presented in [31] 

served as a basis for other MILP approaches [32, 33]. In [33], an adaptation of the model presented in [32] is proposed 

for weighting earliness-tardiness minimization and then [14] proposed improvements based on adaptations of subtour 

elimination constraints.  

MILP models have not been developed to solve situations where more than two characteristics are added to the 

classical problem as in the real case presented in this paper. 

 

3  Definition of classic FJSP problem and notation 

The classic FJSP problem poses the following assumptions:  

1) the order of operations for each job is fixed and known;  

2) priorities are not allowed;   

3) all machines are available at time 0;  

4) each machine can process only one operation at a time;  

5) transportation, setup, and release times are negligible; and  

6) no operation can be interrupted during execution. 
 

The mathematical formulation for the classic FJSP problem proposed in this paper might be associated to the 

sequence-based paradigm, although the variables used to determine the sequencing of operations do not identify the 

machines on which they are performed. For this reason, we say that it belongs to the global sequence-based paradigm. 

This feature allows the model to be easily adjusted to of the addition of extensions of the classical problem. It is also 

characterized by the use of variables with two indices, unlike other formulations using precedence variables with three 

or four indices [2]. 

This feature allows for a formulation with fewer integer variables. This is achieved by enumerating the operations that 

must be carried out in ascending order; so that, for each job, the numbers assigned to operations specify the sequence 

in which they are to be accomplished. This characteristic does not remain for operations that correspond to different 

jobs. 

The notations that describe the sets, parameters, and decision variables used in the model are the following: 

 

Sets:  

J: set of jobs. 

O: set of all operations that make up all jobs of set J. 

O(j): Subset of operations that make up job jJ (are enumerated in ascending order so that the sequence in the subset 

is specified).  

M: Set of machines. 

Parameters: 

TProcr,m: Processing time for Operation  rO in machine mM. 

RMr,m=1 if operation r can be carried out in machine m; otherwise, =0. 

Continuous decision variables: 

SOr,m: Startup time of operation r in machine m. 

FOr,m: Finishing time of operation r in machine m. 

Cmx: Makespan (total order completion time)  

Binary Decision variables: 

Yr,s=1 if operation r precedes operation s r (not necessarily in an immediate way and not necessarily in the same 

machine); otherwise, =0. 

Zr,m=1 if operation r is performed in machine m; otherwise, =0.  

 

4  Mathematical Formulation I 

Under the assumptions and notations presented in the previous section, the problem is both to determine an assignment 

and a sequence of the operations on all machines that minimizes the total completion time (makespan). 



CLEI electronic journal, Volume 24, Number 2, Paper 4, July 2021 

 

4 

 

The makespan is the most used objective to optimize, since it is equivalent to minimizing downtime or maximizing 

the use of machines. Therefore, this is the objective to take into account for the model of this paper. The mathematical 

formulation we have developed for the classic FJSP problem to be used as a basis for the formulation of more restricted 

problems is the following: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑚𝑥 
 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   
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(9) 

where: 

U is a sufficiently large number. 

Constraints (1) represent the feasible order between two operations that may or may not belong to the same job. 

Constraints (2) indicate that each operation is carried out in a single machine. Constraints (3) impose that if an operation 

is performed in a particular machine, final time for that operation must not be shorter than the processing time for the 

operation in that machine. Constraints (4) impose that if two operations are carried out in the same machine, the one 

that is performed first must finish before the subsequent operation starts.  

Constraints (5) and (6) consider the sequence of operations of the same job. Constraints (5) impose that no operation 

can start until preceding ones have finished, even if they are carried out in different machines. That is, if r and s are two 

operations on the same job j (r, s ϵ O(j)), and r must be performed before s (r<s) in any machine m and n, respectively 

(Zrm= Zsn= 1), the start time of operation r must be less at the beginning of operation s. Constraints (6) consider that 

final time for an operation can be shorter than the final time for the previous operation. Under the same conditions 

above, the completion time of operation r must be less than that of operation s. Constraints (7) determine the makespan 

(time interval between the beginning of the first job processing and the end of the last job processing), the objective 

measure to be minimized. 

Constraints (8) define that, for each machine, the final processing time of its last operation cannot be higher than the 

makespan. Avalos-Rosales et al. [34] showed that these constraints significantly improve convergence times of branch-

and-bound algorithm. 

The structure of constraint (1) allows one of the two variables zero-one Yr,s and Ys,r to be relaxed and, therefore, be 

defined as positive instead of binary. The definitions of the variables involved in the model are expressed in the set of 

constraints (9). 
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5  Formulation II: FJSP with overlapping operations 

This work considers that a job corresponds to a production order for a batch of a particular item that must be 

manufactured in the period to be scheduled.  

In the previous formulation, the whole batch is assumed to be processed in a machine before the execution of the 

subsequent operation. This condition usually becomes highly restrictive, especially in situations in which a large 

quantity of items is required or processing times are high. In those cases, a certain degree of overlapping is sometimes 

allowed between successive operations of a same job in different machines. This evidences real situations that can be 

usually observed in manufacturing companies. The transfer batch is the quantity of items in process that are transported 

from one machine to another between successive operations. If the transfer batch is smaller than the total batch to be 

processed, an overlapping of operations occurs. Figure 1 shows a situation in which there is overlapping between 

operations r and s (s= r+1) that belong to the same job j. 

 

 

 
Figure 1: Overlapping operations: a) Transfer batch larger than production batch. b) Transfer batch smaller than 

production batch 

 

The model presented in the previous section requires a little adjustment so as to allow considering these situations. 

Constraints (5) must be replaced by constraints (10) and (11). 

Let TrLj be the size of Transfer batch and Lj be the size of Job batch j∈ J 
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(11) 

According to constraints (10), if the transfer batch is bigger than the total batch, the whole batch is processed before 

entering the subsequent machine. Constraints (11) consider that if two operations correspond to the same job but are 

performed in different machines, the following operation cannot start before the previous operation is finished in the 

transfer batch. 

In addition, the subsequent operation can never finish before the transfer batch is completely processed in the previous 

operation. This constraint becomes quite significant when the processing speed of the subsequent operation is higher 

than that of the preceding operation (Fig.2). Constraint (12) reflects this situation. 

 

 

Figure 2: End of overlapping operations: a) correct situation, b) wrong situation 
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6  Formulation III: FJSP considering workforce 

Previous models considered equipment availability as the only constraining resource. In practice, workforce is another 

resource that is usually scarce. In the available literature, the problems that consider constraints on both resources are 

known as DRCFJSP (dual-resource constrained flexible job shop problem) [25, 29, 35]. 

In this section, we will consider both the constrained number of workers and the different skills each worker has, 

which enable them to operate just some machines. 

For the development of this new formulation, the following additional notation should be considered: 

 

Sets: 

W: set of workers. 

Parameters: 

NW: number of available workers. 

WPw,m=1 if worker w is trained to operate machine m; otherwise, =0. 

tu: time threshold for operating two machines. 

Binary decision variables: 

Xw,r=1 if worker w carries out operation r; otherwise, =0. 

XWw=1 if worker w carries out some activity; otherwise, =0.  

The MILP formulation presented in the previous section can be adjusted to these new scenarios by introducing just a 

few constraints. 

Each operation must be allocated just to one worker: 

O),r(X    

w,mWP
 Ww 

w,r =
=



1

1

 (13) 

A worker can carry out operation r only if this operation can be executed in a machine m that can be operated by that 

worker. 

( ) .W)wO,r(Z X 

w,m

r,m
W P
MR

 Mm 

r,mw,r  
=
=



1
1

 (14) 

A worker is required if he carries out one or more operations. 

( ) ( ) .W)w(XWU X w

 Or 

w,r 


 
 

(15) 

The total quantity of required workers cannot surpass the number of available workers. 

( ) NW XW
 Ww 

w 


  
 

(16) 

In general, a worker cannot operate two machines simultaneously. In some cases, as when operating computerized 

lathes, they can do it if the unit operation time in each machine surpasses a given threshold (tu); for example, due to 

the transportation from one machine to another one plus loading and downloading times for an item. If this is not the 

case, tu = . 

( ) ( ) tu)/LocPrTtu,/LocPrT,RM

RMn,M,mm,ns,O,rr,sW,x()ZZYX(XUFOSO

ss,nrr,ms,n

r,ms,nr,mr,sw,sw,rr,ms,n

=

=−+++++

1

15
 
 

(17) 

 

7  Formulation IV: FJSP considering sequence-independent setup times 

Machine set-up process is not an added value factor, and thus, we must explicitly consider set-up times and costs while 
making scheduling decisions to enhance productivity, dispose wastes, improve the use of resources, and meet 
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deadlines [30]. When set-up times are independent of the sequence of operations, they are usually considered within 
the batch processing time and the mathematical model does not differ from those previously described. But when there 
are constraints related to the staff trained to carry out these operations, it is necessary that the models explicitly 
consider this machine set-up process. In this section, we will present the modifications that must be introduced into 
Formulations I, II, and III to consider set-up times. 

For the development of this new formulation, the following additional notation should be considered: 

 

Parameters: 

Setupr,m: setup time of machine m for operation r. 

WSw,m=1 if worker w is trained to carry out the setup of machine m; otherwise, =0 

Continuous decision variables: 

SSr,m: Starting setup time of operation r in machine m. 

Binary decision variables: 

XSw,r=1 if worker w performs setup of operation r; otherwise, =0. 

If operation r is carried out in machine m, the start of the operation must be subsequent to the end of the setup process. 

), RMM,mO, r(ZSetupSSSO r,mr,mr,mr,mr,m 1=+  

 

(18) 

If two operations are carried out in the same machine, the first one must be finished before the start of the subsequent 

operation setup. Therefore, constraints (4) must be replaced by: 

), RMsrO,s,RMM,mO,r()YU(SSFO s,mr,mr,ss,mr,m 111 ==−−  

 

(19) 

With the aim of considering constraints related to workforce trained to perform the various activities, formulation III 

must include the following constraints: 

Each setup process must be allocated to a sole worker.  

∑ 𝑋𝑆𝑤,𝑟 = 1
𝑤∈ 𝑊
𝑊𝑆𝑤,𝑚=1

                            (∀ 𝑟 ∈ 𝑂), 
 

(20) 

A worker can carry out the setup of operation r only if the latter is performed in a machine m that the worker can set 

up. 

 𝑋𝑆𝑤,𝑟 ≤ ∑ 𝑍𝑟,𝑚

𝑚 ∈ 𝑀
𝑀𝑅𝑟,𝑚=1

𝑊𝑆𝑤,𝑚=1

                                                                                         (∀𝑟 ∈ 𝑂, ∀𝑤 ∈ 𝑊),  

(21) 

A worker is required if he/she performs one or more activities either in machine operation or setup. To consider this 

more general case, constraints (15) must be replaced by: 

 ∑ (𝑋𝑥,𝑟 + 𝑋𝑆𝑤,𝑟)

𝑟 ∈ 𝑂

 ≤ 𝑈 × 𝑋𝑊(𝑤)                                                                   (∀𝑤 ∈ 𝑊), 
 

(22) 

If the same worker carries out the setup of operations r and s (XSw,r=XSw,s=1), r preceding s (Yr,s=1), and if r is carried 

out in machine m (Zr,m=1) and s in machine n (Zs,n=1), the start of setup for operation s must occur after the setup of 

operation r is finished. 

𝑆𝑆𝑠,𝑛 ≥ 𝑆𝑆𝑟,𝑚 + 𝑆𝑒𝑡𝑢𝑝𝑟,𝑚 + 𝑈(𝑋𝑆𝑤,𝑟 + 𝑋𝑆𝑤,𝑠 + 𝑌𝑟,𝑠 + 𝑍𝑟,𝑚 + 𝑍𝑠,𝑛 − 5)  (∀ 𝑟 ∈ 𝑂, ∀𝑚 ∈ 𝑀, 𝑅𝑀𝑟,𝑚 = 1, 

             ∀𝑠 ∈ 𝑂, 𝑟 ≠ 𝑠, ∀𝑛 ∈ 𝑀, 𝑅𝑀𝑠,𝑛 = 1, ∀𝑤 ∈  𝑤, 𝑊𝑆𝑤,𝑚 = 1 ∧ 𝑊𝑆𝑤,𝑛 = 1), 

 

(23) 

If the same worker performs an operation and the setup of a preceding operation, the former operation cannot start 

until the corresponding setup is finished: 

),     WSWP,Ww
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If the same worker performs an operation and the setup of another preceding operation, the former operation cannot 

start until the corresponding setup is finished: 

𝑆𝑂𝑠,𝑛 ≥ 𝑆𝑆𝑟,𝑚 + 𝑆𝑒𝑡𝑢𝑝𝑟,𝑚 + 𝑈(𝑋𝑆𝑤,𝑟 + 𝑋𝑤,𝑠 + 𝑌𝑟,𝑠 + 𝑍𝑟,𝑚 + 𝑍𝑠,𝑛 − 5)                           (∀𝑟, 𝑠 ∈ 𝑂,  𝑟 ≠ 𝑠,  

                                                                                                                                    ∀𝑚 ∈ 𝑀,  𝑅𝑀𝑟,𝑚 = 1,  𝑅𝑀𝑠,𝑛 = 1, 
                                          ∀𝑤 ∈ 𝑊, 𝑊𝑆𝑤,𝑚 = 1  ∧  𝑊𝑃𝑤,𝑛 = 1)   

 

(25) 

 

 

 

 

 

8  Formulations assessment 

Table 1 summarizes how to obtain the models for the different developed problems by formulating the classic FJSP 
problem. We used the test problems randomly generated by Fattahi et al. [1] to assess the developed models.  

 

Table 1:  FJSP Models 

PROBLEM MODEL 

I- Classic FJSP  

Minimize Cmx  

subject to: 

(1), (2), (3), (4), (5), (6), (7), (8), 

Non-negativity constraints and binary variables 

II-FJSP with overlapping 

Minimize Cmx  

subject to: 

(1), (2), (3), (4), (6), (7), (8), (10), (11), (12), 

Non-negativity constraints and binary variables 

III- FJSP with Overlapping and restricted 
workforce 

Minimize Cmx  

subject to: 

(1), (2), (3), (4), (6), (7), (8), (10), (11), (12), (13), (14), (15), (16), (17), 

Non-negativity constraints and binary variables 

IV- FJSP with Overlapping, Sequence-
independent setup and restricted workforce 

Minimize Cmx  

subject to: 

(1), (2), (3), (6), (7), (8), (10), (11), (12), (13), (14), (16), (17), (18), (19), (20), (21), 

(22), (23), (24), (25), 

Non-negativity constraints and binary variables 

 

Table 2 depicts the numbers for continuous variables (CVN), binary variables (BVN), and constraints (CN) in each 
problem by applying Formulation I, which was presented in this work for the classic FJSP problem. It also includes 
CPU times and the achieved objective value. In the same table, the size of those problems is compared to those of the 
MILP-1 formulation presented by Özgüven et al. [21], which is considered as the most computationally efficient 
MILP model to solve the classic problem (less CPU time requirement to find the optimal solution) [2][36]. This 
sequence-based model is presented in Appendix A.1. 
All models were solved using solver LINGO 17.0 [37] in a PC with 2.5GHz and 8GB RAM. In all cases, reported CPU 

times are the average value of 10 runs. 

It can be observed that for most test problems, the number of binary variables is lower in Formulation I than in the 

MILP-1 model, although the number of continuous variables and constraints is greater. Since the number of binary 

variables is the most influential factor for MILP models [36], it can be said that the proposed model turns out to be a 

slightly simpler model if compared to the MILP-1 formulation. As regards CPU times, they are very low in both cases, 

so it can be said that both models have a similar performance with respect to this criterion. 

The extension of the classic problem to take into account overlapping operations was only considered in [5]. This 

position-based model is presented in Appendix B. We have extended the sequence-based model so that we can 

compare it with the other formulations. This extension is presented in Appendix A.2. Table 3 compares the sizes and 

CPU times of these two models with those of the model proposed as Formulation II. For the assessment, we used the 

same test problems as those for the previous case, adjusting the transfer batch to one unit. 
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Table 2: Assessment of Classic FJSP models 

Test 
Problem 

Cmx
* 

FORMULATION I 
SEQUENCE-BASED MODEL 

MILP-1 

CVN BVN CN 
CPU 
Time 
(sec.) 

CVN BVN CN 
CPU 
Time 
(sec.) 

SFJS1 66 21 12 67 0.18 19 16 42 0,18 

SFJS2 107 17 8 59 0.17 15 10 30 0,19 

SFJS3 221 33 20 95 0.18 24 26 67 0,51 

SFJS4 355 33 20 99 0.17 24 26 67 0,3 

SFJS5 119 37 24 129 0.24 28 36 87 0,55 

SFJS6 320 58 39 179 0.69 34 39 99 0,5 

SFJS7 397 64 45 198 0.83 40 36 93 0,22 

SFJS8 253 64 45 215 1.08 40 45 111 0,76 

SFJS9 210 64 45 244 1.03 40 55 131 0,7 

SFJS10 516 95 70 232 0.74 45 48 124 0,55 

 

As already observed in [15], position-based models are less efficient, especially due to the large number of required 

binary variables. The size of this model strongly depends on the number of stages considered for each machine. We 

assume the maximum number of operations possible to be performed on each machine as the number of allowed 

stages. Taking the transfer batch into consideration does not change the problem size in Formulation II and sequence-

based model, but it allows improving the makespan in bigger problems. 

 

 
Table 3: Assessment of FJSP models with overlapping  

Test 

Problem 
Cmx

* 

FORMULATION II 
EXTENDED SEQUENCE-

BASED MODEL 

POSITION-BASED MODEL 

CVN BVN CN 

CPU 

Time 

(sec.) 

CVN BVN CN 

CPU 

Time 

(sec.) 

CVN BVN CN 

CPU 
Time 
(sec.) 

SFJS1 66 21 12 67 0.18 19 16 42 0.18 19 40 129 0.41 

SFJS2 107 17 8 59 0.17 15 10 30 0.19 15 22 79 0.32 

SFJS3 221 33 20 95 0.18 24 26 67 0.51 21 58 191 2.52 

SFJS4 355 33 20 99 0.17 24 26 67 0.3 21 60 197 3.14 

SFJS5 119 37 24 129 0.24 28 36 87 0.55 25 84 265 62.68 

SFJS6 256 58 39 179 0.69 34 39 99 0.5 31 89 295 15.89 

SFJS7 233.5 64 45 198 0.83 40 36 93 0.22 37 84 274 2.5 

SFJS8 193 64 45 215 1.08 40 45 111 0.76 37 102 328 105.49 

SFJS9 171.7 64 45 244 1.03 40 55 131 0.7 37 132 418 2904.9 

SFJS10 419.5 95 70 232 0.74 45 48 124 0.55 56 156 520 4834.21 

 

To evaluate Formulation III, including skilled labor constraints, a maximum of 4 workers were considered: workers 

assigned even numbers can operate all machines and those assigned odd numbers can operate only machines that were 

assigned odd numbers. When workforce is constrained, the problem size grows both in integer variables and 

constraints, which leads to higher CPU times and ‒as it is expectable‒ higher makespan values in some situations 

(Table 4). 
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Neither model, sequence-based nor position-based, can be easily modified to account for labor constraints. Neither of 

them handles variables that identify the relative sequence of operations on the different machines. This is a requirement 

to express the constraints that imply that a worker cannot operate two machines simultaneously. For this reason, for 

both Formulation III and Formulation IV, comparative studies cannot be made. 

 

 

Table 4: Assessment of FJSP Model with overlapping and  

workforce constraint  

 

Test 
Problem 

FORMULATION III 

Cmx
* CVN BVN CN 

CPU 
Time 
(sec.) 

SFJS1 66 21 32 140 0.39 

SFJS2 107 17 28 94 0.4 

SFJS3 221 33 48 214 0.44 

SFJS4 355 33 48 214 0.46 

SFJS5 119 37 52 284 0.51 

SFJS6 256 58 79 581 1.18 

SFJS7 264,5 64 85 852 43.61 

SFJS8 193 64 85 765 4.63 

SFJS9 171.7 64 85 774 7.35 

SFJS10 457.5 95 122 1513 1230.1 

 

To evaluate formulation IV, every operation was assumed to require a 20-unit setup time –in all cases‒ on any machine 

and workers assigned even numbers were assumed to be trained to carry out the setup of all machines. Table 5 shows 

problem sizes and CPU times for Formulation IV. 

 

Table 5: Assessment FJSP model with overlapping, workforce  

constraint and sequence-independent setup 

Test 

Problem 

FORMULATION IV 

Cmx
* CVN BVN CN 

CPU 
Time 
(sec.) 

SFJS1 106 37 40 456 0.56 

SFJS2 147 31 36 276 0.44 

SFJS3 281 55 60 746 1.77 

SFJS4 415 55 60 746 0.52 

SFJS5 179 61 64 1046 0.77 

SFJS6 317 91 97 1829 6.45 

SFJS7 315 100 103 2643 1460.01 

SFJS8 252.5 100 103 2556 1427.21 

SFJS9 227 100 103 2565 35.15 

SFJS10 549.7 142 144 4355 1531.20 

 

To analyze the characteristics of the optimal solutions according to each formulation, those corresponding to the SFJS10 

test case are shown and those data are specified in Table 6. 

Figures 3 to 6 depict the different solutions found for the particular case of the SFJS10 test problem.  

The different solutions found for the particular case of the SFJS10 test problem are shown graphically in Figure 3 to 6. 

Figure 3 shows an optimal solution found for the classical problem. Each job is represented by a different color and 

the operation number is displayed within bars. 
Operations 5 and 7 ‒corresponding to jobs 2 and 3, respectively‒ are represented in the figure with their maximum 
slack (22 and 23 time units, respectively). Operations 5 and 7 ‒corresponding to jobs 2 and 3, respectively‒ have a slack 
of 22 and 23 time units, and are graphed at their earliest start. 
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Table 6: SFJS10 test problem data 
 

 

 

Figure 3: SFJS10 optimal solution Formulation I 

Figure 4 shows how the overlapping of operations allows considerably decreasing the makespan. All operations of job 

1 overlap: operation 2 can start after operation 1 has been performed on 2.9 units, and operation 3, after operation 2 has 

been performed on one unit, if it is considered that operations 1 and 2 start at their earliest time, since both present 

slack. In job 2, operation 5 begins after operation 4 has been performed on 8.9 units, and operation 6 after operation 5 

has been performed on 7.7 units. In job 3, operation 8 begins after operation 7 is performed on one unit, and operation 

9 begins after operation 8 is performed on 4 units. In job 4 there is only one overlapping operation; operation 11 starts 

after operation 10 is performed on one unit. Although operation 10 has a slack of 63.5 time units, the entire batch 

operation cannot start after the earliest time is given in the solution, because operation 11 has no slack and therefore 

could not delay its start. In this way, the entire order is processed in 419.5 units of time. 

Figure 4:  SFJS10 Optimal solution Formulation II 

Figure 5 shows an optimal solution when considering workforce constraints. The numbers within each bar represent 
the corresponding operation and worker (o; w). In this case, it is not possible for four workers to perform five 
operations simultaneously, and thus the makespan is increased to 457.5. The threshold time was 20 time units in all 
cases, which prevents a worker from performing two operations simultaneously. In this solution, only operation 5 has 

Job Operation  
Machine 

L   1 2 3 4 5 

1 

1 147 123 145 0 0 
10 

  
2 125 130 0 140 0 

3 0 0 0 150 160 

2 

4 214 0 150 0 0 

10 5 0 66 87 0 0 

6 0 0 0 0 178 

3 

7 87 62 0 0 0 

10 8 0 0 180 0 0 

9 0 0 0 190 100 

4 
10 87 65 0 0 0 

10 
11 0 0 0 0 173 
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slack but in this case, it cannot be used to overtake the batch production because it would finish before the preceding 
operation. In this case, the slack allows considering longer processing times. 

 

 

Figure 5:  SFJS10 Optimal solution Formulation III 

 

Figure 6 shows an optimal solution when considering that each operation requires a 20-unit set-up time and can be 
performed by only two of the four available workers (workers 2 and 4). Set-up time for an operation is shown in a 
similar but lighter color to that of jobs. This last constraint leads to solutions with idle times between the completion 
of the machine set-up tasks and the start of the operation itself. This is clearly seen in operation 1, which cannot start 
until worker 4 has finished the setup of operation 5. The time required to process the entire order has increased to 
549.7. 

 

 

9  Case Study:  Computerized Numerical Control Lathes Machining Plant   

The engineering company that is studied in this section is devoted to the manufacture of spare parts for tractors and 

harvesters. The standard manufacturing line comprises around 1000 components: straight and helical gears, bearings, 

shaft heads, conical gears, and differential gear boxes, among others. The most critical sector in the company is the 

Lathes sector, which has 6 machines (vertical drill, Pittler parallel lathe, Hyundai CNC lathe, Doosan CNC lathe, 

Victor Taichung CNC lathe, and Macro Micro Machining Center) and counts on 3 workers. These 3 workers are not 

all trained to calibrate the lathes, and a fourth worker is allocated to the sector just in exceptional cases. 

The production manager has noticed that, even though between 25% and 76% of the main lathes (CNC) that belong 

to the previously mentioned sector remain idle (see Table7), the amount of material to be processed in the Lathes 

sector is constant. For that reason, workers’ training is being considered so that they can perform tasks in this area. 

This leads to an improved use of machines and the avoidance of bottleneck situations in this sector of the production 

process.  

 

 

 

Figure 6: SFJS10 Optimal solution Formulation IV 
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Table 7: Current efficiency of machines 

Nr Machine 
Production 

[%] 
Setup 
[%] 

Dead Time 
[%] 

1 Vertical drill 3.42 1.18 95.4 

2 Pittler Parallel Lathe 2.36 3.53 94.11 

3 Hyundai CNC Lathe 39.08 36.47 24.45 

4 Doosan CNC Lathe 26.92 21.18 51.90 

5 Victor Taichung CNC Lathe 40.38 28.24 31.39 

6 Macro Micro Machining Center 23.18 0.59 76.24 

 

We present a situation in a typical week (42.5 available hours) as an example. In that week, a ten-item production 

(jobs) is required, which implies 20 operations, as shown in Table 8. 

Table 8: Production order in a typical week 

Job  Batch size Required operations 

1 100 1 – 2 

2 100 3 – 4 

3 12 5 – 6 

4 87 7 – 8 – 9 

5 25 10 -11-12 

6 10 13 – 14 

7 6 15 

8 12 16 – 17 

9 96 18 – 19 

10 150 20 

Table 9 depicts which machines can be used to carry out the various operations (RMrm). Every worker can operate the 

various machines, but only some of them are trained to carry out the setup, as shown in Table 10. Table 11 presents a 

list of setup and processing times for each operation in each machine.  

Table 9: Machine that can perform each operation 

Operation 
Machine 

Job 
1 2 3 4 5 6 

1 0 0 1 1 1 0 
1 

2 0 1 0 0 0 0 

3 0 0 1 1 1 0 
2 

4 0 0 0 0 0 1 

5 0 0 1 1 1 0 
3 

6 0 0 1 1 1 0 

7 1 0 0 0 0 0 

4 8 0 0 1 1 0 0 

9 0 0 1 1 0 0 

10 0 0 0 0 1 0 

5 11 0 0 0 0 1 0 

12 0 0 0 0 1 0 

13 0 0 1 1 0 0 
6 

14 0 0 1 1 0 0 

15 0 0 0 0 1 0 7 

16 0 0 1 1 0 0 
8 

17 0 0 1 1 0 0 

18 0 0 1 1 0 0 
9 

19 0 0 1 1 0 0 

20 0 0 0 0 0 1 10 

 

Along this production period, the distribution of operations over time is accounted for by the Gantt diagram shown in 

Figure 7. Figure 8 depicts the way in which the jobs were distributed for the three workers that carried out the 

production plan. It is worth noticing that, in several occasions, worker 3 performs setup and processing tasks 

simultaneously, which leads to a higher time consumption for the execution of certain operations.  
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We applied the above developed MILP model (Formulation IV) to analyze the current situation and the possible 

actions to be taken to solve the problem of the company.  We considered three possible scenarios: 4, 3, and 2 available 

workers. 

The model for scenario 1 (4 workers) has 370 binary variables and 13278 constraints. It was solved by using solver 

LINGO 17.0 [37] in a PC with 2.5GHz and 8GB RAM and it required 2114.26 seconds of CPU time. The optimal 

makespan found was 29.16 hours, which is much lower than the real time used to execute the production order (42.5 

hours). The transfer batch being used was made up of 100 items, an average quantity that corresponds to the capacity 

of the carts used to transport intermediate products. The average time for the transfer of a worker from one machine 

to another and the load and download of a piece is 0.02 hours (time threshold). 

The optimal solution for scenario 2 (3 workers) provided the same makespan value as that for the previous scenario, 

which proves that a higher number of workers does not mean improved production times. Figures 9 and 10 show the 

distribution of operations over time and the optimal allocation of workers, respectively. It is evidenced that in the 

proposed optimal planning no overlapping of tasks occurs when one worker is in charge of a machine setup. 

Another considered option was to reduce the number of workers allocated to the sector to 2 (scenario 3). The optimal 

makespan was found to be 33.84 hours. Figures 11 and 12 show the distribution of operations over time and the 

optimal allocation of workers for this scenario, respectively. This solution requires one worker to simultaneously carry 

out more than two operations, which is not a desirable situation in practice. 

 

Table 10: Workers trained for setup operations 

Worker 
Machine 

1 2 3 4 5 6 

1 1 1 1 1 1 1 

2 1 1 1 1 1 0 

3 1 0 1 1 1 0 

4 0 0 0 1 1 0 

 

 

Table 11: Batch processing and setup times [hr.] 

Operation                      

Machine 

Job 1 
Setup Proc. 

2 
Setup  Proc. 

3 
Setup  Proc. 

4 
Setup  Proc. 

5 
Setup  Proc. 

6 
Setup  Proc. 

1 0 0 0 0 2.00 4.35 2 4.35 2 4.35 0 0 
1 

2 0 0 1.5 1 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 3.8 0 3.80 0 3.80 0 0 
2 

4 0 0 0 0 0 0 0 0 0 0 0 4 

5 0 0 0 0 1.25 0.50 1.25 0.50 1.25 0.50 0 0 
3 

6 0 0 0 0 1.25 0.50 1.25 0.50 1.25 0.50 0 0 

7 0.5 1.45 0 0 0 0 0 0 0 0 0 0 

4 8 0 0 0 0 2.5 1.96 2.5 1.96 0 0 0 0 

9 0 0 0 0 2.5 1.96 2.5 1.96 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 5.82 0 0 

5 11 0 0 0 0 0 0 0 0 4.5 5.82 0 0 
12 0 0 0 0 0 0 0 0 0.5 3.02 0 0 

13 0 0 0 0 6 2.50 6 2.50 0 0 0 0 
6 

14 0 0 0 0 2.5 3.00 2.5 3.00 0 0 0 0 

15 0 0 0 0 0 0 0 0 7 2.50 0 0 7 

16 0 0 0 0 2.5 2.52 2.5 2.52 0 0 0 0 
8 

17 0 0 0 0 2.5 2.52 2.5 2.52 0 0 0 0 

18 0 0 0 0 0 2.88 0 2.88 0 0 0 0 
9 

19 0 0 0 0 1.5 1.56 1.5 1.56 0 0 0 0 

20 0 0 0 0 0 0 0 0 0 0 0.25 5.85 10 
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Figure 7: Distribution of operations in real production week 

 

Figure 8: Workers allocation to machines in a real production week 

 

 

Figure 9: Optimal distribution of operations with 3 workers 
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Figure 10: Optimal allocation of workers. Scenario 2 

 

 

Figure 11: Optimal operation distribution with 2 workers 
 

Figure 12: Optimal allocation of workers. Scenario 3 
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10 Result Discussion 

The main requirement of the company was to reduce idle times of the main equipment in the lathe sector and it was 

met in all studied scenarios (see Table12). 

 
 

Table 12: Comparison of machine use 

Nr 

Machine 

 

Current 

Production  

[%] 

Scenario 1 

[%] 

Scenario 2 

[%] 

Scenario 3 

[%] 

3 Hyundai Lathe 76.00 91.21 93.42 81.12 

4 Doosan CNC Lathe 45.29 89,03 86.82 81.82 

5 Victor Tag. CNC Lathe 72.35 100 100 86.17 

6 Macro Micro Machining Center 25.88 34.64 34.64 29.85 

 

Furthermore, in all cases, a more uniform distribution was achieved for the use of machines with similar 

characteristics, requiring an improved weekly scheduling. The presented model proved to be a valuable and helpful 

tool for making this kind of decisions. Solutions reveal that the availability of more workers than those currently 

allocated to the sector is not convenient. Further decreasing the number of workers allows reducing idle times but it 

does not seem to be an efficient solution since it requires the overlapping of many jobs, which would be detrimental 

to work quality. 

Reducing the makespan implies the decrease in execution times for production orders, and thus, the corresponding 

reduction in the quantity of products being processed that are accumulated before reaching the CNC Lathes Sector. 

 

11 Conclusions   

This work has presented a MILP model to solve the classic FJSP problem, whose size and computational efficiency 

is comparable to the best published models. It serves as a basis for the formulation of problems that consider 

constraints that are typical of real problems. The main characteristic of this model is that it belongs to a different 

production scheduling modelling paradigm, which uses a new sequencing binary variable that makes the order of 

execution of the operations independent of machine assignment. 

Test problems were adjusted to analyze the different variations of problems, so that the results presented in this paper 

will serve as a reference for future benchmarking processes. 

The most complete model here presented allowed solving the planning of a lathe machining plant that requires 

simultaneously considering constraints related to the quantity and skills of the workers to be allocated, overlapping 

operations, constraining set-up times, and transfer batches. Even though solution times seem to be high, they do not 

constrain the weekly planning of the company. By applying the present model, the company has been able to reduce 

idle times in lathes. The model was also used for strategic decision-making that involves decisions on workforce skills. 

The use of metaheuristics to solve the model will constitute the subject of further research. 
 

Acknowledgements 

The authors acknowledge Universidad Tecnológica Nacional of Argentina and the National Scientific and Technical 

Research Council of Argentina (CONICET, for its Spanish initials) for their financial support. 

 

Appendix A 

A.1. Sequence-based model 

In this appendix we show the model presented by Özgüven et al. [21] for classical FJSP. This model, denoted MILP-

1, uses the following variables: 

Xi,j,k=1 if operation j  of job i precedes is performed in machine k; otherwise, =0.  

Yi,j,g,h,k=1 if operation j of job i succeeds operation h of job g  on machine k; otherwise, =0.  

SOi,j,m , FOi,j,m:  Startup time and finishing time of operation j  of job i  in machine m, respectively. 

Ci: Completion time of job i  

The rest of the nomenclature used coincides with that defined in this paper. 

From these variables this model is: 
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Minimize Cmx  
subject to: 

 
 

∑ 𝑋i,j,k

k ∈ M
RMj,k=1

= 1                                                                                                                       (∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝑂(𝑖)) 
(26) 

SOi,j,k+FOi,j,k ≤ 𝑈 𝑋i,j,k                                                             (∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝑂(𝑖), ∀𝑘 ∈ M, RMj,k = 1) (27) 

FOi,j,k ≥ SOi,j,k + TProci,j,k − 𝑈(1 − 𝑋i,j,k)                             (∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝑂(𝑖), ∀𝑘 ∈ M, RMj,k = 1) (28) 

𝑆𝑂𝑖,𝑗,𝑘 ≥ 𝐹𝑂𝑔,ℎ,𝑘 − 𝑈 𝑌𝑖,𝑗,𝑔,ℎ,𝑘                                                               (∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝑂(𝑖), ∀𝑘 ∈ M, RMj,k = 1, 

                                                                                                                                         ∀𝑔 ∈ 𝐽, ∀ℎ ∈ 𝑂(𝑔),𝑅𝑀ℎ,𝑘 = 1) 
(29) 

SOi,j,k ≥ FOi,j,k − 𝑈 (1 − 𝑌i,j,g,h,k)                                                         (∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝑂(𝑖), ∀𝑘 ∈ M, RMj,k = 1, 

                                                                                                                                         ∀𝑔 ∈ 𝐽, ∀ℎ ∈ 𝑂(𝑔),𝑅𝑀ℎ,𝑘 = 1) 
(30) 

∑ 𝑆𝑂𝑖,𝑗,𝑘

𝑘∈𝑀,
RMj,k=1 

≥ ∑ 𝐹𝑂𝑖,𝑗−1,𝑘

𝑘∈𝑀,
RMj-1,k=1 

                                                                                                (∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝑂(𝑖)) 
(31) 

𝐶𝑖 = ∑ 𝐹𝑂𝑖,𝑗,𝑘

𝑘∈𝑀,
RMj,k=1 

                                                                                                (∀𝑖 ∈ 𝐽, ∀𝑗 = 𝑙𝑎𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑂(𝑖)) 
(32) 

 𝐶𝑖 ≤ 𝐶𝑚𝑥                                                                                                                                         (∀𝑖 ∈ 𝐽) (33) 

𝑆𝑂𝑖,𝑗,𝑘 ≥ 0, 𝐹𝑂𝑖,𝑗,𝑘 ≥ 0, 𝐶𝑖 ≥ 0, 𝑋𝑖,𝑗,𝑘 ∈   {0,1}, 𝑌𝑖,𝑗,𝑔,ℎ𝑘 ∈   {0,1} (34) 

 

A.2. Sequence-based model with overlapping 

We extended the sequence-based model to allow for overlapping operations, in which case  constraint (31) should be 

changed to: 

 

∑ 𝑆𝑂𝑖,𝑗,𝑘

𝑘∈𝑀,
RMj,k=1 

≥ ∑ 𝐹𝑂𝑖,𝑗−1,𝑘

𝑘∈𝑀,
RMj-1,k=1 

                                                                           (∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝑂(𝑖) , 𝐿𝑖 ≤ 𝑇𝑟𝐿𝑖) 
(32) 

And the following constraints should be added:  

𝑆𝑂𝑖,𝑗,𝑘 ≥ 𝑆𝑂𝑖,𝑗−1,𝑙 +
𝑇𝑟𝐿𝑖 𝑇𝑃𝑟𝑜𝑐𝑖,𝑗−1,𝑙

𝐿𝑖

+ 𝑈 (𝑋𝑖,𝑗−1,𝑙 + 𝑋𝑖,𝑗,𝑘 − 2) 

                                                                                                                        (∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝑂(𝑖) , 𝑗 ≠ 𝑓𝑖𝑟𝑠𝑡𝑖 , 𝐿𝑖 ≥ 𝑇𝑟𝐿𝑖 ,  

                                                                                                          ∀𝑘 ∈ 𝑀, RMj,k = 1, ∀𝑙 ∈ 𝑀, RMj-1,l = 1, 𝑙 ≠ 𝑘) 

(33) 

𝑆𝑂𝑖,𝑗,𝑘 ≥ 𝐹𝑂𝑖,𝑗−1,𝑘 + 𝑈 (𝑋𝑖,𝑗−1,𝑘 + 𝑋𝑖,𝑗,𝑘 − 2)                                    (∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝑂(𝑖) , 𝑗 ≠ 𝑓𝑖𝑟𝑠𝑡𝑖 , 𝐿𝑖 ≥ 𝑇𝑟𝐿𝑖 ,  

                                                                                                                                  ∀𝑘 ∈ 𝑀, 𝑅𝑀𝑗,𝑘 = 1, 𝑅𝑀𝑗−1,𝑘 = 1) 
(34) 

∑ 𝐹𝑂𝑖,𝑗,𝑘

𝑘∈𝑀
𝑅𝑀𝑗,𝑘=1

≥ ∑ (𝐹𝑂𝑖,𝑗,𝑘 +
𝑇𝑟𝐿𝑖 𝑇𝑃𝑟𝑜𝑐𝑖,𝑗,𝑘

𝐿𝑖

  𝑋𝑖,𝑗−1,𝑘)
𝑘∈𝑀

𝑅𝑀𝑗,𝑘=1

       (∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝑂(𝑖) , 𝑗 ≠ 𝑓𝑖𝑟𝑠𝑡𝑖 , 𝐿𝑖 ≥ 𝑇𝑟𝐿𝑖) (35) 

𝑆𝑂𝑖,𝑗,𝑘 ≥ 𝐹𝑂𝑖,𝑟,𝑘 + 𝑈 (𝑋𝑖,𝑗,𝑘 + 𝑋𝑖,𝑟,𝑘 − 2)                                                          (∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝑂(𝑖) , 𝑟 ∈ 𝑂(𝑖) , 𝑟 < 𝑗 

                                                                                                                                      ∀𝑘 ∈ 𝑀, 𝑅𝑀𝑗,𝑘 = 1, 𝑅𝑀𝑟,𝑘 = 1) 
(36) 

 

Appendix B 

 Position-based model with overlapping 

The position-based model we have implemented to perform comparative assessments is based on the formulation of 

Fattahi et al. [1]. This model uses the following variables: 

Xi,j,m,k =1 if operation j of job i is scheduled on the k-th processing position on machine m (kϵ PP(m)); otherwise, =0. 

Yi,j,m =1if operation j of job i is performed in machine m; otherwise, =0. 
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Tmmk: start working time for machine m on the k-th processing position. 

Psi,j: processing time of operation j of job i after selecting a machine. 

The rest of the used nomenclature coincides with that defined in this paper. 

 

Minimize Cmx  
subject to: 

 

𝐶𝑚𝑥 ≥ 𝑆𝑂𝑖,𝑗 + 𝑃𝑠𝑖,𝑗                                                                                                                   (∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝑂(𝑖)) (37) 

∑ (𝑌𝑖,𝑗,𝑚  + 𝑇𝑃𝑟𝑜𝑐𝑖,𝑗,𝑚) = 𝑃𝑠𝑖,𝑗                                                                                     (∀𝑖 ∈ 𝐽, ∀ 𝑗 ∈ 𝑂(𝑖))
𝑚∈𝑀

𝑀𝑅𝑗,𝑚=1

 

(38) 

𝑆𝑂𝑖,𝑗 + 𝑃𝑠𝑖,𝑗
𝑇𝑟𝐿𝑖 

𝐿𝑖
 ≤ 𝑆𝑂𝑖,𝑗+1                                                                                  (∀𝑖 ∈ 𝐽, ∀ 𝑗 ∈ 𝑂(𝑖), 𝑗 < 𝑙𝑎𝑠𝑡𝑖)   (39) 

𝑆𝑂𝑖,𝑗 + 𝑃𝑠𝑖,𝑗 ≤ 𝑆𝑂𝑖,𝑗+1 + 𝑃𝑠𝑖,𝑗+1 − 𝑃𝑠𝑖,𝑗

𝑇𝑟𝐿𝑖 

𝐿𝑖

                                            (∀𝑖 ∈ 𝐽, ∀ 𝑗 ∈ 𝑂(𝑖), 𝑗 < 𝑙𝑎𝑠𝑡𝑖) 
(40) 

𝑇𝑚𝑚,𝑘−1 + 𝑇𝑃𝑟𝑜𝑐𝑖,𝑗,𝑚 𝑋𝑖,𝑗,𝑚,𝑘−1 ≤ 𝑇𝑚𝑚,𝑘                                    (∀𝑖 ∈ 𝐽, ∀ 𝑗 ∈ 𝑂(𝑖), ∀𝑚 ∈ 𝑀, 𝑀𝑅𝑗,𝑚 = 1, 

                                                                                                                                                      ∀𝑘 ∈ 𝑃𝑃(𝑚), 𝑘 > 1) 

(41) 

𝑇𝑚𝑚,𝑘  ≤ 𝑆𝑂𝑖,𝑗 + 𝑈(1 − 𝑋𝑖,𝑗,𝑚,𝑘)                               (∀𝑖 ∈ 𝐽, ∀ 𝑗 ∈ 𝑂(𝑖), ∀𝑚 ∈ 𝑀, 𝑀𝑅𝑗,𝑚 = 1, ∀∈ 𝑃𝑃(𝑚)) (42) 

𝑇𝑚𝑚,𝑘  + 𝑈(1 − 𝑋𝑖,𝑗,𝑚,𝑘) ≤ 𝑆𝑂𝑖,𝑗                                 (∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝑂(𝑖), ∀𝑚 ∈ 𝑀, 𝑀𝑅𝑗,𝑚 = 1, ∀∈ 𝑃𝑃(𝑚)) (43) 

𝑌𝑖,𝑗,𝑚 ≤ 𝑀𝑅𝑗,𝑚                                                                                                           (∀𝑖 ∈ 𝐽, ∀ 𝑗 ∈ 𝑂(𝑖), ∀𝑚 ∈ 𝑀) (44) 

∑ 𝑋𝑖,𝑗,𝑚,𝑘  ≤ 1                                                                                                          (∀𝑚 ∈ 𝑀, ∀𝑘 ∈ 𝑃𝑃(𝑚))
𝑖∈𝐽

𝑗∈𝑂(𝑖)

𝑀𝑅𝑗,𝑚=1

 
(45) 

∑ 𝑌𝑖,𝑗,𝑚 = 1                                                                                                                        (∀𝑖 ∈ 𝐽, ∀ 𝑗 ∈ 𝑂(𝑖))
𝑚∈𝑀

𝑀𝑅𝑗,𝑚=1

 (46) 

𝑆𝑂𝑖,𝑗 ≥ 0, 𝐹𝑂𝑖,𝑗 ≥ 0, 𝑃𝑠𝑖,𝑗 ≥ 0, 𝑇𝑚𝑚,𝑘 ≥ 0, 𝑋𝑖,𝑗,𝑚,𝑘 ∈   {0,1}, 𝑌𝑖,𝑗,𝑘 ∈   {0,1}  
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