

377

	

Advances	in	Production	Engineering	&	Management	 ISSN	1854‐6250	

Volume	15	|	Number	4	|	December	2020	|	pp	377–389	 Journal	home:	apem‐journal.org	

https://doi.org/10.14743/apem2020.4.372 Original	scientific	paper	

A layered genetic algorithm with iterative diversification for
optimization of flexible job shop scheduling problems

Amjad, M.K.a,*, Butt, S.I.a, Anjum, N.a, Chaudhry, I.A.b, Faping, Z.c, Khan, M.a
aSchool of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
bDepartment of Industrial Engineering, College of Engineering, University of Ha’il, Kingdom of Saudi Arabia
cSchool of Mechanical Engineering, Beijing Institute of Technology, Beijing, P.R. China

A B S T R A C T	 A R T I C L E I N F O	

Flexible	 job	 shop	 scheduling	 problem	 (FJSSP)	 is	 a	 further	 expansion	 of	 the	
classical	 job	 shop	scheduling	problem	(JSSP).	FJSSP	 is	known	 to	be	NP‐hard	
with	regards	to	optimization	and	hence	poses	a	challenge	in	finding	acceptable	
solutions.	Genetic	algorithm	(GA)	has	successfully	been	applied	in	this	regard
since	last	two	decades.	This	paper	provides	an	insight	into	the	actual	complex‐
ity	 of	 selected	 benchmark	 problems	 through	 quantitative	 evaluation	 of	 the	
search	space	owing	to	their	NP‐hard	nature.	A	four‐layered	genetic	algorithm	
is	 then	 proposed	 and	 implemented	with	 adaptive	 parameters	 of	 population	
initialization	and	operator	probabilities	to	manage	intensification	and	diversi‐
fication	 intelligently.	 The	 concept	 of	 reinitialization	 is	 introduced	whenever	
the	 algorithm	 is	 trapped	 in	 local	minima	 till	 predefined	 number	 of	 genera‐
tions.	Results	are	then	compared	with	various	other	standalone	evolutionary	
algorithms	for	selected	benchmark	problems.	It	is	found	that	the	proposed	GA	
finds	better	solutions	with	this	technique	as	compared	to	solutions	produced	
without	this	technique.	Moreover,	 the	technique	helps	to	overcome	the	 local	
minima	 trap.	 Further	 comparison	 and	 analysis	 indicate	 that	 the	 proposed	
algorithm	 produces	 comparative	 and	 improved	 solutions	 with	 respect	 to	
other	analogous	methodologies	owing	to	the	diversification	technique.	

©	2020	CPE,	University	of	Maribor.	All	rights	reserved.

 Keywords:	
Scheduling;	
Flexible	job	shop	scheduling	prob‐
lem	(FJSSP);	
Complexity;	
Diversity;	
Combinatorial	optimization;	
Genetic	algorithm	

*Corresponding	author:	
kamal.amjad@smme.edu.pk	
(Amjad,	M.K.)	

Article	history:		
Received	19	May	2020	
Revised	27	November	2020	
Accepted	30	November	2020	
	

1. Introduction

Modern	manufacturing	processes	consist	of	several	carefully	planned	sub‐processes	that	require	
to	be	completed	in	a	predefined	manner	to	achieve	the	intended	product	[1].	With	the	continu‐
ously	changing	business	flux	and	fluctuating	product	demand,	it	is	imperative	that	manufactur‐
ing	 flexibility	may	be	added	 to	 the	shop	 floor	so	 that	a	maximum	variety	of	operations	can	be	
performed.	 Flexible	manufacturing	 systems	 (FMS)	 can	 handle	 a	 great	 deal	 of	 product	 variety	
with	reasonable	volumes	as	they	are	capable	of	variable	routing	among	different	workstations.	
Modern	 concepts	 of	 group	 technology	 (GT)	 and	 cellular	manufacturing	 have	 specifically	 been	
designed	to	incorporate	flexibility	in	the	manufacturing	process	[2].	The	decision	making	regard‐
ing	allocation	of	 tasks	or	 set	of	activities	 to	available	 resources	 is	 termed	as	scheduling	 [1,	3].	
Optimum	utilization	of	resources	 is	possible	 if	 the	tasks	are	efficiently	performed	according	to	
predefined	criteria.	Since	many	sequences	can	be	executed	for	a	said	product,	many	schedules	can	
be	developed.	Optimization	of	schedules	is	conventionally	evaluated	through	benchmark	prob‐
lems	against	a	predefined	cost	function.	The	cost	function,	in	this	case,	is	scheduling	an	objective	
that	is	used	to	assess	the	optimality	of	the	generated	schedule	concerning	the	said	objective.	

Amjad, Butt, Anjum Chaudhry, Faping, Khan

378 Advances in Production Engineering & Management 15(4) 2020

	 Job	shops	are	popular	because	they	can	handle	a	variety	of	processes	in	a	single	facility	[4],	
thereby	offering	a	 significant	 advantage	over	 classical	product	or	process	based	 layouts.	They	
can	 handle	 the	 different	 sequences	 of	 operations	 on	 various	 fixed	machines.	 The	 flexible	 job	
shop	(FJS)	offers	flexibility	in	the	job	shop	through	the	introduction	of	flexible	machines	where‐
by	 required	operations	may	be	performed	on	 several	 alternative	machines	 [5].	 Therefore,	 the	
problem	can	be	decomposed	 as	 an	 assignment	 and	 scheduling	problem.	Additionally,	 cases	 of	
partial	and	total	flexibility	are	also	formulated,	whereby	all	operations	can	be	performed	on	all	
machines	in	the	case	of	total	 flexibility	and	only	some	operations	can	be	performed	on	several	
machines	in	the	case	of	partial	flexibility	[6].	Whereas	this	extension	has	provided	effective	re‐
source	 utilization	 and	 added	manufacturing	 flexibility,	 it	 also	 has	 increased	 the	 complexity	 of	
scheduling	optimization	manifold.	Therefore,	 flexible	 job	shop	scheduling	problem	(FJSSP)	has	
been	studied	 in	a	dedicated	and	detailed	manner	owing	 to	 its	NP‐hard	nature	 [7,	8]	 and	com‐
plexity	[9].	
	 It	has	been	reported	that	there	are	(n!)m	possible	sequences	for	generating	a	schedule	for	n	
jobs	on	m	machines	in	case	of	a	JSSP.	Consequently,	the	computational	resources	either	expire	or	
become	scarce	when	attempting	large	instances	of	problems.	Where	FJSSP	offers	more	flexibility	
in	 terms	of	 assignment,	 the	problem	becomes	more	complex	as	an	additional	 layer	of	alterna‐
tives	 is	available	 in	this	case.	Thus,	exact	solution	methods	are	seldom	attempted	[10,	11]	and	
artificial	intelligence‐based	approaches	have	gained	extreme	popularity.	Although,	various	dedi‐
cated	case	studies	of	FJSSP	have	been	reported	 in	 [12],	 traditionally,	benchmark	problems	are	
used	to	test	the	developed	algorithms	[13,	14].	
	 Schedules	are	developed	keeping	in	view	a	certain	objective.	Thus,	a	schedule	meant	for	op‐
timum	use	of	resources	may	not	be	applicable	for	optimum	workload	minimization.	Many	objec‐
tives	have	been	addressed	in	literature	with	regards	to	FJSSP;	however,	makespan	has	been	ad‐
dressed	 the	most	 [15],	which	 is	 the	maximum	time	required	 to	complete	all	operations	of	 the	
selected	dataset.	
	 FJSSP	is	one	of	the	most	challenging	optimization	problems	[16].	To	achieve	optimum	solutions	
in	a	reasonable	time,	meta‐heuristic	algorithms	have	gained	tremendous	popularity.	Whereas,	a	
lot	of	studies	have	been	conducted	using	various	algorithms;	Genetic	algorithm	(GA)	has	gained	
outstanding	 attention	 in	 this	 regard	 [17].	 In	 a	 comprehensive	 study	 considering	 various	 ap‐
proaches	for	solving	FJSSPs,	it	has	been	pointed	out	that	GA	is	the	most	popular	algorithm	with	
publications	amounting	 to	34	%	[18].	 It	has	also	been	pointed	out	 that	26.4	%	of	 studies	per‐
formed	on	FJSSPs	have	been	conducted	using	GA	[19].	
	 GA	mimics	the	phenomena	of	human	evolution	based	on	the	“survival	of	the	fittest”	rule	[20].	
It	provides	an	effective	mechanism	to	conduct	a	directed	random	search	for	finding	optimal	so‐
lutions	and	therefore	it	has	used	effectively	for	sequencing	problems	in	 flexible	manufacturing	
systems,	 gaining	 exceptional	 popularity	 in	 the	 last	 decade	 [15].	 An	 approach	 by	 localization	
along	with	benchmark	problems	of	FJSSP	with	total	flexibility	was	presented	[21].	Goa	et	al.	[22]	
addressed	the	FJSSP	with	multi‐objective	optimization	and	proposed	GA	for	the	solution	of	se‐
lected	benchmarks.	Similarly,	Pezzella	et	al.	[23]	suggested	a	GA	with	various	strategies	for	algo‐
rithm	improvement.	Gu	et	al.	[24]	presented	an	improved	GA	with	a	hybrid	population	initializa‐
tion	method.	
	 Population	 diversity	 plays	 an	 extremely	 important	 role	 in	 solution	 quality.	 Traditionally,	
crossover	and	mutation	operators	have	been	used	to	introduce	diversity	within	the	principles.	A	
cluster	of	population	at	a	local	minimum	enforces	the	algorithm	to	converge	prematurely.	Alter‐
natively,	an	extremely	diverse	population	may	not	allow	the	algorithm	to	converge.	Therefore,	
population	diversity	on	one	side	provides	solution	quality,	while	on	the	other	side;	it	may	allow	
the	algorithm	to	run	 for	 long	periods.	Research	has	 thus	been	carried	out	 in	order	 to	propose	
mechanisms	to	attain	a	balance	between	these	two	different	ends.	Wang	et	al.	 [25]	have	intro‐
duced	 a	 population	 diversity	 technique	 through	 the	 conservation	 of	 a	 single	 elitist	 solution.	
Xiong	et	al.	[26]	introduced	a	crowding	distance	measure	to	ensure	population	diversity.	Teek‐
eng	et	al.	[27]	proposed	a	modified	version	of	mutation	to	ensure	population	diversity.	
	 A	pure	GA	based	approach	is	presented	in	the	current	study	to	solve	the	FJSSP.	The	diversifi‐
cation	and	 intensification	 regimes	are	used	 side‐by‐side	 to	 increase	 the	 capability	of	 the	algo‐

A layered genetic algorithm with iterative diversification for optimization of flexible job shop scheduling problems

Advances in Production Engineering & Management 15(4) 2020 379

rithm	 to	 further	 explore	 the	 search	 space	 while	 conserving	 the	 best	 solutions	 and	 deferring	
premature	 convergence.	 When	 local	 minima	 are	 encountered	 after	 several	 iterations,	 re‐
initialization	 is	 invoked.	 The	 algorithm	 is	 then	 implemented	 and	 tested	 on	 selected	 standard	
benchmark	problems	of	FJSSP.	An	 in‐depth	analysis	of	 the	algorithm	efficacy	 for	FJSSP	 is	 then	
discussed	and	conclusions	are	presented.	

2. Problem formulation and complexity

The	FJSSP	is	formulated	as	a	set	of	N	jobs	(J	=	J1,	J2,	J3,…,	JN)	to	be	processed	on	M	machines	(M	=	
M1,	M2,	M3,…,	MM).	Each	job	Ji	consists	of	predefined	operations	Oij	to	be	processed	on	any	of	the	
available	machines,	where	Oij	is	the	operation	j	of	job	i.	The	processing	time	required	for	comple‐
tion	of	operation	Oij	on	machine	Mk	is	a	known	aspect	termed	as	Pijk.	As	number	of	operations	for	
each	job	may	differ,	the	total	number	of	operations	for	all	operations	is	as	follows:	
	

	 (1)

where	Jio	is	the	total	number	of	operations	for	a	single	job	Ji.	Accordingly,	a	sequence	may	be	as‐
signed	to	an	operation	Oij	such	that:	

	 (2)

where	nij	is	the	sequence	number	for	a	said	operation.	The	operations	can	be	scheduled	on	any	
machine	depending	upon	the	condition	that	the	previous	operation	is	complete,	and	the	machine	
is	available	at	the	said	time.	Other	assumptions	are	formulated	below	[18].	

	 i.	All	resources	are	available	at	time	t	=	0:	
0 	 (3)

0 ∀ 	 (4)
	 ii.	Only	one	operation	can	be	performed	on	one	machine	at	a	provided	time:	

∀ , 	 (5)

	 iii.	Operations	are	performed	in	a	predefined	order:	

∀ , 	 (6)

	 iv.	Operations	are	not	interrupted	once	they	are	started,	i.e.	pre‐emption	or	cancellation	is	not	
considered:	

∀ & 	 (7)
	 v.	There	is	no	free	time	between	any	two	operations	

max , 	 (8)

	 Where,	tijk	is	the	start	time	of	Oij	on	machine	Mk,	rijk	is	the	release	time	of	Oij	on	machine	Mk,	ti’j’k	
is	the	start	time	of	the	previous	operation	on	machine	Mk,	Pi’j’k	is	the	processing	time	of	the	pre‐
vious	operation	on	machine	Mk	and	Eijk	is	the	end	time	of	Oij	on	machine	Mk.	Additionally,	all	jobs	
have	equal	priorities	and	the	setup	times	are	either	zero	or	considered	in	the	operation	time.	
	 FJSSP	is	one	of	the	most	challenging	combinatorial	optimization	problems.	Even	for	the	sim‐
pler	 JSSP,	 the	 computational	 effort	 increases	 in	 an	 exponential	 manner	 with	 the	 increase	 of	
problem	size	and	computational	time	for	an	exact	solution	may	rise	to	millions	of	years	[28].	The	
actual	 depiction	 of	 problem	 complexity	 lies	 in	 the	 evaluation	 of	 search	 space.	 The	 size	 of	 the	
search	 space	depends	upon	 the	 chromosome	 length	 and	 level	 of	 flexibility	Uij	 of	 the	 problem.	
Henceforth,	changing	the	length	or	definition	affects	the	search	space.	In	every	gene,	there	is	an	
upper	bound	Uij,	 i.e.	 the	number	of	machines	on	which	a	said	operation	can	be	performed.	Ac‐

Amjad, Butt, Anjum Chaudhry, Faping, Khan

380 Advances in Production Engineering & Management 15(4) 2020

cording	to	the	chromosome	definition	of	Zhang	et	al.	[29],	search	space	(SS)	is	the	combination	
of	all	possible	values	of	a	gene.	The	same	is	formulated	as	Eq.	9.	

!
∏ !

	 (9)

	 Where	SS(MS)	and	SS(OS)	are	the	search	space	for	machine	selection	(MS)	and	operation	se‐
lection	(OS)	parts	of	the	chromosome	respectively.	For	the	MS	part,	SS	is	all	possible	valid	com‐
binations	for	all	genes,	i.e.	product	of	Uij	for	all	operations.	For	the	OS	part,	SS	is	the	ratio	of	OS	
part	chromosome	length	and	product	of	all	Jio!.	The	computations	of	search	space	for	Fattahi	[30]	
and	Kacem	[21]	are	presented	in	Table	1	and	graphically	shown	in	Fig.	1.	Here,	M,	N,	and	L	rep‐
resent	 the	 total	 number	 of	 jobs,	 machines,	 and	 sequences,	 respectively.	 It	 is	 evident	 that	 the	
search	space	size	increases	manifold	in	an	exponential	manner.	This	depiction	of	problem	com‐
plexity	has	not	been	attempted	before.	

Table	1	Search	space	for	Kacem	and	Fattahi	datasets	
Instance	 N	 M	 L	 SS Instance N M L	 SS
SFJS1	 2	 2	 4	 9.60E+01 MFJS3 6 7 18	 4.67E+18
SFJS2	 2	 2	 4	 2.40E+01 MFJS4 7 7 21	 1.12E+23
SFJS3	 3	 2	 6	 1.44E+03 MFJS5 7 7 21	 7.45E+22
SFJS4	 3	 2	 6	 1.44E+03 MFJS6 8 7 24	 1.81E+27
SFJS5	 3	 2	 6	 5.76E+03 MFJS7 8 7 32	 3.00E+36
SFJS6	 3	 3	 9	 1.08E+05 MFJS8 9 8 36	 2.82E+42
SFJS7	 3	 5	 9	 8.60E+05 MFJS9 11 8 44	 1.35E+55
SFJS8	 3	 4	 9	 8.60E+05 MFJS10 12 8 48	 6.28E+61
SFJS9	 3	 3	 9	 8.60E+05 Kacem	1 4 5 12	 6.77E+13
SFJS10	 4	 5	 12	 9.46E+07 Kacem	2 10 7 29	 1.41E+48
MFJS1	 5	 6	 15	 1.39E+13 Kacem	3 10 10 30	 4.39E+54
MFJS2	 5	 7	 15	 2.12E+14 Kacem	4 15 10 56	 2.03E+112

Fig.	1	Problem	size	vs.	search	space	

3. Proposed algorithm

3.1 Methodology

To	explore	 the	problem	search	space	sufficiently,	 crossover	and	mutation	operators	are	 intro‐
duced	 in	 GA	 [6].	 These	 operators	 bring	 diversity	 in	 the	 population	 through	 exchanging	 infor‐
mation	between	individual	chromosomes.	
	 At	 the	 initialization	phase	of	 the	algorithm,	the	population	 is	 fairly	diverse	as	the	algorithm	
generates	 initial	chromosomes	on	a	random	basis.	When	convergence	is	achieved	after	certain	
generations	in	a	GA	routine,	the	population	tends	to	have	a	large	amount	of	better	solutions	and	
variance	of	 the	population	 therefore	decreases.	Where	 the	convergence	 is	an	 indication	of	 the	
best	 solution,	 there	 is	also	a	known	 tendency	of	GA	 to	get	 trapped	 in	 local	minima.	Literature	

A layered genetic algorithm with iterative diversification for optimization of flexible job shop scheduling problems

Advances in Production Engineering & Management 15(4) 2020 381

proposes	to	run	the	algorithm	for	extended	generations	[23]	or	employ	local	search	techniques	
to	overcome	this	issue	[24].	Although	both	techniques	have	proven	to	be	successful	in	obtaining	
acceptable	solutions,	they	have	their	inherent	drawbacks.	Extended	generations	come	at	the	cost	
of	computational	effort	and	time.	Similarly,	 local	search	not	only	 increases	 the	algorithm	com‐
plexity	with	regards	to	 implementation	but	also	 increases	the	computational	effort.	This	study	
proposes	a	Re‐initialization	based	genetic	algorithm	(R‐GA)	to	overcome	these	observations.	Fig.	
2	presents	an	overall	information	exchange	four‐layer	scheme	followed	in	R‐GA.	A	detailed	de‐
scription	of	these	layers	is	presented	in	subsequent	sections.	

START

GA Configuration:
GenSize
PopSize
GS, LS, RS
SelRatio

Problem Input

Encode chromosome
Initialize Population

Problem
Formulation

Crossover

Mutation

Selection

New Generation

Evaluate Offsprings

Evaluate Population

Add to Population

Input Layer GA Layer Re-Initialization Layer

Solution Improved?

TerminationCtr >
TLimit

NO

NO

ReInitAttempCtr >
RLimit?

Increase LS Ratio by 10%

Reinitialize Pop with
Modified Rations

Add Best Solution to New
Population

ReInitAttempCtr++

NO

YES

TerminationCtr=0

Output Layer

Decode chromosome

Generate Gantt Chart

END

Decrease GS Ratio by 10%

Best Solution

	

Fig.	2	Flowchart	of	proposed	algorithm	(R‐GA)	

3.2 Input layer

The	input	layer	takes	various	pre‐defined	parameters	from	the	user	as	input	to	GA.	The	values	of	
parameters	taken	for	the	current	implementation	and	testing	is	listed	in	Table	2.	The	adaptabil‐
ity	of	applicable	parameters	is	explained	in	relevant	sections.	
 	

Amjad, Butt, Anjum Chaudhry, Faping, Khan

382 Advances in Production Engineering & Management 15(4) 2020

Table	2	Input	parameters	for	R‐GA	
Parameter	 Description Value	
Population	size	 Total	chromosomes	in	a	population 1500	
Generation	size	 Number	of	iterations	in	GA 250	
Crossover	probability	 Likelihood	for	chromosome	crossover Adaptive
Mutation	probability	 Likelihood	for	chromosome	mutation Adaptive
Global	selection	ratio	 Population	initialization	factor	for	global	selection Adaptive
Local	selection	ratio	 Population	initialization	factor	for	local	selection Adaptive
Random	selection	ratio	 Population	initialization	factor	for	random	selection Adaptive
Elitism	ratio	 Elite	chromosome	selection	factor 20	
Roulette	wheel	ratio	 Factor	for	roulette	wheel	selection 80	
Termination	counter	limit Limit	for	GA	before	re‐initialization	 100	
Re‐initialization	counter	limit	 Number	of	re‐initialization	attempts 4	

3.3 GA layer

This	 layer	contains	the	 implementation	of	GA.	The	chromosome	representation	of	machine	se‐
lection	(MS)	and	operation	selection	(OS)	as	proposed	by	Zhang	et	al.	[29]	is	used	in	this	study.	
This	representation	avoids	generating	infeasible	chromosomes	during	the	evolution	process	and	
used	a	single	chromosome	for	handling	the	routing	and	scheduling	aspects.	
	 MS	vector	represents	the	machine	number	allocated	for	any	operation	Oij	out	of	all	available	
machines.	 In	OS	vector,	every	operation	is	represented	by	its	 job	number	 i	and	the	schedule	is	
decoded	by	the	sequence	of	these	numbers.	Consider	the	problem	presented	in	Table	3	consist‐
ing	of	4	jobs	that	are	to	be	scheduled	on	4	machines.	The	candidate	solution	chromosome	can	be	
represented	 in	MSOS	 format	 as	 shown	 in	Fig.	 3.	The	 job,	 operation	and	machine	 routing	have	
been	color‐coded	to	elaborate	the	representation,	e.g.	 in	the	fifth	gene	of	MS	vector,	O31	can	be	
assigned	on	M1,	M2	and	M4	however	gene	value	2	indicates	that	it	has	been	assigned	on	2nd	ma‐
chine	 from	all	 available	 set	of	machines,	 i.e.	M2.	 Similarly,	 for	OS	vector,	 the	 first	 gene	value	3	
indicates	that	O31	will	be	scheduled	first;	second	gene	value	1	indicates	that	O11	will	be	scheduled	
second	and	so	on.	

The	population	 initialization	 is	 important	since	 it	determines	 the	quality	of	solutions	 in	 the	
search	space.	The	global	selection	(GS),	local	selection	(LS)	and	random	selection	(RS)	are	used	
in	this	study	for	the	MS	part	[29].	Initially,	GS	is	taken	as	50,	LS	is	taken	as	20	and	RS	is	taken	as	
30.	For	the	OS	part,	the	population	is	generated	through	random	selection.	
	

Table	3	A	Sample	FJSSP	
Job	 Operation	 Machine

M1 M2 M3 M4	
J1	 O11 ∞ 10 ∞ 20	

O12 25 30 10 ∞	
O13 15 60 15 10	

J2	 O21 15 ∞ 50 ∞	
J3	 O31 80 10 ∞ 50	

O32 ∞ 80 10 10	
J4	 O41 20 60 10 10	

O42 20 ∞ ∞ ∞	

	

Fig.	3	An	illustration	of	MSOS	representation	

A layered genetic algorithm with iterative diversification for optimization of flexible job shop scheduling problems

Advances in Production Engineering & Management 15(4) 2020 383

	 Three	different	crossover	methods	have	been	used	for	the	MS	part.	In	the	single	point	crosso‐
ver	(SPX)	method	[31],	a	random	number	r	is	generated	in	the	range	[1,	L]	and	offspring	are	then	
generated	by	swapping	genes	[1,	r]	and	[r,	L]	of	two	parents.	In	the	two	point	crossover	(TPX)	
method	[32],	two	random	numbers	are	generated	in	the	range	[1,	L]	and	the	MS	chromosome	is	
divided	into	three	parts,	i.e.	[1,	r1],	[r1,	r2]	and	[r2,	L].	Offspring	are	then	generated	by	swapping	
the	resultant	three	parts.	In	uniform	crossover	(UX)	method	[29],	even	and	odd	number	of	genes	
of	parent	chromosomes	is	swapped	to	generate	offspring.	
	 The	crossover	of	the	OS	vector	 is	delicate	due	to	 its	precedence	order	constraints.	To	avoid	
generating	 invalid	 chromosomes	 and	 preserving	 the	 scheduling	 constraints	 in	 OS	 vector,	 Im‐
proved	precedence	order	crossover	(iPOX)	technique	has	been	used	[33]	as	shown	in	Fig.	4.	This	
procedure	generates	two	sets	of	jobs,	i.e.	Js1	and	Js2	and	then	uses	these	sets	to	generate	offspring	
from	parent	chromosomes.	 In	this	study,	we	generated	 job	sets	 Js1	and	 Js2	by	generating	a	ran‐
dom	integer	in	the	range	[1,	n].	Job	sets	are	then	generated	as	Js1	=	[1,	r]	and	Js2	=	[r,	n].	

Fig.	4	Improved	precedence	order	crossover	

	 Conventionally,	crossover	probability	(Pc)	is	kept	at	a	predefined	value,	normally	in	the	range	
of	0.8‐0.9.	In	this	study,	Pc	is	adaptive	in	nature	as	formulated	in	Eq.	10.	This	increases	the	cross‐
over	probability	as	convergence	is	achieved,	hence	introducing	the	possibility	for	maximum	di‐
versification.	

max
	 (10)

	 Here,	Ft	and	 	is	the	overall	and	mean	fitness	of	the	entire	population	under	consideration,	
respectively.	
	 Random	intelligent	mutation	has	been	used	for	the	MS	part.	A	random	number	r1	is	generated	
in	the	range	[1,	L].	A	mutation	is	then	performed	at	r1	gene.	To	mutate	r1	gene,	another	random	
number	generated	in	the	range	between	one	and	the	total	number	of	machines	on	which	opera‐
tion	at	gene	r1	can	be	performed.	The	value	of	r1	gene	is	then	replaced	with	r2.	This	procedure	
does	 not	 allow	 generation	 of	 infeasible	 chromosome	 and	 ensures	 generation	 of	 new	 child	 by	
restricting	duplication	of	parent	chromosomes.	For	the	OS	part,	swap	mutation	has	been	used	as	
proposed	in	[33].	Both	procedures	are	presented	in	Fig.	5.	
	

	
Fig.	5	Random	intelligent	mutation	and	swap	mutation	

Amjad, Butt, Anjum Chaudhry, Faping, Khan

384 Advances in Production Engineering & Management 15(4) 2020

	 Mutation	 probability	 (Pm)	 is	 generally	 kept	 at	 a	 lower	 side,	 ranging	 from	 0.1‐0.25.	 In	 this	
study,	Pm	 is	adaptive	in	nature	as	governed	by	Eq.	11.	As	the	population	is	converged,	Pm	 is	in‐
creased	as	the	values	of	minimum	and	maximum	fitness	comes	close	to	each	other.	This	further	
enhances	the	ability	of	the	algorithm	to	achieve	a	diverse	population.	

min

max
	 (11)

	 Once	 crossover	 and	 mutation	 are	 carried	 out,	 offspring	 are	 generated	 and	 their	 fitness	 is	
evaluated	with	 regards	 to	makespan	minimization.	 A	 combination	 of	 elite	 and	 roulette	wheel	
selection	is	used	to	curtail	the	population	down	to	population	size.	In	this	study,	elitism	ratio	is	
kept	 at	 20	%	of	 the	whole	population.	 Chromosomes	having	 improved	 fitness	with	 respect	 to	
other	competitor	chromosomes	are	introduced	into	the	population	thereafter.	GA	routine	is	con‐
tinued	until	improved	solutions	are	found.	The	algorithm	terminates	if	no	improvement	is	found	
till	100	iterations	consecutively	and	the	final	solution	is	fed	into	the	re‐initialization	layer	so	that	
elite	preservation	is	ensured.	

3.4 Re‐initialization layer

This	layer	receives	the	elite	chromosomes	and	reinitializes	the	population	to	produce	diversity	
for	re‐exploring	the	search	space.	During	this	process,	GS	and	LS	are	decreased	and	increased	by	
10	%	respectively.	This	approach	enhances	the	generation	of	chromosomes	by	local	search	pro‐
cedure	and	 reduces	global	 search	 in	 every	 re‐initialization	while	preserving	 the	elite	 solution.	
Thus,	intensification	around	the	best	solution	is	carried	out.	Here,	as	the	mutation	probability	is	
also	adapted	on	the	higher	side	to	maximize	the	generation	of	new	possible	solutions.	The	new	
population	is	again	returned	to	the	GA	layer	until	the	re‐initialization	count	limit	is	reached.	

3.5 Output layer

This	layer	decodes	the	elite	chromosome	and	generates	the	Gantt	chart	for	the	problem	accord‐
ingly	along	with	the	best	solution	makespan.	

4. Results and discussion

Before	 commencing	with	 the	 large	 scale	 application,	 the	 parameters	 of	 R‐GA	were	 optimized	
such	that	algorithm	efficiency	was	achieved.	The	algorithm	was	run	on	a	Pentium	Core	i7	with	
4GB	RAM	and	experimental	 results	are	compared	with	known	benchmark	problems	of	Kacem	
[21]	and	Fattahi	[30].	Since	the	proposed	algorithm	is	pure	GA,	thus	comparison	is	made	either	
with	pure	GA	based	approaches	or	other	standalone	comparable	evolutionary	algorithms.	
	 Fig.	 4	 shows	 the	 convergence	 pattern	 for	 MFJS8.	 R‐GA	 initializes	 and	 generates	 a	 random	
population	using	 the	 initialization	procedures	and	starts	 to	 converge.	The	 initial	population	 is	
diverse	 and	 as	 convergence	 is	 achieved,	 it	 initially	 traps	 at	 local	 minima	 (922)	 at	 120	
generations	 and	 retains	 there	 for	 100	 iterations.	 As	 no	 improvement	 is	 observed	 until	 100	
generations,	 re‐initialization	 is	 invoked	 to	 introduce	 diversity	 in	 population	 for	 search	 space	
evaluation.	Additionally,	the	improved	local	selection	in	the	new	generation	is	also	imposed	for	
compensating	diversification	and	intensification.	The	algorithm	again	starts	to	converge	and	just	
after	 re‐initialization,	 attains	 884	 makespan.	 The	 algorithm	 then	 continues	 until	 termination	
criteria	are	met.	It	is	remarkable	that	the	similar	algorithm	without	the	proposed	diversification	
technique	does	not	perform	to	produce	comparable	results	and	retains	trapped	in	local	minima	
as	obvious	from	Fig.	6.	Similar	behavior	can	be	observed	for	MFJS2,	MFJS	4,	MFJS5	and	MFJS6	as	
shown	in	Fig.	7	and	Fig.	8.	The	algorithm,	after	initial	convergence,	reinitializes	and	attains	a	new	
minimum	which	is	comparable	to	available	benchmark	problem	solutions.		
	 The	proposed	algorithm	therefore	successfully	gets	out	of	the	local	minima	trap	owing	to	the	
diversification	methodology	and	produces	comparable/better	results	as	compared	to	other	simi‐
lar	 algorithms.	 In	 addition,	 the	 proposed	 scheme	 also	minimizes	 the	 possibility	 of	 premature	
convergence	as	population	diversity	is	initiated	to	check	the	local	minima	trap	once	the	average	
fitness	between	generations	becomes	stable.	However,	the	scheme	requires	more	computational	
power	accordingly	owing	to	the	additional	features.	

A layered genetic algorithm with iterative diversification for optimization of flexible job shop scheduling problems

Advances in Production Engineering & Management 15(4) 2020 385

Fig.	6	Convergence	pattern	for	MFJS8	and	its	comparison	with	GA	

Fig.	7	Convergence	pattern	for	MFJS2	and	MFJS4	

Fig.	8	Convergence	pattern	for	MFJS5	and	MFJS6	

	 Table	 4	 presents	 the	 solutions	 of	 R‐GA	 in	 contrast	with	 other	 comparable	 algorithms.	 The	
algorithm	 results	 are	 compared	 with	 standalone	 optimization	 algorithms	 that	 have	 solved	
similar	benchmarks.	Notably,	the	algorithm	outperforms	other	algorithms	in	various	instances.	
Positive	mean	percentage	deviation	calculated	 from	Eq.	12	shows	that	 the	algorithm	performs	
competitively	when	tested	against	these	benchmarks	and	even	outperforms	in	some	instances.	
Fig.	9	presents	a	final	Gantt	chart	of	MFJS8.	

0 200 400 600 800

Generations

400

500

600

700

800

900

1000

1100
MFJS5

Avg Cmax
Min Cmax (514)

0 200 400 600 800
Generations

500

1000

1500
MFJS6

Avg Cmax
Min Cmax (634)

Amjad, Butt, Anjum Chaudhry, Faping, Khan

386 Advances in Production Engineering & Management 15(4) 2020

%Δ 	 100 (12)

Table	4	Comparison	of	R‐GA	with	other	similar	approaches	
Problem	 R‐GA	 HTS/TS	[30]	 HTS/SA[30] GA[34] AIA[35]	 CP[36]

Cmax	 %Δ	 Cmax %Δ Cmax %Δ Cmax %Δ	 Cmax	 %Δ
SFJS1	 66	 66	 0	 66 0 66 0 66 0	 66	 0
SFJS2	 107	 107	 0	 107 0 107 0 107 0	 107	 0
SFJS3	 221	 221	 0	 221 0 221 0 221 0	 221	 0
SFJS4	 355	 355	 0	 355 0 355 0 355 0	 355	 0
SFJS5	 119	 119	 0	 119 0 119 0 119 0	 119	 0
SFJS6	 320	 320	 0	 320 0 320 0 320 0	 320	 0
SFJS7	 397	 397	 0	 397 0 397 0 397 0	 397	 0
SFJS8	 253	 253	 0	 256 1.2 253 0 253 0	 253	 0
SFJS9	 210	 210	 0	 210 0 210 0 210 0	 210	 0
SFJS10	 516	 516	 0	 516 0 516 0 516 0	 516	 0
MFJS1	 468	 469	 0.2	 469 0.2 468 0 468 0	 468	 0
MFJS2	 446	 482	 7.5	 468 4.7 448 0.4 448 0.4	 446	 0
MFJS3	 466	 533	 12.6	 538 13.4 466 0 468 0.4	 466	 0
MFJS4	 554	 634	 12.6	 618 10.4 554 0 554 0	 554	 0
MFJS5	 514	 625	 17.8	 625 17.8 514 0 527 2.5	 514	 0
MFJS6	 634	 717	 11.6	 730 13.2 634 0 635 0.2	 634	 0
MFJS7	 879	 964	 8.8	 947 7.2 881 0.2 879 0	 931	 5.6
MFJS8	 884	 970	 8.9	 922 4.1 891 0.8 884 0	 884	 0
MFJS9	 1091	 1105	 1.3	 1105 1.3 1094 0.3 1088 ‐0.3	 1070	 ‐2
MFJS10	 1238	 1404	 11.8	 1384 10.5 1286 3.7 1267 2.3	 1208	 ‐2.5
Kacem1	 11	 ‐ ‐	 ‐ ‐ ‐ ‐ ‐ ‐	 11	 0
Kacem2	 11	 ‐ ‐	 ‐ ‐ ‐ ‐ ‐ ‐	 11	 0
Kacem3	 7	 ‐ ‐	 ‐ ‐ ‐ ‐ ‐ ‐	 7	 0
Kacem4	 12	 ‐ ‐	 ‐ ‐ ‐ ‐ ‐ ‐	 12	 0

Mean	%Δ	 4.7	 4.2 0.3 0.3	 	 0

	

Fig.	9	Gantt	chart	for	MFJS	8	

	 Fig.	10	shows	percentage	deviation	of	R‐GA	from	five	different	algorithms	for	ten	problems,	
i.e.	 MFJS1	 to	MFJS10.	 Positive	 deviation	 indicates	 that	 R‐GA	 performed	 better	 than	 reference	
algorithm	while	negative	deviation	indicates	otherwise.	It	is	notable	that	R‐GA	performs	better	
than	other	algorithms	 for	more	complex	problems	e.g.	MFJS10	etc.	 It	 is	also	evident	 that	R‐GA	
performs	in	a	satisfactory	manner	as	the	problem	complexity	increases	since	significant	positive	
deviation	is	achieved	in	nearly	all	problems	as	shown	in	Fig.	10.	However,	R‐GA	lagged	for	MJFS9	
when	compared	with	AIAA	and	CP	and	MFJS10	when	compared	with	CP.	

A layered genetic algorithm with iterative diversification for optimization of flexible job shop scheduling problems

Advances in Production Engineering & Management 15(4) 2020 387

Fig.	10	Percentage	deviation	of	R‐GA	from	different	algorithms	

5. Conclusion

In	this	paper,	the	search	space	of	well‐known	benchmark	problems	is	addressed	qualitatively	by	
proposing	a	chromosome‐based	formulation	and	an	insight	into	the	actual	problem	complexity	
is	presented	owing	to	the	NP‐hard	nature	of	the	problem.	A	modified	GA	is	then	developed	and	
implemented	for	solving	the	selected	benchmark	problems	of	FJSSP	for	makespan	optimization.	
In	this	approach,	GA	is	initialized	based	upon	global,	local	and	random	selection	techniques	and	
adaptive	 reproductive	operators	are	 applied	 to	 intelligently	 evolve	 the	algorithm.	Adaptability	
has	been	incorporated	in	the	parameters	so	that	the	algorithm	may	adhere	to	the	current	popu‐
lation	diversity	and	acquire	additional	benefits	out	of	the	intensification	and	diversification	re‐
gimes.	The	algorithm	converges	to	a	certain	limit	and	traps	in	local	minima	while	preserving	the	
best	available	solution.	To	divulge	the	algorithm	from	this	point,	diversification	methodology	is	
employed	with	revised	adaptive	parameters	and	the	algorithm	converges	until	termination	cri‐
teria	are	encountered.	The	algorithm	is	tested	extensively	on	selected	benchmarks	and	it	is	con‐
cluded	that	the	proposed	algorithm	not	only	performs	effectively	for	solving	the	FJSSP	but	also	
escapes	out	of	local	minima	trap	at	various	instances.	The	convergence	patterns	along	with	solu‐
tion	quality	further	endorse	the	algorithm	efficacy.	It	is	also	identified	that	the	proposed	diversi‐
fication	methodology	produces	better	results	when	integrated	with	the	GA	and	surpasses	most	
of	the	other	standalone	comparable	approaches.	
	 This	work	enhances	the	utility	of	GA	through	the	effective	use	of	various	diversification	tech‐
niques	and	provides	a	framework	for	effectively	exploring	the	huge	search	space	with	an	easy‐
to‐program	approach.	A	user‐friendly	software	 is	developed	 in	this	work	which	requires	mini‐
mum	input	from	the	user	and	can	be	used	in	other	similar	optimization	applications.	Future	re‐
search	 involves	 the	expansion	of	 algorithm	application	on	multi‐objective	problems	and	other	
objective	functions.	

Acknowledgement

The	authors	gratefully	acknowledge	the	support	of	National	University	of	Science	and	Technology,	 Islamabad,	Paki‐
stan	for	funding	the	studies	
 	

‐5

0

5

10

15

20

MFJS1 MFJS2 MFJS3 MFJS4 MFJS5 MFJS6 MFJS7 MFJS8 MFJS9 MFJS10

Pe
rc
en
ta
ge
	D
ev
ia
ti
on HTS/TS

HTS/SA

GA

AIA

CP

Amjad, Butt, Anjum Chaudhry, Faping, Khan

References
[1] Pinedo, M.L. (2012). Scheduling: Theory, algorithms, and systems, Springer, Boston, USA, doi: 10.1007/978-1-

4614-2361-4.
[2] Jain, A., Jain, P.K., Chan, F.T.S., Singh, S. (2013). A review on manufacturing flexibility, International Journal of

Production Research, Vol. 51, No. 19, 5946-5970, doi: 10.1080/00207543.2013.824627.
[3] Dauzère-Péres, S., Lasserre, J.-B. (2012). An integrated approach in production planning and scheduling, Springer-

Verlag, Berlin, Germany, doi: 10.1007/978-3-642-46804-9.
[4] Groover, M.P. (2015). Automation, production systems, and computer-integrated manufacturing, 4th edition,

Pearson Education, Delhi, India.
[5] Azzouz, A., Ennigrou, M., Said, L.B. (2017). A hybrid algorithm for flexible job-shop scheduling problem with

setup times, International Journal of Production Management and Engineering, Vol. 5, No. 1, 23-30, doi:
10.4995/ijpme.2017.6618.

[6] Kacem, I. (2013). Genetic algorithms for solving flexible job shop scheduling problems, In: Jarboui, B., Siarry, P.,
Teghem, J. (eds.), Metaheuristics for Production Scheduling, John Wiley & Sons, New York, USA, 19-44, doi:
10.1002/9781118731598.ch2.

[7] Chaudhry, I.A., Usman, M. (2017). Integrated process planning and scheduling using genetic algorithms, Tehnički
Vjesnik – Technical Gazette, Vol. 24, No. 5, 1401-1409, doi: 10.17559/TV-20151121212910.

[8] Cheng, T.C.E., Shafransky, Y., Ng, C.T. (2016). An alternative approach for proving the NP-hardness of
optimization problems, European Journal of Operational Research, Vol. 248, No. 1, 52-58, doi: 10.1016/j.ejor.
2015.06.076.

[9] Brucker, P., Sotskov, Y.N., Werner, F. (2007). Complexity of shop-scheduling problems with fixed number of jobs:
A survey, Mathematical Methods of Operations Research, Vol. 65, No. 3, 461-481, doi: 10.1007/s00186-006-0127-
8.

[10] Candan, G., Yazgan, H.R. (2015). Genetic algorithm parameter optimisation using Taguchi method for a flexible
manufacturing system scheduling problem, International Journal of Production Research, Vol. 53, No. 3, 897-915,
doi: 10.1080/00207543.2014.939244.

[11] Ojstersek, R., Lalic, D., Buchmeister, B. (2019). A new method for mathematical and simulation modelling
interactivity: A case study in flexible job shop scheduling, Advances in Production Engineering & Management,
Vol. 14, No. 4, 435-448, doi: 10.14743/apem2019.4.339.

[12] Borreguero-Sanchidrián, T., Pulido, R., García-Sánchez, Á., Ortega-Mier, M. (2018). Flexible job shop scheduling
with operators in aeronautical manufacturing: A case study, IEEE Access, Vol. 6, 224-233, doi: 10.1109/
ACCESS.2017.2761994.

[13] Nidhiry, N.M., Saravanan, R. (2014). Scheduling optimization of a flexible manufacturing system using a modified
NSGA-II algorithm, Advances in Production Engineering & Management, Vol. 9, No. 3, 139-151, doi: 10.14743/
apem2014.3.183.

[14] Hecker, F.T., Hussein, W.B., Paquet-Durand, O., Hussein, M.A., Becker, T. (2013). A case study on using
evolutionary algorithms to optimize bakery production planning, Expert Systems with Applications, Vol. 40, No.
17, 6837-6847, doi: 10.1016/j.eswa.2013.06.038.

[15] Amjad, M.K., Butt, S.I., Kousar, R., Ahmad, R., Agha, M.H., Faping, Z., Anjum, N., Asgher, U. (2018). Recent research
trends in genetic algorithm based flexible job shop scheduling problems, Mathematical Problems in Engineering,
Vol. 2018, No. 32, Article ID 9270802, doi: 10.1155/2018/9270802.

[16] Zhang, J., Ding, G., Zou, Y., Qin, S., Fu, J. (2019). Review of job shop scheduling research and its new perspectives
under Industry 4.0, Journal of Intelligent Manufacturing, Vol. 30, No. 4, 1809-1830, doi: 10.1007/s10845-017-
1350-2.

[17] Janes, G., Perinic, M., Jurkovic, Z. (2017). An efficient genetic algorithm for job shop scheduling problems,
Tehnički Vjesnik – Technical Gazette, Vol. 24, No. 4, 1243-1247, doi: 10.17559/TV-20150527133957.

[18] Chaudhry, I.A., Khan, A.A. (2016). A research survey: Review of flexible job shop scheduling techniques,
International Transactions in Operational Research, Vol. 23, No. 3, 551-591, doi: 10.1111/itor12199.

[19] Çaliş, B., Bulkan, S. (2015). A research survey: Review of AI solution strategies of job shop scheduling problem,
Journal of Intelligent Manufacturing, Vol. 26, No. 5, 961-973, doi: 10.1007/s10845-013-0837-8.

[20] Ida, K., Oka, K. (2011). Flexible job-shop scheduling problem by genetic algorithm, Electrical Engineering in
Japan, Vol. 177, No. 3, 28-35, doi: 10.1002/eej.21194.

[21] Kacem, I., Hammadi, S., Borne, P. (2002). Approach by localization and multiobjective evolutionary optimization
for flexible job-shop scheduling problems, IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), Vol. 32, No. 1, 1-13, doi: 10.1109/TSMCC.2002.1009117.

[22] Gao, J., Gen, M., Sun, L., Zhao, X. (2007). A hybrid of genetic algorithm and bottleneck shifting for multiobjective
flexible job shop scheduling problems, Computers & Industrial Engineering, Vol. 53, No. 1, 149-162, doi:
10.1016/j.cie.2007.04.010.

[23] Pezzella, F., Morganti, G., Ciaschetti, G. (2008). A genetic algorithm for the flexible job-shop scheduling problem,
Computers & Operations Research, Vol. 35, No. 10, 3202-3212, doi: 10.1016/j.cor.2007.02.014.

[24] Gu, X., Huang, M., Liang, X. (2019). An improved genetic algorithm with adaptive variable neighborhood search
for FJSP, Algorithms, Vol. 12, No. 11, Article No. 243, doi: 10.3390/a12110243.

[25] Wang, L., Luo, C., Cai, J. (2017). A variable interval rescheduling strategy for dynamic flexible job shop scheduling
problem by improved genetic algorithm, Journal of Advanced Transportation, Vol. 2017, Article ID 1527858, doi:
10.1155/2017/1527858.

388 Advances in Production Engineering & Management 15(4) 2020

https://doi.org/10.1007/978-1-4614-2361-4
https://doi.org/10.1007/978-1-4614-2361-4
https://doi.org/10.1080/00207543.2013.824627
https://doi.org/10.1007/978-3-642-46804-9
https://doi.org/10.4995/ijpme.2017.6618
https://doi.org/10.4995/ijpme.2017.6618
https://doi.org/10.1002/9781118731598.ch2
https://doi.org/10.1002/9781118731598.ch2
https://doi.org/10.17559/TV-20151121212910
https://doi.org/10.1016/j.ejor.2015.06.076
https://doi.org/10.1016/j.ejor.2015.06.076
https://doi.org/10.1007/s00186-006-0127-8
https://doi.org/10.1007/s00186-006-0127-8
https://doi.org/10.1080/00207543.2014.939244
https://doi.org/10.14743/apem2019.4.339
https://doi.org/10.1109/ACCESS.2017.2761994
https://doi.org/10.1109/ACCESS.2017.2761994
https://doi.org/10.14743/apem2014.3.183
https://doi.org/10.14743/apem2014.3.183
https://doi.org/10.1016/j.eswa.2013.06.038
https://doi.org/10.1155/2018/9270802
https://doi.org/10.1007/s10845-017-1350-2
https://doi.org/10.1007/s10845-017-1350-2
https://doi.org/10.17559/TV-20150527133957
https://doi.org/10.1111/itor.12199
https://doi.org/10.1007/s10845-013-0837-8
https://doi.org/10.1002/eej.21194
https://doi.org/10.1109/TSMCC.2002.1009117
https://doi.org/10.1016/j.cie.2007.04.010
https://doi.org/10.1016/j.cie.2007.04.010
https://doi.org/10.1016/j.cor.2007.02.014
https://doi.org/10.3390/a12110243
https://doi.org/10.1155/2017/1527858
https://doi.org/10.1155/2017/1527858

A layered genetic algorithm with iterative diversification for optimization of flexible job shop scheduling problems

[26] Xiong, J., Tan, X., Yang, K.-W., Xing, L.-N., Chen, Y.-W. (2012). A hybrid multiobjective evolutionary approach for
flexible job-shop scheduling problems, Mathematical Problems in Engineering, Vol. 2012, Article ID 478981, doi:
10.1155/2012/478981.

[27] Teekeng, W., Thammano, A. (2012). Modified genetic algorithm for flexible job-shop scheduling problems,
Procedia Computer Science, Vol. 12, 122-128, doi: 10.1016/j.procs.2012.09.041.

[28] Framinan, J.M., Leisten, R., García, R.R. (2014). Manufacturing scheduling systems, Springer-Verlag, London,
United Kingdom, doi: 10.1007/978-1-4471-6272-8.

[29] Zhang, G., Gao, L., Shi, Y. (2011). An effective genetic algorithm for the flexible job-shop scheduling problem,
Expert Systems with Applications, Vol. 38, No. 4, 3563-3573, doi: 10.1016/j.eswa.2010.08.145.

[30] Fattahi, P., Saidi Mehrabad, M., Jolai, F. (2007). Mathematical modeling and heuristic approaches to flexible job
shop scheduling problems, Journal of Intelligent Manufacturing, Vol. 18, No. 3, 331-342, doi: 10.1007/s10845-
007-0026-8.

[31] Song, W.J., Zhang, C.Y., Lin, W.W., Shao, X.Y. (2014). Flexible job-shop scheduling problem with maintenance
activities considering energy consumption, Applied Mechanics and Materials, Vol. 521, 707-713, doi:
10.4028/www.scientific.net/AMM.521.707.

[32] De Giovanni, L., Pezzella, F. (2010). An improved genetic algorithm for the distributed and flexible job-shop
scheduling problem, European Journal of Operational Research, Vol. 200, No. 2, 395-408, doi: 10.1016/
j.ejor.2009.01.008.

[33] Nouri, H.E., Driss, O.B., Ghédira, K. (2017). Solving the flexible job shop problem by hybrid metaheuristics-based
multiagent model, Journal of Industrial Engineering International, Vol. 14, 1-14, doi: 10.1007/s40092-017-0204-
z.

[34] Zandieh, M., Mahdavi, I., Bagheri, A. (2008). Solving the flexible job-shop scheduling problem by a genetic
algorithm, Journal of Applied Sciences, Vol. 8, No. 24, 4650-4655, doi: 10.3923/jas.2008.4650.4655.

[35] Bagheri, A., Zandieh, M., Mahdavi, I., Yazdani, M. (2010). An artificial immune algorithm for the flexible job-shop
scheduling problem, Future Generation Computer Systems, Vol. 26, No. 4, 533-541, doi: 10.1016/j.future.
2009.10.004.

[36] Behnke, D., Geiger, M.J. (2012). Test instances for the flexible job shop scheduling problem with work centers,
Universitätsbibliothek der Helmut-Schmidt-Universität, Hamburg, Germany, from
https://d-nb.info/1023241773/34, accessed May 2020.

Advances in Production Engineering & Management 15(4) 2020 389

https://doi.org/10.1155/2012/478981
https://doi.org/10.1155/2012/478981
https://doi.org/10.1016/j.procs.2012.09.041
https://doi.org/10.1007/978-1-4471-6272-8
https://doi.org/10.1016/j.eswa.2010.08.145
https://doi.org/10.1007/s10845-007-0026-8
https://doi.org/10.1007/s10845-007-0026-8
https://doi.org/10.4028/www.scientific.net/AMM.521.707
https://doi.org/10.4028/www.scientific.net/AMM.521.707
https://doi.org/10.1016/j.ejor.2009.01.008
https://doi.org/10.1016/j.ejor.2009.01.008
https://doi.org/10.1007/s40092-017-0204-z
https://doi.org/10.1007/s40092-017-0204-z
https://doi.org/10.3923/jas.2008.4650.4655
https://doi.org/10.1016/j.future.2009.10.004
https://doi.org/10.1016/j.future.2009.10.004

