23,040 research outputs found

    Feasibility study of a simulation software tool development for dynamic modelling and transient control of adiabatic compressed air energy storage with its electrical power system applications

    Get PDF
    The field of large-scale electrical energy storage is growing rapidly in both academia and industry, which has driven a fast increase in the research and development on adiabatic compressed air energy storage. The significant challenge of adiabatic compressed air energy storage with its thermal energy storage is in the complexity of the system dynamic characteristics arising from the multi-physical (pneumatic, thermal, mechanical and electrical) processes. This has led to a strong demand for simulation software tools specifically for dynamic modelling and transient control of relevant multi-scale components, subsystems and whole systems with different configurations. The paper presents a feasibility study of a simulation tool development implemented by the University of Warwick Engineering team to achieve this purpose. The developed tool includes a range of validated simulation models from the fields of pneumatics, thermodynamics, heat transfer, electrical machines and power grids. The structure of the developed tool is introduced and a component library is built up on the Matlab/Simulink platform. The mathematical descriptions of key components are presented, which precedes a presentation of four case studies of different applications. The case studies demonstrate that the simulation software tool can be used for dynamic modelling of multi-scale adiabatic compressed air energy storage components and systems, real performance analysis, dynamic control strategy implementation and feasibility studies of applications of adiabatic compressed air energy storage integrated with power grids. The paper concludes that the continued development and use of such a tool is both feasible and valuable

    Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency

    Get PDF
    Among the known energy storage technologies aiming to increase the efficiency and stability of power grids, Pumped Heat Energy Storage (PHES) is considered by many as a promising candidate because of its flexibility, potential for scale-up and low cost per energy storage unit. Whilst there are numerous demonstration systems under development, as it stands the only PHES demonstration system to be realised at scale is located in Hampshire, UK. This paper aims to present the results and analysis obtained from its commissioning and testing as part of an on-going study. The system was designed to offer a nominal power size of 150 kWe and energy storage capacity of 600 kWhe for an 8-hour storage cycle. This work presents evidence of the system Round-trip efficiency (RTE), which is considered as a fundamental performance metric for large-scale energy storage technologies. Recorded Pressure-Volume (P-V) measurements from recent heat pump/engine testing at part-load offers useful insight in terms of overall performance. Models are also developed to simulate the system to finally predict the performance at full-load conditions. The system and principle of operation are described first, followed by mathematical modelling outlining heat transfer mechanism and associated key losses involved in thermodynamic processes within components, and finally results are presented and compared at different operating conditions using different working gases. The results show good agreement with earlier studies, which indicate that expected electricity-to-electricity RTE is quite comparable to other mature technologies such as Pumped Hydropower Storage and Compressed Air Energy Storage. The cyclic operation of the system is also discussed. One-off storage cycle results in lower RTEs compared to a load-levelling cyclic operation where the efficiency is significantly improved due to stable packed-bed behaviour and better utilisation after an initial transient state

    Energetical analysis of two different configurations of a liquid-gas compressed energy storage

    Get PDF
    In order to enhance the spreading of renewable energy sources in the Italian electric power market, as well as to promote self-production and to decrease the phase delay between energy production and consumption, energy storage solutions are catching on. Nowadays, in general, small size electric storage batteries represent a quite diffuse technology, while air liquid-compressed energy storage solutions are used for high size. The goal of this paper is the development of a numerical model for small size storage, environmentally sustainable, to exploit the higher efficiency of the liquid pumping to compress air. Two different solutions were analyzed, to improve the system efficiency and to exploit the heat produced by the compression phase of the gas. The study was performed with a numerical model implemented in Matlab, by analyzing the variation of hermodynamical parameters during the compression and the expansion phases, making an energetic assessment for the whole system. The results show a good global efficiency, thus making the system competitive with the smallest size storage batteries

    Short-term Self-Scheduling of Virtual Energy Hub Plant within Thermal Energy Market

    Get PDF
    Multicarrier energy systems create new challenges as well as opportunities in future energy systems. One of these challenges is the interaction among multiple energy systems and energy hubs in different energy markets. By the advent of the local thermal energy market in many countries, energy hubs' scheduling becomes more prominent. In this article, a new approach to energy hubs' scheduling is offered, called virtual energy hub (VEH). The proposed concept of the energy hub, which is named as the VEH in this article, is referred to as an architecture based on the energy hub concept beside the proposed self-scheduling approach. The VEH is operated based on the different energy carriers and facilities as well as maximizes its revenue by participating in the various local energy markets. The proposed VEH optimizes its revenue from participating in the electrical and thermal energy markets and by examining both local markets. Participation of a player in the energy markets by using the integrated point of view can be reached to a higher benefit and optimal operation of the facilities in comparison with independent energy systems. In a competitive energy market, a VEH optimizes its self-scheduling problem in order to maximize its benefit considering uncertainties related to renewable resources. To handle the problem under uncertainty, a nonprobabilistic information gap method is implemented in this study. The proposed model enables the VEH to pursue two different strategies concerning uncertainties, namely risk-averse strategy and risk-seeker strategy. For effective participation of the renewable-based VEH plant in the local energy market, a compressed air energy storage unit is used as a solution for the volatility of the wind power generation. Finally, the proposed model is applied to a test case, and the numerical results validate the proposed approach

    Modelling study, efficiency analysis and optimisation of large-scale adiabatic compressed air energy storage systems with low-temperature thermal storage

    Get PDF
    The key feature of Adiabatic Compressed Air Energy Storage (A-CAES) is the reuse of the heat generated from the air compression process at the stage of air expansion. This increases the complexity of the whole system since the heat exchange and thermal storage units must have the capacities and performance to match the air compression/expansion units. Thus it raises a strong demand in the whole system modelling and simulation tool for A-CAES system optimisation. The paper presents a new whole system mathematical model for A-CAES with simulation implementation and the model is developed with consideration of lowing capital cost of the system. The paper then focuses on the study of system efficiency improvement strategies via parametric analysis and system structure optimisation. The paper investigates how the system efficiency is affected by the system component performance and parameters. From the study, the key parameters are identified, which give dominant influences in improving the system efficiency. The study is extended onto optimal system configuration and the recommendations are made for achieving higher efficiency, which provides a useful guidance for A-CAES system design

    Feasibility study of a hybrid wind turbine system - integration with compressed air energy storage

    Get PDF
    The paper presents a new hybrid wind turbine system that is formed by a direct mechanical shaft connection of the wind turbine with an air expander, which converts stored compressed air energy to mechanical energy. A power split device is designed to synthesize the power delivered by the wind turbine and the air expander. The study is conducted to understand the relationship between the power delivered wind and compressed air energy. A small scale hybrid wind turbine system is mathematically modelled, analyzed and verified using a laboratory experimental test rig. By utilizing the compressed air energy storage, it is shown that the hybrid wind turbine system can provide smooth power output under wind speed variations. Such a direct connection structure reduces the overall system costs by using one generator instead of two. The study demonstrates the benefit of improved efficiency brought to the turbine operation by the hybridization of wind energy and the stored energy

    Demand-Response Application in Wastewater Treatment Plants Using Compressed Air Storage System: A Modelling Approach

    Get PDF
    Wastewater treatment plants (WWTPs) are known to be one of the most energy-intensive industrial sectors. In this work, demand response was applied to the biological phase of wastewater treatment to reduce plant electricity cost, considering that the daily peak in flowrate typically coincides with the maximum electricity price. Compressed air storage system, composed of a compressor and an air storage tank, was proposed to allow energy cost reduction. A multi-objective modelling approach was applied by analyzing dierent scenarios (with and without anaerobic digestion, AD), considering both plant characteristics (in terms of treated flowrate and influent chemical oxygen demand, COD, concentration) and storage system properties (volume, air pressure), together with the current Italian market economic conditions. The results highlight that air tank volume has a strong positive influence on the obtainable economic savings, with a less significant impact held by air pressure, COD concentration and flowrate. In addition, biogas exploitation from AD led to an improvement in economic indices. The developed model is highly flexible and can be applied to dierent WWTPs and market conditions

    Exergy storage of compressed air in cavern and cavern volume estimation of the large-scale compressed air energy storage system

    Get PDF
    Accurate estimation of the energy storage capacity of a cavern with a defined storage volume and type is the very first step in planning and engineering a Compressed Air Energy Storage (CAES) plant. The challenges in obtaining a reliable estimation arise in the complexity associated with the thermodynamics of the internal air compression and expansion processes and the coupled heat transfer with surroundings. This study developed the methodology for estimating the exergy storage capacity with a known cavern volume, as well as the cavern volume required for a defined exergy storage capacity with different operation and heat transfer conditions. The work started by developing the mathematical models of the thermodynamic responses of air in a cavern subject to cavern operation in isochoric uncompensated or isobaric compensated modes, and heat transfer conditions including isothermal, convective heat transfer (CHT) and adiabatic wall conditions. The simulated transient air pressure and temperature were verified with the operational data of the Huntorf CAES plant. The study of the Huntorf CAES cavern confirmed the importance of the heat transfer influence on the energy conversion performance. The increase of mass storage due to the reduced temperature variation leads to an enhanced total exergy storage of the cavern. According to our simulations, within the operating range of the Huntorf plant, 34.77% more exergy after the charging and 37.98% more exergy after throttling can be stored in the cavern with isothermal wall condition than those in the cavern with adiabatic wall condition. Also, the nearly isothermal behaviour and high operating pressure in the compensated isobaric cavern resulted in the high effectiveness of exergy storage per unit cavern volume. The required cavern volume of the assumed isobaric cavern operation can be reduced to only 35% of the current cavern volume at the Huntorf plant. Finally, cavern volumes for an operational gas storage facility were used to demonstrate the methodology in estimating the exergy storage capacity, which provided an initial assessment of the storage capacity in the UK

    Carbon capture from natural gas combined cycle power plants: Solvent performance comparison at an industrial scale

    Get PDF
    Natural gas is an important source of energy. This article addresses the problem of integrating an existing natural gas combined cycle (NGCC) power plant with a carbon capture process using various solvents. The power plant and capture process have mutual interactions in terms of the flue gas flow rate and composition vs. the extracted steam required for solvent regeneration. Therefore, evaluating solvent performance at a single (nominal) operating point is not indicative and solvent performance should be considered subject to the overall process operability and over a wide range of operating conditions. In the present research, a novel optimization framework was developed in which design and operation of the capture process are optimized simultaneously and their interactions with the upstream power plant are fully captured. The developed framework was applied for solvent comparison which demonstrated that GCCmax, a newly developed solvent, features superior performances compared to the monoethanolamine baseline solvent

    Model development and simulating of a spinning cone evaporator : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology at Institute of Technology and Engineering, Massey University, Palmerston North, New Zealand

    Get PDF
    The idea of milk pre-concentration at the farm has attracted worldwide interest for many years. A new pilot-scale evaporator (called spinning cone evaporator), which can be operated on the farm and has a compact and efficient design, has been developed at Massey University. However, there is a shortage of knowledge on the design, operation and control of this new evaporator. The main goal of this thesis is to develop a dynamic mathematical model in order to better utilize this evaporator and make further developments. This thesis consists of three parts. Firstly, a first-principles model of a pilot scale spinning cone evaporator is developed using the sub-system modelling techniques of the evaporator from the Laws of Thermodynamics and the general mass and energy balances. The model is dynamic and includes the evaporator, the compressor, the condenser and the product transport sections. The system model describes the dynamic relationships between the input variables (cooling water flowrate, M c , speed of compressor, N comp , feed flowrate, M f , feed temperature, T f and mass composition of feed dry matter, W f ) and the output variables (outlet temperature of cooling water, T co , evaporating temperature, T e , mass composition of product dry matter, w p and product flowrate, M p ), Secondly, the evaporator model was implemented using the software package Matlab along with its dynamic simulation environment Simulink. The differential equations for the evaporator model are embedded in a block diagram representation of the evaporator system. The evaporator Simulink model is divided into three levels, the blocks at the top represent the overall model and global constants used in it. The second level contains the individual sub-systems and the bottom level elements within each sub-system. Results of the model verification are satisfactory. Finally, the model validation is presented for both steady state and dynamic comparisons. The product flowrate (except in the case of feed temperature changes) and evaporation temperature can be predicted at a given time, and the outlet temperature of cooling water and product dry matter composition can also be predicted at a steady state. It can be seen that the results predicted using this spinning cone evaporator model, which accounts for the varying concentrate flowrate and evaporation temperature with time, are in good agreement with experimental data. This model provides a valuable tool to predict performance in a spinning cone evaporator and to modify the design parameters
    • …
    corecore