5 research outputs found

    On the Boundedness Problem for Higher-Order Pushdown Vector Addition Systems

    Get PDF
    International audienceKarp and Miller's algorithm is a well-known decision procedure that solves the termination and boundedness problems for vector addition systems with states (VASS), or equivalently Petri nets. This procedure was later extended to a general class of models, well-structured transition systems, and, more recently, to pushdown VASS. In this paper, we extend pushdown VASS to higher-order pushdown VASS (called HOPVASS), and we investigate whether an approach à la Karp and Miller can still be used to solve termination and boundedness.We provide a decidable characterisation of runs that can be iterated arbitrarily many times, which is the main ingredient of Karp and Miller's approach. However, the resulting Karp and Miller procedure only gives a semi-algorithm for HOPVASS. In fact, we show that coverability, termination and boundedness are all undecidable for HOPVASS, even in the restricted subcase of one counter and an order 2 stack. On the bright side, we prove that this semi-algorithm is in fact an algorithm for higher-order pushdown automata

    Stronger Connections Between Circuit Analysis and Circuit Lower Bounds, via PCPs of Proximity

    Get PDF
    We considerably sharpen the known connections between circuit-analysis algorithms and circuit lower bounds, show intriguing equivalences between the analysis of weak circuits and (apparently difficult) circuits, and provide strong new lower bounds for approximately computing Boolean functions with depth-two neural networks and related models. - We develop approaches to proving THR o THR lower bounds (a notorious open problem), by connecting algorithmic analysis of THR o THR to the provably weaker circuit classes THR o MAJ and MAJ o MAJ, where exponential lower bounds have long been known. More precisely, we show equivalences between algorithmic analysis of THR o THR and these weaker classes. The epsilon-error CAPP problem asks to approximate the acceptance probability of a given circuit to within additive error epsilon; it is the "canonical" derandomization problem. We show: - There is a non-trivial (2^n/n^{omega(1)} time) 1/poly(n)-error CAPP algorithm for poly(n)-size THR o THR circuits if and only if there is such an algorithm for poly(n)-size MAJ o MAJ. - There is a delta > 0 and a non-trivial SAT (delta-error CAPP) algorithm for poly(n)-size THR o THR circuits if and only if there is such an algorithm for poly(n)-size THR o MAJ. Similar results hold for depth-d linear threshold circuits and depth-d MAJORITY circuits. These equivalences are proved via new simulations of THR circuits by circuits with MAJ gates. - We strengthen the connection between non-trivial derandomization (non-trivial CAPP algorithms) for a circuit class C, and circuit lower bounds against C. Previously, [Ben-Sasson and Viola, ICALP 2014] (following [Williams, STOC 2010]) showed that for any polynomial-size class C closed under projections, non-trivial (2^{n}/n^{omega(1)} time) CAPP for OR_{poly(n)} o AND_{3} o C yields NEXP does not have C circuits. We apply Probabilistic Checkable Proofs of Proximity in a new way to show it would suffice to have a non-trivial CAPP algorithm for either XOR_2 o C, AND_2 o C or OR_2 o C. - A direct corollary of the first two bullets is that NEXP does not have THR o THR circuits would follow from either: - a non-trivial delta-error CAPP (or SAT) algorithm for poly(n)-size THR o MAJ circuits, or - a non-trivial 1/poly(n)-error CAPP algorithm for poly(n)-size MAJ o MAJ circuits. - Applying the above machinery, we extend lower bounds for depth-two neural networks and related models [R. Williams, CCC 2018] to weak approximate computations of Boolean functions. For example, for arbitrarily small epsilon > 0, we prove there are Boolean functions f computable in nondeterministic n^{log n} time such that (for infinitely many n) every polynomial-size depth-two neural network N on n inputs (with sign or ReLU activation) must satisfy max_{x in {0,1}^n}|N(x)-f(x)|>1/2-epsilon. That is, short linear combinations of ReLU gates fail miserably at computing f to within close precision. Similar results are proved for linear combinations of ACC o THR circuits, and linear combinations of low-degree F_p polynomials. These results constitute further progress towards THR o THR lower bounds

    A tale of two packing problems : improved algorithms and tighter bounds for online bin packing and the geometric knapsack problem

    Get PDF
    In this thesis, we deal with two packing problems: the online bin packing and the geometric knapsack problem. In online bin packing, the aim is to pack a given number of items of different size into a minimal number of containers. The items need to be packed one by one without knowing future items. For online bin packing in one dimension, we present a new family of algorithms that constitutes the first improvement over the previously best algorithm in almost 15 years. While the algorithmic ideas are intuitive, an elaborate analysis is required to prove its competitive ratio. We also give a lower bound for the competitive ratio of this family of algorithms. For online bin packing in higher dimensions, we discuss lower bounds for the competitive ratio and show that the ideas from the one-dimensional case cannot be easily transferred to obtain better two-dimensional algorithms. In the geometric knapsack problem, one aims to pack a maximum weight subset of given rectangles into one square container. For this problem, we consider online approximation algorithms. For geometric knapsack with square items, we improve the running time of the best known PTAS and obtain an EPTAS. This shows that large running times caused by some standard techniques for geometric packing problems are not always necessary and can be improved. Finally, we show how to use resource augmentation to compute optimal solutions in EPTAS-time, thereby improving upon the known PTAS for this case.In dieser Arbeit betrachten wir zwei Packungsprobleme: Online Bin Packing und das geometrische Rucksackproblem. Bei Online Bin Packing versucht man, eine gegebene Menge an Objekten verschiedener Größe in die kleinstmögliche Anzahl an Behältern zu packen. Die Objekte müssen eins nach dem anderen gepackt werden, ohne zukünftige Objekte zu kennen. Für eindimensionales Online Bin Packing beschreiben wir einen neuen Algorithmus, der die erste Verbesserung gegenüber dem bisher besten Algorithmus seit fast 15 Jahren darstellt. Während die algorithmischen Ideen intuitiv sind, ist eine ausgefeilte Analyse notwendig um das Kompetitivitätsverhältnis zu beweisen. Für Online Bin Packing in mehreren Dimensionen geben wir untere Schranken für das Kompetitivitätsverhältnis an und zeigen, dass die Ideen aus dem eindimensionalen Fall nicht direkt zu einer Verbesserung führen. Beim geometrischen Rucksackproblem ist es das Ziel, eine größtmögliche Teilmenge gegebener Rechtecke in einen einzelnen quadratischen Behälter zu packen. Für dieses Problem betrachten wir Approximationsalgorithmen. Für das Problem mit quadratischen Objekten verbessern wir die Laufzeit des bekannten PTAS zu einem EPTAS. Die langen Laufzeiten vieler Standardtechniken für geometrische Probleme können also vermieden werden. Schließlich zeigen wir, wie Ressourcenvergrößerung genutzt werden kann, um eine optimale Lösung in EPTAS-Zeit zu berechnen, was das bisherige PTAS verbessert.Google PhD Fellowshi
    corecore