130 research outputs found

    Computational complexity aspects of super domination

    Get PDF
    Let G be a graph. A dominating set D ⊆ V (G) is a super dominating set if for every vertex x ∈ V (G) \ D there exists y ∈ D such that NG (y) ∩ (V (G) \ D)) = {x}. The cardinality of a smallest super dominating set of G is the super domination number of G. An exact formula for the super domination number of a tree T is obtained, and it is demonstrated that a smallest super dominating set of T can be computed in linear time. It is proved that it is NP-complete to decide whether the super domination number of a graph G is at most a given integer if G is a bipartite graph of girth at least 8. The super domination number is determined for all k-subdivisions of graphs. Interestingly, in half of the cases the exact value can be efficiently computed from the obtained formulas, while in the other cases the computation is hard. While obtaining these formulas, II-matching numbers are introduced and proved that they are computationally hard to determinepublishedVersio

    Approximate Hamilton decompositions of robustly expanding regular digraphs

    Get PDF
    We show that every sufficiently large r-regular digraph G which has linear degree and is a robust outexpander has an approximate decomposition into edge-disjoint Hamilton cycles, i.e. G contains a set of r-o(r) edge-disjoint Hamilton cycles. Here G is a robust outexpander if for every set S which is not too small and not too large, the `robust' outneighbourhood of S is a little larger than S. This generalises a result of K\"uhn, Osthus and Treglown on approximate Hamilton decompositions of dense regular oriented graphs. It also generalises a result of Frieze and Krivelevich on approximate Hamilton decompositions of quasirandom (di)graphs. In turn, our result is used as a tool by K\"uhn and Osthus to prove that any sufficiently large r-regular digraph G which has linear degree and is a robust outexpander even has a Hamilton decomposition.Comment: Final version, published in SIAM Journal Discrete Mathematics. 44 pages, 2 figure

    Perfect edge domination : hard and solvable cases

    Get PDF
    Let G be an undirected graph. An edge of Gdominates itself and all edges adjacent to it. A subset E′ of edges of G is an edge dominating set of G, if every edge of the graph is dominated by some edge of E′. We say that E′ is a perfect edge dominating set of G, if every edge not in E′ is dominated by exactly one edge of E′. The perfect edge dominating problem is to determine a least cardinality perfect edge dominating set of G. For this problem, we describe two NP-completeness proofs, for the classes of claw-free graphs of degree at most 3, and for bounded degree graphs, of maximum degree at most d≥ 3 and large girth. In contrast, we prove that the problem admits an O(n) time solution, for cubic claw-free graphs. In addition, we prove a complexity dichotomy theorem for the perfect edge domination problem, based on the results described in the paper. Finally, we describe a linear time algorithm for finding a minimum weight perfect edge dominating set of a P5-free graph. The algorithm is robust, in the sense that, given an arbitrary graph G, either it computes a minimum weight perfect edge dominating set of G, or it exhibits an induced subgraph of G, isomorphic to a P5.Fil: Lin, Min Chih. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; ArgentinaFil: Lozin, Vadim. University of Warwick; Reino UnidoFil: Moyano, Verónica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; ArgentinaFil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; Brasil. Instituto Nacional de Metrologia, Qualidade e Tecnologia; Brasi

    Revisiting path-type covering and partitioning problems

    Get PDF
    This is a survey article which is at the initial stage. The author will appreciate to receive your comments and contributions to improve the quality of the article. The author's contact address is [email protected] problems belong to the foundation of graph theory. There are several types of covering problems in graph theory such as covering the vertex set by stars (domination problem), covering the vertex set by cliques (clique covering problem), covering the vertex set by independent sets (coloring problem), and covering the vertex set by paths or cycles. A similar concept which is partitioning problem is also equally important. Lately research in graph theory has produced unprecedented growth because of its various application in engineering and science. The covering and partitioning problem by paths itself have produced a sizable volume of literatures. The research on these problems is expanding in multiple directions and the volume of research papers is exploding. It is the time to simplify and unify the literature on different types of the covering and partitioning problems. The problems considered in this article are path cover problem, induced path cover problem, isometric path cover problem, path partition problem, induced path partition problem and isometric path partition problem. The objective of this article is to summarize the recent developments on these problems, classify their literatures and correlate the inter-relationship among the related concepts

    Some problems in combinatorial topology of flag complexes

    Get PDF
    In this work we study simplicial complexes associated to graphs and their homotopical and combinatorial properties. The main focus is on the family of flag complexes, which can be viewed as independence complexes and clique complexes of graphs. In the first part we study independence complexes of graphs using two cofibre sequences corresponding to vertex and edge removals. We give applications to the connectivity of independence complexes of chordal graphs and to extremal problems in topology and we answer open questions about the homotopy types of those spaces for particular families of graphs. We also study the independence complex as a space of configurations of particles in the so-called hard-core models on various lattices. We define, and investigate from an algorithmic perspective, a special family of combinatorially defined homology classes in independence complexes. This enables us to give algorithms as well as NP-hardness results for topological properties of some spaces. As a corollary we prove hardness of computing homology of simplicial complexes in general. We also view flag complexes as clique complexes of graphs. That leads to the study of various properties of Vietoris-Rips complexes of graphs. The last result is inspired by a problem in face enumeration. Using methods of extremal graph theory we classify flag triangulations of 3-manifolds with many edges. As a corollary we complete the classification of face vectors of flag simplicial homology 3-spheres

    Extremal Problems For Transversals In Graphs With Bounded Degree

    Get PDF
    We introduce and discuss generalizations of the problem of independent transversals. Given a graph property {\user1{\mathcal{R}}} , we investigate whether any graph of maximum degree at most d with a vertex partition into classes of size at least p admits a transversal having property {\user1{\mathcal{R}}} . In this paper we study this problem for the following properties {\user1{\mathcal{R}}} : "acyclic”, "H-free”, and "having connected components of order at most r”. We strengthen a result of [13]. We prove that if the vertex set of a d-regular graph is partitioned into classes of size d+⌞d/r⌟, then it is possible to select a transversal inducing vertex disjoint trees on at most r vertices. Our approach applies appropriate triangulations of the simplex and Sperner's Lemma. We also establish some limitations on the power of this topological method. We give constructions of vertex-partitioned graphs admitting no independent transversals that partially settles an old question of Bollobás, Erdős and Szemerédi. An extension of this construction provides vertex-partitioned graphs with small degree such that every transversal contains a fixed graph H as a subgraph. Finally, we pose several open question
    corecore