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Abstract

In this work we study simplicial complexes associated to graphs and their 
homotopical and combinatorial properties. The main focus is on the family of flag 
complexes, which can be viewed as independence complexes and clique complexes 
of graphs.

In the first part we study independence complexes of graphs using two cofibre 
sequences corresponding to vertex and edge removals. We give applications to the 
connectivity of independence complexes of chordal graphs and to extremal problems 
in topology and we answer open questions about the homotopy types of those spaces 
for particular families of graphs. We also study the independence complex as a space 
of configurations of particles in the so-called hard-core models on various lattices.

We define, and investigate from an algorithmic perspective, a special family of 
combinatorially defined homology classes in independence complexes. This enables 
us to give algorithms as well as NP-hardness results for topological properties of 
some spaces. As a corollary we prove hardness of computing homology of simplicial 
complexes in general.

We also view flag complexes as clique complexes of graphs. That leads to 
the study of various properties of Vietoris-Rips complexes of graphs.

The last result is inspired by a problem in face enumeration. Using methods 
of extremal graph theory we classify flag triangulations of 3-manifolds with many 
edges. As a corollary we complete the classification of face vectors of flag simplicial 
homology 3-spheres.

vii



Chapter 1

Introduction

This chapter contains an overview of the contents of the thesis. Detailed introduc­
tions to the particular topics can be found in the respective chapters. In Section 1.2 
we collect the common notation and other basic prerequisites used throughout the 
work.

1.1 Overview

The objects we study in this work are simplicial complexes, combinatorial models 
of topological spaces. We are particularly interested in the subclass of simplicial 
complexes called flag. These are the maximal simplicial complexes with a given 
1-skeleton or, equivalently, the complexes with no missing faces other than edges. ' 
They include such well-studied families as barycentric subdivisions of simplicial 
complexes, Vietoris-Rips complexes of metric spaces, order complexes of posets, 
chessboard and matching complexes and many others. Finite flag complexes model 
all homeomorphism types of finite CW-complexes.

The main feature of a flag complex is that it is completely determined by its 
1-skeleton, which is a graph. Therefore there are two equivalent viewpoints of flag 
complexes: as clique complexes C1(G) and independence complexes 1(G) of graphs 
G. Their faces correspond, respectively, to the cliques and independent sets (stable 
sets) of G. The perspective of independence complexes dominates in Chapters 2 -  
6, while the clique-complex approach is followed in Chapters 7 and 8.

The tools which allow us to study independence complexes functorially are 
introduced in Chapter 2. They are based on two cofibre sequences which describe 
the behaviour of 1(G) under vertex and edge removals in G (Propositions 2.1 and
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2.4). This unified approach allows us to present simpler proofs of a number of known 
results.

This chapter also includes many elementary examples and applications based 
on those techniques. In Section 2.5 we present a counterexample to the general 
version of the Aharoni-Berger-Ziv conjecture about the connectivity of independence 
complexes and we give a new simple proof that the conjecture holds for chordal 
graphs. In Sections 2.6 we look at an extremal problem of maximizing the Betti 
number of a flag complex with a given number of vertices.

Chapter 2 is based on the results of [2] and [6],

In Chapter 3 we apply the splitting techniques of Chapter 2 to answer a 
question of Kozlov, who asked about the homotopy types of 7(C£). Here C£ denotes 
the r-th power of the cycle Cn, that is a graph in which two vertices of the n-cycle 
are adjacent if they are no more than r steps away. Our main result, Theorem 3.1 , 
gives a recursive formula for computing the homotopy type of 7(C£). This chapter 
contains the core result of the paper [2].

Chapter 4 is about algorithms and complexity for homology calculations 
in flag complexes. We first set up a construction (Definition 4.1) which produces a 
non-zero homology class, called a cross-cycle, in 77* (7(G)). In combinatorial terms 
it is determined by a specific type of induced matching in G, making it an appealing 
object from the point of view of algorithmic graph theory. In Theorem 4.7 we 
show that for chordal graphs G cross-cycles generate 77* (7(G)). It suggests that 
some topological properties of 1(G) might be efficiently decidable for such graphs.' 
Indeed, in Section 4.4 we sketch an algorithm which decides the contractibility of 
1(G) for a chordal graph G in polynomial time.

This result has a hardness counterpart, Theorem 4.25, which is the NP- 
hardness of deciding whether a specified homology group of 1(G) is non-zero. As a 
corollary we obtain, in Theorem 4.27, that computing homology groups of arbitrary 
simplicial complexes given by a list of facets is NP-hard. It appears that this is the 
first proof of this fact, however obvious and well-known it would seem to be.

Chapter 4 contains the results of the paper [8].

Chapters 5 and 6 are inspired by the interpretation of the independence 
complex as a space of configurations in a hard-core interaction model on a graph. 
In this model we consider particles in the vertices of the graph with the restriction 
that two particles cannot occupy the same spot or two adjacent spots simultaneously, 
hence all possible configurations form precisely the independence complex of the 
graph. For a more detailed introduction to this framework, see Section 5.1.
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Figure 1.1: An approximate poset of dependencies between the chapters.

In Chapter 5, we investigate the phenomenon of superfrustration, which 
occurs when the total Betti number of I (G) is exponential in the number of vertices 
of G as the size of G increases. We provide a proof of superfrustration for certain 
shapes of lattice graphs which are of interest in physics (Proposition 5.2). The 
main tool are the homology classes introduced in Chapter 4. In Section 5.4 we also 
improve the corresponding upper bounds on the Betti numbers of /(G ) for such 
lattice graphs. This chapter is based on the preprint [4],

In Chapter 6 we restrict the hard-core model to the hard-squares model, 
which means studying independence complexes of rectangular grids. Those spaces 
are notoriously difficult to identify, but their Euler characteristics are more tractable 
and display interesting regularities.

In Theorem 6.1 we show how to lift some existing results about the period- 
icity of Euler characteristic to actual homotopy equivalences for some grids of small 
sizes. We use the techniques of Chapter 2. In the second part we derive generating 
functions for the Euler characteristic of a particular family of square grids, namely 
cylinders of even circumference. This complements some results by Jonsson. We 
find many regularities which lead to periodicity conjectures. In the last section one 
such conjecture is phrased in terms of a particularly simple combinatorial model.

The contents of this chapter appears in the preprint [5].

In Chapter 7 we treat flag complexes as clique complexes of graphs. Every 
graph G has canonical homomorphisms G Gr into its higher powers and we 
study the induced maps of clique complexes. Geometrically the spaces Cl(Gr) are 
the Vietoris-Rips complexes of the graph G treated as a metric space.

One of our main results, Theorem 7.9, shows the universality of those spaces, 
which means that for any r every simplicial complex is homotopy equivalent to one 
of the form Cl(Gr). The surprise factor of this result is that the graphs of the form
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Gr for r >  2 are of quite special form, so one would expect (as the author first did), 
that their clique complexes would also be distinguished in some way. The proof of 
universality is an application of the nerve lemma together with the analysis of some 
shortest paths in iterated barycentric subdivisions.

In Section 7.5 we completely describe clique complexes of line graphs and 
related constructions. Section 7.6 ends this chapter with a calculation of C1(C£) 
which is, in a sense, dual to that of Chapter 3. It is an application of the recent 
technique of star clusters by Barmak.

The results of this chapter will appear in the paper [3].

Face enumeration is one of the main branches of combinatorial topology. 
In Chapter 8 we study the face numbers of flag simplicial 3-spheres, and, more 
generally, flag 3-manifolds. The main result is Theorem 8.2. We show that a flag 
3-manifold with high edge density is a join of two polygons, hence a 3-sphere. As 
a consequence we obtain an almost complete classification of face vectors of flag 
3-spheres, as conjectured by Gal (Conjecture 8.1).

W e  use methods from another major branch of modern combinatorics: ex­
tremal graph theory. This is possible because the Dehn-Sommerville relations com­
bined with an appropriate stable version of Turan’s theorem allow us to conclude 
that the 1-skeleton of a very dense flag manifold is very similar to a complete bi­
partite graph. For a more detailed, but still not too technical description, see the 
beginning of Section 8.2. To the author’s best knowledge it is the first application 
of such techniques in this area.

The contents of this chapter appears in the preprint [7].

1.2 Notation

In this section we establish the minimal amount of common notation and prereq­
uisites required throughout this work. More specific definitions and results are 
introduced when they are first used.

Graphs

The reference for notions related to graph theory is [19],

We work with finite, undirected graphs without loops or multiple edges. We 
write V(G) and E(G), respectively, for the set of vertices and edges of G. Edges will 
be denoted by e =  (u, v) or simply e =  uv. For a vertex v of G the neighbourhood 
is Ng {v) =  {rv : vw € E {G )} and the closed neighbourhood is NG[v] =  Ng (v)\J{v}.
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If there is no danger of ambiguity we will write just N(v)  and N[v]. If e — (u, v) is 
any pair of vertices (not necessarily an edge), we write IV[e] =  N[u] U N[v] for the 
closed neighbourhood of e. In general, if X  C V(G)  is any subset then we define 
N[X] =  UxexN[x) .

For a subset W  C V(G)  of the vertices let G[W] denote the subgraph of G 
induced by W.  We are going to write G \ v  and G \ W  instead of the more correct 
G\V{G) \ {u}] and G[F(G) \ W]. The notation G — e or G U e means G with the 
edge e removed or added.

A subset a C V (G) is a clique if every two vertices in a are adjacent. A 
subset a C V(G)  is an independent set if every two vertices in a are non-adjacent.

A vertex v of G is called simplicial if G[IV(v)] is a non-empty clique. This is 
a most unfortunate name, given all other meanings of the word “simplicial” in this 
thesis, but it is traditionally used in graph theory.

A graph G is called discrete if E(G) =  0 and empty if V (G) =  0. A graph is 
called a cone if there is a vertex v such that N g [v] =  V(G). A set X  C V(G)  is a 
dominating set if IVg [A] =  V(G).

The girth of a graph is the length of its shortest cycle or oo for a forest. The 
symbol G denotes the complement of G and U is the disjoint union of graphs.

We write distc(u, w) for the length of the shortest path in G from u to v. For 
a graph G and integer r > 0 the r-th power Gr is the graph with vertex set V (G) 
in which two vertices are adjacent if and only if their distance in G is at most r.

The symbols K n, Cn, Pn denote, respectively, the complete graph, cycle and 
path with n vertices. They are understood to be the empty graph when n < 0.

Since chordal graphs play a role in a number of points in this work, we will 
briefly review their most important properties. For a deeper treatment the reader 
is referred to [19, Chapter 9].

A graph G is chordal if it has no induced cycle of length greater than 3. It is 
a very classical and well-studied class of graphs. One sees from the definition that 
the property of being chordal is hereditary, i.e. if G is chordal then so is G \ v for 
any v G F(G). The following is a classical fact about chordal graphs (see [19, Thm. 
9.21], originally [30]).

Fact 1.1. A chordal graph has a simplicial vertex.

By removing a simplicial vertex we obtain a smaller chordal graph, which 
again has a simplicial vertex etc. The order in which the vertices are removed is 
called the perfect elimination ordering of a chordal graph. As a consequence we get:
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Fact 1.2. A graph is chordal if and only if it has a perfect elimination order, i.e. the 
vertices of G can be arranged in a sequence v \ ,.. .,v n such that the neighbourhood 
of V{ in G[vi, . . . ,  un] is a clique for i =  1, . . . ,  n — 1 .

Sirnplicial topology

The references for simplicial complexes and liomotopy theory are [72, 51] and an 
excellent concise introduction can be found in [96, Chapter 0.3].

A simplicial complex K  will normally be thought of as either a collection 
of faces or a topological space (the geometric realization) without any change in 
notation. It will always be clear from the context which interpretation is used.

If K  and L are two simplicial complexes with disjoint vertex sets then the 
join K  * L is a simplicial complex with vertex set V(K)  U V(L) whose faces are all 
unions t Uct for r G K, a E L. It is a standard fact that Sk *Sl = Sk+l+i for spheres 
Sk, Sl with k, l >  —1. The cone C K  is the join of K  with one point (the apex) and 
the unreduced suspension is UK =  S° * K.  The symbol U is the disjoint union of 
complexes. By K ^  we denote the n-dimensional skeleton of K.  Every graph can 
be treated as a 1-dimensional simplicial complex.

We also have induced subcomplexes. If IT is a subset of the vertices of K  
then K[W] denotes the subcomplex induced by IT, i.e. the simplicial complex with 
vertices IT whose faces are all the faces of K  contained in IT. If a is a vertex of any 
simplicial complex K  then we define the link Ik^-(a), star st^(a) and deletion K \ v  
in the usual way [72].

The reduced homology and cohomology groups of K , denoted H*(K), H*(K), 
are the homology groups of the augmented chain, resp. cochain complex of K.  Un­
less otherwise indicated, we use either integer or rational coefficients and omit them 
from notation. We have HifEK)  =  Hi_\(K). There is a standard bilinear pairing, 
denoted {•,•):

( -r):Hi(K)®Hi( K ) ^ Q

given by evaluating cochains on chains. The i-th reduced Betti number is 0i(K) =  
dim Hi(K) and the total Betti number of K  is

p(K)  =  Y ,P i (K ) -
i

It satisfies /?(£ K) =  (3(K). We denote by x(K)  the reduced Euler characteristic of 
K.

Note the empty simplicial complex 0 which has no vertices and a unique
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face 0. It satisfies £ 0  =  5°, so it is good to think of it as S 1. It has a single 
reduced homology group H -1(0) =  Q and in particular /3(0) =  1 . Of course for 
every non-empty space K  we have HfiK) =  0 for i < 0.

We recall the basic language of cofibre sequences. For any continuous map 
/  : A —» X  the homotopy cofibre (or mapping cone) is the space

C ( f )  =  (X U (A x [0, l ] ) ) / / (a )  ~  (a, 1), (a, 0) ~  (a', 0).

If /  : A <—► X  is a subcomplex inclusion then C (f )  is just X  with a cone over 
A attached and it is homotopy equivalent to X/A. There is a cofibre (or Puppe) 
sequence

A U x ^  C ( f )  - + X A ^ Z X  C ( f )  ^ T , 2A ^ - - -

with the property that every consecutive triple is, up to homotopy, a map followed by 
its mapping cone. Since the homotopy type of C ( f ) depends only on the homotopy 
class of / ,  we get that if /  : A  —> X  is null-homotopic then C (f )  ~  X  V £ A  In 
particular, if A is contractible then C ( f )  ~  X.

We write \Jk X  for the wedge sum of k copies of a topological space X.  
In all applications the choice of basepoint for X  will not influence the homotopy 
type of \Jk X.  The symbol =  means homeomorphism and ~  stands for homotopy 
equivalence.

Finally A n denotes the n-dimensional simplex (with n +  1 vertices) and f)An 
is its boundary.

Discrete Morse theory

We are going to use the following elementary language of discrete Morse theory to 
describe collapsing sequences (see [72, Chapter 11], [42, 43]).

Definition 1.3. j4n acyclic matching in a simplicial complex K  is a set M  C K  x K  
of pairs of faces such that

• if (a, t) 6 M  then a is a codimension 1 face of t ,

• every face a belongs to at most one element of M ,

• there is no cycle

(JO} (J\i > • • • ? &TI ? Tn ? (JQ
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such that (<Tj,Ti) E M , <7i+\ is a codimension 1 face of T{ (where an+\ — <jo), 
all Oi are distinct and n >  1 .

The faces of K  which do not belong to any element of M  are called critical.

Fact 1.4. If K  is a simplicial complex with an acyclic matching whose set of critical 
faces is a non-empty simplicial subcomplex L then K  sim,plicially collapses to L.

Flag complexes

If G is a graph then 1(G) and C1(G) denote, respectively, the independence complex 
and the clique complex of G. They both have V (G) as vertex set and the faces are, 
respectively, the independent sets or the cliques in G. Clearly 1(G) — C1(G).

Let K  be a simplicial complex with 1-skeleton G =  K ^\  All of the following 
conditions are equivalent and we say A' is a flag complex if it satisfies any of them:

• K  =  Cl (G),

• K  =  1(G ) ,

• K  is the (unique) maximal simplicial complex with 1-skeleton G,

• every minimal non-face of K  has dimension 1 .

If G LI H  is the disjoint union of two graphs then its independence complex 
satisfies

I(G  U H) =  7(G) *I (H )

where * is the simplicial join. In particular, if 1(G) is contractible then so is I(GWH) 
for any H. If e is understood as the graph consisting of a single edge then 1(e) — S° 
and I(e  U G) =  S° * 1(G) =  E 1(G) is the suspension of 1(G).

The flag counterpart of dAn is the complex

On =  S° * • • ■ * S°
'------- v------- '

n

The flag simplicial complex On is the boundary of the n-dimensional cross-polytope. 
It has 2n vertices and it is homeomorphic to Sn~l .

If a is a vertex in a flag simplicial complex K  then the link lk/^u), star 
st/<:(u) and deletion K \ v  are all induced subcomplexes and they are also all flag.
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Chapter 2

Cofibre sequences of 
independence complexes and 
their applications

2.1 Introduction

In this chapter we study the complex 1(G) using the natural inclusions I ( G \ v ) 
1(G) and 1(G) «-> I(G  — e) for a vertex v and an edge e. They fit into two cofibre 
sequences

I(G  \ N[v]) <-+I(G \ v ) 1 ( G ) - > Z I ( G \ N [ v } ) ->■■■, (2.1) '

E I(G \ N[e]) — 1(G) ^  I(G  — e) -  E21(G \ N[e}) ->•••. (2.2)

Results based on various special instances of these sequences are scattered 
around in the literature, eg. [27, 32, 34, 35, 36, 70, 69, 78, 83], For example the 
fold lemma of [35], which says that if N(u) C N(v)  then I(G \ v) and 1(G) are 
homotopy equivalent, corresponds to the case where the first space in the cofibre 
sequence (2.1) is contractible. Another interesting situation occurs when the map 
I(G  \ iV[w]) *—► I(G  \ v) is null-homotopic, as then the cofibre sequence splits and 
we have an equivalence 1(G) ~  I(G \v) V T, I(G\N[v]).  This happens, for example, 
when N[u] C A^i;] for some vertex u, as in [78].

In Section 2.2 we present a unified approach to results of this kind using 
(2.1) and (2.2). We also identify combinatorial situations in which the two cofibre 
sequences split and lead to exact results. Another splitting result of Mayer-Vietoris 
type is analyzed in Section 2.3. Section 2.4 contains some applications and examples.
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In particular, we give quick proofs of some results of [35, 69, 78, 99]. In Section 2.5 we 
discuss the Aharoni-Berger-Ziv conjecture about the connectivity of independence 
complexes of chordal graphs. Section 2.6 contains an application of the cofibre 
sequence (2.2) to the problem of maximizing Betti numbers of flag complexes.

We emphasize that the functorial behaviour of the independence complex 
under vertex removals and (contravariantly) under edge removals is our key tech­
nique. In particular, all homotopy equivalences and splittings we derive are natural, 
that is induced by some morphisms of the underlying graphs.

2.2 Two cofibre sequences and their splitting

We start with vertex removals. Various parts of the next proposition are well-known. 

Proposition  2.1. There is always a cofibre sequence

I(G  \ JV[u]) I(G  \ v) 1(G) -♦ £  I(G\  V[u]) ->•••.

In particular

a) if I(G  \ V[u]) is contractible then the natural inclusion I(G  \ v) <—* 1(G) is a 
homotopy equivalence,

b) if the map I(G\  iV[u]) c—>I(G\v)  is null-homotopic then there is a splitting

1(G) ~ /(G \ t> )v £ /(G \ 7 V [n ]).

Proof. Any independent set in G is either contained in G \ v or it is the union of 
{v } and some independent set in G \ N [w], so we have a decomposition

1(G) =  S U T

where

S =  I (G \v) ,  T  =  v * I ( G \ N [ v } ) ~ * ,  S n T  =  I(G\N[v]) .

Therefore 1(G) is the homotopy cofibre of the inclusion S(IT <-+ S. The statements 
a) and b) follow from the properties discussed in Section 1.2. □

The “generic combinatorial cases” of a) and b) are the following.
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Theorem  2.2 ([35]). I fu ,v  are two distinct vertices with N(u) C N(v) then there 
is a homotopy equivalence

7(G) ~  7(G \ v).

Theorem  2.3 ([78]). If u,v are two distinct vertices with 7V[it] C N[v] then there 
is a homotopy equivalence

1(G) ~  7(G \ u) V E7(G  \ N[v]).

Proof of Theorems 2.2 and 2.3. If u is such that N (u ) C N(v)  then the graph G \ 
77[u] has u as an isolated vertex, hence the complex I(G \ N [v]) is contractible 
and Theorem 2.2 follows from part a) above. If, on the other hand, u is such 
that iV[u] C N[v] then the inclusion 7(G \ N[v]) c—» I(G \ v) factors through the 
contractible space u* I(G\  jV[v]), so Theorem 2.3 follows from part b). □

Note that the condition N(u ) C N(v)  implies that u and v are not adjacent 
in G, while N[u] C N[v] forces them to be adjacent.

A similar discussion applies to edges. If e =  (u, v) is an edge then el_l(G\Ar[e]) 
is the induced subgraph of G whose vertices are u, v and all the vertices of G \ jV[e]. 
Then we have the following proposition.

Proposition  2.4. There is always a cofibre sequence

I(e  U (G \ W[e])) 7(G) 7(G -  e) —> E 7(e U (G \ N[e}))

In particular

a) if I(G  \ 7V[e]) is contractible then the natural inclusion 7(G) <-► 7(G — e) is a 
homotopy equivalence,

b) if the map 7(eU (G\N[e])) c—> 7(G) is null-homotopic then there is a splitting

I(G  — e) ~  7(G) V E2 7(G \ iV[e]).

Proof. The first statement is an observation of [83]: any independent set in G — e 
is either independent in G or it contains both endpoints of e together with some 
independent set in G \ N[e]. This gives a decomposition

7(G — e) =  K  U L
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where

K  =  1(G), L =  e * I { G \ N [ e } ) ~ *, K  n L =  I(e  U (G \ JV[e])).

Again, it means that I(G — e) is homotopy equivalent to the homotopy cofibre of 
the inclusion K  fl L t-» K.  The statements a) and b) follow from the properties 
discussed in Section 1.2 and the fact that /(e  U (G \ //[e])) =  E I(G \ //[e]). □

As before there are some useful special circumstances when conditions a) and 
b) can be verified at the combinatorial level.

Definition 2.5. An edge e — (u, v) in G is called isolating if the induced subgraph 
G \ AT[e] has an isolated vertex.

Clearly part a) holds for isolating edges, i.e. the removal of an isolating edge 
does not change the homotopy type of the independence complex. Note that any 
such statement can also be used in the opposite direction, that is to say that the 
insertion of an edge which becomes isolating preserves the homotopy type.

The situations where part b) of Proposition 2.4 applies are more complicated.

Theorem  2.6. Let e — (u,v ) be an edge in G. Suppose T C G is an induced 
subgraph which contains the edge e and such that I (T ) is contractible and, moreover, 
for every x  G T we have AT[x] C JV[e]. Then the inclusion / (e  U (G \ AT[e])) /(G )
is null-homotopic. Consequently, there is a splitting

/ ( G - e ) ~ / ( G )  V E 2 /(G \iV[e]).

Proof. The inclusion I(e  U (G \ AT[e])) /(G ) factors through I{G[V{T)  U (V(G) \
JV[e])]). Since neither of the vertices x e V ( T )  has an edge to V{G) \ iV[e], the last 
graph is in fact T U ( G \  JV[e]), so its independence complex is a join where one of 
the factors is / (T ) ~  *. It means that our inclusion factors through a contractible 
space. □

The simplest graph which can play the role of T  in the last statement is the 
4-vertex path P4, hence we have the next corollary, which will be one of the main 
tools in Chapter 3.

Theorem  2.7. Let e =  (u, v) be an edge in G. Suppose there are vertices x, y 6 N[e] 
such that Â [i] UAr[y] C Â [e] and the induced subgraph G[x,y,u,v\ is isomorphic to 
the 4-vertex path P4. Then the inclusion I(eU(G\N[e]))  c—> /(G ) is null-homotopic.
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Figure 2.1: Graph inclusions in Example 2.8 which induce a zigzag of homotopy 
equivalences upon the application of /(•).

Consequently, there is a splitting

7 ( G - e )  ~ 7 (G ) V E 27(G\N[e]).

Exam ple 2.8. We illustrate the applications of isolating edges by reproving the 
classical homotopy equivalence

7(Gn) ~  E7(Gn_3)

first proved by Kozlov [71]. We present the argument in detail as it is the prototype 
of the methods used in Section 3. See Fig.2.1.

Start with the cycle Cn with vertices labeled 0 , . . . ,  n — 1. Let C'n =  Cn U 

{(0 ,4 )}. The edge (0,4) in C'n is isolating because removing TV[0] U AT[4] leaves 2 
isolated. By Proposition 2.4.a) it means that extending Cn to C'n preserves the 
homotopy type of the independence complex. More precisely, the induced inclusion .

/(C'n) I(Cn)

is an equivalence. Now in C'n the edge (0,1) is isolating as removing N[0] U iV[l] 
isolates 3. We can delete (0,1) without affecting the independence complex (up to 
homotopy). Then in C'n \ {(0 ,1 )} the edge (3,4) is isolating as removing A'[3]uiV[4] 
isolates 1. Again, we can delete (3,4). But the graph we finally obtained, C'n \ 
{(0,1), (3,4)}, is a disjoint union of a path 1 - 2  — 3 and Gn_3 so its independence 
complex is homotopy equivalent to 5° * 7(Gn_3) =  E7(Cn_3)- We obtain a zigzag 
of equivalences

S /(G „_ 3) *  I (C ’n \ { (0, 1), (3 ,4)}) / (G ; \ { (0, 1) })  ^  I(C'n) ^  I{Cn)

in which every map is induced functorially by some graph morphism.

N otation 2.9. From now on we are going to abbreviate such arguments by writing:
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there is a sequence of isolating operations

Add(0,4; 2), D el(0,l;3), Del(3,4;l)

which reads: add the edge (0,4), where 2 is the vertex that certifies the isolating 
property, then remove (0,1) for which 3 is the certificate etc. Note that such sequence 
of operations is indeed a sequence: they may no longer be isolating if performed in 
a different order. Every isolating sequence generates a zigzag of weak equivalences 
as in the example.

2.3 Mayer-Vietoris splitting

Combinatorial splittings can also be obtained from the following result.

Theorem  2.10. Suppose X, Y  C V(G) are two vertex sets which satisfy the condi­
tions:

• X U Y  =  V(G),

• the independence complex of G[X  fi F] is contractible,

• every vertex in X  \ Y has an edge to every vertex of Y \ X .

Then there is a splitting

J(G)*J(G[X])V/(G[y])

which is natural in the sense that the inclusions 7(G[X|) t—► 1(G) and 7(G[y]) >
1(G) induced by inclusions of G[X] and G[y] in G are homotopic to the inclusions 
of the two wedge summands.

Proof. Let K  =  7(G[X]) and L =  I(G[Y}). First let us check that K  U L =  7(G). 
Suppose a is an independent set in G and o L. Then a must have a vertex v 
in X  \ Y. The third condition implies that a cannot have any vertices in Y  \ X ,  
therefore a C X  which means a G K. That completes the verification.

Now 1(G) is the union K  U L of two subcomplexes such that K  fl L = 

I(G[X  n Y]) is contractible. Then there is an equivalence 1(G) ~  I< V L. □

We can use it to identify the graph inclusions corresponding to the two 
summands in Theorem 2.3 and Theorem 2.6.
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Proof of Theorem 2.3 from Theorem 2.10. We use the previous theorem with X  =  
(V(G) \ N(v))  U {u}  and Y =  V(G) \ {u}. Clearly X U Y  =  V(G). Since l n h  = 
{u}U(V(G)\iV[v]) and u does not have any edges to V(G)\N[v], the induced graph 
G[X fl Y] has u as an isolated vertex, so the complex I(G[X  fl Y]) is contractible. 
Finally X  \ Y  =  {u} and Y  \ X  =  N(v)  so the third condition in Theorem 2.10 is 
automatically satisfied.

In the splitting obtained from Theorem 2.10 the complex 7(G[Y]) is I(G \v). 
The graph in the second summand, G[X], is the disjoint union of an edge e =  (u , v) 
with G\N[v].  This is because neither v (by definition) nor u (by assumption) have 
edges to Y(G)\Ar[u]. It follows that 7(G[X]) =  I(e)*I(G\N[v]) =  S°*I(G\N [v]) =  
E 7(G \ N[v]) and the proof is complete. □

Proof of Theorem 2.6 from Theorem 2.10. Let H — G — e. First extend 77 to a 
bigger graph 77+ by adding an extra vertex w with edges to N(u) U N{v). The 
inclusion 7(77) 7(77+) is an homotopy equivalence by Proposition 2.l.a) (because
77+ \ N[w] contains isolated vertices u, v). In 77+ the operation Add(u,v;w)  is 
isolating. Let G+ denote the resulting graph. It contains G as G+ \ w and 7(G+) ~  
7(G — e).

Set X  =  (Y(G)\77[e])uY(T)u{it;} and Y =  V(G).  Clearly X U Y  =  Y(G+). 
Since X  n Y =  V{T)  U (Y(G) \ N[e]) and V{T)  has no edges to Y(G) \ 7V[e], the 
induced graph G[X fl Y] contains T as a connected component and I(G[X  n Y]) is 
contractible. Finally X  \ Y =  {re} and Y  \ X  C N(w)  so the third condition in 
Theorem 2.10 is automatically satisfied.

In the splitting of 7(G+) obtained from Theorem 2.10 the complex 7(G+[Y]) 
is 7(G). The graph in the other summand, G+[X], is the disjoint union of G+[Y(T)U 
{u>}] with G\N[e\. But 7(G+[F(T’)U{u;}]) consists of the contractible subspace 7(T) 
together with two edges wu and wv, so it is homotopy equivalent to Sl . It follows 
that 7(G+[X]) ~  S1 * 7(G \ A f̂e]) =  E2 7(G \ 7V[e]) and the proof is complete. □

2.4 Corollaries and examples

We start with a simple application of isolating edges to a known reduction result.

Lem m a 2.11 ([27, 78, 13]). Let G be a graph and e =  (x,y) an edge. If G' is 
obtained from G by replacing e with a path x — u — v — w — y with 3 new vertices 
then 7(G') ~  E7(G)L
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Proof. There is a sequence of isolating operations in G

Add(x, y;v), Del(x, a; u>), Del(y, w;u)

which results in the graph {(a, v), (v , !» ) }u G . □

A more general result we can recover using isolating operations follows also 
from the main theorem of [13].

Lem m a 2.12. If v is a vertex of G of degree 2 with neighbours u, w which satisfy 
■/V[«]nAf[ii;] =  {u} then 1(G) is homotopy equivalent to T,I(G') where G' is obtained 
from G by removing u, v , w and spanning a complete bipartite graph between vertices 
which belonged to JV[u] and those from Ar[rc].

Proof. Denote U =  N[u] \ {u, v}  and W  =  N [u>] \ {w, v}.  We can first perform all 
isolating insertions Add(x, y; v) for all pairs x  € U, y € W  which had not already 
been an edge. Then we can perform isolating deletions Del(u, x;u>) for x G U 
followed by Del(ic, y ; u) for y € W.  We end up with {(u, v), (v, w)}uG'  and conclude 
as before. □

Let us mention two more specializations of Theorem 2.3.

Corollary 2.13. If u is a vertex of degree 1 and v is its only neighbour then 1(G) ~

E / ( G \ * W

Proof. The vertices u and v satisfy the assumptions of Theorem 2.3. Moreover G\v 
has u as an isolated vertex so I(G  \ v) is contractible. □

Corollary 2.14 ([35, 36, 69]). Let u be a vertex such that N(u) is a clique. Then 
there is a homotopy equivalence

1(G) c* \ / S/(G\AT[u]).
veN(u)

Proof. Let v € N(u)  be any vertex. Then N[u] C N[v] so 1(G) splits into £  I(G \ 
Ar[u]) and I(G \ v). Let G' =  G \ v. In G' the neighbours of u again form a clique 
so by induction I(G') splits as Vu'eN /(u) "E I(G' \Ng>[v' ]). However, since (w, v') is 
an edge in G for all v' € N c (u )  we have G' \ Nqi [u'] =  G \ A^r/] which together 
with the first summand gives the desired splitting. □

Exam ple 2.15. Suppose G is a connected graph with n vertices and m edges. Let 
G'j denote the graph obtained from G by subdividing each edge into 3 parts. Let
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e be any of the “middle” edges of G3, that is edges connecting two subdividing 
vertices.

In G3 —e we have two vertices of degree 1 and we see that it can be reduced to 
the empty graph by successfully applying Corollary 2.13 n times, once for each vertex 
of G. In G3 \ IV[e] the situation is similar, but this time we perform one reduction 
for each of the remaining m — 1 edges. It means that /(G 3 — e) ~  E"0 =  Sn~l and 
/(G 3 \ IV[e]) ~  Em_10 =  5 m~2 and the cofibre sequence (2.2) becomes

Sm~l - »  /(G 3) 5 n_1 - »  Sm -> E / (G 3) -> Sn -> Sm+1

If G is not a tree then m > n — 1 so the map Sn~] —> S'7"  must be null-homotopic 
and we get E /(G 3) ~  S71 V 5 m. This almost recovers the result of Csorba [27] who 
proved that in fact /(G 3) ~  S71-1 V 5 m -].

Exam ple 2.16. Fix a field k and suppose G is a graph with n vertices. Consider 
the polynomial ring

i? =  k[si , . . . ,xn]

whose generators have degree 1 and correspond to the vertices of G. The ideal

FTD Ig — (XiXj : XiXj G E(G ))

generated by square-free monomials of degree two is called the edge ideal of G. It 
is a special case of the Stanley-Reisner ideal of a simplicial complex (in fact R/Ig 
is the Stanley-Reisner ring of /(G )). See [32] and the references therein for more 
information.

Let Hg be the graph defined by

V{Hg) ={vQ,vx,v2,vz,VA,Vf> | v € V(G)},

E(Hg ) ={tio^o | u, v G V(G),uv  G E(G)}

U {u0̂ i,«1^2,viv3,v2V3,U3U4,U3U5,U4U5 I v€  V(G)}.

In other words, Hq is obtained from G by attaching at each vertex a 5-vertex gadget 
as shown in Fig.2.2.

Note that the neighbourhood of the vertex v2 is the edge tqu3, so the assump­
tions of Corollary 2.14 are satisfied and we can apply the corresponding splitting. 
When N[v 1] is removed from Hq , we lose the vertex vq and gain an isolated edge 
U4U5. If, on the other hand, N[v3] is removed then the whole gadget attached at vo 
disappears but vq remains. Applying Corollary 2.14 consecutively to all the vertices
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Figure 2.2: The Hochster graph Hq of a graph G.

V2, for v e  V(G),  we therefore get a splitting

I (HG) ~  \ / E2iHlv| /(G [W ]).
WCV(G)

(In each summand W  corresponds to the set of vertices v for which N[v3] was 
removed.)

It follows that the reduced Betti numbers (over k) of I  {He)  are

M l(H G))= £  A-2»+i w\(I(G[W}))
WCV(G)

=  £  P\W\-(2n-i-2)-2{I(G[\V]))
WCV(G)

=  dimk Tor k)

where the last equality is precisely the well-known Hochster’s formula [96, Thm.4.8]. 
The numbers dimk Tot̂ I g ', k) are called the algebraic Betti numbers of the edge 
ideal Ig and are subject of intensive study in commutative algebra. The above 
construction exhibits them as topological Betti numbers of I (Hg ) for a relatively 
small graph IIg -

2.5 Application: The Aharoni-Berger-Ziv conjecture

In [10], Aharoni, Berger and Ziv proposed a function ?/> defined on graphs which 
is a lower bound for the connectivity of 1(G) and conjectured that this bound is 
optimal. No explicit proof of this bound is given in that article, although the corre­
sponding bound for the homological connectivity follows immediately from a result 
of Meshulam [83, Claim 3.1]. Moreover, a homological version of the conjecture
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has been considered, as well as reformulations taking into account the existence of 
counterexamples in which the independence complex is simply-connected or not [11],

In this section we give an explicit proof of the fact that ip(G) is a lower 
bound for the connectivity of 1(G), we prove that the conjecture is true in the cases 
where 7(G) is not simply-connected or where ip(G) <  1, we show that there exist 
counterexamples to the conjecture with ip(G) =  2, and that there are counterex­
amples in which ip(G) and the connectivity of 1(G) take arbitrary values l, k with 
3 < l < k. We also provide a very short proof of the result of Kawamura [69] that 
the Aharoni-Berger-Ziv conjecture holds when G is chordal.

The connectivity conn (A ) of a topological space A  is usually defined as 
follows: conn(0) =  —2, conn(A) =  k if ni(X)  — 0 for every 0 < i < k and 
7Tfc+i(A') ^  0, and conn (A ) =  oo if 7Tj(A) =  0 for every i > 0. The homological 
connectivity conn//(X)  is defined in the same way replacing the homotopy groups 
7Ti(X) by the reduced homology groups with integer coefficients 77j(X).  In this 
context, however, in order to keep the notation of [10], we will use the shifted 
versions

77(A ) =  conn(A) +  2, ?7//(A ) =  connH(X)  +  2.

With this notation, X  is non-empty when 77(A ) >  1, path-connected if rj(X) >  2 
and simply-connected when 77(A ) >  3. By the Hurewicz theorem, connectivity 
and homological connectivity coincide for simply-connected spaces, while in general 
V(X) < Vh (A ).

Consider the function ip defined for all finite simple graphs G with values in 
{0, 1, . . . ,  00}, as follows

0 if G =  0

iP(G) = 00

maxee£(G) { min{^(G -  e), ip(G \ A[e]) +  1} }

if G /  0 is discrete 

otherwise.

Theorem 2.17. For any graph G, ip(G) < r/(I(G)).

Proof. We prove first that ip(G) < r)n(I(G)). This part of the proof is implicit in 
[10], The inequality is trivial for discrete graphs. Assume then that G is non-discrete 
and let e E E(G)  be such that ip(G) =  min{i/>(G — e),tp(G \ e) +  1}. By induction 
ip(G -  e) <  tih(I(G -  e)) =  conn//(7(G -  e)) +  2 and ip(G \ e) < i]h (I(G \ e)) =  
conn//(7(G\e)) +  2, and therefore 77j(7(G —e)) =  0 for every 0 < i < ip(G) — 2 and 
77j(7(G \ e)) =  0 for every 0 < i < ip(G) — 3.

The cofibre sequence of Proposition 2.4 yields a long exact sequence of ho-
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mology groups

• • • -> \ N[e])) -  Hi(I(G)) -  Hi(I(G -  e)) -> ^ _ 2(/(G  \ iV[e])) ->•••.

We deduce then that Hi(I(G)) =  0 for every 0 < i < ip(G) — 2 or, in other words, 
that ip(G) < tih(I(G)).

To prove the theorem it suffices to show that the condition ip(G) >  3 implies 
that 1(G) is simply-connected. If G is discrete, 1(G) is a simplex. Otherwise, by 
definition of ip, there exists an edge e such that

ip(G — e) >  3 and ip(G \ ,/V[e]) > 2.

By induction I(G  — e) is simply-connected and since r)j{(I(G \ JV[e])) >  ip(G \ 
IV[e]) >  2, the space I(G  \ IV[e]) is connected. The suspension E I(G  \ 7V[e]) is then 
simply-connected and by van Kampen’s theorem tti(I(G — e)) =  7Ti (/(G )), hence 
ni(I(G))  =  0. □

In [10, Conjecture 2.4] it was conjectured that ip(G) =  77(1(G)). This has 
been confirmed for some classes of graphs, e.g. chordal graphs [69], but, as we will 
show, it is not true in general. In view of Theorem 2.17 it is clear that the homolog­
ical version of the conjecture, i.e. the equation ip(G) =  77/ / (1(G)), does not hold in 
general since tih(I(G))  can be strictly greater than rj(I(G)). This follows from the 
existence of a finite connected complex K  with non-trivial fundamental group but 
such that H\(K) =  0 and the well-known fact that for every finite simplicial complex 
K  there is a graph G with 1(G) homeomorphic to K,  for instance the complement 
graph of the 1-skeleton of the barycentric subdivision of K.

Proposition  2.18. Let G be a graph.

a) If ip(G) € {0 ,1 }; then %P(G) =  77(1(G)).

b) If 1(G) is not simply-connected, then ip(G) =  ij(I(G)).

Proof. It is easy to see that ip(G) =  0 if and only if G is empty, so the only non-trivial 
case of a) is ip(G) — 1.

Since the 1-skeleton of 1(G) is the complement G of G, we have that t](I(G)) =  
1 if and only if G is disconnected. We will prove, by induction on the number of 
edges in G, that if ip(G) =  1 then G is disconnected. By definition of ip, G is 
non-discrete and for every edge e of G we have

ip(G — e) =  1 or G \ iV[e] is empty.
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If there exists an edge e E G such that ip(G — e) =  1 then, by induction, G — e is 
disconnected and therefore so is G. It suffices then to consider the case when for 
every edge e E G the graph G \ N[e] is empty. Translating this into a statement 
about complements we see that G has the following property:

for every pair of non-adjacent vertices x, y we have N(x)  n N(y) — 0.

It is easy to see that this property characterizes precisely the graphs in which ev­
ery connected component is a clique. Since G is not a clique itself, it must be 
disconnected, as we wanted to show.

To prove b) note that if 1(G) is not simply-connected, then we have tp(G) < 
r](I(G)) <  2 by Theorem 2.17, and the result follows from part a). □

We now prove that the conjecture is not true in general. The first argument 
we show is not constructive and reduces to the fact that it is algorithmically unde- 
cidable whether rj(I(G)) >  3 or p(1(G)) < 2 for a given graph G, while ip(G) is a 
computable function of G. This argument is the idea of Jonathan Barmak.

Proposition  2.19. There exists a graph G with ip(G) =  2 and r/(I(G)) >  3.

Proof. The truth of the implication

if ip(G) =  2 then r](I(G)) =  2

together with Theorem 2.17 and Proposition 2.18 would provide an algorithm (Tur­
ing machine) capable of determining if a given finite simplicial complex K  is simply- 
connected. The algorithm would just find a graph G with 1(G) homeomorphic to K  
and check if ip(G) >  3. However it is known that there can be no such algorithm. It 
is a consequence of the non-existence of an algorithm to determine whether a group 
T given by a finite presentation is trivial or not [9, 91] and a construction that as­
sociates to each presentation of T a finite 2-dimensional complex with fundamental 
group isomorphic to T (see [49] for example). □

We will give more explicit counterexamples to the conjecture, all of them 
different from the one shown in Proposition 2.19. Their construction requires the 
next observation in which G U H  denotes the disjoint union of graphs G and H .

Lem m a 2.20. For any graphs G and H we have ip(G U H) =  ip(G) +  ip(H).

Proof. The result holds when both G and H are discrete. The general case now 
follows by induction on the number of edges in G U H. For every e E E(G) we have
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(Gu77) — e =  (G —e)U77 and (G U77) \ iV[e] =  (G\ iV[e]) U 77. If G is non-discrete, 
then by induction

max { min{ip{{G U 77) — e), ip((G U 77) \ iV[e]) +  1 } }  =
e£E(G)

— max^ { min{ip((G -  e) U 77), ^((G  \ AT[e]) LI 77) +  1 }} =  

=  max { min{?/>(G — e), ip(G \ IV [e]) +  1 } }  +  ip(H) ~

=  1>(G) +  iJ>{H).

The same equation holds if H is non-discrete and the maximum is taken over 
the edges e 6 E(H).  Then the result follows. □

The lemma also follows immediately from the interpretation of ip(G) as the 
maximal value achievable in a certain two-player game (see [10, p.257]).

Proposition  2.21. For any l,k € {3,4, . . . , o o }  with l < k there exists a graph G 
such that ip(G) =  l and r](I(G)) =  k.

Proof. Note that ip(e) — 1. The case / =  oo is trivial. Assume then that l is finite. 
Note that if G is such that if{G) =  / and rj(I(G)) =  k >  3, then ip(G U e) =  
ip(G) +  rp{e) =  l +  1 by Lemma 2.20, and r](I(G U e)) =  r/(E 7(G)) =  ^ ( E  7(G)) =  
r]a(I(G)) +  1 =  r)(I{G)) +  1 =  k +  1. Therefore, it suffices to prove the case / =  3.

Let K  be an acyclic finite simplicial complex with non-trivial fundamental 
group, i.e. with the properties

ni(K)  7̂  0, Hi(K)  =  0 for all i.

(Such K  can be obtained for example by triangulating the two-dimensional CW- 
complex of [51, Example 2.38]). Note that the suspension E7\ is simply-connected 
and acyclic, hence contractible.

Assume first that k is finite. Since every finite simplicial complex can be 
realized, up to homeomorphism, as an independence complex of some graph, we can 
choose a graph 77 such that we have a homeomorphism

7(77) =  I< V Sk~2.

Since r](K V Sk~2) =  2, we have rp(H) =  2 by Proposition 2.18.
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Let G — H Ue. Then 1(G) =  T,I(H) is homotopy equivalent to T.K V 5 fc_1, 
which in turn is homotopy equivalent to Sk~1 since S it ' is contractible. It follows 
that t](I(G)) =  k. On the other hand ip(G) — ip(H) +  i[(e) =  3 by Lemma 2.20. 
Therefore G has the desired property.

For the remaining case l =  3, k =  oo, we consider a graph H such that 
1(H) =  K  and define G — H U e. Then 1(G) =  S K  is contractible and i[(G) =  
3. □

Still, the study of the conjecture in special cases and for particular classes of 
graphs is an interesting problem and the bound provided by Theorem 2.17 can be 
useful even when it is not sharp. We are now going to use the methods introduced 
in the previous sections to analyze independence complexes of chordal graphs. In 
particular, we will show that chordal graphs satisfy the Aharoni-Berger-Ziv conjec­
ture.

Before stating the next result recall that the domination number 7 (G) of G 
is the minimal cardinality of a dominating set in G, that is a subset W  C V(G)  such 
that Nc[W] =  V(G). Recall from Section 1.2 that a graph is chordal if it does not 
have an induced cycle of length at least 4. The following was proved in [69], with 
the “wedge of spheres” part also following from earlier results.

Corollary 2.22. Suppose G is a chordal graph.

a) [100, 101, 32, 69] 1(G) is either contractible or homotopy equivalent to a wedge 
of spheres of dimension at least 7 (G) — 1,

b) [69] G satisfies the Aharoni-Berger-Ziv conjecture.

Proof, a) The result is true for the empty graph (we assume =  0, which is 
consistent with ES-1 =  S°) and for any discrete graph. Now suppose G has at 
least one edge. By a well-known characterization (see Fact 1.1 and [19, Thm. 9.21]) 
every chordal graph has a vertex u such that N(u) is a clique. Choose any v e  N(ti). 
Then N[u] C N[v], so by Theorem 2.3

I ( G ) ^ I ( G \ v ) V X I ( G \ N [ v ] ) .

Both graphs G\v and G\N[v] are chordal so by induction their independence 
complexes are either contractible or equivalent to wedges of spheres of dimension at 
least, respectively, j(G \ v) — 1 and 'y(G\N[v]) — 1. Of course 7 (G) <  7 (G\iV[?;]) +  l. 
Moreover, every dominating set in G\v is also dominating in G because to dominate
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u it must contain a vertex in N[u] \ {u} C N[v\. It means that 7 (G) < 7 (G \ v). 
It follows that each wedge summand of 1(G) is either contractible or a wedge of 
spheres of dimension at least min{7 (G) — 1, (7 (G) — 2) +  1} =  7 (G) — 1 .

b) Let /  =  (u,v). Then in the graph G — /  we have N(u) C N(v),  so by 
Theorem 2.2 the complex I ( G -  f )  is homotopy equivalent to I(G \v). The complex 
I(G\N[v])  is clearly equal to I(G \ N[f])  as N[u] C 7V[t;] in G. The splitting of a) 
can thus be rewritten as

1(G) — /(G  — / )  V S /(G  \ iV[/]).

The graph G \ N[f]  is chordal and a quick verification shows that the condition 
N[u] C N[v] and the fact that N(u) is a clique imply that also G -  /  is chordal. By 
a) their independence complexes are wedges of spheres, so we have

r)(I(G)) =  conn(1(G)) +  2 =  min{conn(I(G -  / ) ) ,  conn(/(G  \ N[f}))  +  1} +  2

=  m in {^ (G - / ) ,V ' (G \JV [ / ] )  +  l }

< max { min{if)(G -  e), ip(G \ iV[e]) +  1} }  =  ip(G)
eEE(G)

where the first equality follows from the splitting. Together with Theorem 2.17 this 
yields ip(G) — r](I(G)). □

2.6 Application: Maximal Betti number of a flag com­
plex

In this section we ask the following question. Suppose K  is a simplicial complex 
with n vertices. How big can the reduced homology groups H*(K)  be?

Of course there is a trivial upper bound: since I< has at most 2n faces, it is 
homeomorphic to a CW-complex with at most 2n cells, therefore dim H*(K) < 211. 
For arbitrary K  we can asymptotically almost achieve that value. The fc-dimensional 
skeleton of the n simplex is known to be homotopy equivalent to the wedge of 
(fc+i) spheres, and for k «  n /2 that is roughly (n”2) (by [17] this is in fact
optimal).

The problem is less trivial for flag complexes, and so the new question we
ask is:

Question 2.23. Given an n-vertex graph G, how big can the total reduced Betti 
number /3(I(G)) =  dim f/* (/(G )) be?
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Exam ple 2.24. Suppose n is divisible by 5 and let G =  (n/5) • be the disjoint 
union of n/5 copies of the complete graph K$. The complex 1(G) is the join of 
n/5 copies of /(it's). The latter is the discrete space with 5 points, or, in other 
words, the wedge sum V 4 5°. That means we have a homotopy equivalence 1(G) ~  
V 4 /J S71/ 5-1, and therefore

|*(/(G))| =  dim if* (/(G )) =  4"/5 «  1.32".

We could just as well take G =  (n/q) ■ K q for any q > 2 and get a wedge of 
((q — l ) 1/?)” spheres. The number (q — l ) 1//<? is maximized for q =  5.

We prove that the graph of Example 2.24 is in fact extremal.

Theorem  2.25. For any n-vertex graph G we have

d im //»(/(G ); Q) < (41/5)".

There are several results that bound |x(/(G))| or d im //* (1(G)) in terms of 
various parameters of G, see [37, 76, 77]. In [102] and [74] it is shown that the same 
upper bound holds for the Euler characteristic and total Betti number of the order 
complex of any n-element poset. Finally let us note that Theorem 2.25 follows easily 
from the results of [73].

It is convenient to make the following general statement.

Proposition  2.26. Suppose /3(G) is any function that assigns to every graph G a - 
non-negative integer and which satisfies three conditions:

• ¿3(0) =  1 , where 0 denotes the empty graph with no vertices,

• (3(G) =  0 if G has an isolated vertex,

• (3(G) < (3(G - e )  +  /3(G \ -/VG[e]) for any edge e of G.

Given such a function define

(3n = max /3(G).
G: |V̂ (G)|<n

Then we have
(3n <  4n/5.

Our main theorem then follows from the next observation.

Proposition  2.27. The function G dim//» ( /(G ); Q) satisfies the assumptions 
of Proposition 2.26.

25



Proof. The first condition follows because 7(0) is the empty space and that has a 
single reduced homology group in the augmentation degree —1. The second condi­
tion holds because in this case 7(G) is a contractible space. The third condition is 
a direct consequence of Proposition 2.4. □

Rem ark 2.28. Another function which also satisfies Proposition 2.26 is G h 

|x(7(G))|. It follows from the same argument.

It remains to prove Proposition 2.26 and we do so in a series of lemmas.

Lemma 2.29. Let v be any vertex of a graph G and let e\,. . . ,  ed be all the edges 
incident with v. Define G\ =  G and

Gi =  G — {ep . . .  i =  2, . . . ,  d +  1 .

Then d
/ 3 ( G ) < J 2 m \ N Gi[ei})-

i=1

Proof. Since Gj+i =  Gi — e,, this follows immediately by induction from the third 
condition for (3:

(3(G) = (3(G\) < (3(G2) +  (3(Gi \ NGl [ex]) <
< /?(G3) +  (3(G2 \ iVG2[e2]) +  (3(G! \ NGl [e,]) <

d
<  P(Gd+i) +  \ AfGj[ei]).

¿=i

But Gd+i has v as an isolated vertex, so (3(Gd+i) =  0. □

Lemma 2.30. If |F(G)| =  n and mindeg(G) =  d then

(3(G) < d ■ /3n_(d+1).

Proof. Let v be any vertex of degree d with incident edges e, =  vui, i =  1, . . . ,  d. In 
the notation of the previous lemma we have an inclusion of vertex sets

V(Gi \ N G i[e*]) C V(Gi \ NGi[Ui]) =  V(G \ NG(Ui}).

Since degG(ui) >  d the last set has at most n — (d +  1) elements, therefore

/9(G'i\JVGi [ei] )< /3 n_ (d+i).
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The result follows from the previous lemma. □
Proof of Proposition 2.26. The result holds for n =  0: the only graph with 0 vertices 
is the empty graph 0 with /3(0) =  1 =  4°/5.

Now suppose G is any graph with n > 1 vertices and let d =  mindeg(G). 
Using the previous lemma and the induction hypothesis we get

P(G) < d •&,-(«*+!)<
-  4n/5 . ___d___

4(d+l)/5 < 4n/5

The last inequality holds because the function /(d )  =  4(d+1)/5 attains maximum (for 
integer values of d) when d =  4 and /(4 )  =  1. Since G was arbitrary that completes 
the proof. □

Rem ark 2.31. A close inspection of the proof reveals that (when n is divisible by 
5) the disjoint union of copies of K$ is the only graph for which the total Betti 
number attains maximum. If n is not a multiple of 5 one must adjust the size of 
one or two copies of K§. We omit the details which are analogous as in [102, 74].

Our formulation of the problem makes it natural to ask the same question 
with various restrictions on G. Consider the problem of maximizing the total Betti 
number dim H*(I(G)) for bipartite graphs G.

Exam ple 2.32. For q >  1 let K q<q be the complete bipartite graph with parts of 
equal size q and let Biq =  Kq,q — M  be the same graph with a perfect matching 
removed. Then the space I(D'2q) consists of two ^-vertex simplices joined by q 
segments, hence it is homotopy equivalent to \/fl~1 Sl .

Now suppose n is divisible by 2q and let G =  (n/2q) ■ £?2q- As before, we 
obtain that 1(G) is homotopy equivalent to a wedge of (q -  \)n/‘2<t =  ({q -  i ) i / 2g)n 
spheres and that this expression is maximized for q =  5. We therefore have a 
bipartite graph G with n vertices and total Betti number (21//5)n fa 1.15” .

Note that this graph is the so-called bipartite double cover of the graph of 
Example 2.24.

We conjecture that the graph from the previous example is extremal. 

Con jecture 2.33. For any n-vertex bipartite graph G we have

dim H .(7(G); Q) <  (21/5)".

27



There is also another, equivalent formulation of this conjecture.

Conjecture 2.34. If K  is any simplicial complex (not necessarily flag) with a 
vertices and b maximal faces then

dim H *(K;Q ) < (21/5)“+b.

Proof of the equivalence of Conjectures 2.33 and 2.3f. Consider a bipartite n-vertex 
graph G with parts U, W  of sizes \U\ =  a, \W\ =  b, a +  b — n. Let K g be the 
simplicial complex with vertex set U and with maximal faces of the form

U \ Â g [iü] for all w EW.

It is a known fact (see [13, Thm.3.7], [64, Sect. 3]) that 1(G) ~  E K g , so the spaces 
1(G) and K q have the same total reduced Betti numbers. Since K G has a vertices 
and at most b maximal faces, Conjecture 2.34 implies

dim # ,(/(< ? )) =  dim H ,(K a ) <  (21/ 5)a+b =  (21/5)n.

Conversely, if K  is any complex with a vertices and b maximal faces, we 
construct a bipartite graph Gk ■ It has one vertex for each vertex and for each 
maximal face of K  and a vertex u is adjacent to a maximal face /  if u (f f .  Now 
the previous homotopy equivalence translates into I(G k ) — E K  and Gk  has a +  b 
vertices so Conjecture 2.33 implies

dim H*(K) =  dimH *(I(GK)) <  (21/5)“+6.

□
The methods of this chapter suffice to prove a partial result, weaker than the 

conjectured optimum. First consider, for every d >  1 , the function

f d(x) =  aT(d+1) +  x~{d+V +  • • • +  x~2d

and let 1 < ay < 2 be the unique solution to /¿(a^) =  1. Then one checks easily 
that a  =  03 «  1.25 is the largest of all the ad and we have the next result.

Proposition  2.35. For every triangle-free n-vertex graph G we have

d im # ,(1(G);Q) < a n.
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Proof. Once again the proof works for any function ¡3 which satisfies the conditions 
of 2.26. Define

¡3' — max /3(G).
G triangle-free 

|V(G)|<n

We follow the inductive argument of the previous section, but triangle-freeness gives 
a better estimate of the size of the removed neighbourhoods.

The result holds for n — 0. Now suppose G is a triangle-free graph with 
n > 1 vertices and mindeg(G) =  d. Let v be a vertex of degree d. In the graph G, 
of Lemma 2.29 the endpoints of e* have degrees at least d — i +  1 and d and their 
neighbourhoods are disjoint, so

| V ( G i  \ JVGi[ei])| < n - ( d - i  +  l ) - d  =  n - 2 d  +  i - l .

All graphs Gj \ Ng, [ej] are triangle-free, so by Lemma 2.29 we get

/?(G) < ^ _ 2d +/3 ;_ (2d_i) +  - - + / 3 ; _ ( d+i ) <

< an~2d +  +  • • • +  a n- (d+1) =  anf d(a) <  an

since /d(a) <  fd{(*d) — 1- Since G was arbitrary that completes the proof. □

As a consequence Conjectures 2.33 and 2.34 hold with the constant 21/5 

replaced by a.
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Chapter 3

Independence complexes and 
the powers of cycles

3.1 Introduction

This chapter describes a computation which was the initial motivation behind the 
study of the splitting conditions for the cofibre sequences of Chapter 2. We use the 
splitting results associated with the sequence (2.2) to calculate the homotopy types 
of independence complexes of a particular family of graphs, namely the powers C„ 
of cycles. Recall that D. Kozlov in [71] computed the homotopy types of I(Pn) and 
I(C n), where Pn is the path and Cn is the cycle on n vertices. The answers are 
determined by the homotopy equivalences

I{Pn) -  £  I{Pn-3), I(C n) *  £  I(C n- 3).

An open question of [71] is to find similar statements for the complexes I(P „) and 
7(C£), r > 2. Here Gr denotes the r-th distance power ofG , which is the graph with 
the same vertex set in which two vertices are adjacent if and only if their distance 
in G is at most r. Therefore Crn is the graph spanned by the vertices of the n-gon, 
with two vertices being adjacent if and only if they are at most r steps away along 
the perimeter of the n-gon. For P£ the n-gon is replaced with an n-vertex path. 

The answer for /(P ,() is given in [35] in the form of a recursive relation

H K )  =  E v E ' « - ( r + 3)) V ■ ■ • v  E / ( P ' . (2r+1)), > r +  1. (3.1)

(Note that [71, 35] denote our /(P^), I{C'n) by, respectively, £ „+1, C([+1). Here 
we obtain a corresponding statement for answering the question raised in
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[71, 35],

Theorem  3.1. For every r >  1 and n >  5r +  4 there is a homotopy equivalence

where X nj is a space which splits, up to homotopy, into a wedge sum of complexes 
of the form E31(P f_a) for various values of 4r +  6 < a < 6r +  3.

The reader will see that the proof of the theorem gives an algorithmic way 
of enumerating all the wedge summands that go into X ntT; there are asymptotically 
r3 of them and we list them at the end of this chapter. For example, when r =  1 we 
will have I(Cn) ~  E2/ (C n- 6) with X U}i being trivial, which agrees with Kozlov’s 
recurrence. When r — 2 the exact answer is

I(C l) ~  E2/ (C 2_9) V \ j E3 7 (P2_ 14) V \ /E 3 / ( P 2_ 15),

and so on.

The idea of the proof is as follows. We extend Crn to another graph C f on 
the same vertex set but with more edges. The new graph will have the property 
that 7(C£) ~  E2/(C £_(3r+3)) (Proposition 3.4). Since C f is obtained from by 
inserting new edges, we get a natural inclusion

s 2i ( c ; _ ,  3r+3))=  n e t )  w  / ( c ; ) .

This is our guess for what the inclusion of the first wedge summand in Theorem 3.1 
should be. We then need to show that, up to homotopy, the image of this inclusion 
indeed splits off. This is accomplished by analyzing the construction of Cf from 
Cf edge by edge and showing that every single edge insertion yields a splittable 
inclusion of independence complexes.

3.2 The proof of Theorem 3.1

We will use an obvious inductive consequence of Proposition 2.4.b), which we record 
below for convenience.

Lem m a 3.2. Suppose G is a graph and e i , . . . ,  e* is a sequence of edges which are 
not in G. Let Gq — G and let Gi =  G i-i U e\ for 1 <  i <  k. Suppose that for each

31



i =  1, . . . ,  k the inclusion

I(ei U (Gi \ iV[ei])) c—> I(Gi)

is null-homotopic. Then there is a homotopy equivalence

k
J(G )~J(G ,0V  V s 2 / ( G A ^ M ) .

i=1

Proof. For every i =  1 , . . . ,  k we have Gi — e* =  G i-1, so Proposition 2.4.b) yields 
splittings I(G i-\) ~  I{G i) V E2/(Gj \ AT[ej]), from which the result follows by 
induction. □

We now describe the construction of the graph C[r The vertices of an n-cycle 
are labeled with elements of Z/n. We start with and add new edges in the order 
described below (see Fig.3.1 and Fig.3.2).

• First phase. It consists of r — 1 stages.

— In stage s, where 1 < s < r — 1, we add two groups of edges:

* first group: (i, i +  2r — s +  2) for i — 1, . . . ,  r +  s +  1 ,
* second group: (i, i +  3r — s +  3) for i =  1 , . . . ,  s.

• Second phase. Add all the edges of the form

(—x , 3r +  3 +  y) for 0 < x  <  r — 1, 1 <  y < r, x +  y < r.

Let Tfr+z denote the subgraph of induced by the vertices { 1 , . . . ,  3r +  3} 
(this subgraph does not depend on n, see Fig.3.2). Also, let Rrn be the remaining 
part of C£ i.e. the subgraph induced by {3r +  4 , . . . ,  —1,0}. Note that all the edges 
added in the first phase of the construction belong to Tzr+z, all the edges from the 
second phase are in Rrn and the only edges between the two parts are those that 
were originally in C£. The condition n > 5r +  4 of Theorem 3.1 guarantees that all 
the edges added in the construction (esp. in the second phase) are indeed “new” .

We start with some technical properties of C£ and 73r+3 which ultimately 
lead to the fact that I(C £) is a homotopical model for E2 -f(C£_(3r+3))-

Lemma 3.3. The graphs C „  and T3r+3 have the following properties:

a) The graphs T3r+3 and have an axis of symmetry, in the sense that there is 
an edge (i , j ) if and only if there is an edge (3r +  4 — i, 3r +  4 — j ) .
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Figure 3.1: Construction of C£ for r — 4. Figures a),b),c) highlight edges added 
in stages s =  1,2,3, where the edges of the first group are solid and those of the 
second group are dashed. Figure d) highlights the edges of the second phase.
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- 1 0 1

Figure 3.2: The graphs C£ for r — 2,3 and a general decomposition shown for r =  5.
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b) For any 1 < i <  r the graph Tir+3 \ JV[z] is isomorphic to the path P4 on the 
vertices i +  r +  1, i +  r +  2, i +  2r +  2, i +  2r +  3.

c) If i , j  are two vertices of 73r+3 with \ < j  — i < 2 r  +  \ then (i , j ) is not an
edge of T3r+3 if and only if j  =  i +  r +  1 or j  — i +  r +  2.

d) For any 0 <  k < r +  1 we have I{T^r+j,[k +  1 , . . . ,  k +  2r +  2]) ~  *.

e) There is a homotopy equivalence I{T^r+ )̂ ~  S1.

f )  The graphs Rrn and Cfl_^Zr+y> are isomorphic.

Proof, a) The statement obviously holds for the original edges of Cf. If (i ,j)  =  
(i , i +  2r — s +  2) is an edge added in the s-th stage then

(3r +  4 — j, 3r +  4 — i) =  (r +  s +  2 — i, (r +  s +  2 — i) +  2r — s +  2)

was also added in the same stage a s l < r  +  s +  2 — * < r +  s +1 . A similar argument
applies to the edges of the form (z, i +  3r — s +  3). Every edge (—x, 3r +  3 +  y) of 
the second phase is mirrored by

(3r +  4 -  (3r +  3 +  y), 3r +  4 -  ( - x ) )  =  ( - ( y -  1), 3r +  3 +  (x +  1))

which was also added in the second phase.
b) Any vertex i with 1 < i < r is connected to

• all of 1, +  r — using the original edges from C£,

• vertices between ¿+2r —1+2 =  z+2 r+ l  andz+2r — (9— 1)+2 =  z+ r+ 3  (going 
backwards) —  edges added in the first groups of each stage as ?' <  r +  .s +  1 
for all s,

• vertices between i +  3i—  z +  3 =  3r +  3 and i +  3r — (r — 1) +  3 =  i +  2r +  4 
(going backwards) — edges added in the second groups of each stage s that 
satisfies i < s.

It means that the vertices of T3r+3 \ N[i\ are exactly {i +  r +  1, i +  r +  2, i +  2r + 
2,z +  2r +  3}. Moreover, any two of them with difference other than 1 or r have 
difference r +  1 and r +  2. Such pairs do not form edges because the shortest edges 
added in the first phase span over a distance of at least 2r — (r — 1) +  2 =  r +  3. 
That means T3r+3 \ N[i] is precisely a P4.

c) As observed in b), there are no edges (i,i +  r +  1) and (i,i +  r +  2). If 
j  — i < r  then (i, j ) is an edge already in Cf. Now suppose that r +  3 < j  — i <  2r +  l
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and let s — 2r +  i — j  +  2. The constraints on i , j  are equivalent t o l < s < r  — 1 
and the inequality j  < 3r +  3 is equivalent to i < r +  s +  1. It means that the edge 
(i, i +  2r — s +  2) =  (i, j )  was added in stage s.

d) We will show that the complement of the graph T3r+3[A-|-1,. . . ,  A+2r+2] is 
a path and then the result immediately follows. Part c) gives a complete description 
of edges in that complement. Vertices A +  r +  1 and k +  r +  2 have one incident edge 
each (to k +  2r +  2 and k +  1, respectively) and every vertex k +  i with 1 < i <  r 
has edges toA  +  i +  r + 1  and k +  i +  r +  2. This easily implies that the graph in 
question is the path

A +  r +  1, A +  2r +  2, A +  r, A +  2r +  1, A +  r -  1 , . . . ,  A +  1, A +  r +  2.

e) By part b) the complexes 7(T3r+3 \N[i]) are contractible and contained 
in {r  +  1, . . . ,  3r +  3} for all 1 <  i <  r. By Proposition 2.1.a) we can therefore 
sequentially remove all those i from T3r+3 without affecting the homotopy type of 
the independence complex. That means

I(T3r+3) ^  I (T3r+3 [r +  1.......3 r +  3]).

Let H =  T3r.+3[r +  l , . . . , 3 r  +  3]. Using part d) with A =  r +  1 we get that 
I (H \ {r  +  1}) is contractible. Moreover the graph H \ N[r +  1] is the 3-vertex path 
induced by 2r +  2 ,2r +  3 ,3r +  3, so I(H  \ N[r +  1]) ~  S°. The cofibration sequence 
of Proposition 2.1 now yields 1(H) ~  S 5° =  Sl .

f)  This is obvious as the edges added in the second phase of the construction
are exactly those needed to close the long power of a path -PTj_(3r+3) into the same 
power of a cycle. □

Proposition 3.4. There is a homotopy equivalence

r J ^ 2^ - ( 3 r +3)).

Proof. We will show that all edges that connect T3r+3 with Rrn can be removed 
without changing the homotopy type of the independence complex, i.e. that the 
inclusion

/ ( Q ) ^ / ( r 3r+3 u ^ )

is a homotopy equivalence. Then the result follows from e) and f) of Lemma 3.3.
Because of the symmetry of Lemma 3.3.a) it suffices to consider the removal 

of edges of C'f which “go across 0” . Every such edge is of the form e =  (x, — (r — y))
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Figure 3.3: The proof of Proposition 3.4. The circled vertices are those that remain 
after removing fV[e] for e =  (x , —(r — y)).

for 1 < x < y < r (see Fig.3.3). By Proposition 2.4.a) all we need to check is that 
the complex I{C £ \ N[e\) is contractible. (To be precise, we need to know this not 
for C Trl but for the intermediate graph we obtain after some edges of this form have 
already been removed. It is, however, easy to see that it will be exactly the same 
thing.)

By Lemma 3.3.b) the removal of iV[x] deletes all vertices in { 1 , . . . ,  3r +  3} 
except x +  r +  1, x +  r +  2, x +  2r +  2, x  +  2r +  3. The removal of N [— (r — y)\ 
deletes (in particular) all of 0 , . . . ,  — r and 3r +  4 , . . . ,  3r +  3 +  y. The first vertex in 
RTn which remains is 3r +  4 +  y and

(3r + 4 + y) — (x +  2r +  3) =  r + l + (y — x ) > r  +  l

so it is too far to be adjacent to the vertices which remain inside ? 3r+3. It follows that 
C£ \ iV[e] is a disjoint union of Pa and some subgraph of /?(), hence its independence 
complex is contractible. This is what we needed to prove. □

We can now move on to the second part of the program outlined at the 
beginning of this section. This means proving:

Proposition 3.5. The sequence of edges listed in the construction of C£ from C£ 
satisfies the assumptions of Lemma 3.2.

Proof. We start from G — Crn and expand it edge by edge.
Edges of the first phase. Suppose we are now in stage s, 1 < s  < r  — 1.
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?'-th edge of first group. Suppose our current graph G includes all the 
edges up to the edge e =  (u,v) =  (i, i +  2r — s +  2) of the first group in the s-th stage. 
We are going to use Theorem 2.7 with x =  i +  1, y =  i +  2r — s +  1, see Fig.3.4.a). 
The graph induced by {x, y, u, u} has edges e =  uv, ux and vy and no others because 
the differences between remaining pairs of vertices are at least 2r — s > r +  1 and 
less than 2r — s +  2, so those edges may potentially only be added in the first groups 
of future stages. It means that the induced graph is a P4. It remains to check that 
N[x] UN[y] C N[e],

Note that 2r — s +  2 < 2r +  1 so the whole interval {u — r , . . .  ,v  +  r} is 
in 7V[e] =  N[u] U N[v] already in the graph Cn. It means that all the neighbours 
of x or y in belong to Ar[e]. It remains to concentrate on the new adjacencies 
induced by the edges added previously in the construction. Consider first the vertex 
x =  i +  1. It can have the following, previously added edges.

• (x, j )  =  (i -f 1, (* +  1) +  2r — s' +  2) =  (¿ +  1, i +  2r — s' +  3) for some 1 < s' < s. 
Then j  -  v =  s -  s' +  1 < r, so j  € N[v] C N[e].

• (j ,x )  =  ((* + 1) — (2r — s' +  2), i + 1) =  (i — 2r +  s' — l , i  + 1) for some 1 <  s' <  s 
(see Fig.3.4.a)). Let s" =  s1 +  s — r. The inequality j  >  1 is equivalent to 
2r — s' +  2 < i. Together with the inequality i < r +  s +1, which holds because 
we are currently in stage s, they yield s" =  s +  s' — r >  1. Clearly s" <  s' so 
s" is a valid number of a past stage. We also have

j  — i — 2r +  s' — l < r  +  s +  l — 2r +  s; — l =  s' +  s — r =  s” 

which means that in stage s" we added an edge of the second group 

{ j , j + 3 r -s "+ 3 ) =  (j, * - 2 r + s '- l+ 3 r - ( s ,+ s -r )+ 3 )  =  (j, i+ 2 r -s+ 2 ) =  (j,v )

so j  & N [u] C iV[e] at the present stage, as required.

• (x , j ) =  (i +  1, (i +  1) +  3r — s' +  3) for some 1 < s'  < s .  If that edge was 
added in stage s' , we must have had i +  1 < s' . Let s "  =  s'  — 1. Then 
l < i < s " < s < r  — Is o  stage s "  existed and in that stage we added the edge

(i, i +  3r — s "  +  3) =  (i, i +  3r — s' +  1 +  3) =  (i,  j )

so j  G N[u] C AT[e].

• (j, x) =  ((¿ +  1) — (3r — s'-(-3),i +  l) =  (i — 3r +  s' — 2,i +  l) for some 1 < s'  < s.

38



We must have j  >  1 and i < r +  s +  1, so

1 < * — 3r +  s' — 2 < r + s + l — 3r +  s' — 2 =  s +  s' — 2r — 1 < 0, 

which is a contradiction.

This completes the proof that N[x] C N[e\. Note that in this proof we only used 
the existence of edges from previous stages and never needed to refer to the edges 
added earlier in the same s-th stage. The part of the graph constructed up to the 
complete (s — 1) stages has the axis of symmetry of Lemma 3.3.a), therefore the 
same proof will work to show N[y] C N  [e]. It means that N[x] U N[y] C N  [e] and 
the assumptions of Theorem 2.7 are satisfied.

f-th edge of the second group. Now suppose we are adding the edge 
e =  (u, v) =  (i, i +  3r — s +  3) in the second group of stage s, and all the previous 
edges are already in the graph. We are going to use Theorem 2.7 with x =  i +  1, 
y — i +  3r — s +  2, see Fig.3.4.b). The graph induced by {x , y , u, w} has edges e =  uv, 
ux and vy. There are no other edges because the remaining differences are smaller 
than the one between u and v, but at least 3r — s +  1 > 2r +  2, so those edges may 
potentially only be added in the second groups of future stages. It means that the 
induced graph is a P\. As before, to check fV[:r] C N [e] we only need to restrict to 
those edges from x  whose endpoints are not obviously covered by the neighbours of 
u and v from C£. Those include:

• (x, j )  =  (i +  1, (i +  1) +  r), see Fig.3.4.b). Note that by construction we must 
have i < s therefore j  <  r +  s +  1, so in the first group of the present stage we 
added the edge

(j) j  +  2r -  s +  2) =  {j, i +  1 +  r +  2r -  s +  2) =  (j, i +  3r -  s +  3) =  (j,  v) 

so j  € N[v] C iV[e].

• (x, j )  =  (i +  1, (i +  1) +  3r — s' +  3) for some 1 < s' < s. If that edge was 
added in stage s', we must have had i +  1 < s'. Let s" =  s' — 1. Then 
1 < i < s" < s <  r — 1 so stage s" existed and in that stage we added the edge

(i, i +  3r — s” +  3) =  (i, i +  3r — s' +  1 +  3) =  (i, j )  

so j  € A^u] C IV [e].

• (x , j ) =  (* +1, (i +  l) +  2r — s' +  2) =  (i +  l , /  +  2r — s '+  3) for some 1 < s' < s.
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But then

v — j  =  (i +  3r — s +  3) — (i +  2r — s' +  3) =  r — (s — s') <  r

so j  G iV[u] already in Cfr

It proves that N[x] C N[e] and N[y] C Ar [e] follows from symmetry as before. 
Again, we invoke Theorem 2.7 to verify the assumption in Lemma 3.2.

Second phase. Assuming that the first phase is complete we are now going 
to add edges of the second phase. Here the order is irrelevant to the argument. 
Suppose we have already constructed some graph G, which includes all edges of the 
first phase (in particular, the whole T3t+3 is already there), and that we are now 
adding the edge (see Fig.3.4.c))

e =  (—x, 3r +  3 +  y), for 0 < x < r  — 1, l <  y <  r, x +  y <  r.

Let

V =  { - z }  U { 1 , . . . ,  — x  +  (3r +  2)} U {3r +  3 +  y)

W  =  {3r +  3 +  y +  (r +  1 ) , . . . ,  — x -  (r +  1)}.

The inclusion /(eU(G\lV[ej) )  c-> 1(G) , which we need to show is null-homotopic, 
factors through I(G\VU W]). Indeed, W  contains all the vertices of (G\AT[e]) HRrn. 
To see that V  covers all of (G \ AT[e]) fl Tir+3 note that the last vertex not in 
N[3r +  3-)-y] is 2r +  2 +  y, but

2r +  2 +  y < 2r +  2 +  (r — x) =  — x +  (3r +  2)

so (G \ Ar[e]) n T3r+3 C V.
There are no edges from V  to W, so I(G [V  U IT]) =  I(G[V]) * I{G[W }). We 

are going to show that
I(G[V}) ~  *

and this gives the desired conclusion.
To analyze G\V) first look at the vertex —x. We have

G[T] \ AT[-x] =  T3r+3[ - x  +  r +  1 , . . . ,  - x  +  3r +  2]

and the independence complex of the last graph is contractible by Lemma 3.3.d).
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j=i—‘2r+s'—l

Figure 3.4: Illustration to some arguments in Proposition 3.5. The labels (s) indicate 
in which stage the edge was added. In c) the circled vertices are those of the set V.
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Therefore, by Proposition 2.1.a) the removal of — x preserves the homotopy type:

j ( G [ F ] ) ~ / ( G [ n  {-* }])•

But in the graph G[V\ { —x}] the neighbourhood of 3r +  3 +  y is {2r+  3 +  y , . . . ,  3r +  
2 — x }. All those vertices are between 2r +  4 an 3r +  2, so they form a clique already 
in CTn. By Corollary 2.14

3r+2—x

/ (G [V\ { - * } ] ) -  V  S / ( G [ V \ { - x } ] \ W W )
i=2r+3+y
3r+2—x

-  V  Z I{T 3r+3 \N[i})
i=2r+3+s/

In the last wedge sum i > 2r +  4, so each summand is contractible by Lemma 3.3.b) 
combined with the symmetry of Lemma 3.3.a). That ends the proof. □

So far we proved that the splitting of Theorem 3.1 holds for some space X n r. 
Lemma 3.2 also provides a description of X n r as a wedge sum of E2 7(G, \ AT[cj]) 
where e* runs through the edges added in the construction of C£. We will briefly 
sketch how to identify those summands and this will complete the proof of Theorem 
3.1.

• First groups in first phase. For each stage s if e =  [i, i +  2r — s +  2) then:

— For every 1 < * < s — 1 the removal of N[e] leaves only the vertex 
v =  i +  3r — s +  3 and a segment isomorphic to P^_4r+i_4 within RTn. 
The vertex v is adjacent to the r — s +  i initial vertices of the path power. 
They form a clique so Corollary 2.14 identifies E2 I(G  \ N[e]) as

E3 / (P nr_5r+i_5) V ••• V E3 / ( p ; _ 6r+s_4)

and this is the contribution of each pair (i, s) with l < i < s < r  — 1.

— For every r +  3 < z < r  +  s +  l  the situation is symmetric, so we can just 
include the contribution of the previous part twice.

— When s < i <  r +  2 then the vertices left after removing TV [e] form a 
Pn-4r+s-3- For every s there are r +  3 — s suitable values of i, so the 
total contribution of this part for every s is

r+3-s

V  S 2 / « - * . +.-s ).
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This can be expanded into third suspensions using (3.1).

• Second groups in first phase. For each stage s if e =  (i, i +  3r — s  +  3) then the 
removal of JV[e] leaves a disjoint union of P^_5r+S_4 with a clique of size r — s 
induced by {i +  r +  2 , . . . ,  i +  2r — s +  1}. There are s edges in this group, so 
here stage s contributes

s(r—s—1)
V  S r + .- l)

(in particular when s =  r — 1 the clique has size 1 and the summand is 
contractible).

• Second phase. For an edge e =  (—x, 3r +  3 +  y) its removal leaves a copy of 
Pn-br-A-(x+y) and a segment of ?3r+3 induced by {r  +  1 -  x , . . . ,  2r +  2 +  y } . 
The independence complex of the last piece equals

I(Tzr+3[y +  l , . . . , y  +  2r +  2]) \ (y  +  1, . . .  ,y +  (r -  x -  y)}.

In the proof of Lemma 3.3.d) we saw that I(T3r+3[y +  1, . . . ,  y +  2r +  2]) is 
homeomorphic to a path. The order of the vertices of that path implies that 
the removal of each of y + 1 , . . . ,  y + (r —x —y) increases the number of connected 
components by 1. Therefore the resulting space is homotopy equivalent to the 
wedge of r — (x +  y) copies of 5°. Since the possible values of x -j- y are 
t =  1 , . . . ,  r and value t is attained t times we get that the total contribution 
of the second phase is

r t(r-t)

V  V  ¿
t= 1

(again, the summands for r =  t are trivial).

A tedious calculation, which will be omitted, allows to express the combina­
tion of all the contributions in the following form.

Corollary 3.6. The space X nj of Theorem 3.1 satisfies

6r+3 ki
X n,r — £ 3 V  V 7(Pn-i)

i=4r+6
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where
J 7}{i  — 4r — 5)(i — 2r — 2) for i < 5r +  4,

| ^(6r +  4 — *)(* — 2r — 1) for * > 5r + 5.

Rem ark 3.7. This work provides a natural recursive relation for I(C „), but does 
not say anything about the “initial conditions” , that is the case when n < 5r +  4. It 
is reasonable to expect that all those spaces are, up to homotopy, wedges of spheres. 
Other methods of computing the homotopy types of 1(0*) were recently obtained 
in [98, 59], although the claims of [59] were later withdrawn.
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Chapter 4

Induced matchings, cross-cycles 
and complexity

4.1 Introduction: Homology classes defined by match­
ings

There is a certain efficient construction that defines a class in the homology of a flag 
complex and, at the same time, delivers a proof that this class is non-trivial. We 
describe it now. Let 5° be the zero-sphere, that is the simplicial complex consisting 
of two disjoint vertices. Recall from Section 1.2 that the fc-fold join

Qk =  5° * • • • * S°
k

is a complex with 2k vertices, combinatorially equivalent to the boundary of the 
cross-polytope and homeomorphic to the (k — l)-sphere.

Definition 4.1. A cross-cycle (of size k) in a flag simplicial complex K  is an 
induced subcomplex of K  isomorphic to Ok and such that it contains a maximal face 
of K .

A cross-cycle is an embedded sphere Sk~1 C K\ hence, it defines a homology 
class in Hk-\{K ). This class must be non-zero as its representing cycle contains a 
maximal face, and so it cannot be hit by a differential. The name cross-cycle refers 
to the fact that the sphere is isomorphic to the boundary of a cross-polytope.

Cross-cycles have been used to construct homology classes in a number of 
contexts [4, 27, 63, 95]. They appear as the main contribution to the homology 
of the clique complexes of random geometric graphs [67]. Moreover, they are the
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Figure 4.1: Example graph with an induced matching containing a maximal inde­
pendent set.

minimal models, in the sense that for a flag complex K  every non-zero homology 
class in H k-i(K )  must be supported on at least 2k vertices and, if the support size 
is exactly 2k, then the class must be given by an embedded Ok, see [66], This leads 
to our interest in their algorithmic properties.

Note that Ok is the independence complex of the disjoint union of k edges. 
This immediately leads to a characterization of cross-cycles in 1(G) in terms familiar 
to graph theorists.

A matching of size k is the disjoint union of k edges. An induced matching 
in a graph G is a matching which is an induced subgraph of G. Explicitly, it is a 
set of k edges of G such that any two vertices from distinct edges are non-adjacent 
in G.

Observation 4.2. If G is a graph then a cross-cycle of size k in 1(G) determines, 
and is determined, by an induced matching M  of size k in G such that the vertex 
set of M  contains a subset a that is a maximal independent set of G. For simplicity 
we shall say an induced matching containing a maximal independent set.

Note that o  must contain exactly one vertex from each edge of M, and a is a 
dominating set of G. For example, in the graph G in Fig. 4.1, M  =  {(7,9), (3 ,8)} is 
an induced matching containing an independent set a =  {7,3},  and o  is a maximal 
independent set in G. This defines a cross-cycle and therefore a non-trivial homology 
class in H\ (1(G)).

Note that as a clique complex, Ok is the clique complex of rather more 
involved object, namely the complete A-partite graph K i, . . . ,2-

Let us now be more specific. We will define a homology and a cohomology 
class associated to a pair (AI,<r) consisting of an induc ed matc hing A1 containing a 

maximal independent set a .
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First of all, suppose that

M  =  {(wi,l,Ul,2)>(v2,l>V2,2)>” ->(vjfc,l,Ufc,2)}

is any induced matching of size k in a graph G. Then we define a (k — l)-chain

aM e  Ck- M G ) )  by

OLM =  (bl,l] -  b l,2]) A ([U2,i] -  [«2,2]) A • • • A ([ujfc,i] -  [vka\) (4.1)

=  £  ( - l ) ei+"'+£fcK e 1^ 2,e2, . . . , ^ , £J.  (4.2)
ilv,ifc€{l,2}

Since M  is an induced matching, each {uii£l, . . . ,  vk tk} is an independent set in 
G , and the definition makes sense. It is obvious that dk~\a\j =  0, therefore 
is a cycle and it determines a homology class which we continue to denote E 
Hk-i(I (G )) .

Note that if i\{ : Ok ► I(G ) is the inclusion of the cross-cycle defined by 
M, then a M is just the image of the fundamental class in Hk_i{O k) =  Hk^l (Sk~l ) 
under the induced map in homology (up to a sign given by a choice of orientation).

If a is an independent set of cardinality k in G then we denote by ctv E 
Ck~1(I(G )) the cochain which associates ±1 to the two orientations of a and 0 to 
all other simplices (again, this depends, up to sign, on the choice of orientation for
a). If a is a maximal independent set (hence a maximal face in 1(G)) then this 
cochain is in fact a cocycle, hence it determines an element of Hk~1(I(G)) which 
we continue to denote <rv.

Lem m a 4.3. If (M, a) is an induced matching containing a maximal independent 
set then aM and erv are nonzero, non-torsion classes in H*(I(G)) and H *(I(G )), 
respectively. Moreover

=  ± 1-

Proof. The last statement holds because <rv evaluates to ±1 on exactly one of the 
simplices in the chain representation (4.2) of aM- It immediately implies that both 
elements are nonzero and of infinite order. □

Unfortunately it is not always the case that Hk-\(I(G )) is generated by the 
classes aM over all induced matchings M  of size k. For instance, for the cycle C5 

on 5 vertices, it is easy to see that / (C 5) =  S 1, but C5 does not even have induced 
matchings of size two. However, we are going to see in Section 4.3 that the situation 
is better for chordal graphs.
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4.2 Example: Z/n-action on H*(I(Cn))

Consider the classical homotopy equivalences

I(C 3k) -  s k~' V Sk~\ I{C 3k+i) ^  Sk~\ I(C 3k+2) ~  s k

(see Example 7.23). The common feature of all methods of deriving results of this 
sort is that they require one to break the symmetry and forget the equivariant 
structure induced by the action of the automorphism group of the graph.

As a sample application of cross-cycles we will compute the action of Z /n  on 
the homology of the above spaces. In fact it is this simple exercise (and its solution) 
that made the author independently “discover” cross-cycles and think of their other 
applications.

Let p denote the generator of the cyclic group Z /n  acting on Cn by taking 
vertex i to i +  1 (arithmetic modulo n) for i =  0, . . . ,  n -  1 .

Theorem  4.4. Let p* denote the map induced by p on the unique nontrivial reduced 
homology group of I(C n). Then there is a basis of H*(I(Cn)) in which p* is given 
by the matrix

In other words, the representation of Z/n on H*(I(Cn)) factors through Z /gcd (n, 6). 

The proof of the theorem depends on the value of n mod 3.

The action on /(C k ).

Suppose n =  3k. In this case one can write explicit cross-cycles which generate 
homology. We have induced matchings

(—1)" xid for n =  l ,2 (mod 3) 

] for n =  0 (mod 3).
1 ( - l ) n J V ’

Mi =  {(1,2), (4 ,5 ) , . . . ,  (3k — 2,3fc — 1)}, 

M2 =  {(2,3), (5,6) , . . . ,  (3k — 1,3/c)},

with maximal independent sets, respectively:

a! =  {1 ,4 , . . . ,  3fc — 2}

<72 =  {3 ,6, . . . ,3 k } .
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Their pairings are:

(o'l\ QA/i) =  1, (oq ,aA/2) =  0, (<T2,aMl) =  0, {<7̂ ,aM2) = (-1)*

Since we know that H k-i(I(C 3k)) =  Z©Z, the above equalities imply that { « a/j , a A/2} 
is a basis of that group. Similarly {er^cr^} is a basis of H k~l (I  (Cm )) •

We can now calculate the action of p. Clearly p*aMi — &m2- Moreover

) P*®m2 )

(o"2 iP*a Mi) =

( {1 , 4 , . . . ,  3A: -  2}v, ([3] -  [4]) A ([6] -  [7]) A • • • A ([3k] -  [1])) 

(—l )fc_1 • (—l ) fc =  - 1

( {3 , 6 , . . . ,  3fc}v, ([3] -  [4]) A ([6] -  [7]) A • • • A ([3k] -  [1]))

1

Therefore, if p*a\i2 =  xiqa/j +  x^aM2, then

x\ =  (cri,p*aM2)/((7i,atMi) = -1 ,
x2 =  {(T2 ,P*OCM2)/{^2 â M2) =  (“ l ) fc =  ( - !)">

and that ends the calculation in this case.

Cycles of length not divisible by 3.

Cycles of length not divisible by 3 do not have induced matchings with maximal 
independent sets, but we can still avoid having to write an explicit generator by 
making a comparison with paths.

Lem m a 4.5. The independence complexes of paths satisfy:

a) / (P 3/C+1) is contractible.

b) The inclusion i : I(P3k) ¡(Csk+i), induced by omitting one vertex ofC$k+u 
is a homotopy equivalence.

c) The inclusion j  : I{Czk+2) t-> I(P3k+2)> induced by omitting one edge ofC 3k+2, 
is a homotopy equivalence.

Proof. Part a) follows by a A'-fold application of Corollary 2.13. Part b) follows 
from Proposition 2.1.a) because I(C 3k+i\N[v]) =  I(P;i(k-i)+i) is contractible. Part
c) follows from Proposition 2.4.a) because I(Csk+2 \ AT[e]) =  I{P3(k-i)+\) is con­
tractible. □
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Suppose n — 3k + 1. Let i : I(P3k) ► I{Czk+i) be the homotopy equivalence 
obtained by removing vertex 3/c +  1. Let (M, a) be an induced matching with a 
maximal independent set in P$k defined by

M  =  { ( 1, 2), (4, 5 ) , ,  (3/c — 2 ,3 k — 1)}, 

a -  { 2 ,5 , . . . ,  3/c — 1}.

Since the homology and cohomology groups in the interesting dimension are both Z 
the relation (<rv, a\j) — (—l )k implies that a m  and crv are generators of Hk-\(I(P3k)) 
and H k~l (I(P3k)), respectively. If N  is another induced matching in P̂ k defined 
as N =  {(2,3), (5,6) , . . . ,  (3k — 1,3k)} then (crv, q t̂) =  1, hence a n =  (—l ) fcQA/ in

Since i is a homotopy equivalence, ¿*oa/ is a generator of H k-i(I(Csk+1))- 
By construction p*(i*ciA/) =  i*otN so we have

) =  i*&N =

which means that p acts on the group Hk-\{I{C3k+\)) =  Z as (—l ) fe =  (—l )n_1.

Next suppose n =  3fc +  2. We essentially dualize the previous argument. Let 
M  — {(1,2), (4 ,5 ) , . . . ,  (3/c 1, 3/c +  2)} be an induced matching in P3fc+2 with two
maximal independent sets <ti =  {2 ,5 ....... 3/c+  2} and «72 =  { 1 ,4 , . . . ,  3/c + 1}. Again,
since (cr ,̂ c*a/) =  (—l ) fc+1, and the groups in question are all Z, we get that cr\ and 
aw  are generators of H k(I(Psk+2)) and Hk(I(P3k+2))- Since (<t̂ cxm) =  1 we get
a2v =  ( - l ) fc+1̂  in H k(I(P3k+2))•

Since j  is a homotopy equivalence, j*o\  is a generator of H k{I{C^k^)) 
and by construction p*(j*a\) =  j*a2 =  (—l ) fc+1j*orj/ . It means that p acts on 
cohomology, and hence also on homology, as (—1)A:+1 =  ( - l ) n_1.

4.3 Homology of chordal graphs

Recall from Section 1.2 that a graph is chordal if every induced cycle lias length 
three. By Corollary 2.22 the independence complex of a chordal graph is homotopy 
equivalent to a wedge of spheres. Moreover, every wedge of spheres arises, up to 
homotopy, as an independence complex of a chordal graph [69]. Induced matchings 
in chordal graphs are directly related to algebraic invariants of their edge ideals 
[48]. Another reason to study chordal graphs in this context is that for this family 
of graphs, cross-cycles detect all of the homology of the independence complex, as
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we now explain.
Let us recall the following result we proved in Section 2.4, and originally 

coming from [35].

Lem m a 4.6 (Corollary 2.14). If G is any graph and v is a simplicial vertex, then 
there is a homotopy equivalence

m  ~  v (g \ n [u}).
u£N(v)

This gives a method of recursively computing the homotopy type of 1(G) 
when G is chordal. For example, for the graph in Fig. 4.1, choosing v — 1 yields

1(G) ~  E / (G [6, 8,9,10]) V £ / (G [4 ,  7,9,10]).

The first graph has isolated vertices, so its independence complex is a cone, hence 
contractible. In the other graph, v =  10 is a simplicial vertex of degree 1. We 
conclude that I(G[4,7,9,10]) ~  E 7(0) =  £  S'-1 =  5°, and so 1(G) ~  S1.

This naive method leads only to an exponential time algorithm computing 
the homotopy type of 1(G) for a chordal graph. However, it provides a connection 
to graph theory.

Theorem  4.7. For a chordal graph G and any k >  0, the homology group Hk-\(I(G )) 
is non-trivial if and only if G has an induced matching of size k containing a max­
imal independent set.

Proof. The ‘if’ part follows from the discussion of cross-cycles in Section 4.1. To 
prove the ‘only if’ part we use induction on the size of G.

If V(G) =  0, then 1(G) =  S~l and 77_i(S1-1) =  Z. In this case the empty 
matching of size 0 satisfies the requirements.

Thus suppose that G is a chordal graph with at least one vertex and that 
Hk_i(I(G )) ±  0. Let v be any simplicial vertex of G (which exists by [30]). By 
Lemma 4.6 there is a splitting

# * - ,( / (< ? ) )=  ®  Ht. 2(I(G \N {u})).
uEN(v)

It follows that there exists a vertex u 6 N(v) such that 77̂ ._2(/(G'\ Ar[u])) /  0. The 
graph G \ N[u] is chordal, so by induction it has an induced matching M' of size 
k — 1 containing a maximal independent set o '.
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Now define a new pair (M, cr) of size k in G by setting 

M  - M ' U {uu}, a =  o' U { « } .

We easily see that M  is an induced matching in G and a is an independent set which 
is maximal in G.

This completes the proof. □

Rem ark 4.8. A more careful analysis of this argument shows that, in fact, slightly 
more is true. We leave the proof to the reader, as we do not need the full strength 
of the next result for our algorithmic applications.

Proposition  4.9. If G is chordal and k > 0 then the homology group Hk-\(I(G)) 
is generated by the classes cum as M  runs through all induced matchings of size k 
containing maximal independent sets.

4.4 Contractibility of 1(G) for a chordal graph G in poly­
nomial time —  outline

Theorem 4.7 establishes a strong connection between the homotopy type of 1(G) 
and the combinatorics of induced matchings of a chordal graph G. The results of 
this, and the next section, describe quite precisely how much of the homotopical 
information about 1(G) can be recovered from G in polynomial time.

Theorem  4.10. There is an 0(|.E(G)|2) time algorithm that decides, for a chordal 
graph G, if G has an induced matching containing a m,aximal independent set.

By Theorem 4.7 this result has an immediate topological consequence.

Theorem  4.11. For a chordal graph G one can decide in polynomial time

• if 1(G) is contractible,

• if 1(G) is simply-connected.

Note that for an arbitrary graph G the problems of deciding if 1(G) is simply- 
connected or contractible are both undecidable (resp. [49], [14]).

We will outline the proof of Theorem 4.10, and that means constructing a 
polynomial time algorithm checking if a chordal graph G has an induced matching 
M  containing a maximal independent set o. For simplicity, in this section we call 
such a pair (M ,a) a solution to G. The algorithm is due to Juraj Stacho and for its 
full details the reader is referred to [8].
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Figure 4.2: Example chordal graph G and its rooted tree model.

Below, we first describe necessary definitions and preliminary steps before 
we present the proof.

A tree model of a graph G =  {V,E) consists of a tree T, called a host tree, 
and a collection of subtrees of T, one for each vertex u of G, denoted by {Tu} ueV, 
with the property that uv € E  if and only if V(Tu) D V(Tv) 0. For clarity, we shall
use capital letters A, Y ,. . .  for the vertices of T  and call them nodes. The following 
is a well-known fact [46].

Theorem  4.12. [46] A graph is chordal if and only if it has a tree model.

We remark that there is a linear time algorithm [92] to determine whether 
an input graph G is chordal, and if so, to construct a tree model of G. Thus, for 
the rest of this section, we shall assume that we have a fixed tree model of G and 
all subsequent considerations are always with respect to this model. We consider T 
rooted at some node, and we direct all edges of T  away from the root (Fig. 4.2). 
For X, Y  G V(T), we write X  -< Y  if there is in T  a directed path from Y  to A". 
Observe that X is a partial order. We write X  -< Y  if X  X Y  and X  /  Y. If X Y  
is an edge of T  oriented from Y to X , we say that Y  is the parent of X , and A  is a 
child of Y. If X  -< Y, we say that Y  is an ancestor of X , and A  is a descendant of 
Y.

N otation 4.13. For u G V(G), top(u) denotes the maximum element of V(TU) 
with respect to X.

The following is a simple consequence of the definition of a tree model.

Fact 4.14. If uv G E(G ), then top(it) b  top(u) G V(TU) or top(v) >z top(u) G 
V(Tv).
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To decide whether a solution to G exists, it suffices to consider particular 
type of solutions.

D efinition 4.15. A solution (AI,a) to G is canonical if every edge uv in AI is such 
that u e a if top(u) >- top(v) and v G a iftop(u) -< top(u).

For example,- the solution ({(7,9), (3,8)}, {7,3}) to the graph presented (with its 
tree model) in Fig.4.2 is canonical, because top(7) =  C y  D =  top(9) and top(3) =  
A y  F  =  top(8).

The following is an important result which is ultimately a consequence of 
Lemma 4.6.

Lem m a 4.16. If there exists a solution to G, then there exist a canonical solution 
to G of the same size.

Our algorithm is based on dynamic programming on T  that tries to find 
canonical solutions for subgraphs of G and then combines these solutions to obtain 
a solution to G if one exists. In particular, we focus on subgraphs induced by vertices 
whose subtrees fie completely below some node of T.

N otation 4.17. For X  G V(T), G x  denotes the subgraph of G induced on all 
vertices v with top(w) ^  X .

If X  is the root of T, then Gx — G. We distinguish the following special 
type of solutions to Gx-

D efinition 4.18. A solution (M, a) to Gx is rooted if there exists u E a such that 
top (u) = X .

N otation 4.19. S denotes the set of all nodes X  G V(T) such that there exists a 

solution to Gx-

N otation  4.20. 1Z denotes the set of all nodes X  G V(T) such that there exists a 

rooted canonical solution to Gx-

Let us explain the notation and our strategy using the example in Fig. 4.2. 
We want to know whether the root of T  is in S. To find out, we recursively find 
the nodes that admit a rooted solution (the set TV). For example, C G 77 since the 
subgraph G c  has a solution ({(7,9)} , {7}). On the other hand, B 0 77 since for any 
choice of an edge (5, a) in Gb , the graph Gb \ (TV[5] U N[v]) has an isolated vertex, 
and thus no solution. Still, Gb has a non-rooted solution combined from the rooted 
solutions of the disjoint subgraphs G c  and Gp.
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Finally for G — Ga , we try the edge (3,8) and see that Ga \ (iV[3] U TV [8]) =  
G c ■ We then check that the rooted solution to G c  together with the edge (3,8) 
indeed form a solution to Ga - This implies that A £ <S as we wanted.

We now state, without proof, three technical lemmas that explain how we 
can compute the sets 1Z and S. Lemma 4.22 explains how to obtain a solution to 
G x  (if one exists) by combining rooted canonical solutions for descendants of X , 
and Lemma 4.23 provides a way to determine if a rooted solution exists to Gx- The 
proofs appear in [8].

Lem m a 4.21. Let X  £ V(T) and suppose that there exists a canonical solution 
(M, a) to Gx- Then

(i) i fY  =  top(u) for some u £ a, then Y  £ 7Z, and

(ii) i f Y < X  and Y  $  Uue<r ^(Tu)> then Y  £ S.

Lemma 4.22. Let X  £ V (T). Define 7Zx =  {Y  \ Y < X , Y  £ 1Z) and let 7Z*x  
denote the set of maximal elements oflZ x with respect to X. For each Y  £ 7Z*x , let 
(M y, cry) be a rooted canonical solution to G y, and define

M *= U My a*= \J ay
YeTl'x Y^nx

Then, if there exists a solution to G x, then (M *,a*) is a canonical solution to Gx-

Lem m a 4.23. Let Z £ V (T), and let uv £ E(G) be an edge such that top(u) =  Z 
and top(u) X Z.

Define Luv =  {T  | Y  X Z, Y £ V(TU) U V(Tv)} and let be the set of 
maximal elements of Cuv with respect to

For each X  £ C*uv, define 7Z*x  just like in Lemma 4.22, and for each Y £ 7Z*X , 
let (M y,a y ) be a rooted canonical solution to Gy. Finally, define

M*v = {uu} U (J 1J My auv = {«} U (J (J ay
xec*uvYeTrx xec*uvYeTvx

Then, if there exists a canonical solution (M , a)  to Gz such that uv £ M  and u £ a, 
then (M*v,a *v) is a rooted canonical solution to GZ-

With these observations we can now present our algorithm.

Proof of Theorem 4-10. We proceed in two steps. In the first phase, we process all 
nodes X  of T from leaves to the root and decide if X  £ 1Z. For every node X  for
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which the answer is ‘yes’ , we also store (for later use) a rooted canonical solution to

Gx .
In the second phase, we check if the root of T is in S. This determines 

whether or not there is a solution to G.
The recursive step of the first phase works as follows. Suppose we are at a 

node Z  G V (T ) and that all descendants of Z have already been processed. We try 
every edge uv € E{G) such that top(u) =  Z and top(u) ■< Z. We construct the sets 
M*v and a*v as described in Lemma 4.23. Note that we are able to construct these 
sets because all descendants of Z have already been processed. Then we test if cr*„ 
is a dominating set of G z■ If so, we declare that there exists a rooted canonical 
solution (M*v, o*uv) to Gz- If we fail for every possible choice of uv, then we declare 
that there is no rooted canonical solution to Gz ■ The correctness of this procedure 
is guaranteed by Lemma 4.23.

We then proceed with the second phase and test if there exists a canonical 
solution to G. To do so we construct the sets M* and a* as described in Lemma 
4.22 for X  =  root of T  and test if a* is a dominating set of G. If so, we declare that 
G has a solution given by (M*,cr*). If not, we declare that no solution for G exists. 
The correctness of this step is guaranteed by Lemma 4.22.

To analyze the running time, denote n =  |V"(G)| and m =  |JS(G)|. Each time 
we process a node Z, we test a subset of edges of Gz and each edge uv of G is tested 
this way exactly once during the whole run of the algorithm. To construct M*v and 
a*v it suffices to search through the descendants of Z  in T. This clearly takes at 
most 0(n) time, since both the sets M*v and a*v have no more than n elements 
and also T  contains at most n nodes. Afterwards, we test if a*v is a dominating set 
of Gz- This can be done directly in time 0(m)  by exploring the neighbourhood of 
every vertex in V (G z) \ &uv- The same applies to the construction and testing of 
M* and a* in the second phase. Thus, altogether, the total complexity is 0{m?) 
which concludes the proof. □

4.5 Hardness of computing homology

The polynomial time algorithms from the previous section have the following hard­
ness counterparts.

Theorem  4.24. Given a chordal graph G and an integer k, it is NP-complete to 
decide if G has an induced matching of size k containing a maximal independent 
set.
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Theorem  4.25. Given a chordal graph G and integer k, it is NP-complete to decide 
if the group Hk~i(I(G)) is non-trivial.

Of course Theorem 4.25 is an immediate consequence of Theorem 4.24 (via 
Theorem 4.7), so it suffices to prove Theorem 4.24. This is the goal of this section. 
At the end we derive a general statement, Theorem 4.27, about NP-hardness of 
computing homology groups of arbitrary simplicial complexes.

We start with another problem used in our reductions.

Lem m a 4.26. It is NP-complete to decide, for a given chordal graph G and integer 
k, whether or not G has a maximal independent set of size exactly k.

Proof. We construct a reduction from the following problem: given a graph H  and 
an integer I , decide if H  has a dominating set of size £. This problem is NP- 
complete since the corresponding minimization problem (minimum size dominating 
set) is NP-hard (cf. [45, Prob.GT2]).

Consider an instance to this problem, a graph H =  ('V\ E) and an integer £. 
Construct the following graph G:

V(G) = { v 0,v1, . . . , v 6 | v e  F },

E(G)  ={uot>o | u,v EV,  «/»} U {uqv\ I uv £ E}  U 

{ voV l ,V lV 2 ,V lV 3 ,V lV 4 ,V \V 5 ,V 2 V 6  \ V € V}.

Let Vo =  {^o | v € V }. Note that Vo is a clique of G. From this, it is not 
difficult to see that G is a chordal graph.

We show that the following two conditions are equivalent:

• H  has a dominating set of cardinality £,

• G has a maximal independent set of cardinality 4|V| — 2£.

This will yield the polynomial-time reduction and the proof.
First, if D  Ç V  is a dominating set in H with \D\ — £, then

{ui, v6 | v e  D }  U {u2, t>3, u4, v5 | v 0  D}

is a maximal independent set in G of size

2£ +  4(|F| — £) — 4|V| — 2£.

For the converse, let D  Ç V(G)  be a maximal independent set in G of size 
\D\ =  A\V\ — 2£. For any vertex v, we have
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if v\ £ D , then £ D  and v2, U3, iq, V5 0 D, 

if v\ & D, then V3, iq, v$ £ D  and exactly one of v2, vq is in D. 

This yields:

\D n {rq,. . . ,  n6}|
2 if «i 6 D,

<
4 if vi 0 D.

Now, let D' =  {v  £ V \ v\ £ D } . By (4.3) we can conclude

(4.3)

\D\ =  |D \ Vo| +  \D n V0\ =  2\D'\ +  4(\V\ -  \D'\) +  \D n V0\

Since Vo is a clique of G, and D is an independent set of G , we conclude |DnVo| < 1. 
However, |D fl Vo| =  1 implies that the cardinality of D  is odd, which is not the 
case.

We must conclude DliVo =  0, and thus, 4\V\—2t =  |£)| =  2|D'|+4(|Vr| — |Z)'|). 
Prom this, we obtain \D'\ =  L Moreover, D' is a dominating set of H, as otherwise 
some vertex no € Vo could be used to enlarge D  to a bigger independent set in G. 
That completes the proof. □

Proof of Theorem 4.24- We perform a reduction from the exact cardinality indepen­
dent dominating set problem in chordal graphs (Lemma 4.26). Consider a chordal 
graph G =  (V, E) and an integer k. We construct a graph G' from G by substituting 
an edge for every vertex of G. Namely:

V{G') = { v1, v2 \v £ V } ,

E(G') = {v iv2 I V £ V }  U {uiVi,UiV2,U2Vi,U2V2 I uv £ El-

Note that G' is a chordal graph, since chordal graphs are closed under the 
operation of replacing a vertex by a clique.

If D  C V  is a maximal independent set in G then

M' =  {v\v2 | v £ D }, D' =  (tq | v £ D }

is an induced matching containing a maximal independent set in G' of the same 
cardinality as D.

Conversely, if (M 7, D') is a solution to G1, then by setting 

D =  {v £ V  | iq £ D' or v2 £ D'}
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we obtain a maximal independent set of G of the same size.
This concludes the proof of Theorem 4.24. □

Our constructions have a more general consequence for the hardness of cal­
culating homology groups of arbitrary flag complexes.

Theorem  4.27. The following problems are NP-hard.

• Given the 1 -skeleton of a flag complex K , and an integer k, decide whether
Hk-i(K) =  0 .

• Given any simplicial complex K , represented by the list of maximal faces, and 
an integer k, decide whether Hk- i ( K )  =  0.

Proof. The first statement follows directly from Theorem 4.25. To prove the second 
statement we describe a reduction from the NP-complete problem of Theorem 4.25. 
Suppose we have a chordal graph G with n vertices. Let K g be the simplicial 
complex with vertices V (G ) whose maximal faces are the “complements” of edges 
in G , that is

a 6 K q <=> G[a] contains an edge

<=$■ a is not independent in G

where a denotes V(G) \ a.
Note that K q is the Alexander dual [18] of 1(G) and that the list of the 

maximal faces of K g has size polynomial in the size of G. Next, we have

Hk(I(G)) =  H k(I(G )) =  Hn. k_3(KG)

where the second equality is Alexander duality [18, Thm. 1.1] and the first holds 
because 1(G) has the homotopy type of a wedge of spheres. This reduces the problem 
of Theorem 4.25 to the problem of computing the homology of K g - □

Let us make a few comments about the last theorem. Its second part answers 
[68, Problem 33]. Theorem 4.27 is not surprising, as there are no known methods 
of calculating Hk(K)  without enumerating in some way or other the (exponentially 
many) A:-faces. There is much research on practical algorithms and their performance 
(see [103] and the references therein). However, the author is not aware of any 
previous proof that the problems are in fact hard. See [93] for a recent result about 
the hardness of computing the Euler characteristic.
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Open Problem 4.28. Note that our hardness results do not address the problem 
of finding minimum or maximum size cross-cycles in the case of chordal graphs. By 
Theorem 4.7 these are equivalent to calculating the connectivity and homological 
dimension of 1(G) for a chordal graph G.

We suspect that these two problems are also hard, but we were not able to 
prove this.
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Chapter 5

Superfrustration in some 
lattices

5.1 Introduction

The purpose of this, and the next chapter, is to investigate some topological ques­
tions arising from the study of the so-called hard-core models on grids. It is mo­
tivated by a recent collection of papers [60, 61, 21, 37, 99, 62], which in turn were 
motivated by some combinatorial questions in statistical physics [41]. The hard-core 
model itself is very classical and has been studied from different points of view in 
physics, topology and combinatorics.

Suppose one has a finite graph L, which in applications is usually a periodic 
lattice with some boundary conditions. Square, triangular or hexagonal grids are the 
most notable examples. The vertices of the graph can be occupied by particles, such 
as fermions, which satisfy the hard-core restriction: two adjacent vertices cannot be 
occupied simultaneously. A configuration of particles which satisfies this assumption 
is therefore precisely an independent set in the graph L.

There is a close connection between the simplicial and topological invariants 
of 7(L) and certain characteristics of the corresponding lattice model which are of 
interest to physicists. It is beyond the scope of this thesis to discuss this relationship 
in detail; we refer to [55] and we limit ourselves to presenting just the most basic
dictionary:

the partition function of L 
the Witten index of L

the number of zero energy ground states

the /-polynomial of I(L), 
minus the reduced Euler character­
istic -x ( / (L ) ) ,
the dimension of i7*(J(L); Q).
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There has been some very successful work calculating the Witten index [60, 61, 21, 
37, 99, 62, 40], homology groups [37, 33, 41, 55, 63, 56, 54] or indeed the complete 
homotopy type of the independence complex [21, 99, 53, 56] for various lattices.

In this chapter we focus on the large-scale picture. Computer simulations of 
van Eerten [33] indicate that for some types of lattices, as their size increases, the 
number of ground states grows exponentially with the number of vertices, that is

dim H * ( I ( L ) ) ~ a vW

for some constant a depending on the type of the lattice, where v(L) denotes the 
number of vertices in a graph L. This situation is called superfrustration and has 
interesting physical implications, see [54]. Engstrom [37] developed a general method 
of computing upper bounds for the constant a. For the lattices of [33] it gives bounds 
very close to the values predicted in [33].

This chapter has two main parts. In the first one we present a method which 
can be used to construct exponentially many linearly independent homology classes 
in I(L)  for graphs L of certain type. The homology classes in question are given by 
the cross-cycles introduced in Chapter 4. That proves superfrustration of certain 
lattices and we give examples based on modifications of the triangular lattice. In the 
second part we prove a generalization of the main result of [37], which can sometimes 
give better upper bounds.

Both methods work particularly nicely with one type of lattice studied in 
[33, 37]: the hexagonal dimer, also known as the Kagome lattice (see Fig.5.1). Under 
suitable divisibility conditions on the height and width we will prove that a graph 
HI of that type satisfies:

1.02*(H) ~  (21/36)«(h) < d im #*(/(H )) < (141/36. 21/6)l,(H) w 1-2i v(m).

We will prove the lower bound in Section 5.2 and the upper bound in Section 5.4. 
The previous upper bound of [37] was 21/13 «  1.26 and the experimental approxima­
tion by [33] is 1.25 ±  0.1.

Our technique for lower bounds produces slightly more than just homology 
classes: we obtain a large wedge of spheres that splits off. For instance, for a suitable 
lattice H of Kagome type, this reads as a homotopy equivalence

(21/36)«(H)
/(H ) ~  (  \ / S2« 9" 1)  V X
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for some space X . This type of result is proved in Section 5.3.

Rem ark 5.1. Recall the absolute upper bound (Theorem 2.17): for any graph G 
we have

dim 77* (/(G )) < (22/ 5)^ g ) k  1.32^°).

5.2 Hexagonal dimer and related grids

The hexagonal dimer or the Kagome lattice is the lattice obtained from the triangu­
lar lattice by erasing every other line in each direction in the way shown in Fig.5.1. 
It is invariant under the translations by (2,0) and (0, \/3). Let H „)m denote the 
quotient of that lattice by the action of the translation group generated by the vec­
tors n ■ (2, 0) and m ■ (0, V^)- It has w(Hn ,m) — 3nm, vertices and if one additionally 
assumes that 6|n and 4|m then it can be tiled with large hexagons in the way shown 
in Fig.5.1.

In fact there is no harm forgetting about n and m. Let H be any quotient of 
the hexagonal dimer lattice (i.e. its finite portion with cyclic boundary conditions) 
with the property that it can be covered in this way by the large hexagons. Then 
the number of those hexagons is always u(H)/36 and we have the next result.

Proposition  5.2. For a hexagonal dimer lattice El which admits a tiling as in 
Fig. 5.1 we have

/? ( /(H)) > (21/36^(m)_

Proof. We are going to use the notation introduced in Section 4.1 in relation to 
cross-cycles.

Let k =  w(H)/36 be the number of large hexagons in the tiling of EL We are 
going to construct 2fc linearly independent elements in HSk-i ( I {H)). That proves 
the claim since then /?(/(H )) >  2k =  2UW /36.

Consider the tiles A and B of Fig.5.1, where they are shown with an induced 
matching (thick edges) and a maximal independent set (thick vertices). Note that 
for any placement of A and B in place of the large hexagons in the grid we obtain a 
valid induced matching containing a maximal independent set in H. Indeed, there 
are no edges directly between the tiles, so the matching is induced. Moreover, each 
vertex located between the tiles is adjacent to one of the thick vertices on the outer 
cycle of a tile. We therefore have 2k homology (and cohomology) classes in 7(H).

To prove linear independence we need some notation. Suppose that the 
big hexagons in the grid are labeled 1. . . . .  A: in some order. For any sequence
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Figure 5.1: The hexagonal dimer lattice, its tiling with large hexagons and two types 
of tiles.
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s — (si,...,S fc) of letters A, B let M(s)  and a(s) denote the matching and the 
independent set obtained in the above construction by placing the tile of type Si in 
the ¿-th spot for i =  1, . . .  ,k. Then for any two sequences s and t we have

v JO  if ti =  B and Sj =  A for some i
W ).««<•)> =  | ±1 otherwise

Consider a 2k x 2k matrix with rows and columns indexed by sequences in {A. B } k in 
lexicographical order, where the entry in column t and row s is (er(i)v , % ( s)). By the 
last observation that matrix has ±1 on the diagonal and 0 above the diagonal (where 
t > lex  s)i so ^ is ° f full rank. Therefore all olm{s) are linearly independent. □

Rem ark 5.3. In general, if op ,...,a * , G HfiX)  and 71, . . . , 7; G H l(X)  then the 
i-th Betti number 0i(X)  is at least as big as the rank of the l x k matrix with entries 
(7S, at) for 1 < s < l, 1 < t <  k.

Similar results can be obtained for some other lattices derived from the tri­
angular lattice.

Proposition  5.4. For d =  3,4 let A d be any finite quotient of the lattice obtained 
by removing every d-th line in each direction from the triangular lattice, such that 
the new lattice admits a tiling as in Fig. 5.2. Then we have

0(1 (As))  >  (21/ 8)^ A31, /3 (/(A 4)) >  (21/45^(a 4)_

Proof. The proof is similar: A 3 has k =  u (A 3)/8 tiles and A 4 has k =  n (A 4)/45 

of them. In each case we construct 2k induced matchings containing maximal in­
dependent sets using the tiles A, B of appropriate type (Fig.5.2) and prove linear 
independence of the resulting homology classes as before. □

5.3 Homotopical splittings

We will now show for completeness that induced matchings containing maximal 
independent sets in G correspond to sphere wedge summands in the hoinotopy type 
of 1(G). This is stronger than just saying that they define a nonzero homology 
class. The results of this section are not needed in the previous calculations, where 
analyzing the cohomology-homology pairing is sufficient (and easier).

Lem m a 5.5. Let (M,a)  be an induced matching of size k containing a maximal 
independent set in G. Denote by j  : I ( M ) *—► 1(G) the embedding induced by the
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Figure 5.2: Two other lattices derived from the triangular lattice and their sets of 
tiles.

inclusion i\ M  *—* G. Then there is a homotopy equivalence

1(G) ~  I (M )  V C(j)  

where C ( j ) is the homotopy cofibre of j .

Proof. Since a is a maximal face of 1(G) we can remove it and form the simplicial 
complex 1(G) \ a whose geometric realization is obtained by removing the interior 
of a. Then we have a cofibre sequence

da «-*• 1(G) \ a c—► 1(G) -> E (da) -> • • •

i.e. 1(G) is the homotopy cofibre of the inclusion da (1(G)\a). But this inclusion 
is null-homotopic since it factors through the space I(M) \ a , homeomorphic to the 
disk Dk~x. As a consequence

1(G) =i (1(G) \ a) V E (da) =  (1(G) \ a) V E Sk~2 =  (1(G) \ a) V Sk~\

Now the fact that I (M )  \ a is a contractible subcomplex of 1(G) \ a implies that 

1(G) \ a ~  (1(G) \ a)/(I(M) \ a) =  I(G)/I(M)  ~  C(j).

Together with Sk 1 =  I ( M ) this ends the proof.
□
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To analyze our situation further we need to understand liomotopy cofibres 
of maps between independence complexes.

Lem m a 5.6. Suppose i : H <-* G is an inclusion of an induced subgraph. Let C(i) 
denote the graph obtained by adding to G a new vertex adjacent to all the vertices 
of V{G) \ V(H).  Then I(C(i))  is the homotopy cofibre of the induced inclusion 
1(H) <—► 1(G), i.e. there is a cofibre sequence

1(H) 1(G) I(C(i))  -  £  1(H)

Proof. By definition the homotopy cofibre of 1(H) 1(G) is obtained by attaching
to 1(G) a cone over the subspace 1(H). The space I(C(i))  is obtained in precisely 
the same way. □

Now we can prove the main result of this section.

Proposition  5.7. Suppose (Mi, <r,), fo r i =  1 , . . . ,  k, is a sequence of induced match­
ings containing maximal independent sets in a graph G, such that for every i <  j  
we have

<rj \ V (M i) ? 0 .  (*)

Then there is a homotopy equivalence

k
/ (G )~ (V  W ) )  V *

t=l

for some space X .

Proof. Let id : Mi *-*• G be the inclusion of the first matching. Then, by Lemmas
5.5 and 5.6 we have a splitting

7(G)-J(Mi)V/(C(ii)).

If A' =  1 then we are done. Otherwise note that the pairs (Mj,aj)  for 2 < j  < A 
define a sequence of induced matchings containing maximal independent sets in the 
graph C ( h ) .  Indeed, to build G(*i) we did not add any edges within G itself, so the 
matchings are still induced. Moreover, by (*) every set Cj contains a vertex which 
is not in V(Mx),  hence it is adjacent to the new vertex of C(*i), which means <j5 is 
a dominating set in C(*i). The condition (*) still holds, so by induction

k
I(C(h)) ^  V W ) V X

j=2
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and that completes the proof. □

Rem ark 5.8. The last result applies to all the situations of the previous section, 
once one orders the matchings in the lexicographical order of their defining {A, B}-  
words. In particular we get a splitting of /(H ) which includes a wedge sum of 
exponentially many spheres.

5.4 Upper bounds

In this section we improve, for the hexagonal dimer grids H, the upper bound of 
[37]. We develop a more general result, which is modeled entirely on the technique 
of [37] with just two small improvements. Firstly, it avoids discrete Morse theory 
and relies just on the Betti numbers and homotopy. Secondly, it allows arbitrary 
graphs in a place where [37] requires a forest (see Cor.5.12).

We first need some extra notation. Suppose K  is a simplicial complex with a 
fixed splitting of the vertex set into two disjoint subsets U and IT (V ( K ) =  UUW).  
For every simplex a G K[U] we denote by lk\yo the subcomplex of //[W ] consisting 
of those simplices r  € A"[IT] for which tUct G K.  By styya we denote the subcomplex 
of K  consisting of those r  G K  for which r  fl U C a and r  D IT G lkwcr- Clearly 
stvvo" =  (lkv^cr) * a.

Exam ple 5.9. If a =  0 then we always have lkyy0 =  stw0 =  K[W].  If U =  {e } 
then the complexes lkyyu and styyu coincide with the usual link and star of v in K.  
The star stiver is always contractible when a ^  0.

Lem m a 5.10. Suppose K  is a simplicial complex with a vertex partition U U IT as 
above and such that for every a G K[U] we have /?(lkyycr) <  B. Then

Proof. Denote D =  |A[t/]|. Fix any ordering 0 == aQ,cr\,. . .  , od-\ of the simplices 
in K[U] such that every simplex is preceded by all its faces. For 0 < l < D  define 
subcomplexes

Then A'[IT] =  Fo Q F\ C • • • C F o - 1 =  K  is an increasing, exhaustive filtration of 
K  with quotients:

(3(K)<B-\K[U]\.

F i /F i- i =  st\vcri/(stwcri fl F i-\)  ~  £dltniT,+1 lkw <j i .
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Since each of those quotients has total Betti number at most J5, the E\ page of the 
homology spectral sequence associated with this filtration has dimension at most 
B ■ D. The spectral sequence converges to H*(K),  hence the result. □

Lemma 5.11. Suppose U C V(G) is a vertex set with the property: For every 
simplex a S I{G[U]) the total Betti number of

I ( G \ (U U N [ a ]))

is at most B. Then
/3(I(G)) <  B ■ \I(G[U})\ < B  • 2^1

Proof. Consider K  =  I(G ) with vertex set partitioned into U and W  — V(G) \ U. 
Then for every simplex a € I(G[U]) we have precisely

\kw a  =  I ( G \ ( U u N [ G ) ) ) ,

so Lemma 5.10 applies. □

Corollary 5.12 ([37]). I f U Q  V{G) is a vertex set such that G \U  is a forest then

A m )  <  i/ ( g t o i .

Proof. If G \ U is a forest then so is G \ (U U N[a]) for every a. Since by [34] the 
independence complex of a forest is either contractible or homotopy equivalent to a 
sphere (possibly 5 -1 ), we can apply Lemma 5.11 with B =  1 . □

Fact 5.13. For any two topological spaces X  and Y

A x * y ) =  A x ) A y )-

Proof. This follows from the formula for the reduced homology of the join (eg. [84. 
Lemma 2.1]), which for rational coefficients reduces to

Hk(X  * Y) =  0  H t W Q H j i Y ) ,  k > - 1.
1

i+j=k-\

□

Proposition  5.14. If H is any hexagonal dimer lattice which can be tiled as in 
Fig. 5.1 then

AM ) <  (141/36 • 21/6)i’(®1),
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Figure 5.3: The induced subgraph G of the 30-vertex tile with (3(1 (G)) — 14.

Proof. Recall that HI contains k =  n(H)/36 large hexagons. Let U consist of those 
vertices of H which are not covered by the tiles. Then \U\ =  6k =  n(H)/6 and the 
graph HI \ U is a disjoint union of k hexagonal tiles with 30 vertices each. The graph 
H[i7] has no edges.

Now suppose that a is any subset of U. Then the graph ¡HI \ (U U N[a]) is a 
disjoint union of k graphs, each of which is an induced subgraph of the 30-vertex tile. 
More precisely, it is an induced subgraph obtained by removing the neighbourhood 
of some subset of the vertices of U which surround that tile. There are 212 =  4096 
graphs that can arise in this way, with only 217 isomorphism classes [81], and the 
homology of their independence complexes can be easily calculated by a computer 
[47], It turns out that for each of those graphs the total Betti number is at most 
14 (the graph which attains maximum is shown in Fig.5.4). Using Fact 5.13 we get 
that the total Betti number of HI \ (U U N[a]) is at most B =  14fc.

Lemma 5.11 now gives the conclusion:

/?(/(HI)) < 14fc • 2|c/| =  u ^«)/36 • 21,(IHI)/6.

□

Rem ark 5.15. If the dimensions of the grid ¡HI do not allow it to be tightly tiled 
with the large hexagons then Prop.5.14 still holds asymptotically. This is because 
one can pack HI with hexagons leaving just a region of size proportional to the 
perimeter of the grid. The wasted vertices can then be added to the set U.

Rem ark 5.16. Using exactly the same technique one proves the following counter­
parts to the lower bounds of 5.4:

/?(/(A 3)) < (23/8f ( A3\ /3(/(A 4)) < (101/45 • 21/ 5)t4A-d.
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Concluding remarks

It would be most interesting to prove similar lower bounds for the classical trian­
gular and hexagonal lattice, for which superfrustration is also predicted [33]. In 
those cases, however, the present methods do not seem to work, and it is not clear 
if exponentially many homology classes should be given by embedded spheres or if 
more complicated constructions are necessary. Recent results in this direction in­
clude [56], where “long and thin” triangular lattices of size c x n for small constants 
2 < c < 7 are investigated. Also, the constructions of Jonsson [63] can be adapted 
to show that for the hexagonal grids of suitable sizes c x n with fixed c the number 
of ground states is exponential in n.

More generally, it would also be interesting to know what aspect of regularity 
is responsible for superfrustration in arbitrary lattices.
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Chapter 6

Hard squares on cylinders 
revisited

6.1 Introduction

In this chapter we continue the study of the hard-core models in the special case of 
hard squares. For an introduction to the hard-core models and their characteristics 
see the beginning of Chapter 5. In this chapter we will mostly be able to trace one 
parameter of the model, namely the Witten index, or the reduced Euler characteris­
tic of the independence complex of the underlying graph. In rare cases we will also 
be able to determine the homotopy type.

We continue the research line of Jonsson who studied the spaces 1(G) for the 
square grids with various boundary conditions. The free square grid is G =  Pm x Pn, 
its cylindrical version is G =  Pm x Cn and the toroidal one is G =  Crn x Cn where 
Pk is the path and C* is the cycle with k vertices. Here by G x H we mean the 
graph with vertex set V(G)  x V(H)  and with edges (g,h) -  (g',h) for gg' € E(G ) 
and (g , h) -  (g. h') for hh' e  E(H).  In other words, Pm x P„, Pm x Cn and Cm x Cn 
are square grids in the, respectively, rectangle, cylinder and torus.

In the first part we show natural recursive dependencies in all three models. 
We concentrate mainly on cylinders.

Theorem  6.1 . We have the following homotopy equivalences in the cylindrical case:

a) I (P{ x C„) ^  £ / (P i  x C „_3),

b) I (P2 x Cn) — T? I(Pi  x Cn-A),

c) I(Pt x C „) ^  E6 /(P 3 x Cn-s),
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d) I  (Pm x C3) -  S 27(Pm_3 X C3),

e) I (Pm x C 5) ~ X 2I(Pm- 2 x C 5),

f )  I(Pm X C7) ~  X6 I(Pm—4 X C7).

Here a) is a classical result of Kozlov [71], while d) and e) also follow from 
[99] where those spaces were identified with spheres by means of explicit Morse 
matchings. The results b), c) and f) are new and were independently proved by a 
different method in [57]. Note that a), b), c) are ‘dual’ to, respectively, d), e) and 
f) in the light of Thapper’s conjecture [99, Conj. 3.1] (also [57, Conj. 1.9]) that 
I  (Pm x C271+1) — I(Pn xC^m+i)- If one assumes the conjecture holds, thena), b) and 
c) are equivalent to, respectively, d), e) and f). Theorem 6.1 together with an easy 
verification of initial conditions imply the conjecture for m <  3. The statements d), 
e) and f) take the periodicity of Euler characteristic, proved by Jonsson [60], to the 
level of homotopy type.

It is an interesting question whether the results of Theorem 6.1 can be ex­
tended further, the next obvious step being 7(P4 x Cn) or I(Pm x Cg). I<. Iriye [58] 
suggested that there is an equivalence 7(P4 x C2fc+i) — 7(P*. x Cg) with both spaces 
being, up to homotopy, wedges of spheres with the number of wedge summands 
growing to infinity as k —> 00. That would mean no recursive relation as simple as 
those in Theorem 6.1 is possible for 7(Pm x Cg) nor 7(P4 x Cn). However, K. Iriye 
has subsequently withdrawn his claim, so the question remains open.

Let us also mention that a completely analogous method proves the following.

Proposition 6.2. We have the following homotopy equivalences in the free and 
toroidal cases:

• I (Pi x Pn) ~  E7(Pi x Pn_3),

• 7(P2 x Pn) ~  E 7(P2 x P„_2),

• 7(P3 x Pn) ~  E3 7(P3 x Pn_4),

• 7(C3 x Cn) -  S 27(C3 x Cn- 3).

All those results are proved in Section 6.2.

In the second part of this work we aim to provide a method of recursively 
calculating the Euler characteristic in the cylindrical case Pm x Cn when the cir­
cumference n is even. Since it is customary to use the Witten index in this context,
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we will adopt the same approach and define for any space X

Z(X )  =  -X (X )

where y (A ) is the reduced Euler characteristic. Then Z(X )  =  0 for a contractible 
X, Z ( L X )  =  - Z ( X )  for any finite simplicial complex X ,  and Z(Sk) =  ( - l ) fc_1. 
The value

Z(G) := Z{I{G))

is what is usually called the Witten index of the underlying grid model.
Table 1 in Section 6.7 contains some initial values of Z(Pm x Cn) arranged 

so that m labels the rows and n labels the columns of the table. Let
00

fn(t) = Z(P™ X °n)tm
m=0

be the generating function of the sequence in the n-th column. By an ingenious 
matching Jonsson [60] computed the numbers Z(Pm x C^n+i) for odd circumferences 
and found that for each fixed n they are either constantly 1 or periodically repeating 
1,1, -2 ,1 ,1 , - 2 , . . . .  Precisely

/ 6n+l(^) — fotn— l(i) 

/cn+3(<)

1
1 - t '
1 - 2  t +  t2 

1 - t 3

The behaviour of Z(Pm x C^n) is an open problem of that work, which we tackle 
here. Also, recently Braun notes that some problems faced in [22] are reminiscent 
of the difficulty of determining the homotopy types of the spaces 7(Pm x C2n).

Our understanding of the functions finif) comes in three stages of increasing 
difficulty.

Theorem  6.3. Each f 2n(t) is a rational function, such that all zeroes of its denom­
inator are complex roots of unity.

Our method also provides an algorithm to calculate f^nit), see Section 6.7. 
This already implies that for each fixed n the sequence arn =  Z(Pm x C2n) has 
polynomial growth. However, we can probably be more explicit:

Con jecture 6.4. For every n >  0 we have

f4n+2(t)
________________________ h4n+2(t) ____________________
(1 +  t2) • [(1 -  i8n" 2)(l -  f8n- 8)(l -  t8n~14) •••(!— t2n+4)] ’
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h\nif)
(1 -  t2) • [(1 -  i8n- 6)(l -  i8" - 12)(l -  ¿8"-1«) •••(! — ¿2n+6)] •/4n(0 —

for some polynomials hn.

In the denominators the exponents decrease by 6.
Conjecture 6.4 is in fact still just the tip of an iceberg, because pn(t) turn 

out to have lots of common factors with the denominators. This leads to the grande 
finale:

Conjecture 6.5. After the reduction of common factors:

• / 4n+2(i) can be written as a quotient whose denominator has no multiple ze­
roes. Consequently, for any fixed n, the sequence am =  Z(Pm x C$n+v) is 
periodic.

• f 4n{t) can be written as a quotient whose denominator has only double zeroes. 
Consequently, for any fixed n, the sequence arn =  Z(Pm x C\n) has linear 
growth.

A direct computation shows that the first part holds for a number of initial 
cases, with periods given by the table:

4n +  2 2 6 10 14 18 22

period 4 12 56 880 360 276640

In Section 6.3 we prepare our main tool for the proof of Theorem 6.3: patterns 
and their //-invariants. A small example of how they work is presented in detail in 
Section 6.4. The proof of Theorem 6.3 then appears in Section 6.5. In Section 6.6 we 
describe a completely independent combinatorial object, the necklace graph, which 
is a simplified model of interactions between patterns. It has some conjectural 
properties, esp. Conjecture 6.24, whose verification would prove Conjecture 6.4. 
Section 6.6, up to and including Conjecture 6.24, can be read without any knowledge 
of any other part of this work. As for Conjecture 6.5, it seems unlikely that the 
methods of this chapter will be sufficient to prove it.

To avoid confusion we remark that our results are in a sense orthogonal to 
some questions raised by Jonsson, who asked if the sequence in each row of Table 
1 (Section 6.7) is periodic. That question is equivalent to asking if the eigenvalues 
of certain transfer matrices are complex roots of unity, and this work is not about 
them.
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6.2 Proofs of Theorem 6.1 and Proposition 6.2

Before embarking on the proofs we recall some results of Chapter 2 and their simple 
consequences.

Lemma 6.6. For any vertex v and edge e of G we have

Z{G) =  Z ( G \ v ) - Z ( G \ N [ v ) ) ,

Z(G) =  Z ( G - e ) - Z ( G \ N [ e \ ) .

Lemma 6.7. We have the following implications

a) (Fold lemma, [35]) If N(u) C N(v) then 1(G) ~  I(G \ v).

b) If u is a vertex of degree 1 and v is its only neighbour then 1(G) ~  E I(G\N[v]).

c) If u and v are two adjacent vertices of degree 2 which belong to a 4-cycle in G 
together with two other vertices x and y then 1(G) ~  E I(G\ [u ,v ,x ,y ] )  (see 
Fig.6.1).

d) If G is a graph that contains any of the configurations shown in Fig. 6.2, then 
1(G) is contractible.

Proof. Part a) is Theorem 2.2 and part b) is Corollary 2.13. In c) one can first 
remove x  without affecting the homotopy type (because N(u) C N(x)),  and then 
apply part b) at v. Finally d) follows because a single operation of type described 
in b) or c) leaves a graph with an isolated vertex. □

For simplicity we will use the following language. A vertex v of G is called 
removable if the inclusion I (G \ v )  1(G) is a homotopy equivalence. We call the 
graph G \ N[v] the residue graph of v in G. By Proposition 2.1.a) if the residue 
graph of v has a contractible independence complex then v is removable.

If e is an edge of G then we say e is removable if the inclusion 1(G) I (G —e) 
is a homotopy equivalence. If e is not an edge of G then e is insertable if the inclusion 
I (G U e)  «-+ 1(G) is a homotopy equivalence or, equivalently, if e is removable from 
G U e. In both cases we call the graph G \ N[e] the residue graph of e in G. By 
Proposition 2.4.a) if the residue graph of e has a contractible independence complex 
then e is removable or insertable, accordingly.

We identify the vertices of Pm with {1 , . . . ,  m } and the vertices of Cn with 
Z /n  =  {0 , . . . ,  n -  1}. Product graphs have vertices indexed by pairs. To deal with 
the degenerate cases it is convenient to assume that Ci =  P2, that C\ is a single
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Figure 6.1: A configuration which can be removed at the cost of a suspension 
(Lemma 6.7.c).

Figure 6.2: Four types of configurations which force contractibility of the indepen­
dence complex (Lemma 6.7.d).

vertex with a loop and that Co =  Pq are empty graphs. This convention forces all 
spaces /(C i), /(P o) and /(C o) to be the empty space 0 =  S~l .

Proof of 6.1.a). This was proved in Example 2.8. □

Proof of 6.1.b). In P% x Cn the edge ei =  {(1,0), (1, 5)} is insertable, because its 
residue graph contains a configuration of type A (see Lemma 6.7.d), namely with 
vertices (2,1) and (2,4) having degree one. For the same reason the edge e2 =  
{(2,0), (2,5)} is insertable. Now in the graph (P2 x Cn) U {ei, 62} the edges

fi =  { (1,0), (1, 1)}, h  =  {(2,0), (2, 1)}, h  =  { (1,4), (1, 5)}, fA =  {(2, 4), (2, 5)}

are all sequentially removable, because the residue graph in each case contains a 
configuration of type B. Therefore

/(P 2 x C „ )  / ( ( f t x C „ ) U { e 1,e2} - { / 1, / 2, / 3, / 4}) =
=  /(P 2 X Cn—4 u P2 X P4) =  I (Pi X C „_4) * I(P2 X PA) -  

~  I (Pi X C „_4) * 5 1 =  E2 I(Pi  X Cn-4)

where /(P 2 x P4) can be found by direct calculation or from Proposition 6.2. □

Remark 6.8. All the proofs in this section will follow the same pattern, that is to 
split the graph into two parts. One of those parts will be small, i.e. of some fixed 
size, and its independence complex will always have the homotopy type of a single 
sphere. Every time we need to use a result of this kind about a graph of small, fixed
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size, we will just quote the answer, leaving the verification to the reader (homology 
calculations with [47] were used).

Proof of 6.1.c). We follow the strategy of b). First we need to show that the edges 
ei =  {(1,0), (1 ,9)}, e2 =  {(2,0), (2,9)}, e3 =  {(3 ,0), (3 ,9)} are insertable.

For e\ the residue graph is shown in Fig.6.3.a. To prove its independence 
complex is contractible we describe a sequence of operations that either preserve 
the homotopy type or throw in an extra suspension. The sequence will end with a 
graph whose independence complex is contractible for some obvious reason, so also 
the complex we started with is contractible. The operations are as follows: remove 
(3,2) (by 6.7.a with u =  (2,1)); remove (2,3) (by 6.7.a with u — (1,2)); remove 
iV[(3,4)] (by 6.7.b with u =  (3,3)); remove (2,6) (by 6.7.a with u =  (1,7)); remove 
N[( 1, 5)] (by 6.7.b with u =  (2,5)). In the last graph there is a configuration of type 
A on the vertices (3 ,6) and (1, 7).

The same argument works for e3. For e2 the residue graph has a connected 
component shown in Fig.6.3.b. The modifications this time are: remove Ar[(l,2)], 
AT[(1,7)], iV[(3,2)] and N[(3, 7)] for reasons of 6.7.b. The graph that remains con­
tains a configuration of type A.

Next it remains to check that in (P3 x C'n)U {ei, e2, e3} the edges {(0, i), (1, i)}  
and { ( 8, i), (9, i ) } are removable for i =  1,2,3. The types of residue graphs one 
must consider are quite similar and the arguments for the contractibility of their 
independence complexes are exact copies of those for ei, e2, e3 above. We leave them 
as an exercise to the reader.

We can thus conclude as before

7(P3 X Cn) ~  J(P3 X Cn- 8) * /(P 3 x P8) ~  7(P3 X Cn_8) * S5 =  £6 7(P3 x C „_8).

□

Proof of 6.1.d). In Pm x C3 each edge {(3,*), (4,*)} is removable for i =  0,1,2 
because each residue graph contains a configuration of type C. As before, this implies 
an equivalence

7(Pm X c 3) *  I  (Pm- 3 X C3) * 7(P3 x c3) s  I(Pm-3 x C3) * Sl — H2 7(Pm_3 x c 3)

□

Proof of 6.1.e). In Pm x C5 each edge {(2, i), (3, ?')} is removable for * =  0,1 ,2 ,3 ,4  
because each residue graph contains a configuration of type A with vertices (1,7 — 1)
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2 ------------ ----" "------- ■'  ----«►  --- <►-----
3 -4--- ---•--- --- --- --- --- --- --- --- ---•--- ---<-

a)

1 2 3 4 5 0 7 8

1 *—  —  —  —  —  —  — *
2 .►— o— «►— -— -— -
3 .—  —  —  —  —  —  — •

b)

Figure 6.3: Two residue graphs for edges insertable into P3 x Cn.

0 1 2 3 4 5 6

Figure 6.4: The residue graph for edges removable from Pm x C7. 

and (1 ,i +  1) having degree 1. Again, this means

I{Pm X C5) 2: I {Pm- 2 X C5) * I(P2 X CS) ^  I(Pm- 2 X C5) * S1 =  E2 / (P m_2 X C5)

□

Pw of of 6.1.J). We want to show that the edges ej — {(4 ,i), (o ,?)}, i =  0 , . . .  ,6 are 
sequentially removable. Then the result will follow as before:

I{P1n X C7) a  I{Pm- 4 x C7) * I{P\ X C7) Si I{P m- 4 X C7) * 5 5 =  EC'I{Pm-4 X C7).

The residue graph of cq is the graph G from Fig.6.4. We need to show that the
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independence complex of that graph is contractible. To do this, we will first show 
that each of the vertices (4, j ) ,  j  — 2, 3,4, 5, is removable in G. By symmetry, it 
suffices to consider (4,2) and (4,3).

Consider first the vertex (4,2) and its residue graph G \ JV[(4, 2)]. It can 
be transformed in the following steps: remove iV[(2,1)] (by 6.7.b with u — (3,1)); 
remove jV[(l, 6)] (by 6.7.b with u — (1, 0)); remove jV[(1,3)] (by 6.7.b with u =  
(1,2)); remove iV[(3,4)] (by 6.7.b with u =  (3,3)). In the final graph (2,5) is 
isolated.

Now we prove the residue graph G \ Ar[(4, 3)] has a contractible indepen­
dence complex. Decompose it as follows: remove (3,1), (3, 2), (2,1), (2,2) (by 6.7.c); 
remove (1, 6) (by 6.7.a with u — (2, 0)); remove (2,5) (by 6.7.a with u — (3, 6)); 
remove JV[(1,4)] (by 6.7.b with u — (1,5)). In the final graph (2, 3) is isolated.

Since all the vertices in row 4 of G are removable, 1(G) is homotopy equiv­
alent to the join 7(G[1,2,3]) * 7(G[5,...]), where G [...] means the subgraph of G 
spanned by the numbered rows. But a direct calculation shows that 7(G[1,2,3]) is 
contractible, hence so is 7(G). This ends the proof that the edge e0 =  {(4,0), (5,0)} 
of Pm x Ci was removable.

For all other edges e* in a sequence the residue graph will look exactly like 
G with possibly some edges between rows 4 and 5 missing. This has no impact on 
contractibility since all of the above proof took part in rows 1,2, 3 of Fig.6.4. That 
means that all e; are removable, as required. □

Proof of Proposition 6.2. We just sketch the arguments and the reader can check 
the details. Part a) is a result of [71] and also follows from Lemma 6.7.b). Part b) 
follows directly from Lemma 6.7.c).

For part c), each edge {(?', 4), (i, 5)}, i =  1,2,3 of P3 x P„ is removable 
because their residue graphs either contain, or can easily be reduced to contain, a 
configuration of type C or D. Then the graph splits into two components and we 
conclude as usually.

I11 d) we first show that each edge {(7,0), (¿,4)}, i =  0,1,2 is insertable into 
C3 x Gn because the residue graph contains a configuration of type C. Then in the 
enlarged graph the obvious edges which must be removed to obtain a disjoint union 
C3 x Gjj—3 U C3 x P3 are indeed removable, again because of a type C configuration 
in their residue graphs. We conclude as always. □
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6.3 Cylinders with even circumference: Patterns

To prove the results about cylinders of even circumference we will need quite a lot 
of notation. On the plus side, once all the objects are properly defined, the proofs 
will follow in a fairly straightforward way. It is perhaps instructive to read this and 
the following sections simultaneously. The next section contains a working example 
of what is going on for n =  6. From now on n, the length of the cycle, is a fixed 
even integer which will not appear in the notation.

A  pattern V  is a matrix of size 2 x n with 0/1 entries and such that if 
V {\,?) =  1 then P (2, i) =  1, i.e. below a 1 in the first row there is always another 
1 in the second row. An example of a pattern is

V J  1 0 1 0 0 °\
\ 1 1 1 1 0 1 J ‘

We also call n the length of the pattern. The rows of a pattern are indexed by 
1 and 2, while the columns are indexed with 0 , . . . , n  -  1 , as the vertices of Cn. 
Given i we say is ‘above’ V(2,i)  and V(2,i)  is ‘below’ 7^(1,?'). We identify
a pattern with patterns obtained by a cyclic shift or by a reflection, since they will 
define isomorphic graphs (see below). Also the words ‘left’ , ‘right’ and ‘adjacent’ 
are understood in the cyclic sense.

Given a pattern V  define G(V;m)  as the induced subgraph of Pm x Cn 
obtained by removing those vertices (1 ,*) and (2,i) for which V{\,i) =  0, resp. 
P(2, i) =  0. This amounts to applying a ‘bit mask’ defined by V  to the first two 
rows of Pm x Cn. The graph G(V\ m) for the pattern V  above is:

Define the simplified notation Z(V;m)  := Z[G(V\m)). If X denotes the 
all-ones pattern then Z (I ;m ) =  Z(Pm x Cn) is the value we are interested in.

\\r(> now need names for some structures within a row.

• A singleton is a single 1 with a 0 both on the left and on the right.

• A block is a contiguous sequence of Is of length at least 3, which is bounded 
by a 0 both on the left and on the right.

• A run is a sequence of blocks and singletons separated by single Os.
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• A nice run is a run in which every block has length exactly 3.

Example 6.9. The sequence 01010111010111010 is a nice run. The sequence 
01110111101010 is a run, but it is not a nice run. The sequences 01011010 and 
0101001110 are not runs.

A pattern is reducible if the only occurrences of 1 in the first row are 
singletons. Otherwise we call it irreducible. In particular, a pattern whose first 
row contains only 0s is reducible.

We now need three types of pattern transformations, which we denote V  
(for vertex), N  (for neighbourhood) and R (for reduction). The first two can be 
performed on any pattern. Suppose V  is a pattern and i is an index such that 
P ( M )  =  l.

• An operation of type V  sets V(l , i )  =  0. We denote the resulting pattern 
V v'i .

• An operation of type N  sets 7 (̂1, * — 1) =  'P (M ) = V(l ,  ¿+1) = V(2,i)  =  0. 
We denote the resulting pattern V N,t.

All other entries of the pattern remain unchanged. If it is clear what index i is used 
we will abbreviate the notation to V v  and V N.

Lemma 6.10. For any pattern V and index i such that V{\,i)  =  1 we have 

Z(V-,m) =  Z (V V'i\ m ) - Z { V N'i-,m), m > 2.

Proof. This is exactly the first equality of Lemma 6.6 for G =  G{V; m). □

The third operation, of type R, can be applied to a reducible pattern V  
and works as follows. First, temporarily extend V  with a new, third row, filled with 
ones. Now for every index i such that V(l , i )  =  1 (note that no two such i are 
adjacent) make an assignment

V {\, t) =  P(2, * -  1) =  7>(2, i) =  V{2, i +  1) =  7>(3, i ) =  0.

Having done this for all such i remove the first row (which is now all zeroes) and let 
V R be the pattern formed by the second and third row.

Lemma 6.11. Suppose V  is a reducible pattern and k is the number of ones in its 
first row. Then

Z(V;m)  =  { - l ) kZ (V R\ m -  1), m > 2.
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Proof. It follows from a A'-fold application of Lemma 6.7.b). □

We now describe a class of patterns which arise when one applies the above 
operations in some specific way to the all-ones pattern. A pattern V  is called proper 
if it satisfies the following conditions:

• The whole second row is either a run or it consists of only Is.

• If the second row has only Is then the first row is a nice run.

• Above every singleton 1 in the second row there is a 0 in the first row.

• Above every block of length 3 in the second row there are Os in the first row.

• If B is any block in the second row of length at least 4 then above B there is 
a nice run R, subject to the conditions:

-  if the leftmost group of Is in I? is a block (of length 3) then the leftmost 
1 of that block is located exactly above the 3rd position of B,

-  if the leftmost group of Is in R is a singleton then it is located exactly 
above the 2nd or 3rd position of B.

By symmetry the same rules apply to the rightmost end of B and R.

Note that a proper pattern does not contain the sequences 0110 nor 1001 
in any row. Also note that the first row of any proper pattern can only contain 
singletons and blocks of length 3, and no other groups of Is.

Exam ple 6.12. Here are some proper patterns:

A  =  

C =

0 1 0 1 0 0 0 0 0
0 1 e = (

< 1 0 1 1 1 0 1 1 1 0

1 1 1 1 1 0 1 1 1 0 J1 \V 1 1 1 1 1 1 1 1 1 1

0 0 1 1 1 0 0 0 0
0 I T>=\ ( °

0 1 0 1 1 1 0 0 0

1 1 1 1 1 1 1 0 1 0
1

1 1 1 1 1 1 1 1 1 1 0

A pattern is called initial if it is obtained from the all-ones pattern I  by 
performing, for each even index i =  0, 2, 4 , . . . ,  n — 2 one of the operations of type 
V  or N. It means there should be 2"/2 initial patterns, but some of them can 
be identified via cyclic shift or reflection. One can easily see that every initial 
pattern is reducible. Moreover, by a repeated application of Lemma 6.10 we get 
that Z(Pm x Cn) is a linear combination of the numbers Z{V\m) for initial patterns 
V. More importantly, we have:
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Lem m a 6.13. Every initial pattern is proper.

Proof. If the operations we perform in positions i =  0, 2 , . . . ,  n — 2 are all V  or all 
N  then we get one of the patterns described in Lemma 6.16. If we perform N  in 
points i, i +  2 we get a singleton in position i +  1 of the second row with a 0 above 
it. For a choice of N V N  in i, i +  2, i +  4 we get a block of length 3 in the second row 
with Os above. Finally for a longer segment N V  ■ ■ • V N  the outcome is a block with 
a nice run of singletons starting and ending above the 3rd position in the block. We 
can never get two adjacent Os in the second row, so it is a run. Here is a summary 
of the possible outcomes:

N V V 1/ V N V N N

0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1

where the labels V, N  indicate which operation was applied at a position. □

Now we introduce the main tool: an invariant which splits proper patterns 
into classes which can be analyzed recursively.

Definition 6.14. For any proper pattern V we define the p-invariant as follows:

p(V)  =  ( number of blocks in the first row of V  ) +

( number of blocks in the second row of V ).

Exam ple 6.15. All the proper patterns in Example 6.12 have //-invariant 2.

Lem m a 6.16. For every proper pattern V we have 0 < p(V) < n/A. The only 
patterns with p{V)  = 0  are

Vx =
i o i o • • • i o \ _ / o o o o - - - o o \
1 1 1 1 ••• 1 1 )  ’ \ 1 0 1 0 ••• 1 0 j '

Proof. If p{V)  =  0 then V  has no blocks in either row. If the second row is all-ones 
then the first row must be a nice run with no blocks, so V  =  V\. Otherwise the 
second row is an alternating 0/1 but then the first row cannot have a 1 anywhere, 
so V =  V-2.

Now consider the following map. To every block in the second row we asso­
ciate its two rightmost points, its leftmost point and the immediate left neighbour 
of the leftmost point. To every block in the first row we associate its three points 
and the point immediately left. This way every block which contributes to p(V)  is
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given 4 points, and those sets are disjoint for different blocks. The only non-obvious 
part of the last claim follows since a block in the first row does not have any point 
over the two outermost points of the block below it. That ends the proof of the 
upper bound. □

Next come the crucial observations about operations on proper patterns and 
their //-invariants.

Proposition  6.17. Suppose V is a proper, irreducible pattern and let i be the index 
of the middle element of some block in the first row. Then V X'1 and V N,i are proper 
and

K V Vti) =  h(V) - 1 ,  P{VN'1) =  p(V).

Proof. There are two cases, depending on whether the block of length 3 centered at 
i is, or is not, the outermost group of Is in its run. If it is the outermost one then 
it starts over the 3rd element of the block below it. The two possible situations are 
depicted below.

(  ... 0 0 0 1 1 1 0 ••• \ / ••• 1 0 1 1 1 0 1 ••• \
 ̂ ••• 0 1 1 1 1 1 1 ••• J  ’ V ••• 1 1 1 1 1 1 1 ••• J '

In V v the second row is the same as in V. Above the current block we still have 
a nice run and its outermost Is are in the same positions. That means V v is still 
proper. The number of blocks in the first row dropped by one, so p{Vv ) =  p{V)  - 1 .

The proof for V N depends on the two cases. In the first case an operation 
of type N  splits the block in the second row creating a new block of size 3 with Os
above it. In the second block that comes out of the splitting the first two Is have Os
above them, so whatever run there was in V  it is still there and starts in an allowed 
position. That means we get a proper pattern. One block was removed and one 
split into two, so // does not change.

In the second case the situation is similar. We increase the number of blocks 
in the second row by one while removing one block from the first row. The two 
outermost positions in the new block(s) have Os above them, so the nice runs which 
remain above them start in correct positions. Again V N is proper. □

Proposition  6.18. I f V  is a proper, reducible pattern then V R is proper and

p(V R) =  p{V).
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Proof. Consider first the case when V  has only Os in the first row. Then the second 
row is a run with blocks only of size 3 (because a longer block would require some­
thing above it). This means V R has a full second row with a nice run in the first 
row. Such pattern is proper and n{VR) =  fi(V) as we count the same blocks.

Now we move to the case when V  has at least one 1 in the first row. Note 
that V(l,  i) =  1 if and only if V R(2,i) =  0. That last condition implies that the 
second row of V R is a run (as the first row of V  does not contain the sequences 11 

nor 1001).
If V r (2, i) is a singleton 1 then in V  we must have had V{\,i — 1) =  V(1 ,i +  

1) =  1 but then V(2,i) was erased by the operation R and therefore V R(l, i)  =  0. 
This proves V R has zeroes above singletones of the second row.

Now consider any block B in the second row of V R and assume without loss 
of generality that it occupies positions l , . . . , I ,  hence V(l ,  0) =  V (l , l  +  1) =  1 , 
V r (2, 0) =  V r (2,1 +  1) =  0 and V (l , i )  =  0 for all 1 < i < l. It means that the 
situation in V  must have looked like one of these (up to symmetry):

0 l +  1
0 1 0 0 0 0 0 0 1 0

1 1 1 0 1 1 0 1 1 1

0 B B B B B B 0

0 l + 1

0 1 0 0 0 0 0 0 1 0

1 1 1 0 1 •• 0 1 1 1 1

0 B B B B B B 0

0 l +  1
0 1 0 0 0 0 0 0 1 0
1 1 1 1 0 •••• 0 1 1 1 1

0 B B B B B B 0

The letters B  indicate where the block B will stretch in what will become 
the future second row of V R. The Is in P(1,0) and V(l , l  +  1) must be located 
above the 2nd or 3rd element of a block. The part of the second row in V  denoted 
by • • • is a run with no Is above, so it must be a nice run. It follows that in V R 
above B we will get a nice run and by checking the three cases we see that the run 
starts above the 2nd or 3rd element of B, and it only starts above the 2nd element 
if it has a singleton there.
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There is just one way in which we can obtain a block B of size 3:

0 l +  l
(  1 0 0 0 1 \
\ 1 1 0 1 1 )

0 B B B  0

and then the operation R will erase everything above that block. This completes 
the check that the pattern V R is proper.

It remains to compute n{VR). Our previous discussion implies that:

• every block of size 3 in the second row of V  becomes a block in the first row 
o i V R,

• every two consecutive blocks longer than 3 yield, between them, a block B in 
the second row of V R,

and every block in V R arises in this way. It means that every block in V  contributes 
one to the count of blocks in V R (in either first or second row). That proves
t i v R) =  M n  □

6.4 An example: n =  6

First of all the value Z(Pm x C6) =  Z(J;rn) for the all-ones pattern I  splits into a 
linear combination of Z-values for the following patterns.

A  =

C =

V V V V V N

0 1 0 1 0 0 1 B= 1f ° 1 0 0 0

1 1 1 1 1 1 1 1 1 1 0

V N N N N N

0 0 0 0 0 0^1 v= 1(  0 0 0 0 0

1 1 0 1 0 1 1 1 0 1 0

The labels V,N  indicate which operation was applied to the particular position 
i =  0,2,4. Any other pattern we get is isomorphic to one of these, and Lemma 6.10 
unfolds recursively into:

Z (I ;m ) =  Z(A]m) -  m) +  3Z(C;m) -  Z(£>;m). (6.1)
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We also see that (Definition 6.14):

p{A)  =  0 +  0 - 0 ,  p{B) =  0 + 1 =  1, /¿(C) =  0 + 1 =  1, /¿(D) =  0 +  0 =  0.

All the patterns we have now are reducible. The first obvious reductions are

A r =  V,  V r =  A

and by Lemma 6.11 they lead to

Z(T>; m) =  Z (A ‘, m — 1), Z(A; m) =  —Z(T>; m — 1) =  —Z(A; m — 2).

It means that given the initial conditions for Z(A;m)  and Z(V\m) we have now 
completely determined those sequences and their generating functions.

Note that A  and T> had /¿-invariant 0. Now we move on to the patterns with 
the next /¿-invariant value 1. We can reduce B (even three times) and C and apply 
Lemma 6.11:

BRRR =  e? CR =  £■ Z(B; m) =  - Z { £ -  m -  3), Z(C; m) =  Z(£- m -  1)

where
/  1 0 1 1 1 0

\ 1 1 1 1 1 1

Still /¿(£) =  1. Now we can apply a V, N-type splitting in the middle of the length 
3 block in the first row of £, as in Proposition 6.17. We have by Lemma 6.10:

£ v  =  A, £N =  B\ Z[£\ m) =  Z(A; m) -  Z[B ; m) =  Z(A; m) +  Z {£ ; m -  3)

where ¡i(A) =  0, so the sequence Z(A; m) is already known.
This recursively determines all the sequences and it is a matter of a mechan­

ical calculation to derive their generating functions (some care must be given to the 
initial conditions). We can also check periodicities directly. The sequences with 
/¿-invariant 0 are 4-periodic:

Z(A; m) =  - Z ( A ;  m -  2) =  Z(A] m -  4)

and those with /¿-invariant 1 are 12-periodic:

Z{£\ m) =  Z(A;  m) +  Z(A;  m -  3) +  Z(A; m -  6) +  Z(A; m -  9) +  Z{£\ m -  12)
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=  Z ( £ ;m -  12)

since Z (A ;m ) = —Z(A;m. -  6). By (6.1) this means 12-periodicity of Z(Pm x Ce).

6.5 Proof of Theorem 6.3

Everything is now ready to prove Theorem 6.3. We are going to deduce it from a 
refined version given below. Throughout this section an even number n is still fixed. 
For any pattern V  of length n define the generating function

oo
M t ) =  £ > ( P ; m ) r .  (6.2)

m=0

Proposition 6.19. For any proper pattern V the function fv {t)  is a rational func­
tion such that all zeroes of its denominator are complex roots of unity.

The sequence Z(Pm x Cn) is a linear combination of sequences Z(V\m) 
for initial patterns V  (modulo initial conditions). Every initial pattern is proper 
(Lemma 6.13), so Theorem 6.3 follows. It remains to prove Proposition 6.19, and 
this is done along the lines of the example in Section 6.4.

Proof. We will prove the statement by induction on the //-invariant of V. If p(P ) =  
0, then V  is one of the patterns from Lemma 6.16. Each of them satisfies V RR =  V 
and by Lemma 6.11:

Z{V-,m) =  (—l )n/2Z (P ; m — 2)

hence fp (t)  has the form
a +  bt

1 -  ( - l ) nW

Now consider any fixed value p >  0 of the //-invariant and suppose the result 
was proved for all proper patterns with smaller //-invariants. Consider the directed 
graph whose vertices are all proper patterns with that invariant //. For any reducible 
V  there is an edge V —> V R and for any irreducible V  there is an edge V —► V N 
for some (only one) choice of TV-type operation in the middle of a block. Since the 
graph is finite and the outdegree of each vertex is 1, it consists of directed cycles 
with some attached trees pointing towards the cycles.

If V  is a vertex on one of the cycles, then by moving along the cycle and 
performing the operations prescribed by the edges we will get back to V  and obtain
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(Lemmas 6.10, 6.11 and Propositions 6.17,6.18) a recursive equation of the form

where a > 0, b-jz >  0 and 71 runs through some proper patterns with invariant p -  1 
(Proposition 6.17). Now the result follows by induction (the generating function 
fv (t)  will add an extra factor l ± i a to the denominator coming from the combination 
of functions

If V  is not on a cycle then it has a path to a cycle and the result follows in 
the same way. □

Rem ark 6.20. It is also clear that in order to prove Conjecture 6.4 one must have 
better control over the cycle lengths in the directed graph appearing in the proof. We 
will construct a more accessible model for this in the next section, see Theorem 6.25.

6.6 Necklaces

In this section we describe an appealing combinatorial model which encodes the 
reducibility relation between patterns. As before n is an even positive integer and 
k is any positive integer.

We define a (k, n)-necklace. It is a collection of 2k points (stones) dis­
tributed along the circumference of a circle of length n, together with an assign­
ment of a number from { —2, —1,1,2} to each of the stones. We call these numbers 
stone vectors and we think of them as actual short vectors attached to the stones 
and tangent to the circle. The vector points 1 or 2 units clockwise (positive value) 
or anti-clockwise (negative value) from each stone and we say a stone faces the 
direction of its vector. See Fig.6.5 for an example worth more than a thousand

During a jump a stone moves 1 or 2 units along the circle in the direction 
and distance prescribed by its vector. The configuration of stones and vectors is 
subject to the following conditions:

• consecutive stones face in opposite directions,

• if two consecutive stones face away from each other then their distance is an 
odd integer,

• if two consecutive stones face towards each other then their distance plus the 
lengths of their vectors is an odd integer,

(6.3)

words.
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Figure 6.5: Two sample (3 ,16)-necklaces. 
vectors of length 1 (shorter) or 2 (longer) 
of the necklace in a).

b)

Each has 6 stones. The arrows are stone 
The necklace in b) is the image under T

• if two consecutive stones face towards each other then their distance is at least 
3; moreover if their distance is exactly 3 then their vectors have length 1.

The last two conditions can be conveniently rephrased as follows: if two stones facing 
towards each other simultaneously jump then after the jump their distance will be 
an odd integer and they will not land in the same point nor jump over one another.

We identify (fc, n)-necklaces which differ by an isometry of the circle. Clearly 
the number of (k, n)-necklaces is finite.

Next we describe a necklace transformation T  which takes a (k, n)- - 
necklace and performs the following operations:

• (JUMP) all stones jump as dictated by their vectors,

• (TURN) all stone vectors change according to the rule

—2 —> 1, —1 —> 2, 1 —+ —2, 2 —► —1,

i.e. both direction and length are switched to the other option,

• (FIX) if any two stones find themselves in distance 3 facing each other and 
any of their vectors has length 2, then adjust the offending vectors by reducing 
their length to 1.

An example of N  and TN  is shown in Fig.6.5. It is easy to check that if N  is a 
(k, n)-necklace then so is TN.

91



Definition 6.21. Define Neck(fc, n) to be the directed graph whose vertices are all 
the isomorphism classes of (k,n)-necklaces and such that for each (k,n)-necklace N 
there is a directed edge N —* TN.

Lem m a 6.22. The graph Neck(k,n) is nonempty if and only if 1 <  k <  n/4 and it 
is always a disjoint union of directed cycles.

Proof. To each stone whose vector faces clockwise we associate the open arc segment 
of length 2 from that stone in the direction of its vector. To each stone whose vector 
faces counter-clockwise we associate the open arc segment of length 2 of which this 
stone is the midpoint. The segments associated to different stones are disjoint hence 
2k ■ 2 <  n, as required (compare the proof of Lemma 6.16).

The out-degree of every vertex in Neck(k, n) is 1, so it suffices to show that 
the in-degree is at least 1. Given a (k, n)-necklace N  let T - 1 be the following 
operations:

• for each stone which does not face towards another stone in distance 3, change 
the stone vector according to the rule

—2 —> — 1, —1 —> — 2, 1 — ► 2, 2 —+ 1,

• jump with all the stones,

• change all stone vectors according to the rule

—2 —> 2, - 1 - + 1 ,  1 - + - 1 ,  2 - > - 2 .

One easilv checks that T~1N  is a (k, n)-necklace and that TT N  — T TN =  

N. ’ □

Some boundary cases of Neck(k, n ) are easy to work out.

Lem m a 6.23. For any even n the graph Neck(l,n) is a cycle of length n — 3. For 
any k the graph Neck(fc,4fc) is a single vertex with a loop. For any k the graph 
Neck(k. 4k +  2) is a cycle of length k +  2 and [k/2\ isolated vertices with loops.

Proof. A (1. n)-necklace is determined by a choice of an odd number 3 < d < n -  1 

(the length of the arc along which the two stones face each other) and a choice of 
e € { 1, 2} (the length of the vectors at both stones which must be the same due to 
the parity constraints), with the restriction that if d =  3 then e =  1. If we denote
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the resulting necklace Aen d then

T A ln n-i — ^ 3, TA\ d — A^ n_d+2 (3 < d < n  — 3), 

TA„ d =  A\ n_d+4 (5 <  d < n — 1)

and it is easy to check that they assemble into a (n — 3)-cycle.
An argument as in Lemma 6.22 shows that there is just one (k, 4fc)-necklace 

N, with distances between stones alternating between 3 (stones facing each other) 
and 1 (stones facing away) and all vectors of length 1. It satisfies TN  =  N.

The analysis of the last case again requires the enumeration of all possible 
cases and we leave it to the interested reader. □

The following is our main conjecture about Neck(A;, n).

Conjecture 6.24. The length of every cycle in the graph Neck(A:, n) divides n — 3k. 
In other words, for every (k,n)-necklace N  we have Tn~3kN  =  N.

This conjecture was experimentally verified for all even n < 36, see Table 3 
in Section 6.7.

It is now time to explain what necklaces have to do with patterns and what 
Conjecture 6.24 has to do with Conjecture 6.4.

Intuitively, (k, n)-necklaces are meant to correspond to reducible proper pat­
terns V  of length n and p(V) =  k. The operation T mimics the reduction V —> V R, 
although the details of this correspondence are a bit more complicated (see proof of 
Theorem 6.25). The lengths of cycles in the necklace graph Neck(fc, n) determine 
the constants a in the recursive equations (6.3) and therefore also the exponents in 
the denominators of f n(t) (Conjecture 6.4). A precise statement is the following.

Theorem  6.25. Let gi}Tt be the any common multiple of the lengths of all cycles in 
the graph Neck(i,n). Suppose V is a proper pattern of even length n and p{V ) =  k. 
Then the generating function fp (t) (see (6.2)) is of the form

fv {t )  -
hviP) t t  1

! _ (_l)n/2t2 ' 11 1 _ f 2 9i,n
' ' l— 1

for some polynomial hp(t).

Before proving this result first observe:

Theorem  6.26. Conjecture 6.24 implies Conjecture 6.4.
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Figure 6.6: The correspondence between necklaces and patterns. If N  is the necklace 
then the numbers inside the circle form the second row of the pattern UN  and the 
numbers outside form its first row (only l ’s are shown in the first row, the remaining 
entries are 0’s). The second row has a block between each pair of stones facing each 
other. Over each block of length greater than 3 the number of outermost 0’s in the 
first row equals the length of the stone vector.

Proof. The sequence Z(Pm x Cn) is a linear combination of sequences Z (V ;m ) for 
proper (in fact initial) patterns V  of length n. Theorem 6.25 therefore implies that

fn(t) =
hn(t)

Ln/4j

1 -  ( - l W 2t2 V '  1=1
IT  1 _  figi.n

for some polynomial hn(t). If Conjecture 6.24 is true then we can take gtJl =  n — 3i, 
thus obtaining the statement of Conjecture 6.4. □

Proof of Theorem 6.25. For k >  1 and even n let Prop (A:, n) denote the set of proper 
patterns V  of length n and such that fi{V) =  k. Moreover, let Prop0(A:, n) Ç 
Prop(A:, n) consist of patterns which do not have any block in row 1. These are 
exactly the reducible patterns.

There is a map
5  : Prop(A;, n) —> Prop0(A;, n)

defined as follows. If V  G Prop(A;, n) then all blocks in the first row of V  have length 
3. We apply the operation of type N  in the middle of every such block and define 
SV  to be the resulting pattern. It has no blocks in the first row and n{SV) =  n(V) 
by Proposition 6.17.

Next we define a map

Q : Prop0(A:, n) —> Neck(A:,n).
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Note that a pattern V  G Prop0(fc, n) is determined by the positions of blocks 
in the second row and, for every endpoint of a block, the information whether the 
outermost 1 in the first row (if any) is located above the 2nd or 3rd position of 
the block. This already determines the whole run above a block (because it is an 
alternating run of 0’s and l ’s).

Now. we transcribe it into a necklace QV  as follows (see Fig.6.G). Label the 
unit intervals of a circle of length n with the symbols from the second row of V. For 
every block place two stones bounding that block and facing towards each other. 
The lengths of the vectors at those stones are determined by the rule:

• if the stone bounds a block of length 3 then the length of its vector is 1,

• otherwise the length of a stone vector is the number of outermost 0’s in the 
first row of V  over the edge of the block bounded by the stone.

If two stones face away from each other then “between them” the second row of 
V  contains a run 0101 • • • 10 of odd length. If two stones face towards each other 
then the length of the block between them is either 3 or it is the odd length of 
101 •• • 01 plus pi + P 2 where p* are their stone vector lengths. It verifies that QV  is 
a (fc, n)-necklace.

The map Q is a bijection and we let

U : Neck(fc, n) —> Prop0(fc, n)

be its inverse. More specifically, the second row of UN  is obtained by placing a 
block of l ’s between every pair of stones that face each other and an alternating 
run 010 • • • 10 between stones facing away. In the first row of UN, over each block, 
we place either 0’s (if the block has length 3) or an alternating sequence 101 • • • 01 
leaving out as many outermost positions as dictated by the stone vector lengths. 
We fill the remaining positions in the first row with 0’s. The construction is feasible 
thanks to the parity conditions satisfied by N .

All the maps are defined in such a way that for every (k, n)-necklace N  we
have

TN  =  Q S((U N )r ) or equivalently UTN =  S((UN)R). (6.4)

To see this consider how the reduction operation (-)R and the map S change the 
neighbourhood of an endpoint of a block in the second row of UN. The argument 
is very similar to the proof of Proposition 6.18 and the details are left to the reader.

Now we complete the proof by induction on p(V).  The case p(V)  =  0 was 
dealt with in the proof in Section 6.5. Now suppose k =  p(V)  >  1. If V € Prop(fc, n)
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is any pattern then by Propositions 6.10 and 6.17 we have an equation

Z{T\ m) =  ± Z {S V ; m) +  Y  ± Z { K ; m)
n

for some patterns which satisfy n(1Z) =  k — 1. That means it suffices to prove the 
result for patterns in Prop0(fc,n). Every such pattern is of the form UN for some 
(k,n)-necklace N. Equation (6.4) and Propositions 6.10, 6.11 and 6.17 lead to an 
equation

Z(UN;m) =  ± Z { {U N )R- m -  1)

=  ±Z(S( (U N )Ry , m , - l )  +  Y ^ ± Z ( 1 l - , m - l )
n

=  ± Z (U T N ; m — 1) +  ^  ̂±Z(1Z; m — 1)
n

with 7Z as before. Now a 5fc,n-fold iterated application of this argument for each of 
N ,T N , . . . ,  T9k'nN =  N  produces an equation

Z(UN] m) =  ± Z ( U N ; m -  5fc,n) +  Y ± Z m  ~ b̂ >
n

and its double application allows to avoid the problem of the unknown sign, that is 
we obtain

Z(U N ; m) =  Z(U N ; m -  2gk,n) +  Y  ± z (^ ';m  -  bn,).
w

It follows that the generating function of Z(UN;m)  can be expressed using combi­
nations of the same rational functions which appeared in the generating functions 
for patterns of //-invariant k -  1 together with 1/(1 -  t29k-n). That completes the 
proof. □

6.7 Tables

T able  1.

Some values of Z(Pm x Cn):
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m \  n 2 3 4 5 6 7 8 9 10 11 12 13 14
0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 -1 -2 -1 1 2 1 -1 -2 -1 1 2 1 -1
2 -1 1 3 1 -1 1 3 1 -1 1 3 1 -1

3 1 1 -3 1 1 1 5 1 1 1 -3 1 1

4 1 -2 5 1 4 1 5 -2 1 1 8 1 1

5 -1 1 -5 1 -1 1 3 1 9 1 -5 1 -1

6 -1 1 7 1 1 1 7 1 -1 1 7 1 13
7 1 -2 -7 1 4 1 1 -2 1 1 8 1 1

8 1 1 9 1 1 1 1 1 1 1 9 1 1

9 -1 1 -9 1 -1 1 -1 1 -11 1 -9 1 13
10 -1 -2 11 1 2 1 3 -2 -1 1 14 1 -1

11 1 1 -11 1 1 1 -3 1 1 1 -11 1 15
12 1 1 13 1 1 1 5 1 11 1 13 1 1

T able  2.

Some initial generating functions f n(t) for even n are given below in reduced form. 
By $ k(t) we denote the k-th cyclotomie polynomial (5>i(t) =  t -  1, $ 2(f) =  t + 1).

/ 2(0

f4(t)

Mt)

h(t)

fio(t)

fn(t)

fu(t)

/ie(0

/l8(0

/20(<)

~(t ~ 1)

M O 
~(<2 + 1)

M 0 M 0 2
—(t4 +  2t3 +  2t +  1)

M 0 M 0 M 0
- ( i 6 -  i5 + 2£4 + 6i3 + 2t2 - t  + 1)

_____ gio(0______

________ ?12(t)_________

“  <M f)$2(f)2<M 0 < M i) 2<ï>i8(0
_________qi4(t)_________

_ *i(t)*4(0*5(t)*ii(0*ie(t)
___________ Qiajt)___________

"  Î>l(i)^2(t)2^10(0^14(<)^26(0

_______ Qis(t)____________________

$ l( f) Î >3(f)^4(0<̂ 5(t)Î,8(t)^,9(i )^12(i)^15(t)Î>24(t)

__________  920 (Q_____________
_  <i»l(f)«I>2(02^ ( i ) i >7(i)^14(<)^,22(<)^34(0
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_______________ 922(0_______________
$l(i)*4(0*7(t)*13(0*19(i)^2o(t)® 32(0

/22(0 —

The longer numerators are as follows.

9io(0 = - ( t 12- t n + i 8 +  9i7 + 9i5 +  t4 - t  + l)
912(0 = —(O4 + 2i13 + 3t12 — 3in + 8i10 -  5t9 + 6t8 

+6t7 +  6tG -  5t5 +  814 -  3i3 +  3i2 + 2t + 1)
9m(0 = ~(<24 -  0 9 +  H i18 +  14t17 + 29t16 + 42i15 + 42t14 + 55t13 +  56t12 

+55tn + 420° + 42t9 + 29f8 + 14t7 + 14t6 -  t5 + 1)
9ie(0 = - ( t 28 -  2t27 + 5i26 + 5i24 -  2f23 + 9i22 -  7<21 + 39t20 — 37t19 

+44t18 -  25t17 + 30f16 -  24t15 + 26t14 -  24i13 + 30t12 
-25tn + 44i10 -  37i9 + 39i8 -  7t7 +  916 -  215 +  514 + 5t2 - 2 t  +  l)

9is(0 = — (<38 + 2t37- i 36 + 2t35 +  6t34 -  2t33 + 2t32 + 30t31 -  2<30 

+i29 +  70t28 -  t27 + t26 +  92t25 -  i24 + t23 + I30t22 -  t21 

+168*19 -  t17 + 130t16 + i15 -  0 4 + 92t13 + t12 -  i11 + 700°
+t9 -  2ts +  3017 + 2<6 -  2t5 + 614 + 213 -  <2 + 2t + 1)

920(0 = —(t46 — 2<45 + 6t44 — 10<43 4- 19t42 — 18t41 -f 34f40 — 40t39 
+64i38 -  28t37 + 60£36 -  31f35 + 120i34 -  96t33 + 189t32 
-147t31 + 240£30 -  195f29 + 283£28 -  230£27 + 258i26 
-193£25 + 218f24 -  208f23 + 218£22 -  193£21 + 258i20 
-230£19 + 283t18 -  195t17 + 240t16 -  147i15 + 189t14 
—96f13 + 120i12 -  31f11 + 600° -  28£9 + 64t8 -  40£7 
+34£6 -  18t5 + 19f4 -  10i3 +  6£2 - 2 t  +  l)

922(0 = - ( t 62 +  t61 4- t58 +  t57 — t55 + 22£54 + ........ + 22t8 - t 7 +  t5+ t 4+ t  + l)



T able  3

The decomposition of the directed graph Neck(fc, n) into a disjoint union of cycles. 
Here lp stands for p copies of the cycle Cp
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Chapter 7

Vietoris-Rips complexes of 
graphs

7.1 Introduction

In this chapter we investigate the behaviour of clique complexes of powers of graphs.
Recall that if G is a graph and r is a non-negative integer then the r-th power 

or r-th distance power of G, denoted Gr, is a new graph with the same vertex set in 
which two vertices are adjacent if and only if their distance in G is at most r. Any 
graph G gives rise to a sequence of graph inclusions

G <-» G2 «-► G3 ■ ■ • (7.1)

which eventually stabilizes (at the complete graph if G is connected).
Recall that for a graph G the clique complex C1(G) is a simplicial complex 

whose vertices are the vertices of G and the simplices are the cliques (complete 
subgraphs) in G. Clearly Cl is a functor from graphs to simplicial complexes and 
we have inclusions

C1(G) —  C1(G2) *-> C1(G3) « -  • • • (7.2)

which, for a connected graph G, stabilize at the full simplex. In a geometer’s 
language Cl(Gr) is precisely the Vietoris-Rips complex whose faces are subsets of 
diameter at most r in the discrete metric space V (G) with the shortest path distance.

Note that not every graph is of the form Gr for r > 2 (in fact the recognition 
of graph squares [85] and arbitrary graph powers [1] is NP-hard), so we may ask 
about interesting properties of the spaces Cl(Gr) and of the inclusions Cl(Gr) <-► 
Cl(Gr+1).
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For example, if G =  G7 is the 7-cycle then C1(C7) has maximal faces of the 
form {i, ¿ +  1, i+2 }  (mod 7). It is homeomorphic to the Möbius strip and it collapses 
to its subcomplex Cl(Gy) =  S1. If, on the other hand, G =  Cq, then the complex 
Cl(Cg) is the boundary of the octahedron, homeomorphic to £ 2, and the sequence 
(7.2) is, up to homotopy, S1 —> S2 .

Let us outline the structure of this chapter. Section 7.2 contains some pre­
liminary results, in particular on powers of graphs with no short cycles. In Section 
7.3 we restrict to graph squares (r =  2) and prove topological and combinatorial 
conditions which guarantee that the inclusion C1(G) c—> C1(G2) is a homotopy equiv­
alence.

In Section 7.4 we discuss universality of Cl(Gr), proving that for any r every 
finite complex can be realized as Cl(Gr) up to homotopy. Contrary to the case r =  1, 
for higher r not every space has a realization as Cl(Gr) up to homeomorphism. Our 
method is based on some results of [31] and the analysis of shortest paths in iterated 
barycentric subdivisions.

Section 7.5 provides a complete description of the clique complexes of the 
total graph and the line graph of G.

In the last part, Section 7.6, we calculate the homotopy types of Cl(Gr) in 
the first nontrivial case, that is for the cycles G =  Cn. A quick preview of those 
can be found in Section 7.7. They turn out to be obtained from a small number of 
initial cases by an action of a double suspension operator E2. To see this we run the 
theory of star clusters of [13] on the independence complexes of the complements ■ 
C%, the circular complete graphs.

7.2 Preliminaries

Fact 7.1. For any connected graph G the map of fundamental groups

7rj.(Cl(G)) —> 7r1(Cl(Gr)) 

induced by the inclusion G c—> Gr is surjective.

Proof. It suffices to prove that 7Ti(Cl(Gr-:1)) —► 7Ti(Cl(Gr)) is surjective for r >  2. 
Consider a based path a in Cl(Gr). By cellular approximation we can assume it 
lies in the 1-skeleton and is piecewise linear. If e =  uv e E(Gr) \ E(Gr~! ) then 
there is a vertex w such that uw,wv € E(Gr~l ). Then {u ,w ,v }  is a face of Cl(Gr) 
and any segment of a  going along uv can be continuously deformed to go along 
uwv without moving the endpoints. Performing this operation for every segment in
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E(Gr)\E(Gr ! ) we obtain a based path homotopic to a which lies in Cl(Gr 1). □

One situation when Cl(Gr) is homotopy equivalent to (in fact, collapses to) 
C1(G) is when r is not too large compared to the girth of G (the girth of a graph 
is the length of its shortest cycle or oo for a forest). Of course as soon as G is 
triangle-free C1(G) =  G is 1-dimensional.

P roposition  7.2. Let r >  1. If G is a graph of girth at least 3r +  1 then for every 
2 < k < r the complex Cl(Gfc) collapses to Cl(Gt_1). In particular Cl(Gr) collapses 
to its subcomplex C1(G) =  G.

Proof. Let £ — E(Gk)\E(Gk~1) be the set of “new” edges in Gk and let T  C Cl(Gfc) 
be the set of faces which contain at least one edge of £. We have Cl(Gfc_1) =  
Cl(Gfc) \ E. If £ — 0 there is noting to do, so assume £ ^  0.

The nonexistence of cycles of length 3k or less in G has the following conse­
quences. First, every maximal clique a in Gk corresponds to a subtree of diameter 
k in G. Second, every edge in £ (hence also every face in E) belongs to a unique 
maximal face of Cl(Gfe). To see the second statement let e =  uv € £ and suppose 
x, y are two vertices such that xuv and yuv are both faces of Cl(Gfc). Denote by a 
the shortest path in G from u to v. By the first observation there is a vertex x' € a 
such that the shortest paths from x to u and v join the path a  at x'. Similarly, 
there is a y' G a with the same property for y and we may assume w.l.o.g. that the 
order along a  is u — x' — y' — v. Then

distG(x, y) =  distG(x, x') +  distG(x', y') +  distG(y', y) =

=  distG(x, v ) +  distG(y, u) — distG(u, v) < k +  k — k =  k

which proves the claim.
Let a be some maximal face of Cl(Gfc) and v € a any fixed vertex whose 

distance in G to all vertices of G[o\ is strictly less than k (for example the centre of 
the tree G[cr]). We define an acyclic matching M „ on a by taking all the pairs

( / , /  U {v })

for all faces /  € T  such that f  C a \ {v } .  Since no edge of £ which lies in a has v 
as its endpoint, every face of T  contained in a is of the form /  or /  U {?;} above. It 
follows that Mff matches all faces of a which are in T  (and only those).

Let M  — U<7 Mr be the union of those matchings over all maximal faces a. 
By the previous remarks it is well-defined, acyclic and its critical faces form the 
subcomplex Cl(Gfc_1). This ends the proof. □

102



The girth bound of 3r +  1 is optimal, because Cl(C^r) ~  \/r-1 S2 by the 
results of Section 7.6.

One standard way of analyzing the homotopy type of C1(G) is via the notions 
of folds and dismantlability. If a, v G V (G) are distinct vertices such that Nq [a] C 
Nq [a] then we say G folds onto G \u . A graph G is dismantlable if there exists a 
sequence of folds from G to a single vertex. It is a classical fact that a fold preserves 
the homotopy type of the clique complex and, in fact, induces a collapsing of C1(G) 
onto C1(G \u), so the clique complex of a dismantlable graph is collapsible (see for 
example [20, Lemma 2.2]). In this context we have the following simple result.

Lem m a 7.3. If G is dismantlable then so is Gr for any r >  1.

Proof. We use induction on |V(G)|. Let a be a vertex such that G folds onto G \u  
and G \ u  is dismantlable. Let a be a vertex which satisfies Ng [u] C Nq [a]. First 
note that

(G \ u)r =  Gr \u.

Indeed, the inclusion C is obvious. For D note that any occurrence of u in a path 
can be replaced with v or removed without increasing the length of the path.

The graph Gr\u =  (G\u)r is dismantlable by induction. Moreover Nc;r [a] C 

7VGr [a]. It follows that Gr folds onto GT\u and the dismantlability of Gr is proved.
□

Both 7.2 and 7.3 imply the following.

Corollary 7.4. For every tree T and any integer r the complex Cl(Tr) is collapsible 
(and, in particular, contractible).

7.3 Stability

In this section we only consider graph squares (r =  2). We describe more gen­
eral criteria which guarantee that the inclusion C1(G) <-+ C1(G2) is a homotopy 
equivalence.

Note that for any vertex a of G the set No  [a] forms a clique in G2. 

Theorem  7.5. Suppose G satisfies the following condition:

• Every clique in G2 is contained in a set of the form  Â G[a] for some vertex a. 

Then the inclusion i : C1(G) C1(G2) is a homotopy equivalence.
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Figure 7.1: The 3-sun graph S3.

Proof. By passing to connected components we can assume G is connected. We use 
the following local criterion of [80, Tlnn. 6] (see also [79, Cor. 1.4]):

• Suppose p : X  —► Y  is a continuous map and Y  has an open cover U =  {Ua}  
such that if U, V  € U then U O V  e  U. If for every U € U the restriction 
p\p-i(U) '■ P~l (U) —> U is a weak equivalence then so is p.

Since we are working with finite simplicial complexes we can just as well replace 
open sets with closed subcomplexes (by taking a small open neighbourhood of a 
subcomplex) and weak equivalences with homotopy equivalences (by Whitehead’s 
theorem).

For each v € V(G) let Uv =  C1(G2)[Â g [u]]. Each of Uv is a simplex in 
C1(G2). By assumption we have C1(G2) =  UueV(G) and we can take a cover U of 
C1(G2) consisting of all intersections of the sets Uv.

If U =  UVl n- • -CiUVk is non-empty then it is an intersection of faces of C1(G2), 
hence it is contractible. It remains to show that i~^(U) is also contractible. Let 
X  =  f|,fc=i Arc[^ ] be the set of vertices spanning U. Since i is a subcomplex inclusion, 
we have =  C1(G)[X]. Because in G every vertex of X  is in distance at most
1 from each of w*, the set X  U ( iq , . . .  ,v*,} forms a clique in G2. Our assumption 
then gives a vertex v such that

X  U {up . . .  ,Vk} C Nc[v].

In particular v € for each i =  1 , . . . ,  k, so v G X.  Moreover, since X  C JVg [u],
the vertex v is adjacent in G to every other element of X ,  i.e. G[X] is a cone with 
apex v. It implies that Cl(G)[Ar] =  C1(G[X]) is a simplicial cone with apex v, hence 
it is contractible. This completes the proof. □

There is a more direct combinatorial condition which guarantees that the 
assumption of Theorem 7.5 is satisfied. Recall that we say G is H-free if G does not 
have an induced subgraph isomorphic to H. If H i, . . . ,  H^ is a sequence of graphs 
then G is (H1, . . . ,  Hk)-free if it does not have any of the Hi as induced subgraphs.
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Figure 7.2: A graph G with C1(G) ~  * and i / 2(Cl(G2)) ^  0.

Consider the graph of Fig.7.1, usually denoted S3 and called 3-sun.

Theorem  7.6. IfG  is {C\, C5, Ce, S3)-free then G satisfies the condition in Theorem

7.5

Proof. Suppose, on the contrary, that K  =  {v  1, . .  . , v k} is the smallest clique in G2 

which is not contained in any set Afc[v]. Then k >  3 and there exist w \ ,...,w k 
such that K\vi C TVcfai]. The vertices w \ , . . . ,  w k are pairwise distinct (as W{ =  wj 
would mean K  C Na[wi]) and there is no edge WiVl in G for any i (same reason). 
It means that we have

Ng H ]  n {iq, v2, u3} =  {u2, u3}
ATG[u;2] n {i>i, u2, u3} =  {u3, Uj} I * \
Ng [w3] n {ui,u2,u3} =  {ui,u2} '

k Vi  ±  V2 ±  V3  ̂V i , Wi  ±  W2 ^  W3 ±  Wi

By Theorem 3 of [23] a graph is (C4, C5, Ce, 53)-free if and only if it does not have 
a configuration satisfying (*) ( which, using the notation of [23], is saying that the 
neighbourhood hypergraph of G is triangle-free). That ends the proof. □

Rem ark 7.7. For an arbitrary graph G one might at least hope that the inclusion 
C1(G) C1(G2) stabilizes the homotopy type, for example by increasing the con­
nectivity of the space. This is not the case. For example, let G be the graph of 
Fig.7.2 and let V  denote the set of vertices of the outermost 6-cycle. Then C1(G) is 
contractible while one can check by a direct calculation that i f2(Cl(G2)) =  Z © Z 
where one of the generators is represented by the subcomplex C1(G2)[F], homeo- 
morphic to S2.

Rem ark 7.8. The converse of Theorem 7.6 is false as can be seen by taking any
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graph G which is a cone and has one of the forbidden induced subgraphs. The 
converse of Theorem 7.5 is also false and the counterexample is the 3-sun S3. Indeed, 
C1(S3) ~  Cl(Sf) — * and S2 =  K§ is complete but S3 itself is not a cone.

7.4 Universality

It is a known fact that any finite simplicial complex K  is homeomorphic to C1(G) for 
some graph G. One can take G to be the 1-skeleton of the barycentric subdivision 
of A'.

Clearly clique complexes of higher graph powers cannot represent all homeo- 
morphism types. For instance, if C1(G2) is a connected space of dimension two then 
every vertex of G must have degree at most 2. It means G must be a path or cycle 
and a direct check narrows the possible two-dimensional homeomorphism types of 
C1(G2) to D2, S2, the Mobius strip and £>' x S 1, where Dn is the n-dimensional 
disk.

It is, however, true that arbitrary graph powers realize all homotopy types.

Theorem  7.9. For every finite simplicial complex I< and integer r >  1 there exists 
a graph G such that Cl(Gr) is homotopy equivalent to K .

In fact there is an explicit candidate for G. Given a finite complex K  and 
s > 0 let bdsK  denote its s-th iterated barycentric subdivision and let the graph 
Gs be its 1-skeleton:

Gs =  (bdsA')(1)

(from now on we will suppress the complex K  from notation). Replacing, if needed, 
1\ with its subdivision we can assume K  =  Cl(Go) and then for every s >  0 we have 
bd*A' =  C1(GS). Then we have the following result.

Theorem  7.10. For any finite simplicial complex K  and 1 < r < 2s-2

Cl((Gs)r) *  K.

The proof strategy resembles that of [31]. For any vertex v of the original 
complex K  let and Ss,v denote the vertex sets in Gs defined as

Bs.v =  {u>:distc5(v,w) < 2 S},

Ss,v =  : dfetG.(v, w) =  2*}-

The letters B and S stand for the open Ball and the Sphere of radius 2s around 
t; in G„. In the geometric realization the vertices of Bs<v belong to the open star
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st/c (w) \ lk/<-(v) of v in K  while the vertices of Ss,v lie in the link lk^(n). Note that 
Bs,vi H • • • PI Bs,vk is nonempty if and only if {ux,. . . ,  vk} is a face of K.

The main technical result we use is proved in [31, 3.7,3.8].

Proposition  7.11 ([31]). For any face {v  i ,...,u * J  of K  the graph

G s [Bs,v i n ••• n B s V̂k\

is dismantlable.

Now consider an integer r <  2s-2. We intend to prove that C1(G£) ~  K  
using the nerve lemma [72, 15.21], Define subcomplexes of C\(Grs) by

*s,v =  Cl((Gs[Ba,v])r) C Cl(Gj) (7.3)

for the vertices v of K.  The reader should be warned that the subcomplex X s v 
is not induced; in particular it should not be confused with Cl(G£[j3s „]), which is 
usually bigger.

Proposition  7.12. The family of subcomplexes X SjV is a covering ofC\(Grs). The 
nerve of this covering is K .

Proof. The second statement is obvious since the vertex set of X SjVl fl • • • Pi X s v is 
Bs,Vl n • • • fl Bs<Vk and this is nonempty only for a face {iq, . . . , v k} of K.

Let us prove the first statement. Suppose a is a clique in Grs. Fix any w € a. 
There exists a vertex v of K  such that

distGs (v, w) < 2S~1.

Fix also that v. Now any vertex w' € o  satisfies

distGs (w’ , v) <  distGs (w\ w) +  distGs (w,v) <

< r + 2S~1 < 2s-2 + 2S_1 < 2s -  1.

Therefore a C BS]V.
Now we want to show that for any two vertices w', w" e  a the shortest path 

from w’ to w" in Gs lies in Gs[BSiV], Indeed, if 2 is any vertex on that path then

distGs (z, v) <  distGs (z, w') +  distGs (w’ , v) <

< r +  (r +  2s-1) < 2 • 2s" 2 +  2s-1 =  2s.
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so 2 € Bs v. Since a is a set of diameter at most r in Gs and the shortest paths 
between its vertices lie in BSjV it follows that a is a set of diameter at most r in 
Gs[BStV]. It means that a G X s,v- □

The point here was that the whole clique a was located at least r steps away 
from Ss,v, so the path in Gs could not take the advantage of any shortcut outside
Bs, V

Proposition 7.12 and the nerve lemma [72, 15.21] imply Theorem 7.10 as 
soon as we prove that the nonempty intersections X SiVl fl • • • fl X SiVk are contractible. 
This is arranged for by the following lemma.

Proposition 7.13. For any vertices v\ , . . . , V k  of K  we have

x s,v\ n • • • n x SiVk =  c i((G s[BS)t,1 n • • • n BS)Vk\y)

Proof. We can restrict to the case when { « i , . . . ,  vk} is a face of K , otherwise the 
intersections are empty. By the definition of X SiV what we need to prove is

Cl((Gs[Bs,Vl])r) D • • • n Cl((Gs[Bs,„J)r) =  Cl((Ga[BStVl D • • • n Bs>1)J ) r).

The inclusion D is obvious, so we need to prove C. It is equivalent to the statement 

T>[k) : If u, w G BSfVl D • • • n BS'Vk are vertices such that

distc1[fll„](t*,w ) < r ,  . . . ,  distGs[Bsufc](u,u;) < r

then
^ stGs[Ba,Vln-nBa,Vk]{u,w) < r.

We prove it by induction on k. Clearly £>(1) holds. Now suppose k >  2. By 
induction there is a path a from u to iu in Ga[BStVl fl ••• D BS)Vfc_j] of length at 
most r. Denote by (3 the path in from u to w of length at most r. If
a lies completely in Bs,vk or ¡3 lies in J3s,Vl D • • • D then V{k)  follows. If
none of those two cases holds then a passes through some point p e  Ss<Vk and (3 
passes through some q € Ssm U • • • U Ss>Vk_1. Assume without loss of generality that

q € Ss,Vl ■ Then p -------u -------- q is a path in Gs of length at most 2r < 2 • 2s-2 < 2s
which connects p G BSiVl fl SStVk with q G Ss>Vl D B,%Vk and this whole path lies in 
BStVl UBg,Vk (because a C Gs[BSjVl] and (3 C Gs[BStVJ). The existence of such path, 
however, is excluded by the next lemma and this contradiction ends the inductive 
step. □
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u

V

Figure 7.3: An example with s =  2. The shaded sets Lu =  SSyU n BSyV and Lv =  
BSyU H Ss,v contain vertices of BSyU U BSyV in distance 2s from, respectively, u and 
v. The distance between these two sets within BSytl U BSyV is also 2s, although their 
distance in Gs is only 2.

We are left with the last technical lemma whose intuitive meaning is the 
following. Suppose a, r  are two faces of the same simplex in K . Suppose we look 
at the s-th barycentric subdivision of K  and the paths in its 1-skeleton. Then the 
points of a are very far apart from the points of r  if one is not allowed to go through 
a fl r.

Using the standard notation

distG(X ,y )  =  min{distG(x,y) : x  e  X ,y  e Y }

for AT, Y  C V(G)  we can express this idea as follows (see Fig.7.3).

Lemma 7.14. For any two adjacent vertices u,v of the original complex K

distGj[^ iUuBs,v](-®s,u n Ss,v, SSyll D BSyV) =  2s.

Proof. A partial labeling l of a graph G is an assignment of a real number l(v) to 
some of the vertices of G. If A' C V(G)  we write 1{X) for the set of labels assigned 
to the vertices in X,  with /(X )  =  0 if the value of l(v) is undefined for all v € X.  

We will construct partial labelings ls of Gs for s >  0 with the properties:

a) The set of vertices for which ls is defined is BSyU U BSyV.
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b) For every simplex a £ C1(GS) the vertices of a are assigned at most two 
different labels.

c) For every edge xy  € E(GS) such that both ls(x) and ls(y) are defined we have

\ls(x) -  ls(y)\ e  {0,̂ }.

d) ls(Bs,u n Ss,v) — {0}) h(Ss,u n BS'V) — { ! } .

The partial labeling /0 is defined by Z0(u) =  0, l0(v) =  1 and undefined 
otherwise. Suppose Zs_i has been defined. Every vertex x  £ V(GS) represents a face 
r  £ Cl(Gs_ i) and we set

ls(x)
a if Zs_ i(r ) =  {a }

< (a +  b)/2 if Zs_ i (t ) =  {a, 6} 
undefined if Zs_ i(r ) =  0.

This is well-defined since Zs_i satisfies b). Note that if x  £ F (G S_!) then ls(x) =

I s - i(x ) .
To prove that ls satisfies a) recall that Bs- iiU U Bs- XiV are the vertices of 

Gs- i located in the union of the open stars of a and v in K. Therefore a vertex x 
of Gs receives a label from Zs if and only if it represents a face of Cl(Gs_ i) which 
intersects that union of open stars. Such a vertex x itself lies in that union, therefore 
in Bs>u U Bs,v. To prove d) note that if x is a vertex of BSiU n Ss,v then x lies in 
the link lkKv, hence it represents a face of Cl(Gs_ i) contained in that link. By 
induction all vertices of that face are Zs_j-labeled 0 or unlabeled hence ls(x) =  0 
(since x  £ Bs<u it cannot remain unlabeled). This and a symmetric argument for 
Ss,u n Bs<v proves d).

If t £ Cl(Gs_ i) is a simplex with Zs_ i(r )  =  {a } then every vertex x  £ Gs 
which subdivides a face of r  will receive Zs-label a or no label at all and therefore b),
c) still hold for the simplices and edges of C1(GS) contained within r. Now suppose 
that Zs_ i(r ) =  {a, b}. Note that no simplex of C1(GS) subdividing r  contains vertices 
x, y with ls{x) =  a and ls(y) =  b. Indeed, if rx and r2 are the faces of r  in Cl(Gs_i) 
represented by x  and y respectively, then tx n #  0, tx n = 0 and vice
versa for r2. But then neither t\ C t2 nor r2 C n  hence xy  is not an edge in bd(r). 
Eventually we conclude that for every simplex of C1(GS) subdividing r  the set of 
¿.¡-labels is either empty, or a singleton or one of {a, {6, 2±£}. This, together
with the induction hypothesis, proves b) and c) in this case.

The existence of the partial labeling Zs completes the proof of the lemma:
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every path from BS)Uf lSs,v to Ss,u£lBs,v in Gs[BSjU(J BS)V] passes through /.¡-labeled 
vertices (by a)). In each step the label changes by at most ¡p (by c)) while the total 
change is 1 (by d)). It means that the path requires at least 2s steps. Of course 
there exists a path (e.g. the subdivision of the edge uv) of length exactly 2s.

□

For a convenient reference let us summarize the proof of Theorem 7.10.

Proof of Theorem 7.10. Fix 1 < r < 2s-2. Consider the subcomplexes X StV of 
C1(G£) defined in (7.3). By Proposition 7.12 they form a covering of C1(G£) with 
nerve K. By Proposition 7.13 every nonempty intersection of the X StVi is of the 
form

C1((GS[BS)V1 fl • • • D BStVk])r).

Every such complex is contractible because Proposition 7.11 and Lemma 7.3 imply 
that the graph {Gs[Bs,Vl fl- • •n B SiVk])r is dismantlable. The equivalence Cl(G^) ~  K  
now follows from the nerve lemma [72, 15.21]. □

Rem ark 7.15. The purpose of [31] was to prove that for any complex K  and any 
connected, non-discrete graph T  there exists a graph G with a homotopy equivalence

C1(GT) ~  K

where (—)T denotes the exponential graph functor, the right adjoint to the categori- ' 
cal product — x T  of graphs (see [72, 18.18]). The idea was to use the graph Gs and 
its subgraphs Gs[Bs,u] to form a covering of G f (for s depending on the diameter 
of T ). Despite these similarities the author does not see a direct way to compare 
(up to homotopy) the complexes Cl(Gr) of distance graph powers with any of the 
complexes Cl(Gr ).

7.5 Line graphs and edge subdivisions

Let S(G ) denote the graph obtained from G by subdividing every edge with one 
vertex. The graph T{G ) =  5 (G )2 is often called the total graph of G. Recall that 
the line graph L(G) of G is the incidence graph of the edges of G.

Write V(S(G)) as V U £ where V is the set of original vertices of G and £  is 
the set of subdividing vertices, one for each edge. Then we have isomorphisms

T(G)[V] =  G, T(G)[£] =  L(G)
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and we see that the inclusions

C1(L(G)) =  C1(T(G))[£] — C1(T(G)) — C1(T(G))[V] =  C1(G)

make C1(T(G)) a subcomplex of the join C1(G) * C1(L(G)).
Denote by t(G) the number of triangles in G. Then we have the following

result.

Theorem  7.16. For any graph G there is a homotopy equivalence

t(G)

C1(T(G)) ~  C1(G) V \ / S2.

This is another way in which a given complex can be represented as a clique 
complex of a graph square up to homotopy and up to a number of 2-spheres. As 
a byproduct of the proof method we also obtain the next result. Recall that /v (2) 
denotes the 2-dimensional skeleton of K.

Theorem  7.17. For any non-discrete, connected graph G

Cl(L(G)) ~  C1(G)(2>.

Both theorems depend on a simple classification.

Lem m a 7.18. Every maximal face in C1(T(G)) is of one of the following forms:

a) a maximal face o f dimension at least 2 in C1(G),

b)  {u, e, w} where v, w are vertices o f G and e =  vw,

c) {u, e i , . . . ,  e^} where e* are the edges incident with a vertex v o f G,

d) {e i,e 2,e3} where e i,e2,e3 are edges forming a triangle in G.

Proof. Let a be a maximal face in C1(T(G)). If a contains at least three vertices of 
V then those vertices form a clique in G and no edge is incident with all of them, 
so it cannot be extended by a vertex of £. If a contains precisely two vertices v, w 
of V, then e =  vw is the only vertex of £  adjacent to both of them. If \a fl V| =  {w} 
then a must be of the form c). Eventually if a =  { e i , . . .  ,e fc}  € C1(L(G)) then not 
all of e* are incident with a common vertex, but every two eu ej have a common 
vertex. This easily implies k =  3. n
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Proof of Theorem 7.16. Consider the subcomplex K  C C\(T(G)) consisting of all 
faces of C1(T(G)) which are not of the form {e i, e2, 63} for some three edges forming 
a triangle in G. Consider a matching on K  defined as follows

• the faces of C1(G) are unmatched,

• for each edge e =  uv the faces {e }, {u, e}, {e, u} and {v, e, u} are unmatched,

• for every face a € -ftTnCl(L(G)) of dimension at least one there exists a unique 
vertex v € G such that <7 U {u} is a face of K  (that vertex is the common end 
of the edges of a). In such case match a with a U {u}.

This is clearly an acyclic matching on K  in the sense of Definition 1.3. Its critical 
faces form the subcomplex

K ' =  C1(G) U {{e } , {u, e}, {e, u}, {u, e, u} for e =  uv £ £}.

This K ' easily collapses to C1(G), therefore also K  collapses to C1(G).
Now C1(T(G)) arises from K  by attaching the t (G) cells {e 1,e2,e3} for all 

triangles {v\,V2,v^} of G. The attaching map of every such cell is homotopic in K  
to the boundary of the face { v i , !^ ,^ }  of C1(G), therefore it is null-homotopic. It 
follows that C1(T(G)) ~  K  V \/t(G) 5 2 ~  C1(G) V \/t(G) 5 2. □

Proof of Theorem 7.17. Let K  be the subcomplex of C1(T(G)) consisting of all faces 
a such that |cr fl V| < 1. Then K  is the union of C1(L(G)) and simplices of the form 
7.18.c) for every v € V. For each v the link lk^(u) C C1(L(G)) is contractible (be­
cause it is a simplex) hence the removal of v from K  does not change the homotopy 
type. It means that K  ~  C1(L(G)).

Let K ' C K  be obtained from K  by removing the maximal faces {ej, e2, e3} 
corresponding to triangles of G. Then K ' is collapsible to the graph S(G) by an 
acyclic matching argument identical to that used in 7.16, pairing a with erU {u} for 
any set a of at least two elements of £  and their common endpoint v. Note that 
5(G) and G are homeomorphic as spaces.

Now K  is recovered from K'  by attaching a 2-face {e l5 e2, e3} for every trian­
gle t of G. The attaching map is homotopic in K'  to the inclusion of S(t) in 5(G). 
It follows that K  is homotopy equivalent to G with a 2-cell attached along every 
triangle. This is precisely C1(G)^2\ It follows that

t(G)

Cl(L(G)) ~  K  ~  K'  U ] J  A 2/  ~  C1(G)(2>.
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□

Exam ple 7.19. The stable Kneser graph SGntk is a graph whose vertices are the 
n-element subsets of { 1, . . . ,  k +  2n} which do not contain two consecutive (in the 
cyclic sense) elements. One of the goals of [22] is to calculate the homotopy types 
of the independence complexes 7(SG2jfc). Since the complex 7(SG2>fc) is exactly 
Cl(L(Cfc+4)), Theorem 7.17 identifies it, up to homotopy, with 7(Cfc+4) (2). This 
explains why these space are homotopically at most two-dimensional, as stated in 
[22, Thm.1.4].

Rem ark 7.20. From the two theorems of this section we immediately recover the 
result of [75, Cor. 5.4], which is that the spaces C1(G), C1(T(G)) and C1(L(G)) have 
isomorphic fundamental groups.

7.6 Clique complexes of powers of cycles

In this section we determine the homotopy types of the clique complexes of the 
graphs C„, i.e. the powers of cycles. It follows from Proposition 7.2 that for 1 < 
r <  Zf1 the complex C\(Crn) collapses to Cl(Cn) ~  S1. On the other hand, for 
r >  |_7jj the complex Cl(C£) =  Cl(T7n) is contractible. The intermediate values 
for some small pairs n, r are shown in Section 7.7. The purpose of this section is 
to exhibit a systematic pattern in that table. It turns out to be best expressed in 
terms of the independence complexes of the complements of G” . These results may 
also be interesting on their own right as one way of generalizing the calculation of 
Kozlov [71] of the homotopy types of I(Cn).

For any pair of non-negative integers n, k of opposite parity and with 1 < k <  
n -  1 let Tn,fc denote the graph obtained by connecting every vertex of the regular 
n-gon with the k “most opposite” vertices. The notion of “most opposite” is well 
defined if n and k have opposite parity. For example, is the disjoint union of § 
edges and examples of Tn>2 and 3 are shown in Fig.7.4a and Fig.7.5a. To describe 
these graphs we are also going to use another parameter r =  r(n,k) =  —g~l . Of 
course

r„ ,fc =  Q .

The graphs Tn,jt are called circular complete graphs and form a subclass of circulant 
graphs. The usual notation for Tn%k =  Crn is

Kn/r+\ or C„(r +  1, . . . ,  |^J)
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Figure 7.4: a) T9i2 =  Cg. b) Sg,2-

but we will keep using the notation Tn^ which is more intuitive for this application. 
For information about circulant and circular complete graphs and their independent 
sets see e.g. [12, 24, 52, 87],

We will identify the vertices of Tnyk with 'Lin. Under this identification each 
vertex i is connected to the vertices in the set

We are also going to need another auxiliary graph SU}k. It is the induced subgraph 
of Tn>k on the vertex set

equipped additionally with the edges (~ i , j )  for all pairs i , j  e  { 1 , . . . ,  k -  1} such 
that i +  j  < k. For examples of 5 „ ifc see Fig.7.4b and Fig.7.5b.

The main results that lead to the calculation of C\{Crn) are the following 
propositions. Recall that E denotes the unreduced suspension.

Proposition 7.21. If n > 3k — 1 then

Nrntk (*) =  {* +  r +  1, . . . , *  +  r +  fc} mod n. (7.4)

V =  { l , . . . , r } u { —1 , . . . , —r} (7.5)

I(Tn,k) -  S7(5„lfe).

Proposition 7.22. If n >  3k +  3 then

I(Sn,k) -  ZI(Tn- 2(fc+l),Jfc)-
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Example 7.23. Consider the special case k =  2. We have Tn^ =  Cn for every odd
n > 3 and 2 — Cn- 3 for every odd n > 7. The previous two propositions thus 
combine to the statement

•f(Cm) — £ /(C m_3) for all m > 6.

Moreover /(C 3) =  5° V 5°, / (C 4) ~  5° and /(C 5) =  Cl(Cs) =  C1(C5) ~  S 1 so it 
follows by induction that for all m > 1

7(C3m) — Sm~x V 5 m_1, /(C 3m+i) ^  Sm~\ 7(C3m+2) ~ 5 m.

This was first established by Kozlov [71] and then reproved in a number of ways. 

Corollary 7.24. If n >  3k +  3 then

I{Tn,k) — £ 2/(T n_2(/t+1) ,Jfc).

Corollary 7.25. For any 1 <  k <  n -  l, with k and n of opposite parity, we have

I{Tn,k)
\/kS21
S2l+1

if n =  (2/ +  l)(fc +  l) 
if (21 +  1) <  < (2/ +  3)

for some / >  0.

Proof. First we establish the result when k +  1 < n < 3k +  2. If 7 7 =  k +  1 then

k

/ ( W )  =  i ( ^ + i )  =  V s °

Now suppose that k+2  < n <  3k+2.  These inequalities imply that r >  1, 3r +  l <  n 
and 1 < < 3 so / =  0. Since n > 4 by Proposition 7.2 we get

I(Tn,k) =  Cl(Crn) ~  5 1 =  5 2,+1

«is required. For n > 3k +  3 the result follows by induction using Corollary 7.24 
because every increase of n by 2(A- +  1) adds a double suspension to the homotopy 
type. D

These results can be transformed into statements about C1(C£) by a straight­
forward calculation. Corollary 7.24 translates into:

Corollary 7.26. For any § < r < §

c i r a  =  s 2c i(c j ;r „ ” ) =  e 2c i(c ;;5;|” ; 2;»).
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It follows that in the (n, r)-chart of the complexes C1(C£) (see Section 7.7) 
the double suspension operator £ 2 acts always along the lines of slope (2,1). The 
translation of Corollary 7.25 is:

Corollary 7.27. For any n > 3 and 0 <  r < S we have

Cl(Crn) ~
yn-2r-l g2l if r = _L 
S2l+1 if

n21+1 
rn < r < l+i for some l >  0.

n2 1 + 1 ^  ^  21+3'

Remark 7.28. The relevant value of l for each pair (n, r) is given by

l =  l— —  JLn —2rJ

It remains to prove Propositions 7.21 and 7.22. Our tool to analyze the 
homotopy types of I(Tn^) and /(S n,fc) are the star dusters introduced by J.Barmak
[13]. Let us recall the main result of that work.

Theorem 7.29 (Barmak, [13]). Suppose v is a non-isolated vertex of G which does 
not belong to any triangle. Let K  be the subcomplex of 1(G) defined as

K  =  st(u) n u s t M  (7.6)
weN^iv)

where all stars are taken in 1(G). Then there is a homotopy equivalence 1(G) ~  UK. .

In the proofs of Propositions 7.21 and 7.22 we are going to choose a vertex 
v as in the theorem and identify the subcomplex K  with the independence complex 
of some graph using the following technical lemma.

Lemma 7.30. Let Vi, i>2> • • • > V2d be a sequence of (not necessarily distinct) vertices 
of G such that every consecutive d + 1 vertices Vi, Uj+i,. . . ,  Vi+d are pairwise distinct 
for i =  1, . . .  ,d.

Let L be the subcomplex of 1(G) consisting of those faces a which satisfy the 
condition

{vs,vs+i , . . . , v s+d- i }  Her =  0 for some s € { 1 ,2 , . . . ,  d +  1}. (7.7)

Then L is isomorphic with the complex 1(H), where H is a graph obtained 
from G by adding the edges

(vi, Vj) for all 1 < i <  d, d +  1 < j  < 2d, such that j  — i < d.
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Figure 7.5: a) T14,3 =  Cf4. b) 514,3. c) A graph 77 obtained in the proof of Prop.7.22, 
isomorphic to Te,3.

Proof. Let a be a face of 7(G) which satisfies (7.7) for some s. Since every pair 
(vi,Vj) with 1 <  i <  d, d +  1 <  j  <  2d and j  -  i <  d has at least one of its 
elements in {us, us+i, • • •, ^s+d-i}, the face a cannot contain both elements V( and 
Vj simultaneously. It means that a determines an independent set in H. Conversely, 
if a is a face of 7(77) then define s by the formula

s =  1 +  max{l < i  < d : v i  e  a }  (7.8)

(where max0 =  0). One easily checks that s and a satisfy (7.7). □

Proof of Proposition 7.21. First note that the assumption n > 3k — 1 is equivalent 
with r >  k — 1. Consider the vertex 0 of Tn Its neighbours in Tn^ are the vertices 

of
N (0) =  {r  +  l , r  +  2, . . .  ,r  +  k}.

No two of those vertices are adjacent because their distances along the circle are at 
most k -  1 < r, so 0 is not in any triangle. By Theorem 7.29 I(Tn<k) ~  E/v where 
K  is the subcomplex of 7(Tn,fc) given by

K  =  st(0) fl st (w).
weN{ 0)

Note that K  is in fact a subcomplex of 7(Tn>fc[V]), where F = { l , . . . , r } U { - l , . . . , - r }  
is the set of vertices non-adjacent to 0 in Tn>k. The complex I< consists precisely of 
those independent sets 0 in Tn^[V] for which there exists a vertex w € N (0) such 
that aG{w}  is an independent set in Tn,k or, in other words, such that aC\N(w) =  0.
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Figure 7.6: Schematics for the proofs of 7.21 and 7.22. The shaded vertices are in 
Nq [u] and will be removed. Additional edges will be added between vertices marked 
with dashed lines.

If w =  r +  j  for 1 <  j  < k then (see also Fig.7.6a)

N {r +  j )  n k  =  { - ( fc  - j ) , . . . ,  - 1 }  U {1 , . . . ,  j  — 1}.

It follows that a is a face of K  if and only if it is an independent set of Tn^ [E] such 
that

{ - ( k -  j ) ,  - • •, —1, -  1} (Iff =  0 for some j  € { 1 ,2 , . . . ,  k}.

We can now apply Lemma 7.30 with d =  k -  1, G =  TUtk[V] and (i>i,. . .  ,u2d) =  
(—(fc—1 ) , . . . , — 1,1, . . . ,  fc— 1), where all the vertices in the last sequence are distinct. 
The graph H obtained in the lemma is because the additional edges are precisely 
(—(fc — 1), 1), (—(k — 2), 1), (—(k — 2), 2), etc., as in the definition of SU}k- Therefore 
7(Tn,fc) ~  E /f  =  XI(H) =  XI(Sn,k). □

Proof of Proposition 7.22. The assumption n > 3k +  3 is equivalent with r > k +  1. 
We apply the same strategy as before with respect to the vertex ( -1 ) .  Its neighbours 
in 5„,jfc are

JV(- l )  =  { l , . . . , f c  —l } U { r } .

No two of these vertices are adjacent, so (—1) is not in any triangle. Exactly as 
before we obtain that I{Sntk) ~  X K  where K  is a subcomplex of / ( 5 riifc[E]) where

V =  {fc,. . .  , r  — 1} U { —r , . . . ,  —2}
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(see Fig.7.6b) is the set of vertices of 5„,fe non-adjacent to ( -1 ) .  Note that both 
sets in the above union are nonempty. The complex K  consists of those faces a of 
I(Sn,k[V]) for which there exists a w e  N { -\ )  such that a n N(w) =  0. Note that

N ( r ) n V  =  , - 2 }

N{l ) nV =  {—(k — 1 ) , ,  —2} U { —r}
N(2)nv =  { — (k — 2) , . . . ,  —2} U { —r, —r +  1}

N ( k -  l ) n v  =  { —r, —r +  1, . . . ,  —r +  (k — 2)}.

In the sequence
S =  (—k , -2 ,  - r , . . . ,  - r  +  (k -  2))

of length 2(k -  1) every k consecutive vertices are pairwise distinct. Because of the 
cyclic behaviour it is enough to check this for the subsequence (—k, . . . ,  — 2, — r), 
where it boils down to the inequality - r  <  —k which follows from r >  k +  1.

By Lemma 7.30 the complex K  is therefore homotopy equivalent to 1(H), 
where H arises from S„,fc[F] by adding the edges ( - ( k  -  i), - r  +  j )  for all 0 <  j  <  
i < k - 2. It remains to identify this graph H  with This can be best seen
geometrically (cf. Fig.7.5c, Fig.7.6b). The graph H  differs from Tn^ by the removal 
of 2(k +  1) vertices { - 1 , 0 , . . . ,  k -  1} U (r, r +  1 , . . . ,  r +  k}  which form two “gaps” 
of length k +  1 each. Note that the vertices not in S are not affected at all by the 
construction, so their neighbourhoods in Tn^ and H  coincide. The vertices in S are 
located at most A: — 1 steps from the boundaries of the gaps and for them the missing 
connections are provided by the extra edges in H, so that the neighbours of each 
vertex of S form a contiguous block of length k in the cyclic ordering of vertices in H 
inherited from Tn^ and we again have a circular complete graph Tn_ 2(k+i),k- This 
identification completes the proof of the proposition: / ( 5 n,*..) ~  EK  =  T,I(H) =

EJ(Tn_2(fc+i),fc)- □
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7.7 Appendix: Examples of clique complexes of cycle 
powers

The table presents the homotopy types of some initial clique complexes C1(C£). The 
entries below the shaded area are all S 1 by Proposition 7.2 and the entries above it 
are all * (a contractible space). The arrows show the action of the double suspension 
operator E2 of Corollary 7.26.

r = 0 1 2 3 4 5 6 7 8
Cz * * * *

CA y^s0 S 1 * * *

c 5 V 4 s ° s 1 * * *

c 6 y b 5 ° S 1 S2 * *

cv V b5 ° S 1 S 1 * *

c 8 V Y5 ° S 1 S 1 S3 *

Cg V s 5 ° 5 1' . 5 1 V 2 S2 *

C\o V y 5 ° S1 S 1 S K

Cu " v lus °
s
X

X s3 X
X
X

Ci2
V
X V a5 2' ‘g .

Cxz V 12S°
X

X

C14 V ia s °
X
X

X S V 'J S6

Cis V 1̂
X

X \ y 2 ~s4

Ci6

%n—h> X
X

X 'S3
........ x.... S7

C17 y lbs° X
X

X S3 ' ' . S5

Cl8 ' v 1Y 5 ° '> £ 3 S8

Cifl
X
X

X s 5

C20 v 19 5 °
' X

• .  s 3 J v 3 5 4

C21 \/2US° s3

C22

X
X s3

C23 V ”  5 ° * S3
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Chapter 8

Dense flag triangulations of 
3-manifolds via extremal graph 
theory

8.1 Introduction

One of the trends in enumerative combinatorics is to classify face numbers of various 
families of simplicial complexes. In this chapter we study flag triangulations of closed 
3-manifolds with sufficiently many vertices and high edge density. As a consequence 
we confirm, for sufficiently large number of vertices, a conjecture of Gal regarding 
face vectors of flag triangulations of generalized homology 3-spheres.

If K  is a finite simplicial complex and a G K  is a face we denote by |cr| its 
number of vertices and by dimer =  |er| — 1 its dimension. The dimension of K, 
dim K, is the maximum over all a € K  of dimer.

The /-vector of a simplicial complex K  of dimension d is the sequence

where /* is the number of faces of dimension i. Always /_ i  =  1 . The h-vector of K  
is the sequence

( / - i i  /o, • • •, fd) (8.1)

(ho, . ..,/)d+ i) (8.2)

determined by the equation

(8.3)
i=0 i=-l
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(Note that we consistently use d for the dimension of K . rather than the cardinality 
of its largest face, hence the indices and exponents in most formulae are shifted by 
1 compared to what the usually look like). Of course the /-vector and the h-vector 
determine one another and carry the same information, but the h-vector often enjoys 
better combinatorial properties; the Delin-Sommerville equation (8.4) below being 
one example. Always ho =  1.

Next we introduce the class of Gorenstein* and Eulerian complexes. The 
reader not interested in this level of generality can equally well think about simplicial 
complexes which triangulate a standard sphere

A simplicial complex K  of dimension d is a generalized homology sphere (or 
Gorenstein* complex) if for every face a G K  the homology of lk -̂cr is the same as 
the homology of a sphere of dimension d— |oj. In particular, when a =  0, this means 
that K  itself has the homology of a d-sphere. We are going to use the short name 
‘d-GHS’ . A simplicial complex K  of dimension d is Eulerian if for every face a G K  
the Euler characteristic of l k i s  the same as of a sphere of dimension d — \cr\.

Both conditions on the links are relaxations of the conditions that hold within 
an actual triangulated manifold, in which case the links are homeomorphic to the 
appropriate spheres. Any triangulation of the standard d-sphere is a d-GHS and 
every d-GHS is Eulerian. By Poincaré duality the Euler characteristic of an odd­
dimensional closed manifold is 0, hence every such manifold is Eulerian. (A closed 
manifold means a compact manifold without boundary).

Any Eulerian complex of dimension d satisfies the classical Dehn-Sommerville 
equations

hi =  hu+i—i (8-4)

and, following Gal [44], one can encode the coefficients /q in a shorter, integer-valued 
7 -vector

(70) • • • )7[4±lj) (8.5)

determined by the equation

d+1

J 2 hixi
¿=0

L^J
=  £  7iX<( z +  l)d+1_2i. 

¿=0
( 8.6)

We always have 70 =  1 •
The classification of h- (or / - ,  7-) vectors of simplicial spheres and generalized 

homology spheres is predicted by the celebrated g-conjecture of McMullen [82], In 
this work we pick up a research line started by Gal, who investigated these invariants
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for the restricted family of flag complexes.
For flag generalized homology spheres the 7-vector is the most efficient and 

interesting parameter. The major conjecture of Gal [44, Conj. 2.1.7], which states 
that the 7-vector of a flag d-GHS is non-negative, is known to hold for d < 4 [44, 
Cor.2.2.3]. For any flag (2d — 1)-GHS this conjecture is a strengthening of the 
famous Charney-Davis conjecture [25]. On the other hand, Gal’s conjecture itself 
has a stronger version which states that the 7-vector of a flag d-GHS is an /-vector 
of some flag complex [88]. See [89] and references therein for progress in that area.

Following Murai and Nevo [86], let denote the set of all 7-vectors of flag 
d-GHSs. When d =  1,2 then the (k +  4)-gon or its join with the two-point sphere 
5 ° are simplicial d-spheres with 7-vector (l,fc) for any integer k >  0, and by the 
previous discussion these exhaust Ai and A2, i.e., we have

Gal [44, Conj. 3.1.7] proved that 72 <  7^/4 must hold for any 7-vector (1, 71, 72) in 
A3 or A4 and a simple join construction [86, Thm. 5.1.ii] shows that this is tight in 
dimension 4, that is

The elements of the first set can be realized as 7-vectors of some appropriate iterated 
edge subdivisions of the boundary of the cross-polytope. The elements of the second 
kind are the 7-vectors of a join of a (k -1- 4)-gon with an (l +  4)-gon.

Gal then conjectures that the inclusion (8.7) is in fact an equality. Since the 
7-vector of a flag 3-GHS is non-negative, the stronger version of that conjecture is 
the following (see [44, Con. 3.2.2] or [86, Conj. 5.2]).

Conjecture 8.1. If (1,71,72) is the 7 -vector o f a flag 3-GHS I< and y2 > ^  
then I< is a join of two polygons.

Also, note that the two constructions which show the inclusion (8.7) are 
flag triangulations of the 3-sphere. Thus -  if true -  Conjecture 8.1 provides a

Ai =  A2 — |(l,fc) € : k > 0} .

Going back to dimension 3, Gal [44, Thm. 3.2.1] showed that
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characterization of 7-vectors (or /-vectors) of flag triangulations of the 3-sphere. 
Even this special case is open. The conjecture was verified for order complexes of 
posets [86].

To make the following discussion more concrete, suppose that K  is an Eu- 
lerian complex of dimension 3 with face numbers (1, /o, / 1, f^, h )■ Then the Dehn- 
Sommerville relations translate into

/2 =  2( / x - / o), /3 =  / 1 - / 0.

Moreover, we find
7i =  fo ~  8, 72 = f i  ~  5/o + 16

and the conditions (71 — l )2/ 4 < 72 <  7 j/4 are equivalent to

^(/o + 2/o + 17) < f i  < - f o  + fo -

(8.8)

(8.9)

(8 .10)

O u r results

Below is the main result of the chapter. It determines the structure of closed flag 
3-manifolds which have many edges.

Theorem 8.2. T here exists a nu m ber no such that the follow in g  holds. I f  M  is a 

closed flag 3 -m a n ifold  with fo  > no vertices, f\ edges, and such that

h  >  ^ (/o  +  2/o +  17)

then M  is a jo in  o f  two polygon s (and, in particular, it is h om eom orp h ic  to S 3).

Theorem 8.2 resolves Conjecture 8.1 in positive for large enough complexes 
because every 3-GHS is a closed manifold (see Remark 8.9). In other words, the 
inclusion (8.7) is an equality up to, perhaps, a finite number of elements.

Below, we prepare tools for our proof of Theorem 8.2. We shall reduce 
Theorem 8.2 to a certain statement in extremal graph theory (Theorem 8.6).

In order to make the notation more transparent, in this chapter we write N v , 

instead of the usual N ( v ) ,  for the open neighborhood of a vertex v  in a graph.

Definition 8.3. I f  G  is a graph and a  is a clique in G  then define the link of a  in 

G  as f. -.

lk̂ cr — G
Vdo
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That is, lkccr is the subgraph of G induced by the vertices which are not in cr, but 
are adjacent to every vertex of a.

Définition 8.3 is designed so that it is compatible with the topological notion 
of link in flag complexes. For each flag complex K  we have lk^pcr =  (lk/icr)(1), 
where on the left-hand side we use the link of Definition 8.3 and on the right-hand 
side the link is understood in the simplicial sense.

Let us define the class of graphs which arise in our setting.

Definition 8.4. A graph G with n vertices and m edges is fascinating if it satisfies 
the following conditions

a) G contains exactly 2(m — n) triangles.

b) For every edge e in G the link Ikoe is a cycle of length at least 4.

c) For every triangle t in G the link lkat is the discrete graph with 2 vertices and 
no edges.

d) For every vertex v in G the link lk^u is a connected, planar graph whose 
every face (including the unbounded one) is a triangle. In particular -  by 
Kuratowski’s Theorem -  it does not contain the complete bipartite graph A'33 

as a subgraph.

Further, lk^v contains at least 6 vertices.

Our reduction is based on the next observation.

Lem m a 8.5. If M  is a closed flag 3-manifold then the l-skeleton of M  is fascinat­

ing.

Proof. Let G =  Condition a) follows since M  is Eulerian, and so it satisfies
(8.8). Parts b)-d) are consequences of the fact that lkA/f, lkA/e, lkA/u are flag 
triangulations of, respectively, 5°, Sx and S'2. The last statement in d) follows from 
the known fact that a flag triangulation of SJ requires at least 2( j  +  1) vertices.

□

The graph join of graphs G and H, which we will denote G * H, is the 
disjoint union of G  and H together with all the edges between V(G)  and V(H).  For 
any simplicial complexes K  and L we have (K  * L )(1) =  AT(1) * L(1), where on the 
left-hand side we use the simplicial join.

Lemma 8.5 now means that Theorem 8.2 is a consequence of the following

result.
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Theorem  8.6. There exists a number n0 such that the following holds. Suppose G 
is a fascinating graph with n > n0 vertices, m edges and m >  \{n2 +  2n + 17). Then 
G is a join of two cycles.

The rest of the chapter is concerned with the proof of this theorem. The 
strategy is outlined in the next section.

Remark 8.7. Along the way we will also see that the result is tight in the following 
sense: There exists flag 3-spheres with arbitrarily large /o  and with exactly

/ i  =  ^ (/o  +  2/o +  17)

edges which are not a join of two cycles. Moreover, we will classify those boundary 
cases: Any fascinating graph G with n >  n0 vertices and exactly m =  I(n 2+2n+17) 
edges is one of the graphs in Figure 8.2.

Remark 8.8. Theorem 8.2 implies that for f 0 > n0 every closed flag 3-manifold 
satisfies / i  <  \ fi  +  /o  (or, equivalently, 72 <  \rf). This result in fact holds for all 
values of /o by the same proof that works for 3-GHSs in [44].

Remark 8.9. In dimensions d =  0,1,2 the classes of (flag) d-spheres and d-GHS 
coincide and in dimension d =  3 every 3-GHS is a closed, connected manifold. To see 
this, first note that it is an easy consequence of the definition that if L is a d-GHS 
and a € L then lkia  is a ( d -  |<r|)-GHS. Now the only 0-complex with the homology 
of 5° is 5° itself. In a 1-GHS all vertex links are the two-point space, so a 1-GHS is 
a disjoint union of polygons, of which only a single polygon has the homology of Sl . 
In a 2-GHS the link of every vertex is an Sl , so a 2-GHS is a closed 2-manifold, and 
the classification of 2-manifolds shows only S2 has the correct homology. Finally in 
a 3-GHS all vertex links are S2, so a 3-GHS is a closed manifold.

8.2 Proof of Theorem 8.6

The main idea behind our approach is that G has a lot of edges (more than n2/4), 
but relatively few triangles -  just 0 (n 2). Graphs with this edge density must have 
many more triangles, namely 0 (n3), unless they look very “similar” , in some sense, 
to the complete bipartite graph K n/2>n/ 2. This phenomenon is called supersaturation 
and is one of the basic principles of extremal (hyper) graph theory with fundamental 
applications to areas like additive combinatorics or property testing in computer 
science. In our setting the additional properties of G coming from Definition 8.4 
can be used to refine the similarity to A'„/2,„/2 to determine the structure of G
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exactly. This is a relatively standard approach in Extremal Graph Theory, called 
the Stability method, and introduced by Simonovits [94]. However, our proof is 
somewhat more complex than most of the applications of the Stability method to 
problems in extremal graph theory. Indeed, in these problems one usually tries to 
determine exactly the structure of a unique extremal graph while here we are dealing 
with joins of two cycles, i.e., graphs with somewhat looser structure.

Here is a more detailed outline of the proof. Mantel’s Theorem (which is a 
special case of Turan’s Theorem) asserts that the complete balanced bipartite graph 
^LV2j,rV2l tbe unique maximizer of the number edges among all triangle-free 
graphs on h vertices. Note that this graph has [_/i2/4 j edges. The graph K \ h/2\,\h/2] 

is stable for this extremal problem in the following sense: if H is a graph on the 
same vertex with at least h2 /4  edges and contains only o(/i3) triangles, it must be 
“very similar” (the precise meaning appears in Theorem 8.11) to K y h/2\,\h/2 }- These 
conditions are satisfied for the fascinating graph G of Theorem 8.6. By exploiting 
other properties of G we will be able to show that G is close to being a join of two 
cycles in the sense of the next definition.

Definition 8.10. A fascinating graph G is called t-joinlike if there is a partition 
V(G) — C\ LI C-i U X  where

• the graphs G[Ci] are cycles,

• there are edges e{ € G[Ci\ such that lkQei — G[C3_j],

.  \X\ =  t.

The vertices of X  are called exceptional.

Note that a 0-joinlike graph is a join of two cycles. At the end of this Section 
we will establish that G must be f-joinlike for t =  0, 1 or 2 with some extra conditions 
satisfied by the exceptional vertices.

Observe that the balanced join of two cycles of lengths «  2 has «  j  +  n 
edges (and joins of cycles of unbalanced lengths have even less edges), so our graph 
G is only allowed to “lose” ~  ^ edges with respect to that number before it violates 
the bound of Theorem 8.6. In many cases, however, we will be able to show that 
a 2-joinlike graph loses a lot more just by counting the edges missing in the sparse 
planar links of exceptional vertices (Definition 8.4d)).

This leaves us with just a handful of possible scenarios considered in Sec­
tion 8.4. Those are the difficult ones, in the sense that the graphs G approach, and 
in fact even reach, the bound m =  ^(n2 +  2n +  17). That means we can no longer
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use rough estimates. We then have to examine the structure of G more closely. This 
is the part where the examples advertised in Remark 8.7 show up.

Let e(H)  =  \E(H)\ and we write e(H[A,B]),  (resp. e(H[A, J3])) for the 
number of edges (resp. non-edges) crossing between two disjoint vertex sets A ,B  C 

V(H)  . .
Let us now state the Supersaturation Theorem of Erdos and Simonovits [38], 

tailored to our needs. As said above, this version of the Supersaturation Theorem 
gives an approximate structure in graphs with edge density at least  ̂ which contain 
subcubically many triangles in the order of the graph.

Theorem 8.11. For every e > 0 there exists S >  0 such that the following holds. Let 
H be an h-vertex graph with at least h? /4  edges, containing at most 5h3 triangles. 
Then there exists a partition V(H)  =  A\ U A2, with ||Ai| — |A2|| < 1, such that

e(H[A{\) +  e(H[A2]) +  e(H[Au A2]) <  eh2 . (8.11)

Let 0 < 7 <  1, a < 7 /IOOO and e <  07 be fixed. Let <5 be given by 
Theorem 8.11 for input parameter e. Let no be sufficiently large. Suppose that G 
is the graph as in Theorem 8.6. Definition 8.4a) gives us that G has 2(e(G) — n) <  
n2 < 6n3 triangles. Therefore, Theorem 8.11 applies with parameters 5 and e. Let 
A\ U A2 be the partition of V(G)  from Theorem 8.11.

Let us fix additional notation. Given a vertex v and a set of vertices X  we
write

deg{v,X) =  \Nv nX\.

Define the following vertex sets for i =  1,2:

71
Bi =  {n 6 Ai : deg(n, A3_j) > -  -  7 n},

Wi =  {v e A i \ B i ‘. deg(t>, B i ) > ~ ~  7 n},

Xi =  (Ai \ Bt) \ W{.

Claim 8.12. We have |Aj\i?i| < an fo r i  =  1,2. In particular |Wj|, |Ai| < an and 

\Bi\ >  f  -  an.

Proof. By definition every vertex of Ai \ Bi has at least 7 n non-edges to A^-i- If 
we had \At \ Bi\ > an then

e(G[Ai, A2}) > \Ai \ Bi\ ■ 7 n >  a^n2 >  en2
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contrary to the choice of A\ and A^. □

Now define the partition V (G) =  S\ U 52 U X  as follows

Si =  BiU W z-u

A = Ai U A 2.

Observe that \ -  an <  |Sj| <  | +  an and |A'| < 2cm. Denote x =  \X\.

Claim 8.13. Fori =  1,2 and for every vertex v £ Si we have deg(v, S3-i)  > n.

Proof. If v £ Bt then v has at least § -  777. neighbors in and by Claim 8.12 at
least  ̂ — 27n of them hit B3_i. If v £ W3~i then v has at least  ̂ — 7 n neighbors 
in B3-i. □

Claim 8.14. For i =  1,2 and for every vertex v £ Si we have deg(v,Si) <  2. 
Consequently, e(G[Si]) +  e(G[S2]) <  n. Moreover, G[5j] is triangle-free.

Proof. Suppose a vertex v £ Si has three neighbors ui,U2,u 3 £ Si. By Claim 8.13 
we have

|N v n N m n n U2 n n U3 n S3_t| > |  -13771 > 3 .

This implies that lkcw contains a copy of K 3 3 (with u\,U2,u 3 on one side and the
other being in S3_i), which is a contradiction.

The proof of the last statement is similar: if t is a triangle in G[5j] then lkci 
contains most of S3_j, so G fails Definition 8.4c). □

Claim 8.15. If v £ X  then deg(u,Si) <  f  -  §777 f o r i  =  1,2.

Proof. By definition every vertex v £ X  satisfies deg(v, B{) <  7 - 777. for 7 =  1,2. 
Therefore

Tl Tl 2
deg(u, Si) < deg(u, Bi) + |VT3_i| < - ~  777 + a 7 i < -  -  -777.

□

We call a vertex v £ X  poor if deg(u, Si) > 3 and deg(u, S2) > 3 . Let P  C X  
be the set of poor vertices. Choose a partition X  \P =  T\ UT2 such that the vertices 
v £ Ti satisfy deg(v, Si) <  2 for i =  1,2. Let p =  \P\.

Claim 8.16. I f v £ X \ P  then deg(u, Si U S2) < f  -  ^771.

Proof. This is obvious from Claim 8.15. □
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Claim 8.17. If v € P  then deg(v,Si) <  12777, for i =  1,2.

Proof. Suppose the contrary. Let u\, u2, u% € Nv fl S\ be three different vertices. By 
Claim 8.13 the set NUi D Nu2 fi Nu3 Pi 52 has at least tj — IO77?, vertices, therefore Nv 
hits at least 777 of them. In particular G[-/V„] contains a .K3  3 , a contradiction. □

We can now plug in the bounds from the claims above to count the number 
of edges in G to obtain the following estimation

in2 + \n + T < e(G) - e(G[5l) s*]) + e(G[5l]) + e(G[52]) + e(G[p’5l u 52])+
'\x\'+  e{G[X \P ,S  1 U S2}) +

< 7 7 — x
+  77 +  24p777 +  (x -  p) ( -  -  - 777, J +  2

77 1 X

(8.12)

which is equivalent to

, '7 7 7  3 \ 7777 .., . 17 77

* i T “ ï i ) + T (1_49t) + T < 2'
Since x <  2cm < 3777, we have ^  — \x >  and the last inequality implies

Z 7 7 7  /777 . .. . 17 77
(8.13)

It follows that

x <  — , and
7

P < T ~ \ a <  L 5 -1 -  497

In particular we can only have p =  0 or p — 1.

Let Ki =  5, UTi for i =  1,2. Note that

77- f t  71
-  -  an < \Ki\ <  -  +  Û77 +  x  < -  +  2a 77.

(8.14)

(8.15)

Let b =  e (G [Ki ,K2]) be the number of missing edges between 7v'i and K 2. The 
following bound follows directly from Claim 8.14, the definition of T) and (8.14).

Claim 8.18. For each v € I<i we have that deg(u, K t) <  |Ti| +  2 < x  +  2 <
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Claim 8.19. For i =  1,2 and each set Y  Ç Si, |y| < g we have that G[Si \ y ] 
contains at least one edge. In particular G [Si] contains at least one edge.

Proof. Suppose the claim does not hold for example for i =  1 and some set Y  C Si. 
Let U be the number of triangles in G with at least two vertices in K t.

Let v G T2 be a fixed vertex. By Claim 8.18 inside K% there are at most 
deg(u, K 2)2 S: I6/ 72 triangles touching v. We further see that there are at most 
deg(v, K 2)\Ki \ <  4n/7 triangles through v with two vertices in A'2 and one vertex 
in K\. Summing over all v 6 T2 we get that the number of triangles touching T2 

with at least two vertices in K 2 is at most \T2\ x ( ^  +  4g) <
To bound t2 it only remains to add triangles whose two vertices are in S2 

and the third is in K 1 (by Claim 8.14 there are no triangles entirely inside S2). By 
Claim 8.14 we have

e(G[S2]) < |S2| <  ^  . (8.16)

Since each edge in S2 can be extended in at most \K\ \ <  W* ways to such a triangle 
we get that

^ 17n , l ln  l ln  ^ 122n2 
2 “  72 +  20 ' "2Ô" ~ 400 ‘

To bound the number t\ of triangles with at least two vertices inside K\ we 
proceed similarly, except that the fact e(G[5i \ y]) = 0 allows us to strengthen the 
counterpart of (8.16) to e(G[Si]) <  2|yj <  j .  Consequently,

17n n l ln  3n2

We get that the number of triangles is t\ +  t2 <  0.46n2 < 2(m — n), a
contradiction to Definition 8.4a). □

Next, we claim that there are no poor vertices.

Claim 8.20. We have p =  0.

Proof. Suppose that p =  1 and let P  =  {(/}. Employing Claims 8.14 and 8.16 we 

get

e (G [KiU K2]) <
n — 1 b +  n + m i +

|T2|\ (834) ( n -  1
< b +  n +  -

By Claim 8.17 we then have the following estimate

1 9 1 17 (ri.
- n 2 +  - n  +  — < e(G) < 
4 2 4

n — 1
- b  +  n  +  2 5 7 n .

7

(8.17)
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This implies
b <  2577?.. (8.18)

Consider any edge e G G[Sj]. The link lkGe is a cycle C  which contains, by 
Claim 8.13, at least § — 67«  vertices of S2 and, by Claim 8.14, does not pass 
through S\. The number of vertices in which C  can exit S2 is bounded from above 
by 2(x +  1). Eliminating the vertices of C  which are adjacent (in the graph G) to 
T2 (at most 2x) or to q (at most 127n by Claim 8.17) we find that G[S2] contains 
at least ± (§  -  307« )  vertex-disjoint edges e' =  u'v' which satisfy V(lkGe') C ATx.

We claim that for at least one such edge e' =  u'v' we have I<\ C Nu> fl Nv>. 
Indeed, each edge e' for which this does not hold is incident with at least one non­
edge in G[Ki, K 2], and thus otherwise we would get at least 4(§  -  307« )  non-edges 
in G[K\,K<^, a contradiction to (8.18).

Let us fix an edge e' as above. We now have that lkGe' =  G[K\\ and therefore 
G[K{\ is a cycle. A symmetric argument starting with an appropriate edge e" G 
G[K\} for which lkGe" =  G[K2] shows that G[K2] is a cycle as well.

We now see that G, with the decomposition V (G ) =  I\ 1 U I\2 U { 7}, is 1- 
joinlike in the sense of Definition 8.10. We shall however later in Proposition 8.32 
show that this leads to a contradiction. □

For the remaining part we can therefore assume P  =  0. Our short-term goal 
for now is to prove that G is 0-, 1- or 2-joinlike. The same way we derived (8.17)

Let Ei be the set containing Tj and all the neighbors in Sl of the vertices in 
Ti. By definition of 7) we have |Ej| <  3x. Note that K l \Ei =  Si\Ei and for any 
vertex v G ATj \ E{ we have deg(t>, K{) <  2.

Fix two edges e\ G G[S\ \ E\] and e2 G G[52 \ E2]', such edges exist by 
Claim 8.19. For each ¿ =  1,2 the link lkGe3_j lies in and its intersection with 
Ki \ Ei is a collection of at most 3x paths of total length at least | — 67«  by 
Claim 8.13, or a sole cycle. Define a segment in G[Ki] as a maximal connected 
sub-path (or a cycle) of lkGe3_j which lies in Ki \ Ei. (Note that our definition of 
segments is with respect to fixed edges e\ and e2.) There are at most 3x <  6/7 

segments in Ki. A segment is called long if it has at least an vertices and short 
otherwise. The total length of short segments in K r is at most  ̂• an <  0.09«, hence

we get that

This implies
, n 4 17 „b < — +  —x ---- — < 0.51«.2 7 2 4 (8.19)
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the total length of long segments in each A* is at least 0.4n.

Claim 8.21. Let R\ and R2 be two segments in K\ and K 2, respectively. If for 
some vertices x\ G R\, X2 G R2 we have X\X2 G E(G) then G[i?i,./t!2] is complete 
bipartite.

Proof. If x'i, x'{ are the neighbours of x\ in K\ and x 2, x 2 are the neighbours of X2 in 
K 2, then the link \kcx\X2 is a cycle contained in {x\ ,x ’{, x'2, x2], hence, by Defini­
tion 8.4b) it must pass through all those vertices. Therefore x\x'2, x\x2, X2x\,X2x"  G 
E(G).  By successively repeating the same argument for the newly forced edges we 
prove the claim. □

Claim 8.22. If R\ and R2 are two long segments in K x and K 2 respectively then 
G [i?i,i?2] is complete bipartite.

Proof. If not then, by Claim 8.21, the bipartite graph G[Ai ,A 2] does not contain 
any edges. Then

e(G[Ku K 2}) >  e(G[Ru R2}) =  |*il' life I > ,

a contradiction to (8.19). □

Let Li, and L2 be the vertex sets of all the long segments in K\ and A 2, 
respectively. By Claim 8.22 the graph G[Lj,L 2] is complete bipartite. For i =  1,2 ' 
choose edges e) G G{Lf\ which minimize the quantity

|^3- i\ ^ ( lk Ge,)| (8.20)

and let G; C Ki be the vertex set of the cycle lkGe3_j.

Claim 8.23. We have \K\ \ C\ \ -F |A2 \ G2| <  2.

Proof. Let di =  |A, \Gj|. By the optimality of the choice of e) we get that the link of 
every edge in G[Li\ misses at least d3_t vertices of K ^ .  Since G[LX, L2] is complete 
bipartite by Claim 8.22, those missing edges must contribute to e(G[Lj, A'3_j\L3_i]). 
Recall that G[Li] is a collection of at most 3z < 6/7 vertex-disjoint paths (or a cycle) 
of total length at least 0.4n. We get

e iGlLuKz-iXL^i} )  >  ^p(|Li| -  3a:) > d3. { ■ 0.19 • n.
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The two sets of missing edges we count this way for i =  1 ,2 are disjoint. Therefore, 
using (8.19)

0.51n > b > e(G[Li, K 2 \ L2]) +  e(G[L2, K\ \ Lj]) > 0.19n(di +  ¿ 2) 

which implies d\ +  (¿2 < 2.7. That ends the proof. □

The graphs G[Ci], G[C^ are cycles and the minimizing edges è, e  f , Ç Ct 
satisfy lkcCj =  G[C^-i\- Together with Claim 8.23 it shows that G is t-joinlike for 
t < 2. If t =  0 then we are done. The case t — 1 leads to a contradiction as shown 
in Proposition 8.32 below. We can therefore assume that t =  2 and call the two 
exceptional vertices q and q'. We can assume without loss of generality that either

K i\ C i =  {<?}, K 2 \C2 =  {q'}, (8.21)

or
K x \ Cx =  {q, q'}, K 2 \C2 =  0- (8.22)

Define the following quantities for i =  1,2,

di(q) = deg(<?, Ci) and di(q') =  deg(g', Ci) , 

ei(q) =  e(G[NqnCi}) and ei(q') =  e(G[Nq> n Ci\) .

If any of the numbers dx{q),dx(q'),d2(q),d2(q') is at most 2, then the result 
follows from Proposition 8.39 below. We will therefore assume that

min{dx{q),dx{q'),d2(q),d2(q')} >  3 .

The proof under this assumption splits into the two cases (8.21) and (8.22) and is 
presented in the next section.

8.3 Two exceptional vertices of large degrees

In this section we show that each of the cases (8.21) and (8.22) from the previous 
section leads to a contradiction. We use the same notation.

We are going to exploit the fact that the graphs lkcq  and lk^q' are planar. 
Recall that Euler’s formula implies an /¡-vertex planar graph can have at most 
3h -  6 edges. So, planar graphs are sparse, and a substantial number of edges must 
be missing between Cx and C2. A careful edge counting will lead to a contradiction.
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We start with an auxiliary claim.

Claim 8.24. We have an inequality

e(G[Nq fl Ci, Nq fl C2]) > di(q)d2(q) -  3d\(q) — 3d2(q) +  e\(q) +  e2(q) +  6 .

An analogous inequality holds for q'.

Proof. The graph G[Nq fl (C\ U C2)] is a planar graph with d\(q) +  d2(q) vertices 
and

From previous estimates we have | -  2cm < \C,\ < % +  2cm. The next easy 
statement records the fact that if q is adjacent to most of Ct then lkcq  also contains 
most of the edges from G[Ci].

Claim 8.25. Suppose (3 > 4a. If di(q) >  §(1 -  P) then ej(q) > |(1  -  5/3). The 
same holds for q'.

Proof. Since |Cj| < § +  2an the set Nq misses at most

vertices of Cj. Recall that G[Ct] is a cycle. It follows that at most 2/3n edges of 
G[Ci] are not in lkcQ- Hence

d\{q)d2{q) ~ e{G[Nq fl C\,Nq fl C2]) +  e\(q) +  e2{q) 

edges. The claim now follows from Euler’s formula. □

e*(g) > ^ -  2cm -  2/3n = ^(1 -  4a -  4/3) > ~(1 -  5/3).

□

8.3.1 The case (8.21).

By Claim 8.18 we have di(q),d2(q') <  Therefore

The inequality
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77T
< —  +  deg(q) +  deg(g')

-  e(G[Nq n C i, Nq n C2]) -  e(G[Nq, n C u Nq, n C2]) +  ^
T

together with Claim 8.24 and ex(q),e2(q') <  4 gives

^n +  {d1(q ) -4 ) (d 2( q ) - 4 )  +  (d1(q,) - A ) ( d 2(q,) - i )  +  e2(q) +  e1(q') < 0 (1) , (8.23)

where 0(1) denotes some universal constant. Observe that if dx(q) > 4 then the 
inequalities dx(q) <  % and d2{q) >  3 imply (dx(q) -  4)(d2(q) -  4) > - 4 . A similar 
observation holds for q' . Therefore, if dx(q),d2(q') > 4 then we get a contradiction 
because then the left-hand side of (8.23) is at least ¿n — 4.

Let us then assume that di(q) =  3. Then the inequality (8.23) becomes

+  (¿l(90 -  4)(d2(<?') -  4) +  e2(q) +  ei(q’ ) <  d2(q) +  0 (1 ) . (8.24)

If d2{qf) > 4 then (d i(g ')- 4 ) ( d 2(q') - 4 )  > - 4 ,  and therefore (8.24) implies d2(q) > 
0.49n. By Claim 8.25 we have e2(q) >  0.45n and plugging this back into (8.24) we 
get d2(q) >  5n +  0 .4 5 n -O (l) > 0.94n, which is a contradiction with d2{q) <  |02| < 
0.51n.

We are now left with the case when di(q) =  d2(q') =  3 and (8.24) reduces to 

+  e2(q) +  ex(q1) < d2{q) +  d^q') +  0 (1) . (8.25)

We now need the following claim.

Claim  8.26. Ifv  € C 2 is an isolated vertex of the graph G[Â 9n 0 2] then vq' € E(G).

Proof. The cycle lkGgu is contained in (Nq D C i ) U  { ( / }  and since dx{q) =  3, the 
latter set has 4 vertices. By Definition 8.4b) lkGqv must pass through all of them 
and in particular q' G Nv. □

Because d2(q') =  3 the claim implies that G[Nq 0 C2] can have at most 3 
isolated vertices and therefore e2{q) > \{d2{q) — 3). By symmetry we get e\(q1) >  
\(dx(q') -  3) and (8.25) implies

n < dx(q') +  d2(q) +  0(1) . (8.26)

It follows that di(q'),d2(q) >  0.48n but then, by Claim 8.25, ex{q'),e2{q) >  0.4n 
and going back to the inequality (8.25) gives a contradiction.
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8.3.2 The case (8.22).

This time we have di(q), d\{q') <  4. The missing edges in G[Nq C\Ci,Nq n C2] and 
G[Nqi D Ci,Nq> D C2] can have a significant overlap, so we begin by using just the 
contribution of one of them to obtain a bound. We have

^(n2 +  2n+17) < e(G) < +  n +  deg(<?) +  deg(g')- e (G [N qn C u Nqn C 2}) ,

and plugging in the bound from Claim 8.24 we obtain

- n  +  (di(q) -  4)(d2(q) -  4) +  e2(g) <  d2{q') +  0 (1 ) . (8.27)

In the same way we obtain a symmetric version with q and q' interchanged:

i n  +  {di(q') -  4)(d2(g') -  4) +  e2(<7') < d2(q) +  0 (1) . (8.28)

Now suppose that d\(q) >  4. Then (di(q) — 4)(d2(<7) — 4) >  and so (8.27) implies 
¿2W)  > 0.49n. Therefore, e2(g') >  0.45n by Claim 8.25. Then the inequality (8.28) 
can be rewritten as

M q )  >  +  ( M q’ ) -  4)(d2(g') -  4) +  e2{q') -  0 (1)

>  0.94n +  (di(q') -  4)(d2(q') -  4) .

This inequality can only be satisfied if the last product is negative, which implies 
di(q') =  3. Using d2(</) <  0.51n we further obtain

^2(9) > 0.94n — 0.51n =  0.43n .

By Claim 8.25 we get e2(g) > 0.15n, but then (8.27) gives

d2(q') > - f i  +  0.15n — 0(1) > 0.64n ,

which is a contradiction.
By symmetry we also arrive at a contradiction assuming that d\(q') >  4. It 

means we must have d\(q) — d\(q') =  3.
We have that |(Nq U Nq>) D C\\ <  6. Consequently, there are only a finite 

number of possibilities for the graph G[(iVg U Nqi) fl C{\. We will first show that 
the actual possibilities for G[(Nq U Nq>) D C\] are even more limited. Call a vertex 
v 6 Ci free i i v # N q U Nq>, a q-vertex if v e Nq \ Nq>, a q'-vertex if v € Nql \ Nq, a
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qq'-vertex if v £ Nq fl Nq> and a boundary vertex if v belongs to an edge e £ G[C\] 
such that lkGefl {q,q'} =  0. Observe that each free vertex is also boundary.

Claim 8.27. The vertices in C\ have the following properties:

a) if v £ C i is boundary then C2 C Nv,

b) if v £ C i is a q-vertex then at least one of its neighbors in C\ is in Nq,

b’)  if v e  Ci is a q'-vertex then at least one of its neighbors in C\ is in Nq>,

c) if v £ C\ is a qq'-vertex then at least one of its neighbors in C\ is in Nq U Ay,

d) if e i , e2 £ G[C{[ are two vertex-disjoint edges, such that lkGex contains q but 
not q' and lkGe2 contains q' but not q, then in at least one of those edges both 
endpoints are non-boundary,

e) if v is a q-vertex and w is a q'-vertex then vw £ E(G[Ci]).

Proof, a) Consider any edge e £ G[Ci] such that v £ e and lkGe 0 {q, q'} =  0. Then
lkGe =  G[C2], so in particular C2 Q Nv.

b) Let v',v" £ Ci be the neighbors of v. If none of v',v" is in Nq then all 
three of v ,v ',v "  are boundary, so by a) all are adjacent to the whole C2. Pick any 
vertex w 6 Nq D C2 and let w',w" be its neighbors in C2. Then the link lkGmn 
contains the cycle w'v'w''v" and the vertex q, which is impossible. By symmetry we - 
also get b ’).

c) The proof is the same as b).
d) Suppose the contrary. Let ei =  xx', e2 =  yy' where x' and y' are boundary 

vertices. By a) C2 C Nx>,Ny>, therefore

lkc(ci) =  {q} U {Nx n C2), lkG(e2) =  {</} U {Ny n C2).

It follows that Nx n C2 is a path within C2 and q is adjacent only to the endpoints 
of that path. The same argument for y and q' shows that Ny n C2 is a path with 
q' adjacent only to the endpoints of that path. It follows that, except for up to 
4 special vertices, every vertex in C2 is missing an edge to either q or x and it is 
missing an edge to either q' or y. Since x, y, q, q' are four different vertices this yields 
at least 2(|G2| -  4 ) « n  missing edges from K 2 to Ki,  contradicting (8.19).

e) Suppose vw is an edge. Then v and w are both boundary. Let v'vww' be
the path of length three on the cycle G[Ci]. By b) and b ’) we have v' £ Nq and 
w' £ Nq'. Then the edges vv' and ww' contradict d). □
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Figure 8.1: Seven possibilities of the graph G[(Nq U N q>)r\ C\] with the types of the 
vertices (types q-, q1-, and qq'-).

It turns out that Claim 8.27 provides enough information to restrict G[(A^U 
Nqi) fl Ci] to just one possibility.

Claim 8.28. We have Nq DCi =  Nq, n Cx =  {vu v2,v3}  where vu v2,v3 are three 
consecutive vertices in C\.

Proof. Claim 8.27 gives us that G p ^ U A ^ J n C i] is a graph with no cycle, in which 
every vertex has degree 1 or 2, and there is no edge from a ^-vertex to a q'-vertex. By 
considering the possible number of ^'-vertices (3, 2, 1 or 0) and then their degrees, 
we obtain seven graphs which satisfy the above property, up to exchanging q and q' 
They are shown in Figure 8.1. The graphs B-G have a pair of edges which violates 
Claim 8.27d). That leaves us only with Case A. q

As all the vertices in Ci except v2 are boundary, we have by Claim 8.27a) 
that C2 Q Nv for each v e  Cx \ {v2}.

Claim 8.29. There is no edge e € C[C2] with q, q' £ lk^e.

Proof. If e was such an edge then vx would be a vertex of degree 3 in lkGe. □

Claim 8.30. We have \Nq D NV2 n C2| < 2 and \Nq> n NV2 n C2| < 2.

Proof. Any 3 vertices in Nq n NV2 D C2 together with {vh v2, u3} would form a K\:i 
in lkGg, contradicting Definition 8.4d). n
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To complete the proof we consider two cases. First suppose qq' e  E(G).  
Then, we have \Nq D Nq' fl C2\ < 2. Indeed, otherwise v\ would be a vertex of 
degree at least 3 in Ikcqq’ , a contradiction to Definition 8.4b). It follows that every 
vertex of C2, except for at most 6 special ones, is adjacent to at most one element 
of {q,q',v2}, and then there at least 2(|C2| — 6) «  n edges missing from K 2 to K\. 
This contradicts (8.19).

Now suppose qq' & E(G).  Then lkG<7u3 =  {v2} U (Nq D C2) and lkG</u3 =  
{v2} U (Nq' fl C2). It means that G[Nq D C2] and G[Nqi fl C2] are paths -  say P  and 
P' -  within C2. By Claim 8.29, P  and P' share at most the endvertices. Moreover, 
the interior vertices of P  and P 1 are not adjacent to v2. Consequently, every vertex 
in C2, except for at most 4 special vertices, is adjacent to at most one element 
of {q,q',v2}. Again, the total number of missing edges from K 2 to K\ is at least 
2(|C2| — 4) ~  n, contradicting (8.19).

This ends the consideration of the case (8.22), thereby completing the proof 
of Theorem 8.6.

8.4 Exact results

In the proof of Theorem 8.6 we used, as black-boxes, two results about the sparseness 
of certain 1- and 2-joinlike graphs —  Propositions 8.32 and 8.39. They will be 
proved in this section. Unlike previously, when we were free to count edges with 
an accuracy of 0 (n), in this part we will need to determine the precise structure of 
some fascinating graphs and count their edges exactly.

In this section G means any fascinating graph, which will always be 1- or 2- 
joinlike, with C\, C2 referring to the cycles from Definition 8.10 and with exceptional 
vertices called q and q'. We will frequently use the observation that if q is an 
exceptional vertex of a f-joinlike graph G then C* \ Nq ±  0 for i =  1, 2.

Proposition 8.31. IfG is l-joinlike and q is the exceptional vertex then deg(g, Cj) > 
3 for i — 1,2.

Proof. Suppose that deg(<?,C: ) <  2. If deg(q,C2) =  0 then lkGg contains at most 2 
vertices, so G fails Definition 8.4d). Otherwise let x  G Nq D C2 be any vertex with 
at least one neighbor in C2 \ Nq. We see that lkcqx  contains at most 3 vertices, 
which is a contradiction. □

Proposition 8.32. IfG is 1 -joinlike thene(G) <  |(n2+2n+17), where n =  |U(G)|.
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Proof. Let q be the exceptional vertex. We will say that a vertex v G C\ is a q- 
vertex if qv G E(G),  a free vertex otherwise and a boundary vertex if it is a q-vertex 
adjacent to a free vertex.

We refer to C\ and C2 as “sides” .

Claim 8.33. If v G Cj is free or boundary then C3-i  C Nv.

Proof Indeed, v belongs to an edge e G G[Ct\ with q g  lk^e and therefore with 
lkce =  G[C3-i\. That means C3-1 C Nv. □

By Proposition 8.31 and because Nq fl Ci ^  Ci for * =  1,2, there are at 
least three vertices and at least two boundary vertices on each side. If there were 
3 boundary vertices in, say, C\, then the graph formed by those 3 vertices in C\ 
and any 3 neighbors of q in C2 would form, by Claim 8.33, a K 3y3 in lkGq, which 
is impossible. That implies there are exactly 2 boundary vertices on each side. In 
other words each Nq n Ci induces a path inside C* of some length a* > 3 for i =  1,2.

If u G C\ and w G C2 are q-vertices which are not boundary and uw G E(G)  
then by Claim 8.33 there is a # 3,3 in lkaq formed by u, w and the 2 boundary 
vertices on each side. This means uw £ E(G)  for such u,w.

We now know the exact structure of G and we can compute its number of 
edges. Denoting c* =  |C*| and using n =  c\ +  c2 +  1 we have

e(G) =  C\C2 +  ci +  c2 +  a\ +  a2 — (a 1 — 2)(a2 — 2)

=  ^(n2 + 2 n  +  17) -  - ( c i  — c2)2 -  (ai — 3)(a2 -  3) <  ^(n2 +  2n +  17).

□

The second part of the analysis in this section deals with 2-joinlike graphs. 
We start off by a counterpart of Proposition 8.31.

Proposition 8.34. IfG is 2-joinlike and q is any exceptional vertex then deg(q, Ci) >  

2 for i =  1, 2.

Proof. Suppose that deg(<7, Cj) < 1. If deg(g, C2) =  0 then lkcq  contains at most 2 
vertices, so G fails Definition 8.4d). Otherwise let x  G Nq Pi C2 be any vertex with 
at least one neighbor in C2 \ Nq. We see that \kGqx contains at most 3 vertices, 
which is a contradiction. □

We shall later need the following simple inequality.
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Lem m a 8.35. If n — k +  l +  2 then

kl +  2k +  l +  6 <  -^(n2 +  2n +  17).

Proof. One checks that

kl +  2k +  l +  6 =  — (n*2 ~t~ +  17) — — (Z — k +  l ) 2.

□

Proposition 8.39 below is a combination of a case distinction captured by 
Proposition 8.36 and Proposition 8.37.

Proposition 8.36. If G is 2-joinlike with exceptional vertices {q, q'} such that 
deg(q,C\) =  2 and the two vertices o f Nq C\C\ are adjacent, then e(G) <  |(n2 +  
2n +  17), where n =  |F(G)|.

Proof. Let Nq fl C\ =  {u, v}. Let x,x '  G C2 be neighbors such that qx G E(G),  
qx' g  E(G) and let y be the other neighbor of x  in C2 (their existence is guaranteed 
by Proposition 8.34 and the fact that Nq 0 C2 7̂  C2). Then lkGqx C {u,v,q' ,y} ,  
and since uv G E(G) we can assume that lkaqx is the cycle vuyq1 (this is the unique 
possibility up to the order of u, v). In particular qq',q'v G E(G)  and q'u £  E(G).

If u' ±  v is the other neighbor of u in C\ then lk cW  contains neither q nor q', 
so it must be all of C2. In particular C2 C Nu. It means that lkGuq =  {u }\j(NqDC2), 
so Nq fl C2 is a path of length at least 3 within C2, whose both endpoints, call them 
«i, u2, are connected to v, while the interior vertices of the path are not connected 
to v. Let a =  |iVg fl C2| be the length of this path.

The link of every edge in G[Nq n C2] contains u and q, so to be a cycle it 
must also contain q'. It follows that Nq- n C2 D Nq n C2.

Let t ±  u be the other neighbor of v in C\. Consider the link lkaq'v. It 
contains the path v\qv2. If t & lkcq'v  then this link must contain, apart from v\,q 
and v2, all the vertices in C2 \ Nq. However, that would imply C2 \Nq C Nq>. Put 
together with the previously established Nq> n C 2 2  Nqf) C2 we would get C2 C Nq>, 
a contradiction. This means that t G lkcq'v, i.e. q't G E(G).

Consider any vertex x  G (C\ fl Nq>) \ {a, u} which has at least one neighbor 
x  in C\ \ Nq'. By Proposition 8.34 and the fact that q'u & E(G)  such a vertex must 
exist. The link \kGxx  is a cycle which does not touch C\ U {q,q'}. Consequently, 
\kGxx  =  G[C2], and in particular, C2 C Nx. The link lk^a:^ consists of one vertex 
in Ci and of the whole Nq> flC2. We get that Nq> DC2 is a path within C2, containing
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Nq fi C2. Let wi,W2 be the endpoints and let b =  \Nq> n Ci\- Assume that v\ is 
between w\ and V2 on this path (perhaps w 1 =  v\ or W2 — V2).

For every edge e in G[(C2\lVg/)u{u;i, w2}] we have lkce =  G[C\]. As C2nN g/ 
induces a path with endvertices w\ and W2 and G[C2] is a cycle, we must have that 
G[(C2 \ Nq') U {wi,w2}] is a path, in particular this graph contains no isolated 
vertices. It follows that for every vertex x € (C2 \ Nq>) U {mi, w2} we have C\ C Nx. 
Now consider the link lkcq'v. It contains the vertices q,t,vi,v2,W\,W2 , with paths 
viqv2 and w\tw2- This is only possible if v is adjacent to all of (Nq> \ Nq) D C2 while 
t is not adjacent to any vertex of (((Nq> \ Nq) n C2 ) U {ui, V2 }) \ {rni, W2 }-

Let \Ci \ =  k, IC2I =  /, with n = k + l + 2. The remaining part of the proof 
splits into two cases. First we assume that t is non-adjacent to all of (Nq n  C2 ) \  
{^1,^2}. In that case t is non-adjacent to b — 2 vertices of C2 , v is non-adjacent to 
a -  2 vertices and using a bound deg(</, C\) < k -  1 we get

e(G) < kl +  k +  l + (a -(- 2) +  (b +  k — 1) +  1 — (a — 2) — (6 — 2)
= hi -f- 2k +  l +  6 ,

so the conclusion follows from Lemma 8.35.
Next suppose that t has a neighbor y in (Nq n C2) \ {v i,u2} and let s ^  v 

be the other neighbor of t in C\. The link lkcq ’t contains v,u>i,W2,y  and possibly 
s with edges w\vu>2, and apart from v and s it is contained in Nq> D C2. Any cycle 
with that property must contain an edge e G G[Nq D C2] and it follows that there 
exists an edge e G G[Nt n Nq C\ C2]. But lk^e is a cycle passing through uqq’t and 
not through v, therefore necessarily going through all of C\ \ {v }. In particular 
Nq' r\Ci =  {u, t} and so s & lkGq't. It means that lkGq't =  {u} U {Nq> D C2) which, 
by the restrictions on Nt, implies v\ =  w\, V2 — W2, a =  b and C2 C Nt. This 
determines the graph G and we obtain

e(G) — kl +  k +  l +  (o +  2) +  (a +  2) +  1 — (a — 2)

= kl-\-k-\-l-\-a-\-7

=  n2 +  2n +  17) -  i(fc -  l +  l )2 -  (/ -  1 -  o) < ^(n2 +  2n +  17)

because a < l — 1. □

Proposition  8.37. If G is 2-joinlike with exceptional vertices {q,q'} such that 
deg(<7 , Ci) =  2 and the two vertices of Nq D C\ are not adjacent, then e{G) < 
I(n 2 + 2n +  17) where n = |F(G)|.
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Proof. The proof uses similar techniques as the proof of Proposition 8.36. Set Nq n 
Ci =  {u,v}.

Let x G C? be any vertex with qx G E{G) and such that x has a neighbor 
x' G C2 with qx' & E(G). Let y be the other neighbor of x in C2. We have 
lkcqx  Ç {u, v, q',y}, with u and v being independent. It follows that lkcqx  is the 
cycle uq'vy, in particular q'u,q'v,ux,vx,q'x 6 E(G)  and qq' G E(G).

It follows that the number of vertices x  G C2 with the property described 
in the previous paragraph is at most 2. Indeed, we proved that every such vertex 
is adjacent to u,v,q', and the claim follows since lkoq is K^^-iree. It means that 
Nq fl C2 is a path within C2 of length a =  \Nq D C2I >  3. Moreover, if vi,V2 G C2 
are the endpoints of that path then q'vj,uvj,Wj G E(G)  for j  =  1,2.

The link lkoqu contains q',vi, u2 and no vertex in Ci, so it must be {</} U 
(Nq fl C2)• That, and the same argument for lkc q v  mean that Nq n C2 Ç Nu, Nv 
and that q' is non-adjacent to vertices in (Nq n C2) \ {tq,u2}.

We will now prove the following claim.

Claim 8.38. Suppose x  G C\ \ { u, v } and y G (Nq fl C2) \ { f i ,  V2}. Let x ',x "  be the 
neighbors of x in C\, and let y ',y" be the neighbors of y in C2. If xy G E(G) then

Proof The link lkcx y  contains neither q nor q'. Hence it must be contained in 
{ x f  x", y1, y"},  and it follows that these 4 vertices must form a 4-cycle with x  and y

The vertices u,v divide G[Ci] into two paths which we call P i, P2, so that 
there is a partition C\ — P\ U P2 U {u, u}. We also write Pj =  Pj U {u, v } for j  =  1,2 
for the “closures” of those paths. Claim 8.38 implies that for j  =  1,2 the bipartite 
graph G[Pj, (Nq fl C2) \ {^ i, ^2}] is either edgeless or complete bipartite. Suppose 
first that both of these graphs are complete. Take any edge e in G[Nq n C2]. As 
a >  3, such an edge exists. The above then gives that lk^e contains all of Ci, and 
q, a contradiction. Suppose next that both of these graphs are empty. Taking any 
edge e in G[Nq D C2] we observe that lkce spans at most three vertices {q, u, u}, 
again a contradiction. We can therefore assume that G[Pi,Nq D C2] is complete 
bipartite and G[P2, (Nq n C2) \ {ui, u2}] has no edges.

For every edge /  e G[P2] the link lkG/  misses q and Nq \ { i q ,^ }  hence it 
must contain q[. We therefore have that

adjacent to all of them. □

P2 Ç Nqi . (8.29)
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The rest of the proof depends on whether Nqi D P\ is empty.
First suppose that q' is adjacent to some vertex of Pi. Recalling that Ay fl 

C\ 7̂  Ci and combining this with (8.29) we have Nqi Pi Pi ^  Pi. We can find 
t E P\ with neighbors t’ ,t"  £ Pi such that tq' £ E(G)  and t'q' 0 E[G).  Since 
\kGtt' contains neither q nor q' it must be all of C2 hence C2 C Ay We then 
have \kGq't =  G[{t"}  U (Ngi Pi C2)], so Nq> fl C2 induces a path within C2 and t" 
is not adjacent to its internal vertices. Since ry  v2 £ Nq> Pi C2 we obtain that 
Ng> n c 2 =  (C2 \ Nq) U { t y  v2).

Let |Ci| =  k, \C2\ =  l. Subtracting the edges we lose from P2 to (Nq n C2) \ 
{^1, ^2} and from t" £ to C2 \ Nq and using deg(g',Ci) <  k -  1, |P2| > 1 and 
a >  3 we get

e(G) < kl +  k +  l +  (a +  2) +  (l — a +  2 +  k — 1) +  1 — |P2|(a — 2) — (Z — a)

< kl +  2k +  / +  6.

Next consider the case Nq> D Pi =  0. By the usual argument we have C2 C 
NU,NV. Let s £ P2 be the neighbor of v. Then lkGq'v =  {s,q}  U (Nq> n C2) and it 
contains the edges viqv2. It follows that there are vertices W\, w2 £ C2 such that 
Nq' nC 2 has two parts, stretching from vi to wi and from v2 to w2 (possibly ui\ =  vx 
or w2 =  v2). Moreover, looking at lkGq'v we see that swi,sw2 £ E(G)  but s is not 
adjacent to the vertices in (Nq> D C2) \ {wi ,w2}.

Let b =  |Ay nC 2|. Counting the missing edges from P2 to (NqC\C2) \ { t y  v2} 
and the disjoint set of missing edges from s to (Nqi Pi C2) \ { i« i , w2} we have:

e(G) < k l  +  k +  l +  {a +  2) +  (b +  k - l )  +  l -  |P2|(a -  2) -  (b -  2)

<  kl +  2k +  l +  6.

An application of Lemma 8.35 completes the proof. □

Putting the above propositions together we get the main result of this section 
concerning 2-joinlike graphs.

Proposition  8.39. IfG  is 2-joinlike with exceptional vertices {q, q'} and deg(q, Ci) < 
2 then e(G ) <  \{n? +  2n +  17) where n =  |P(G)|.

Proof. This is a consequence of Propositions 8.34, 8.36 and 8.37. □
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Figure 8.2: The 1-skeleta of two triangulations of S3 with / i  =  | (/q +  2/0 +  17). 
Starting from the join of two cycles remove the dashed edges and add the exceptional 
point(s) with the solid edges. In a) \C\\ -  |C2| and deg(g,C1) =  3. In b) |C2| =  
|Ci| +  1, deg(<?, Ci) =  deg(g', Ci) =  2 and deg(g, C2) =  deg(ç', C2) =  |C2| -  1 .

8.5 Closing remarks

A careful analysis of the proofs in Section 8.4 reveals two families of fascinating 
graphs which satisfy the equality m =  \{v? +  2n +  17) for n >  no- They appear in 
Proposition 8.32 and Proposition 8.36, see Figure 8.2. This proves the claim made 
in Remark 8.7; we omit the details.

It is natural to try to generalize Theorem 8.2 to higher dimensions.

Conjecture 8.40. For every s >  2 there exists a number no =  no(s) such that the 
following holds. If M  is a closed flag (2s -  1)-manifold or a flag (2s -  1 )-GHS with 
fo > no vertices and f\ edges then

then M  is a join of s polygons, in particular it is homeomorjdiic to S2s_1.

The maximal value in (8.30) is achieved by the balanced join of s cycles of 
lengths fo/s. The expression in (8.31) is the number of edges in the single edge- 
subdivision of such a join.

Let us sketch how one might prove this conjecture (the details will appear 
elsewhere). Fix s > 2 and denote n =  fo• First of all, M  is Eulerian and the

h  < fo ' ~2S +  fo- (8.30)

Moreover, if M  satisfies

(8.31)
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middle” Dehn-Sommerville equation hs-\ — hs+i can be rewritten in the form

fs — sfs -i  +  02/ 5-2 +  • • • +  as/o

for some coefficients a* depending only on s. It follows that the number of (s +  1)- 
cliques in the 1-skeleton G =  is only 0 (n s). However, the number of edges in 
G is above the Turân bound for a complete, balanced s-partite graph, which is the 
maximizer of the number of edges among A /+i-free graphs. By an application of the 
stability method we get that G looks very similar to where I — n/s. Next,
as in the case of fascinating graphs, we see that in G the link of every (2s -  1 -  j) -  
clique is a triangulation of for j  =  0,1, 2 (or for all 0 <  /  < 2s — 2 if M  is a 
manifold) and one can try to exploit those conditions to rigidify the structure of G.

Finally, we suggest that the inequality 72 >  0, conjectured by Gal for flag 
spheres, expressed in terms of the face numbers, ought to hold for any flag manifold. 
This would be the flag analogue of the Lower Bound Theorem [15].

Conjecture 8.41. If M  is a flag d-manifold, then

fi  > (2d — l) /o  — 2(d2 — 1).

This is known to hold for a flag 3-GHS, where it is equivalent to the 3- 
dimensional Charney-Davis conjecture, proved in [29].
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