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Let G be a graph. A dominating set D ⊆ V (G) is a super dominating set if for every vertex 
x ∈ V (G) \ D there exists y ∈ D such that NG (y) ∩ (V (G) \ D)) = {x}. The cardinality of a 
smallest super dominating set of G is the super domination number of G . An exact formula 
for the super domination number of a tree T is obtained, and it is demonstrated that a 
smallest super dominating set of T can be computed in linear time. It is proved that it is 
NP-complete to decide whether the super domination number of a graph G is at most a 
given integer if G is a bipartite graph of girth at least 8. The super domination number 
is determined for all k-subdivisions of graphs. Interestingly, in half of the cases the exact 
value can be efficiently computed from the obtained formulas, while in the other cases the 
computation is hard. While obtaining these formulas, II-matching numbers are introduced 
and proved that they are computationally hard to determine.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Let G = (V (G), E(G)) be a graph. Then D ⊆ V (G) is a dominating set if every vertex in D = V (G) \ D is adjacent to 
at least one vertex in D . The domination number γ (G) of G is the minimum cardinality of a dominating set of G . Graph 
domination theory has been extensively researched so far. To capture the current state of the field, we refer the reader to 
two recent edited books [10,11].

Many variations of the domination have been introduced, some of which are significant and important (such as total 
domination and connected domination), while others are of only sporadic importance. In our view, the group of significant 
domination concepts includes super domination which was introduced in 2015 by Lemańska, Swaminathan, Venkatakrish-
nan, and Zuazua [18].

It is known [3] that every isolate-free graph G has a minimum dominating set D such that for each v ∈ D there exists 
a vertex u (called external private neighbor) in D = V (G) \ D with NG (u) ∩ D = {v}. (As usual, NG (x) stands for the open 
neighborhood of x in G and NG [x] for the closed neighborhood of x in G .) By switching the roles of D and D in the latter 
property, we arrive at the following concept. A dominating set D of G is a super dominating set of G , if for every vertex 
u ∈ D there exists v ∈ D such that NG (v) ∩ D = {u}. The cardinality of a smallest super dominating set of G is the super 
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domination number γsp(G) of G . A super dominating set of cardinality γsp(G) is briefly called a γsp-set. The initial study of 
the concept has been followed by several sequels, of which the reader is referred to [6,8,14,16,22,28].

The subdivision of a graph G is the graph obtained from G by replacing each edge with a disjoint path of length 2 and is 
denoted by S(G). More generally, if k ≥ 1, then the graph Sk(G) is obtained from G by replacing each edge with a disjoint 
path of length k +1, that is, subdividing each of its edges k times. Clearly, S(G) = S1(G). Some authors use the term complete 
k-subdivision for what we call k-subdivision, but since all our subdivisions are complete, we simplify the terminology. The 
concept of k-subdivisions is ubiquitous in graph theory, here we cite its presence in graph colorings [1,24], spectral graph 
theory [4], structural graph theory [19,27], and chemical graph theory [2,13].

In this article we discuss various aspects of super domination, which are in one way or another intertwined with the 
computational complexity of the problem of determining the super domination number. In the next section we recall some 
definitions and known results, and state a useful characterization of super dominating sets. Super domination has already 
been considered on trees from several perspectives, see [16,18,22,28]. By now, only sharp upper and lower bounds have 
been obtained. In Section 3 we fill this gap by providing an exact formula for the super domination number of a tree. 
Moreover, we demonstrate that if T is a tree, then γsp(T ) as well as a γsp-set of T can be computed in linear time. On 
the negative side, in Section 4, we prove that it is NP-complete to decide whether γsp(G) ≤ k holds if G is a bipartite 
graph of girth g(G) ≥ 8 and the positive integer k is part of the input. In our longest part of the paper, Section 5, we 
consider k-subdivisions of arbitrary graphs. Depending on k mod 4, four closed formulas for γsp(Sk(G)) are proved. When 
k mod 4 ∈ {1, 3}, the corresponding formulas depend only of k, the size of G , and a simple condition on the cycles of G . 
Note that in these two cases Sk(G) is bipartite. On the other hand, if k mod 4 = 0, then γsp(Sk(G)) is a function of γsp(G)

also, and if k mod 4 = 2, then γsp(Sk(G)) depends also on the cardinality of a largest matching that admits a partition into 
two induced matchings. We name such matchings as II-matchings and prove that it is NP-hard to compute the maximum 
size of such matchings. It follows that for each even k, it is also NP-hard to determine γsp(Sk(G)).

2. Preliminaries

The order and the size of a graph G will be denoted by n(G) and m(G), respectively. If D is a super dominating set of G
and if for a vertex x ∈ D the vertex y ∈ D has the property NG(y) ∩ D = {x}, then we will say that x is super dominated by 
y.

Let G be a graph. Then the independence number of G will be denoted by α(G), the matching number of G by α′(G), 
and the vertex cover number of G by β(G). A set X ⊆ V (G) is a 2-packing of G if dG(u, v) ≥ 3 holds for each pair of 
vertices u, v ∈ X . In other words, each pair of vertices of X has disjoint closed neighborhoods. The cardinality of a smallest 
2-packing of G will be denoted by ρ(G).

The path in Sk(G) obtained by k times subdividing an edge uv ∈ E(G) will be denoted by Puv and addressed to as a super 
edge. The vertices of Puv will be denoted by u, (uv)1, . . . , (uv)k, v . Note that n(Sk(G)) = n(G) + k · m(G) and m(Sk(G)) =
(k + 1)m(G). We say that a graph is a k-subdivision graph if it can be obtained as a k-subdivision of some graph.

We next recall a few results on the super domination number needed later on.

Theorem 2.1. [18] If G is a graph without isolated vertices, then,

1 ≤ γ (G) ≤ n

2
≤ γsp(G) ≤ n(G) − 1 .

Theorem 2.2. [14, Theorem 3, Corollary 2] If G is a graph with n(G) ≥ 2, then

n(G) − α′(G) ≤ γsp(G) ≤ n(G) − ρ(G).

Since n(G) = α(G) + β(G) in general and α′(G) = β(G) when G is bipartite, Theorem 2.2 implies that if G is bipartite, 
then γsp(G) ≥ α(G).

Theorem 2.3. [18] The following exact values are valid.

(i) If n ≥ 2, then γsp(Pn) = 	 n
2 
.

(ii) If n ≥ 3, then

γsp(Cn) =
⎧⎨
⎩

	n+1
2 
; n ≡ 2 mod 4,

	n
2 
; otherwise.

(iii) If n ≥ 2, then γsp(K1,n) = n.

Let G be a graph, and let D be a super dominating set of G . For each u ∈ D , select an arbitrary vertex u′ ∈ D such that 
u is the unique neighbor of u′ in D , that is, N(u′) ∩ D = {u}. Then we say that the set
2
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D∗ = {u′ ∈ D : u ∈ D}
is a core of D . By this definition, there exists a matching between D and D∗ that covers D ∪ D∗ . Moreover, the following 
result holds which seems of independent interest. Before stating it, we introduce a notation. For two disjoint vertex sets 
A, B ⊆ V (G) let EG [A, B] denote the set of all edges between A and B in G .

Lemma 2.4. Let A and B be two disjoint vertex sets of a graph G. Then D = A is a super dominating set and B is a core of D if and 
only if EG [A, B] is a matching that covers all vertices in A ∪ B.

Proof. Suppose that D = A is a super dominating set and let B be its core. By definition of the core, every vertex from 
B has exactly one neighbor from A, so that |NG(x) ∩ B| = 1 if x ∈ A and |NG (y) ∩ A| = 1 whenever y ∈ B . It shows that 
EG [A, B] is a matching that covers A ∪ B .

Now, suppose that A, B are disjoint vertex sets in G such that EG [A, B] is a matching that covers A ∪ B . Define D = A
and observe that every x ∈ A is super dominated by the vertex y that is the pair of x in the matching EG [A, B]. Indeed, by 
our assumption, y ∈ D and NG(y) ∩ A = {x}. It also follows that B can be considered as a core of D . �

Note that Lemma 2.4 implies the lower bound of Theorem 2.2. Moreover, it also implies the following.

Corollary 2.5. If D is a super dominating set of a graph G, and D∗ is a core of D, then (D \ D∗) ∪ D is also a super dominating set of 
G. In particular, if D is a γsp-set, then (D \ D∗) ∪ D is also a γsp-set.

Proof. The first assertion follows directly by Lemma 2.4. And as |(D \ D∗) ∪ D| = |D|, the second assertion also follows. �
Corollary 2.6. If G is a graph and v ∈ V (G), then there exists a γsp-set of G that contains v.

Proof. Let D be an arbitrary γsp-set of G . If v ∈ D there is nothing to prove. Otherwise consider a core D∗ of G . Then 
v ∈ (D \ D∗) ∪ D which is a γsp-set by Corollary 2.5. �

It is interesting to compare Corollary 2.6 with [28, Proposition 2.4] which asserts that if v is a leaf of a non-trivial tree 
T , then there exists a γsp-set of T which does not contain v .

3. Super domination number of trees

The main result of this section reads as follows.

Theorem 3.1. If T is a tree, then γsp(T ) = n(T ) − α′(T ). Moreover, a γsp-set of T can be determined in linear time over the class of 
trees.

Proof. Consider a maximum matching M in T . We will show that V (M) can be partitioned into two vertex sets A and B
such that ET [A, B] = M . By Lemma 2.4, it will imply that there is a super dominating set of cardinality n(T ) − |A| = n(T ) −
|M| = n(T ) − α′(T ). Together with the inequality γsp(G) ≥ n(G) − α′(G) from Theorem 2.1 we obtain γsp(T ) = n(T ) − α′(T )

for the tree, as stated.
To construct the sets A and B , we first specify a root vertex r such that r is covered by M . We first put r into A and 

consider the children v1, . . . , vk of r. If rvi ∈ M , we put vi into B; if rvi /∈ M but vi ∈ V (M), we put vi into A; if vi /∈ V (M), 
then vi remains outside A ∪ B . We continue analogously while traversing the tree in preorder. When we decide about the 
children u1, . . . , u� of a vertex u, we have three main cases.

• First, let u /∈ V (M). Then, if ui ∈ V (M), we put ui into A; if ui /∈ V (M), we put it into neither A nor B .
• Suppose that u ∈ A. If uui ∈ M , put ui into B; if uui /∈ M and ui ∈ V (M), put ui into A; if ui /∈ V (M), leave ui outside 

A ∪ B .
• The case when u ∈ B is analogous to the previous one. If uui ∈ M , we put ui into A; if uui /∈ M and ui ∈ V (M), we put 

ui into B; if ui /∈ V (M), we leave ui outside A ∪ B .

It is clear that for the constructed sets, (A, B) results in a partition of V (M) such that M = E T [A, B]. Therefore, by 
Lemma 2.4, D = A is a super dominating set in T and we may infer γsp(T ) = n(T ) − α′(T ).

Concerning the construction of a γsp-set of a tree, we remark that a maximum matching of a tree can be obtained in 
linear time. Once the matching M is in hand, the algorithm described in the proof assigns labels A, B , A ∪ B to the vertices 
in preorder, visiting every vertex only once and making a choice according to local properties. Thus, the determination of a 
γsp-set of a tree can be done in linear time as stated. �
3
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Extending the definition of the subdivision of a graph by setting S0(G) = G , the following result can be considered as a 
generalization of Theorem 2.3(iii).

Corollary 3.2. If k ≥ 0 and n ≥ 2, then

γsp(Sk(K1,n)) =
⎧⎨
⎩

n(k+2)
2 ; k even,

n(k+1)
2 + 1; k odd.

Proof. By Theorem 2.3(iii), γsp(S0(K1,n)) = γsp(K1,n) = n, hence the assertion holds for k = 0.
It is straightforward to see that if k ≥ 2 is even, then α′(Sk(K1,n)) = n k

2 +1, and if k ≥ 1 is odd, then α′(Sk(K1,n)) = n k+1
2 . 

The result now follows by applying Theorem 3.1. �
4. Bipartite graphs

By Theorem 3.1, the super domination number and a γsp-set can be determined in linear time for trees. In this section 
we show that the same problem is NP-hard over the class of bipartite graphs.

Theorem 4.1.

(a) It is NP-complete to decide whether γsp(G) ≤ k holds if G is a bipartite graph of girth g(G) ≥ 8 and the positive integer k is part 
of the input.

(b) It is NP-complete to decide whether γsp(G) = n(G) − α′(G) holds if G is bipartite and g(G) ≥ 8.

Proof. As γsp(G) ≥ n(G) − α′(G) holds for every graph G , the equality in (b) is equivalent to the inequality γsp(G) ≤
n(G) − α′(G). Thus, both decision problems (a) and (b) belong to NP. In order to prove that the decision problems in (a)

and (b) are NP-hard, we present a polynomial-time reduction from 3-SAT problem, which is a classical NP-complete problem 
[7].

Let F be a 3-SAT instance with clauses C1, . . . , C� over the Boolean variables x1, . . . , xs . We construct a graph G F such 
that F is satisfiable if and only if γsp(G F ) ≤ 4s + 3� + 1.

Construction of G F For each variable xi , we take eight vertices that form the set Xi = {x−
i , x+

i , x1
i , . . . , x

6
i } and add edges 

such that x1
i x−

i x2
i x4

i x5
i x+

i x6
i is an induced path and x3

i x4
i is a pendant edge in G F . Each clause C j , will be represented by a 

vertex c j in G F . If xi is a literal in C j , we add an edge x+
i c j and subdivide it by a vertex y j,i . Similarly, if ¬xi is a literal 

in C j , we add an edge x−
i c j and subdivide it by a vertex y j,i . The set of these subdivision vertices will be denoted by Y . 

To finish the construction, we add two further vertices, namely v and v∗ , and the edges v v∗ and v∗c j for each j ∈ [�]. (See 
Fig. 1 for illustration.) It is easy to check that the constructed graph G F is bipartite with n(G F ) = 8s + 4� + 2 and, moreover, 
if G is not a tree,1 then its girth is at least 8.

We first prove that α′(G F ) = 4s + � + 1. Let M be a matching in G F . For every i ∈ [s], the vertices in Xi may be incident 
with at most four edges from M . Each clause vertex c j may be incident with one edge from M . The only edge in G F that 
is not covered by the previous vertices is v v∗ and it may belong to M only if c j v∗ /∈ M holds for all j ∈ [�]. This proves 
α′(G F ) ≤ 4s + � + 1 and it is easy to find a matching of size 4s + � + 1 in G F . Therefore, α′(G F ) = 4s + � + 1. Moreover, 
every maximum matching contains the following edges: v v∗; x2

i x3
i and x4

i x5
i for every i ∈ [s]; one edge between c j and Y

for every j ∈ [�]; one edge between x+
i and Y ∪ {x6

i } and one edge between x−
i and Y ∪ {x1

i } for every i ∈ [s].
Now, suppose that γsp(G F ) ≤ 4s +3� +1 holds and prove that the 3-SAT formula F is satisfiable. Since α′(G F ) = 4s +� +1, 

by Theorem 2.1 the condition is equivalent with γsp(G F ) = 4s + 3� + 1. Let D be a minimum γsp-set in G F . By Lemma 2.4, 
there are two disjoint vertices sets A = D and B = D∗ such that |A| = |B| = n(G F ) − γsp(G F ) = 4s + � + 1 and EG F [A, B]
is a matching M . Since M is a maximum matching, for every i ∈ [s], we have x−

i , x+
i ∈ V (M) and x2

i x3
i , x

4
i x5

i ∈ M . By the 
condition EG F [A, B] = M , if x+

i ∈ A holds, then x5
i ∈ A and x4

i , x
2
i , x

−
i ∈ B follow. Analogously, if x+

i ∈ B , we may conclude 
x−

i ∈ A. Therefore, we may define a truth function ϕ : X → {true, false} in the following way:

ϕ(xi) =
⎧⎨
⎩

true; x+
i ∈ B,

false; x−
i ∈ B.

1 We may suppose, without loss of generality, that G F is of girth of at least 8. Indeed, if G F is a tree, we may consider the formula F ′ = F ∧(x1 ∨¬x1 ∧x2). 
Clearly, a truth assignment satisfies F if and only if it satisfies F ′ , and γsp(G F ) = n(G F ) − α′(G F ) if and only if the same is true for G F ′ .
4
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Fig. 1. Graph G F for the formula F = (¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ x4) constructed in the proof of Theorem 4.1.

By Corollary 2.5, we may suppose that v∗ ∈ A. Consider a clause vertex c j . As v∗c j /∈ M and c j ∈ V (M), the vertex c j
also belongs to A. If y j,i is the vertex from Y such that c j y j,i ∈ M , then y j,i ∈ B . Suppose first that the other neighbor 
of y j,i is x+

i i.e., the clause C j contains the positive literal xi . As xi ∈ V (M) and y j,i is already covered by one matching 
edge, y j,i x

+
i /∈ M and x+

i ∈ B holds. Then, by definition, we have ϕ(xi) = true and the positive literal x+
i satisfies clause C j . 

Similarly, if the other neighbor of y j,i is x−
i , then C j contains the literal ¬xi . As EG F [A, B] = M , we may infer x−

i ∈ B . It 
implies ϕ(xi) = false and hence, the literal ¬xi satisfies C j . It is true for all clauses in F and proves the satisfiability of the 
formula.

To prove the other direction of the statement, we suppose that F is satisfied by a truth assignment φ : X → {true, false}. 
Let us define

D = Y ∪ {v} ∪ {x1
i , x3

i , x5
i , x+

i : i ∈ [s] and φ(xi) = true}
∪ {x−

i , x2
i , x4

i , x6
i : i ∈ [s] and φ(xi) = false}.

It is easy to check that D is a super dominating set and |D| = 4s + 3� + 1. Indeed, it is enough to consider the following 
connections:

• v super dominates v∗;
• if φ(xi) = true, then x1

i super dominates x−
i , x3

i super dominates x2
i , x5

i super dominates x4
i , and x+

i super dominates x6
i ;

• if φ(xi) = false, then x−
i super dominates x1

i , x2
i super dominates x3

i , x4
i super dominates x5

i , and x6
i super dominates 

x+
i ;

• if a clause C j is satisfied by a literal xi or ¬xi , then the corresponding subdivision vertex y j,i ∈ D and N(y j,i) ∩ D = {c j}
and thus, y j,i super dominates c j .

We have proved that the NP-complete problem 3-SAT can be reduced to the problem of deciding whether γsp(G F ) ≤
n(G F ) − α′(G F ) = 4s + 3� + 1 holds. The reduction can be done in polynomial time and therefore, we may conclude that 
both problems (a) and (b) are NP-complete. �
5. Super domination in subdivision graphs

5.1. (4t + 3)-subdivisions

For a graph G , let ̂n(G) be the maximum size of a subset V̂ ⊆ V (G) such that there exists an injective mapping φ : V̂ →
E(G) so that v ∈ φ(v) holds for every v ∈ V̂ . We will say that a function φ with these properties is a DR-function in G; and 
if ̂n(G) = n(G), we may say that the vertex set of G has a set of distinct representatives (SDR).

Lemma 5.1. If G is a connected graph that is not a tree, then ̂n(G) = n(G). If G is a tree, then ̂n(G) = n(G) − 1.

Proof. Associate every vertex v ∈ V (G) with the set E(v) of edges that are incident to v . First, consider a proper subset X
of V (G) and the set E(X) = ⋃

v∈X E(v). In the induced subgraph G[X], every component F satisfies m(F ) ≥ n(F ) − 1 and, 
5
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since G is connected and F �= G , the vertex set of F is incident with at least one edge not contained in the subgraph F . 
These extra edges are pairwise different for different components of G[X]. We therefore conclude |E(X)| ≥ |X | for every 
vertex set X � V (G). Notice that it is true for every graph G , no matter G is a tree or not. Consider now the case X = V (G). 
If G is not a tree, then n(G) = |X | ≤ |E(X)| = m(G) and, as Hall’s Condition is satisfied for each X ⊆ V (G), there exists a 
system of distinct representatives for the vertex set of G . That is, ̂n(G) = n(G). If G is a tree, |V (G)| > |E(G)| and there is no 
SDR for the vertex set. On the other hand, if we consider G as a tree rooted in r and map every non-root vertex v to the 
edge between v and its parent, the obtained mapping is a DR-function from V (G) \ {r} to E(G). It proves ̂n(G) = n(G) − 1
for every tree G . �
Theorem 5.2. For every connected graph G and integer k ≡ 3 mod 4,

γsp(Sk(G)) =
⎧⎨
⎩

k+1
2 m(G) + 1; G is a tree,

k+1
2 m(G); otherwise.

Proof. Let V (G) = {v1, . . . , vn} and k = 4t + 3. Observe that n(Sk(G)) = n + k m(G). We first show that

α′(Sk(G)) ≤ k − 1

2
m(G) + n̂(G). (1)

Let M be a maximum matching in Sk(G). For every super edge P vi v j , we have two possibilities:

(a) M contains at most k−1
2 edges from P vi v j ;

(b) M contains exactly k+1
2 edges from P vi v j and at least one of vi and v j is covered by a matching edge belonging to 

P vi v j .

As each vi ∈ V (G) is covered by at most one edge from M , the number of super edges satisfying (b) is at most n. Moreover, 
if (b) is valid for a super edge P vi v j , then vi(vi v j)1 ∈ M or (vi v j)k v j ∈ M . In the first case, we define φ(vi) = vi v j , while 
we set φ(v j) = vi v j in the latter case. (If both edges vi(vi v j)1 and (vi v j)k v j belong to M , then to keep φ injective, we set 
just φ(vi) = vi v j for the smaller index i.) As φ is a DR-function, the number of super edges with property (b) is at most 
n̂(G). This proves the inequality (1), and together with Theorem 2.2 we conclude

γsp(Sk(G)) ≥ n(Sk(G)) − α′(Sk(G)) ≥ k + 1

2
m(G) + (n(G) − n̂(G)) (2)

where, according to Lemma 5.1, the last term is 1 if G is a tree and 0 if G contains a cycle.

To prove the other direction, we construct a γsp-set D for G . Let φ be a DR-function of G with domain V (G) if G is not 
a tree, and with domain V (G) \ {vn} otherwise.

(i) If φ(vi) = vi v j , let D contain the following vertices from the super edge P vi v j :

(vi v j)1, (vi v j)2, (vi v j)5, (vi v j)6, . . . , (vi v j)4t+1, (vi v j)4t+2.

(ii) If vi v j does not belong to the image set of φ and i < j, let D contain the following vertices from the super edge P vi v j :

(vi v j)2, (vi v j)3, (vi v j)6, (vi v j)7, . . . , (vi v j)4t+2, (vi v j)4t+3.

(iii) If G is a tree and vn does not have a representative edge in φ, then vn also belongs to D . Note that the other vertices 
of G belong to D .

If an internal subdivision vertex, (vi v j)s with 3 ≤ s ≤ 4t + 1, does not belong to D , it is easy to identify a neighbor that 
super dominates it. A vertex vi with φ(vi) = vi v j is always super dominated by (vi v j)1. The subdivision vertices (vi v j)2
and (vi v j)4t+2 always belong to D; if (vi v j)1 /∈ D , it is super dominated by (vi v j)2; if (vi v j)4t+3 /∈ D , it is super dominated 
by (vi v j)4t+2.

No matter whether (i) or (ii) was applied when we specified the vertices in V (P vi v j ) ∩ D , we added exactly 2t +2 = k+1
2

subdivision vertices to D in each step. Thus, D contains k+1
2 m(G) subdivision vertices and also contains vn if G is a tree. 

This proves the upper bound

γsp(Sk(G)) ≤ k + 1

2
m(G) + (n(G) − n̂(G)).

We infer that the equality γsp(Sk(G)) = k+1 m(G) + (n(G) − n̂(G)) holds for every graph G as stated. �
2

6
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For connected graphs, Theorem 5.2 and inequality (2) in its proof together imply the following statement. Since γsp(F )

and α′(F ) are additive under disjoint union of graphs, we may state:

Proposition 5.3. For every graph G and integer k ≡ 3 mod 4, it holds that

γsp(Sk(G)) = n(Sk(G)) − α′(Sk(G)).

As the number of tree components in G can be computed in linear time, and γsp(F ) is additive under taking disjoint 
union of graphs, we conclude the subsection with the following consequence of Theorem 5.2.

Theorem 5.4. If k is a positive integer with k ≡ 3 mod 4, then the super domination number can be computed in linear time over the 
class of k-subdivision graphs.

5.2. (4t + 1)-subdivisions

Theorem 5.5. For every connected graph G and integer k ≡ 1 mod 4,

γsp(Sk(G)) =
⎧⎨
⎩

k+1
2 m(G); G contains an even cycle;

k+1
2 m(G) + 1; otherwise.

Proof. Let V (G) = {v1, . . . , vn} and k = 4t + 1. Suppose first that D is a minimum super dominating set of Sk(G) and 
consider A = D and a core B of D . By Lemma 2.4, the edges E[A, B] form a matching M in Sk(G). If M is fixed, we have 
three possibilities for a super edge P vi v j .

(a) M contains at most k−1
2 edges from P vi v j . The set of the corresponding edges vi v j ∈ E(G) will be denoted by E0.

(b) M contains exactly k+1
2 edges from P vi v j and exactly one of vi and v j is covered by an edge from M ∩ E(P vi v j ). If this 

vertex, say vi , is contained in A, we set vi v j ∈ E A . Similarly, if vi ∈ B , vi(vi v j)1 ∈ M , and (vi v j)k v j /∈ M , then the edge 
vi v j belongs to E B .

(c) M contains exactly k+1
2 edges from P vi v j and both vi(vi v j)1 and (vi v j)k v j belong to M . In this case, we set vi v j ∈ E2.

As E0, E A, E B , E2 is a partition of E(G), we may estimate the size of M as follows:

|M| ≤ |E0| k − 1

2
+ (|E A | + |E B | + |E2|) k + 1

2
= k − 1

2
m(G) + |E A | + |E B | + |E2|. (3)

By definition, if vi v j ∈ E A ∪ E B , then only one of vi(vi v j)1 and (vi v j)k v j belongs to M . If vi v j ∈ E2, then both vi(vi v j)1 and 
(vi v j)k v j are contained in M . Since each vertex vi ∈ V (G) is covered by at most one M-edge, we infer |E A | +|E B | +2|E2| ≤ n
and, in turn, we get from (3) that

|M| ≤ k − 1

2
m(G) + n − |E2|. (4)

As |M| = |A| = |D| = n(Sk(G)) − γsp(Sk(G)) and n(Sk(G)) = n + k m(G), inequality (4) implies

γsp(Sk(G)) = n(Sk(G)) − |M| ≥ k + 1

2
m(G) + |E2|. (5)

If E2 �= ∅ or G contains an even cycle, (5) itself proves the required lower bound. From now on, we assume that there is no 
even cycle in G and that E2 = ∅.

Consider an edge vi v j ∈ E A with vi(vi v j)1 ∈ M . As M contains k+1
2 edges from P vi ,v j that includes vi(vi v j)1 but not 

(vi v j)k v j , M contains the following edges from the super edge:

vi(vi v j)1, (vi v j)2(vi v j)3, . . . , (vi v j)4t(vi v j)4t+1.

By Lemma 2.4, vi ∈ A implies (vi v j)1 ∈ B; the latter implies (vi v j)2 ∈ B . Since (vi v j)2(vi v j)3 ∈ M , we infer (vi v j)3 ∈ A; 
and so on. We obtain that (vi v j)s ∈ B if and only if s mod 4 ∈ {1, 2}; otherwise, (vi v j)s ∈ A. In the last step, v j ∈ B also 
follows. It can be proved analogously that vi v j ∈ E B and vi ∈ B implies v j ∈ A.

Let

V ′ = {vi : ∃ j ∈ [n] s.t. vi(vi v j)1 ∈ M}, V ′′ = {v j : ∃i ∈ [n] s.t. vi(vi v j)1 ∈ M},

7
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and define a DR-function φ : V ′ → E A ∪ E B such that φ(vi) = vi v j if vi(vi v j)1 ∈ M . Since E2 = ∅, it is an injective function. 
Moreover, if the edge vi v j is in the image of φ, then one from vi and v j belongs to A and the other one to B . Thus, φ
remains a DR-function on V ′ , if we consider the following bipartite subgraph F instead of G . We first take the induced 
subgraph G[V F ], where V F = V ′ ∪ V ′′ , and then delete the edges inside V F ∩ A and V F ∩ B . We may also say that this 
graph F is defined by the edge set EG [V F ∩ A, V F ∩ B]. By supposition, G contains no even cycle. Therefore, the bipartite 
subgraph F contains no cycle at all. By Lemma 5.1, ̂n(F ) ≤ n(F ) − 1 ≤ n − 1. Consequently, no more than n − 1 vertices of G
are covered by an edge from M in Sk(G). This implies |E A | + |E B | ≤ n − 1 and, by (3), we infer |M| ≤ k−1

2 m(G) +n − (n − 1)

that yields

γsp(Sk(G)) ≥ k + 1

2
m(G) + 1,

if G contains no even cycle.

To prove the reverse inequalities, we construct a γsp-set D for G . First we define an appropriate DR-function φ.

• If G contains an even cycle C , take a unicyclic spanning subgraph H of G such that C is the only cycle in H . Then H is 
bipartite, not a tree, and therefore, by Lemma 5.1, ̂n(H) = n. Let AH and B H be the partite classes of H . By Lemma 5.1, 
there is a DR-function φ which assigns a representative edge from E(H) to each vertex from V (G).

• If G contains no even cycle, choose a spanning tree H in G . Again, H is bipartite, but now we have n̂(H) = n − 1. Let 
AH and B H be the partite classes of H . By Lemma 5.1, we can define a DR-function φ that assigns a representative edge 
from E(H) to each vertex from V (G) \ {vn}.

Having a DR-function φ in hand, we define a super dominating set D in Sk(G) with a size that matches the required upper 
bound.

(i) If vi ∈ B H or vi /∈ AH ∪ B H , we set vi ∈ D .
(ii) If φ(vi) = vi v j and vi ∈ AH , let D contain the following vertices from the super edge P vi v j :

(vi v j)1, (vi v j)2, (vi v j)5, (vi v j)6, . . . , (vi v j)4t−3, (vi v j)4t−2, (vi v j)4t+1.

(iii) If φ(vi) = vi v j and vi ∈ B H , let D contain the following vertices from P vi v j :

(vi v j)3, (vi v j)4, (vi v j)7, (vi v j)8, . . . , (vi v j)4t−1, (vi v j)4t .

(iv) If vi v j does not belong to the image set of φ, vi ∈ AH , and i < j, then let D contain the following vertices from P vi v j :

(vi v j)2, (vi v j)3, (vi v j)6, (vi v j)7, . . . , (vi v j)4t−2, (vi v j)4t−1, (vi v j)4t+1.

(v) If vi v j does not belong to the image set of φ, vi ∈ B H , and i < j, let D contain the following vertices from P vi v j :

(vi v j)1, (vi v j)4, (vi v j)5, (vi v j)8, (vi v j)9, . . . , (vi v j)4t, (vi v j)4t+1.

If an internal subdivision vertex, (vi v j)s with 3 ≤ s ≤ 4t − 1, does not belong to D , it is easy to see that a neighbor super 
dominates it. A vertex vi /∈ D with φ(vi) = vi v j is always super dominated by (vi v j)1. The subdivision vertex u = (vi v j)1
does not belong to D , if (iii) or (iv) was applied. In the latter case, (vi v j)2 super dominates u. In the first case, vi ∈ B H

and (N[vi] \ {u}) ⊆ D holds by the determination of D . The subdivision vertex w = (vi v j)2 is missing from D , if (iii) or (v)

was applied. In the first case, (vi v j)3 super dominates w . For the second case, the condition in (v) ensures that vi ∈ D . 
Hence, w is the only neighbor of (vi v j)1 which is outside D . In case (ii), vertex (vi v j)4t is super dominated by (vi v j)4t+1
as in this case vi ∈ AH implies v j ∈ B H and therefore, we have v j ∈ D . In case (iv), vertex (vi v j)4t is super dominated by 
(vi v j)4t−1. A vertex (vi v j)4t+1 is outside D , only if (iii) was applied. In this case, (vi v j)4t super dominates it.

Finally, we determine the size of D . Case (i) puts n −|AH | vertices into D . When the subdivision vertices are considered, 
we put k+1

2 vertices from each Pi, j into D , except when case (iii) is applied. There we deal with |B H | super edges putting 
k−1

2 internal vertices into D from each. This gives

γsp(Sk(G)) ≤ |D| = n − |AH | + m(G)
k + 1

2
− |B H |.

By the determination of the DR-function φ, |AH | + |B H | = n if G contains an even cycle; and |AH | + |B H | = n − 1 if every 
cycle in G is of odd order. Substituting these values in the inequality, we get the required upper bounds on γsp(Sk(G)). This 
finishes the proof of the theorem. �

Let oc(G) denote the number of components in G that contain no even cycles. Then Theorem 5.5 directly implies:
8
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Proposition 5.6. For every graph G and integer k ≡ 1 mod 4, it holds that

γsp(Sk(G)) = k + 1

2
m(G) + oc(G).

A shortest even cycle in a graph can be found in polynomial (actually quadratic) time [26], hence the number of even-
cycle-free components is easy to determine. Thus we may deduce the following result:

Theorem 5.7. If k is a positive integer with k ≡ 1 mod 4, then the super domination number can be computed in polynomial time over 
the class of k-subdivision graphs.

5.3. 4t-subdivisions

Theorem 5.8. For every graph G and integer k ≡ 0 mod 4,

γsp(Sk(G)) = k

2
m(G) + γsp(G).

Proof. Let V (G) = {v1, . . . , vn} and k = 4t . Suppose that D is a γsp-set of Sk(G) and consider A = D and a core B of D . By 
Lemma 2.4, the edges E[A, B] form a matching M in Sk(G). We have three possibilities for a super edge P vi v j .

(a) M contains at most k
2 − 1 edges from P vi v j . Let E0 denote the set of the edges vi v j ∈ E(G) with this property.

(b) M contains exactly k
2 edges from P vi v j . The set of the corresponding edges vi v j in G is denoted by E1.

(c) M contains exactly k
2 +1 edges from P vi v j . In this case, both vi(vi v j)1 and (vi v j)k v j belong to M , and we set vi v j ∈ E2.

By definitions given for E0, E1, E2, the following is true:

|M| ≤ k

2
m(G) + |E2| − |E0|. (6)

To prove that |E2| − |E0| ≤ n − γsp(G), we first consider a super edge P vi v j so that vi v j ∈ E2. The edges

vi(vi v j)1, (vi v j)2(vi v j)3, . . . , (vi v j)4t−2(vi v j)4t−1, (vi v j)4t v j

are all included in M . If vi ∈ A then, by Lemma 2.4, E[A, B] is a matching and the vertices

(vi v j)1, (vi v j)2, (vi v j)5, (vi v j)6, . . . , (vi v j)4t−2, v j

are from B; while the remaining subdivision vertices belong to A. Therefore, vi ∈ A implies v j ∈ B and, similarly, vi ∈ B
implies v j ∈ A.

If vi v j ∈ E2, v p vq ∈ E2 with vi ∈ A, vq ∈ B , and G contains an edge vi vq , then we say that vi vq is a critical edge. As vi

and vq are already covered by M-edges, vi vq /∈ E2. If vi vq ∈ E1, then the k/2 edges in M ∩ E(P vi vq ) have to be

(vi vq)1(vi vq)2, (vi vq)3(vi vq)4, . . . , (vi vq)k−1(vi vq)k.

By Lemma 2.4, vi ∈ A implies (vi vq)1 ∈ A, (vi vq)2, (vi vq)3 ∈ B , (vi vq)4, (vi vq)5 ∈ A, . . . , (vi vq)k ∈ A. Finally, we infer vq ∈ A
that contradicts the assumption vq ∈ B . It implies that vi vq ∈ E0. By symmetry, the same is true if vi ∈ B and vq ∈ A and 
therefore, every critical edge belongs to E0.

We now prove that the maximum for |E2| − |E0| can be attained without the presence of critical edges. Indeed, if vi vq

is a critical edge such that vi v j, v p vq ∈ E2 and vi ∈ A, vq ∈ B , then we may perform the following changes in M:

• Remove the edges M ∩ E(P vi ,v j ) from M and replace them by the complement edge set E(P vi ,v j ) \ M . By this change, 
vi v j is moved to E1, and vi, v j become uncovered by M . So, this step decreases |E2| by 1. After this change vi /∈ A ∪ B
and we can replace the (at most) k

2 − 1 M-edges on P vi ,vq with the following k
2 edges:

(vi vq)1(vi vq)2, (vi vq)3(vi vq)4, . . . , (vi vq)4t−1(vi vq)4t

such that we put (vi vq)1, (vi vq)4, (vi vq)5, . . . , (vi vq)4t into B and the remaining subdivision vertices into A. Since 
vq ∈ B , this step keeps the property E[A, B] = M and, by Lemma 2.4, D = A is a super dominating set in Sk(G). Note 
that this modification removes vi vq from E0.
9
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After applying the described changes, |E2| − |E0| remains the same and we have less critical edges than before. Thus, 
performing the steps iteratively while there is a critical edge, we obtain a matching M ′ and sets A′, B ′ without critical 
edges such that |E2| − |E0| remains unchanged. As there are no critical edges, the E2-edges now form a matching M∗ in 
G such that E[A∗, B∗] = M∗ for the sets A∗ = A′ ∩ V (G) and B∗ = B ′ ∩ V (G). Applying Lemma 2.4 again, we conclude that 
D∗ = A∗ is a super dominating set in G . This yields

|E2| = |M∗| = |A∗| = n − |D∗| ≤ n − γsp(G).

Now inequality chain in (6) can be continued and we obtain

|M| ≤ k

2
m(G) + |E2| − |E0| ≤ k

2
m(G) + n − γsp(G)

which, in turn, proves

γsp(Sk(G)) = n(Sk(G)) − |M|

≥ (n + k m(G)) −
(

k

2
m(G) + n − γsp(G)

)

= k

2
m(G) + γsp(G).

In the second part of the proof we construct a super dominating set D of size k
2 m(G) + γsp(G) in Sk(G). Let D∗ be a 

γsp-set in G with the corresponding sets A∗, B∗ and matching M∗ = EG [A∗, B∗].

(i) If vi ∈ D∗ , we set vi ∈ D .
(ii) If vi v j ∈ M∗ with vi ∈ A∗ and v j ∈ B∗ , let D contain the following vertices from the super edge P vi v j :

(vi v j)1, (vi v j)2, (vi v j)5, (vi v j)6, . . . , (vi v j)4t−3, (vi v j)4t−2.

(iii) If vi v j /∈ M∗ and vi ∈ A∗ then, as EG [A∗, B∗] = M∗ , we have v j ∈ V (G) \ B∗ . Let us put into D the following subdivision 
vertices from P vi v j :

(vi v j)2, (vi v j)3, (vi v j)6, (vi v j)7, . . . , (vi v j)4t−2, (vi v j)4t−1.

(iv) If vi v j /∈ M∗ and vi ∈ B∗ hold and also if both vi and v j are outside A∗ ∪ B∗ , we put into D the following subdivision 
vertices from P vi v j :

(vi v j)1, (vi v j)4, (vi v j)5, . . . , (vi v j)4t−4, (vi v j)4t−3, (vi v j)4t .

In step (i), we put |D∗| = γsp(G) non-subdivision vertices into D . Then, for each super edge considered in (ii) − (iv), we 
put exactly k/2 subdivision vertices into D . As there are no edge vi v j in G with vi ∈ A∗ , v j ∈ B∗ and vi v j /∈ M∗ , we treated 
each super edge of Sk(G) in the steps (ii) − (iv). These sum up |D| = k

2 m(G) + γsp(G).
To check that D is a super dominating set is mainly automatic. We note that if vi /∈ D , then vi ∈ A∗ and there is 

an edge vi v j ∈ M∗ which is considered in (ii). Then, (vi v j)1 super dominates vi . We also remark that in step (ii), the 
vertex (vi v j)4t is super dominated by v j as all the other super edges P v j v p being incident to v j were considered in step 
(iv). There, subdivision neighbors (v j v p)1 = (v p v j)4t were put into D . For a super edge P vi v j that was treated in (iv), 
the condition implies vi, v j ∈ D . Therefore, (vi v j)1 and (vi v j)4t super dominate (vi v j)2 and (vi v j)4t−1, respectively. It 
shows γsp(Sk(G)) ≤ |D| = k

2 m(G) + γsp(G), and together with the first part of the proof give the equality γsp(Sk(G)) =
k
2 m(G) + γsp(G) as required. �

The problem of deciding whether γsp(F ) ≤ � holds, clearly belongs to NP. Let � be part of the input of the problem 
and k be a fixed integer with k ≡ 0 mod 4. By Theorem 4.1, it is NP-hard to decide whether γsp(G) ≤ � holds over the 
class of all graphs. By Theorem 5.8, γsp(G) ≤ � holds if and only if γsp(Sk(G)) ≤ k

2 m(G) + �. Thus, we may conclude the 
following:

Theorem 5.9. Over the class of k-subdivision graphs, it is NP-complete to decide whether γsp(F ) ≤ � holds, if � is part of the input and 
k is a fixed integer with k ≡ 0 mod 4.
10
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5.4. II-matchings

Before continuing our study with the last case for subdivision graphs, we introduce a graph invariant and prove an 
additional complexity result.

In a graph G , an induced matching is a matching M ⊆ E(G) such that the induced subgraph G[V (M)] contains only the 
edges from M . We denote by i(G) the maximum size of an induced matching in G . Induced matchings are applicable in 
network flow problems, secure communication, VLSI design, and elsewhere, cf. [9,21]. To decide whether i(G) ≥ � holds is 
known to be NP-hard in many classes of graphs, say in planar bipartite graphs [23] and in claw-free graphs [17]. For exact 
algorithms for maximum induced matchings see [20,25], and for the complexity aspects of the maximum-weight induced 
matchings and dominating induced matchings see [15,5], respectively, and references therein.

We further say that a matching M is an II-matching if M can be partitioned into two induced matchings M1 and M2. 
The II-matching number ii(G) of G is the maximum size of an II-matching in G . We prove that the II-matching number is 
hard to determine.

Proposition 5.10. It is NP-complete to decide whether ii(G) ≥ � holds, if � is part of the input.

Proof. To decide whether the independence number α(F ) of a graph F is at least k is a classical NP-complete problem [12]. 
We show a polynomial-time reduction from the decision problem of α(F ) ≥ k to the problem of ii(G) ≥ 2k.

Construction For every graph F , let G F be the graph constructed on the vertex set V (G) × V (K4), where V (K4) = [4], by 
making two different vertices (x, i) and (y, j) adjacent in G F if either xy ∈ E(F ) or x = y. (We note in passing that G F is 
isomorphic to the lexicographic product F ◦ K4.) Let V (F ) = {v1, . . . , vn} and let V i denote the vertex set {vi} × [4] in G F .

Reduction We show that ii(G F ) = 2α(F ) holds for every graph F and therefore, deciding whether α(F ) ≥ k is equivalent to 
the problem of whether ii(G F ) ≥ 2k holds.

First, consider a maximum independent set S in F and define the edge sets

M1 = {(x,1)(x,2) : x ∈ S} and M2 = {(x,3)(x,4) : x ∈ S}.
By definition, |M1| = |M2| = α(F ), M1 ∪ M2 is a matching in G F and, since S is an independent set in F , both M1 and M2
are induced matchings. It follows that ii(G F ) ≥ 2α(F ).

Assume now, that we have a maximum II-matching M = M1 ∪M2 in G F . If the induced matching M1 contains a cross edge
xy, that is an edge xy with x ∈ V i , y ∈ V j such that i �= j, then M1 cannot cover any other vertex from the neighborhood of 
x. Equivalently, if vi vi′ is an edge in F , then V i′ ∩ V (M1) cannot contain a vertex different from y. Thus, if the cross edge 
xy is replaced in M1 with an arbitrary edge inside V i , the set M1 remains an induced matching. As M2 is also an induced 
matching, it covers at most two vertices from V i . We therefore have a vertex x′ ∈ V i such that (M \ {xy}) ∪ {xx′} is an II-
matching and |M| = |M ′|. Repeating this procedure for all cross edges in M1 ∪ M2, we obtain an II-matching without cross 
edges. Again, we may refer to the property that if V i contains an edge from Mp , for p ∈ [2], then V (Mp) ∩ V i′ = ∅ whenever 
vi vi′ ∈ E(F ). We may conclude that |Mp | ≤ α(F ) and hence, |M| ≤ 2α(F ). This finishes the proof for ii(G F ) = 2α(F ).

Conclusion As G F is obtained by a polynomial-time construction from F , and the NP-complete problem of deciding whether 
α(F ) ≥ k holds can be reduced to the problem of deciding about ii(G F ) ≥ 2k, the latter problem is also NP-hard. It is also 
clear that the decision problem of ii(G) ≥ � belongs to NP. Thus, we may infer that the problem is NP-complete over the 
class of all graphs. �
5.5. (4t + 2)-subdivisions

Theorem 5.11. For every graph G and integer k ≡ 2 mod 4,

γsp(Sk(G)) = k

2
m(G) + n(G) − ii(G).

Proof. Let V (G) = {v1, . . . , vn}, and k = 4t + 2. Choose a γsp-set D of Sk(G). Let A = D and B an arbitrary core of D . By 
Lemma 2.4, the edges E[A, B] form a matching M in Sk(G). Again, we have three possibilities for a super edge P vi v j .

(a) M contains at most k
2 − 1 edges from P vi v j . Let E0 denote the set of the edges vi v j ∈ E(G) with this property.

(b) M contains exactly k
2 edges from P vi v j . The set of the corresponding edges vi v j in G is denoted by E1.

(c) M contains exactly k +1 edges from P vi v j . In this case, both vi(vi v j)1 and (vi v j)k v j belong to M , and we set vi v j ∈ E2.
2

11
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By definitions, the following inequality holds:

|M| ≤ k

2
m(G) + |E2| − |E0|. (7)

For every edge vi v j ∈ E2 of G , the super edge P vi v j must contain the edges vi(vi v j)1, (vi v j)2(vi v j)3, . . . , (vi v j)4t v j

from M . Moreover, if vi ∈ A in Sk(G) then, by Lemma 2.4, E[A, B] is a matching in Sk(G) and

B ∩ V (P vi v j ) = {(vi v j)1, (vi v j)2, (vi v j)5, (vi v j)6, . . . , (vi v j)4t+1, (vi v j)4t+2}.
The remaining subdivision vertices and v j then belong to A. Therefore, vi ∈ A implies v j ∈ A and, similarly, vi ∈ B implies 
v j ∈ B if vi v j ∈ E2. We may therefore partition E2 into

E A = {vi v j : vi v j ∈ E2 and vi, v j ∈ A} and E B = {vi v j : vi v j ∈ E2 and vi, v j ∈ B}.
Suppose now that E A contains two edges vi v j and v p vq and there exists an edge vi vq ∈ E(G). We will say that vi vq

is an A-critical edge. As vi and vq are already covered by M-edges, vi vq /∈ E2. By the same reason, if vi vq ∈ E1, then 
the k/2 edges in M ∩ E(P vi vq ) are (vi vq)1(vi vq)2, . . . , (vi vq)4t+1(vi vq)4t+2. Referring to Lemma 2.4 again, vi ∈ A implies 
(vi vq)1 ∈ A, (vi vq)2, (vi vq)3 ∈ B, . . . , (vi vq)4t+2 ∈ B , and also that vq ∈ B . As vq ∈ A was supposed, it is a contradiction. We 
may infer that vi vq ∈ E0 holds for every A-critical edge. The same is true for the set B; that is if vi v j, v p vq ∈ E B and a 
B-critical edge vi vq is present in G , then vi vq ∈ E0.

We now prove that the maximum for |E2| − |E0| can be attained without the presence of A- and B-critical edges. 
Indeed, let vi vq be an A-critical edge such that vi v j, v p vq ∈ E A . We may perform the following alteration in M with-
out decreasing |E2| − |E0|. First we remove the edges M ∩ E(P vi ,v j ) from M and replace them by the complement 
edge set E(P v1,v j ) \ M . Then, we also remove the at most k

2 − 1 edges M ∩ E(P vi vq ) and replace them by the k
2 edges 

(vi vq)1(vi vq)2, . . . , (vi vq)4t+1(vi vq)4t+2. After these changes we update the sets A and B along P vi v j and P vi vq such that, 
for x ∈ { j, q} and s ∈ [4t + 2], a subdivision vertex (vi vx)s belongs to B if s mod 4 ∈ {0, 1}, otherwise it is put into A. The 
vertices vi , v j are not in A anymore, but we still have vq ∈ A. It can be checked that E[A, B] remains a matching and, by 
Lemma 2.4, D = A is a super dominating of Sk(G). By this change, both vi v j and vi vq are moved to E1, the number of 
A-critical edges is decreased, while |E2| − |E0| remains the same. By the symmetry of the roles of the sets A and B , if a 
B-critical edge exists, we may do the analogous changes.

Repeating these changes while there are critical edges, we obtain a matching M and a super dominating set D without 
decreasing |E2| − |E0|. The edges in E2 still form a matching as every u ∈ V (G) is covered only one edge from M; and the 
absence of A- and B-critical edges means that both E A and E B are induced matchings in G . It implies that the obtained M
is an II-matching and hence, |E2| ≤ ii(G). From (7), we now obtain

|M| ≤ k

2
m(G) + ii(G),

and we may conclude

γsp(Sk(G)) = n(Sk(G)) − |M| ≥ k

2
m(G) + n(G) − ii(G). (8)

To complete the proof, we show that there exists a super dominating set D of the required cardinality in Sk(G). Let 
M∗ = M∗

1 ∪ M∗
2 be a maximum II-matching in G . The set D is constructed by the following five rules.

(i) A vertex vi ∈ V (G) belongs to D if and only if vi /∈ V (M∗
1).

(ii) If vi v j ∈ M∗
1, then D contains the following vertices from the super edge P vi v j :

(vi v j)1, (vi v j)2, (vi v j)5, (vi v j)6, . . . , (vi v j)4t+1, (vi v j)4t+2.

(iii) If vi v j ∈ M∗
2, then D contains the following vertices from P vi v j :

(vi v j)3, (vi v j)4, (vi v j)7, (vi v j)8, . . . , (vi v j)4t−1, (vi v j)4t .

(iv) If vi v j /∈ M∗ and vi ∈ V (M∗
1), then v j /∈ V (M∗

1). In this case, we put the following subdivision vertices into D:

(vi v j)2, (vi v j)3, (vi v j)6, (vi v j)7, . . . , (vi v j)4t−2, (vi v j)4t−1, (vi v j)4t+2.

(v) If vi v j /∈ M∗ and vi ∈ V (M∗
2), v j /∈ V (M∗), and also if vi, v j /∈ V (M∗), we put the following subdivision vertices into D:

(vi v j)1, (vi v j)4, (vi v j)5, . . . , (vi v j)4t, (vi v j)4t+1.
12
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In step (i) we put n(G) − 2|M∗
1| non-subdivision vertices into D; in step (ii) we consider |M∗

1| super edges and put k+2
2

subdivision vertices from each into D; in (iii) |M∗
2| super edges are considered and put |M∗

2| k+2
2 vertices into D . For the 

remaining edges vi v j of G step (iv) or (v) is applied. In either case, D contains exactly k
2 subdivision vertices from P vi v j . 

The size of D is therefore

|D| = (n(G) − 2|M∗
1|) + |M∗

1|
(

k

2
+ 1

)
+ |M∗

2|
(

k

2
− 1

)
+ (m(G) − |M∗

1| − |M∗
2|) k

2

= k

2
m(G) + n(G) − (|M∗

1| + |M∗
2|)

= k

2
m(G) + n(G) − ii(G).

It is straightforward to check that D is a super dominating set in Sk(G). We notice that if a vertex vi ∈ V (G) does not belong 
to D , then there exists an edge vi v j ∈ M∗

1 and, by (ii), the subdivision vertex (vi v j)1 super dominates vi . If vi ∈ V (M∗
2)

such that vi v j ∈ M∗
2, then vi ∈ D and (vi v j)1 is vi ’s only neighbor which is not in D . Then, vi super dominates (vi v j)1

(that is the same as (v j vi)4t+2). For a super edge P vi v j considered in (v), both ends vi and v j belong to D and hence, 
(vi v j)1 super dominates (vi v j)2.

Since the constructed set D is a super dominating set, we may conclude

γsp(Sk(G)) ≤ |D| = k

2
m(G) + n(G) − ii(G)

which, together with (8), complete the proof of the theorem. �
As a consequence of Proposition 5.10 and Theorem 5.11, we obtain the following result.

Theorem 5.12. Over the class of k-subdivision graphs, it is NP-complete to decide whether γsp(F ) ≤ � holds, if � is part of the input 
and k is a fixed integer with k ≡ 2 mod 4.

6. Conclusions

We conclude the paper by summarizing our main results on the computational complexity of the following problem.

SUPER DOMINATION (S-DOM) PROBLEM

Instance: A simple undirected graph G and an integer �.
Question: Does γsp(G) ≤ � hold?

By Theorems 3.1, 4.1, 5.4, 5.7, 5.9, and 5.12, we can conclude the following summary.

• The S-DOM problem is NP-complete over the following graph classes:
(A) Bipartite graphs of girth at least 8;
(B) Class of k-subdivision graphs if k is a fixed even integer.

• The S-DOM problem can be solved in polynomial time over the following graph classes:
(C) Trees;
(D) Class of k-subdivision graphs if k is an odd integer.

Classes (A), (C), and (D) are subclasses of bipartite graphs. However, to get a better picture of the computational complexity 
of the S-DOM problem on the class of bipartite graphs, we propose the following problems.

Problem 6.1. Find a subclass C of (A) so that the S-DOM problem remains NP-complete on C .

Problem 6.2. Find further subclasses of bipartite graphs over which the S-DOM problem can be solved in polynomial time.

The ultimate goal we set is a complete characterization:

Problem 6.3. Characterize the subclasses of bipartite graphs over which the S-DOM problem remains NP-complete.
13
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