Computational complexity aspects of super domination ${ }^{\text {* }}$

Csilla Bujtás ${ }^{\text {a,d }}$, Nima Ghanbari ${ }^{\text {b }}$, Sandi Klavžarar ${ }^{\text {a,c,d,* }}$
${ }^{\text {a }}$ Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
${ }^{\text {b }}$ Department of Informatics, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
${ }^{\text {c }}$ Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
${ }^{\text {d }}$ Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

A R T I C L E I N F O

Article history:

Received 13 March 2023
Received in revised form 10 August 2023
Accepted 11 August 2023
Available online 18 August 2023
Communicated by D. Manlove

Keywords:

Super domination number Tree
Bipartite graph
k-subdivision of a graph
Computational complexity
Matching
II-matching

Abstract

Let G be a graph. A dominating set $D \subseteq V(G)$ is a super dominating set if for every vertex $x \in V(G) \backslash D$ there exists $y \in D$ such that $\left.N_{G}(y) \cap(V(G) \backslash D)\right)=\{x\}$. The cardinality of a smallest super dominating set of G is the super domination number of G. An exact formula for the super domination number of a tree T is obtained, and it is demonstrated that a smallest super dominating set of T can be computed in linear time. It is proved that it is NP-complete to decide whether the super domination number of a graph G is at most a given integer if G is a bipartite graph of girth at least 8 . The super domination number is determined for all k-subdivisions of graphs. Interestingly, in half of the cases the exact value can be efficiently computed from the obtained formulas, while in the other cases the computation is hard. While obtaining these formulas, II-matching numbers are introduced and proved that they are computationally hard to determine.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let $G=(V(G), E(G))$ be a graph. Then $D \subseteq V(G)$ is a dominating set if every vertex in $\bar{D}=V(G) \backslash D$ is adjacent to at least one vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. Graph domination theory has been extensively researched so far. To capture the current state of the field, we refer the reader to two recent edited books [10,11].

Many variations of the domination have been introduced, some of which are significant and important (such as total domination and connected domination), while others are of only sporadic importance. In our view, the group of significant domination concepts includes super domination which was introduced in 2015 by Lemańska, Swaminathan, Venkatakrishnan, and Zuazua [18].

It is known [3] that every isolate-free graph G has a minimum dominating set D such that for each $v \in D$ there exists a vertex u (called external private neighbor) in $\bar{D}=V(G) \backslash D$ with $N_{G}(u) \cap D=\{v\}$. (As usual, $N_{G}(x)$ stands for the open neighborhood of x in G and $N_{G}[x]$ for the closed neighborhood of x in G.) By switching the roles of D and \bar{D} in the latter property, we arrive at the following concept. A dominating set D of G is a super dominating set of G, if for every vertex $u \in \bar{D}$ there exists $v \in D$ such that $N_{G}(v) \cap \bar{D}=\{u\}$. The cardinality of a smallest super dominating set of G is the super

[^0]domination number $\gamma_{\mathrm{sp}}(G)$ of G. A super dominating set of cardinality $\gamma_{\mathrm{sp}}(G)$ is briefly called a γ_{sp}-set. The initial study of the concept has been followed by several sequels, of which the reader is referred to [6,8,14,16,22,28].

The subdivision of a graph G is the graph obtained from G by replacing each edge with a disjoint path of length 2 and is denoted by $S(G)$. More generally, if $k \geq 1$, then the graph $S_{k}(G)$ is obtained from G by replacing each edge with a disjoint path of length $k+1$, that is, subdividing each of its edges k times. Clearly, $S(G)=S_{1}(G)$. Some authors use the term complete k-subdivision for what we call k-subdivision, but since all our subdivisions are complete, we simplify the terminology. The concept of k-subdivisions is ubiquitous in graph theory, here we cite its presence in graph colorings [1,24], spectral graph theory [4], structural graph theory [19,27], and chemical graph theory [2,13].

In this article we discuss various aspects of super domination, which are in one way or another intertwined with the computational complexity of the problem of determining the super domination number. In the next section we recall some definitions and known results, and state a useful characterization of super dominating sets. Super domination has already been considered on trees from several perspectives, see $[16,18,22,28]$. By now, only sharp upper and lower bounds have been obtained. In Section 3 we fill this gap by providing an exact formula for the super domination number of a tree. Moreover, we demonstrate that if T is a tree, then $\gamma_{\mathrm{sp}}(T)$ as well as a γ_{sp}-set of T can be computed in linear time. On the negative side, in Section 4, we prove that it is NP-complete to decide whether $\gamma_{\mathrm{sp}}(G) \leq k$ holds if G is a bipartite graph of girth $g(G) \geq 8$ and the positive integer k is part of the input. In our longest part of the paper, Section 5 , we consider k-subdivisions of arbitrary graphs. Depending on $k \bmod 4$, four closed formulas for $\gamma_{\mathrm{sp}}\left(S_{k}(G)\right)$ are proved. When $k \bmod 4 \in\{1,3\}$, the corresponding formulas depend only of k, the size of G, and a simple condition on the cycles of G. Note that in these two cases $S_{k}(G)$ is bipartite. On the other hand, if $k \bmod 4=0$, then $\gamma_{\mathrm{sp}}\left(S_{k}(G)\right)$ is a function of $\gamma_{\mathrm{sp}}(G)$ also, and if $k \bmod 4=2$, then $\gamma_{\mathrm{sp}}\left(S_{k}(G)\right)$ depends also on the cardinality of a largest matching that admits a partition into two induced matchings. We name such matchings as II-matchings and prove that it is NP-hard to compute the maximum size of such matchings. It follows that for each even k, it is also NP-hard to determine $\gamma_{\mathrm{sp}}\left(S_{k}(G)\right)$.

2. Preliminaries

The order and the size of a graph G will be denoted by $n(G)$ and $m(G)$, respectively. If D is a super dominating set of G and if for a vertex $x \in \bar{D}$ the vertex $y \in D$ has the property $N_{G}(y) \cap \bar{D}=\{x\}$, then we will say that x is super dominated by y.

Let G be a graph. Then the independence number of G will be denoted by $\alpha(G)$, the matching number of G by $\alpha^{\prime}(G)$, and the vertex cover number of G by $\beta(G)$. A set $X \subseteq V(G)$ is a 2-packing of G if $d_{G}(u, v) \geq 3$ holds for each pair of vertices $u, v \in X$. In other words, each pair of vertices of X has disjoint closed neighborhoods. The cardinality of a smallest 2-packing of G will be denoted by $\rho(G)$.

The path in $S_{k}(G)$ obtained by k times subdividing an edge $u v \in E(G)$ will be denoted by $P_{u v}$ and addressed to as a super edge. The vertices of $P_{u v}$ will be denoted by $u,(u v)_{1}, \ldots,(u v)_{k}, v$. Note that $n\left(S_{k}(G)\right)=n(G)+k \cdot m(G)$ and $m\left(S_{k}(G)\right)=$ $(k+1) m(G)$. We say that a graph is a k-subdivision graph if it can be obtained as a k-subdivision of some graph.

We next recall a few results on the super domination number needed later on.
Theorem 2.1. [18] If G is a graph without isolated vertices, then,

$$
1 \leq \gamma(G) \leq \frac{n}{2} \leq \gamma_{\mathrm{sp}}(G) \leq n(G)-1
$$

Theorem 2.2. [14, Theorem 3, Corollary 2] If G is a graph with $n(G) \geq 2$, then

$$
n(G)-\alpha^{\prime}(G) \leq \gamma_{\text {sp }}(G) \leq n(G)-\rho(G)
$$

Since $n(G)=\alpha(G)+\beta(G)$ in general and $\alpha^{\prime}(G)=\beta(G)$ when G is bipartite, Theorem 2.2 implies that if G is bipartite, then $\gamma_{\mathrm{sp}}(G) \geq \alpha(G)$.

Theorem 2.3. [18] The following exact values are valid.
(i) If $n \geq 2$, then $\gamma_{\text {sp }}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.
(ii) If $n \geq 3$, then

$$
\gamma_{\mathrm{sp}}\left(C_{n}\right)= \begin{cases}\left\lceil\frac{n+1}{2}\right\rceil ; & n \equiv 2 \bmod 4 \\ \left\lceil\frac{n}{2}\right\rceil ; & \text { otherwise }\end{cases}
$$

(iii) If $n \geq 2$, then $\gamma_{\text {sp }}\left(K_{1, n}\right)=n$.

Let G be a graph, and let D be a super dominating set of G. For each $u \in \bar{D}$, select an arbitrary vertex $u^{\prime} \in D$ such that u is the unique neighbor of u^{\prime} in \bar{D}, that is, $N\left(u^{\prime}\right) \cap \bar{D}=\{u\}$. Then we say that the set

$$
D^{*}=\left\{u^{\prime} \in D: u \in \bar{D}\right\}
$$

is a core of D. By this definition, there exists a matching between \bar{D} and D^{*} that covers $\bar{D} \cup D^{*}$. Moreover, the following result holds which seems of independent interest. Before stating it, we introduce a notation. For two disjoint vertex sets $A, B \subseteq V(G)$ let $E_{G}[A, B]$ denote the set of all edges between A and B in G.

Lemma 2.4. Let A and B be two disjoint vertex sets of a graph G. Then $D=\bar{A}$ is a super dominating set and B is a core of D if and only if $E_{G}[A, B]$ is a matching that covers all vertices in $A \cup B$.

Proof. Suppose that $D=\bar{A}$ is a super dominating set and let B be its core. By definition of the core, every vertex from B has exactly one neighbor from A, so that $\left|N_{G}(x) \cap B\right|=1$ if $x \in A$ and $\left|N_{G}(y) \cap A\right|=1$ whenever $y \in B$. It shows that $E_{G}[A, B]$ is a matching that covers $A \cup B$.

Now, suppose that A, B are disjoint vertex sets in G such that $E_{G}[A, B]$ is a matching that covers $A \cup B$. Define $D=\bar{A}$ and observe that every $x \in A$ is super dominated by the vertex y that is the pair of x in the matching $E_{G}[A, B]$. Indeed, by our assumption, $y \in D$ and $N_{G}(y) \cap A=\{x\}$. It also follows that B can be considered as a core of D.

Note that Lemma 2.4 implies the lower bound of Theorem 2.2. Moreover, it also implies the following.
Corollary 2.5. If D is a super dominating set of a graph G, and D^{*} is a core of D, then $\left(D \backslash D^{*}\right) \cup \bar{D}$ is also a super dominating set of G. In particular, if D is a γ_{sp}-set, then $\left(D \backslash D^{*}\right) \cup \bar{D}$ is also a γ_{sp}-set.

Proof. The first assertion follows directly by Lemma 2.4. And as $\left|\left(D \backslash D^{*}\right) \cup \bar{D}\right|=|D|$, the second assertion also follows.
Corollary 2.6. If G is a graph and $v \in V(G)$, then there exists a γ_{sp}-set of G that contains v.
Proof. Let D be an arbitrary γ_{sp}-set of G. If $v \in D$ there is nothing to prove. Otherwise consider a core D^{*} of G. Then $v \in\left(D \backslash D^{*}\right) \cup \bar{D}$ which is a $\gamma_{\text {sp }}$-set by Corollary 2.5.

It is interesting to compare Corollary 2.6 with [28, Proposition 2.4] which asserts that if v is a leaf of a non-trivial tree T, then there exists a γ_{sp}-set of T which does not contain v.

3. Super domination number of trees

The main result of this section reads as follows.
Theorem 3.1. If T is a tree, then $\gamma_{\mathrm{sp}}(T)=n(T)-\alpha^{\prime}(T)$. Moreover, a γ_{sp}-set of T can be determined in linear time over the class of trees.

Proof. Consider a maximum matching M in T. We will show that $V(M)$ can be partitioned into two vertex sets A and B such that $E_{T}[A, B]=M$. By Lemma 2.4, it will imply that there is a super dominating set of cardinality $n(T)-|A|=n(T)-$ $|M|=n(T)-\alpha^{\prime}(T)$. Together with the inequality $\gamma_{\mathrm{sp}}(G) \geq n(G)-\alpha^{\prime}(G)$ from Theorem 2.1 we obtain $\gamma_{\mathrm{sp}}(T)=n(T)-\alpha^{\prime}(T)$ for the tree, as stated.

To construct the sets A and B, we first specify a root vertex r such that r is covered by M. We first put r into A and consider the children v_{1}, \ldots, v_{k} of r. If $r v_{i} \in M$, we put v_{i} into B; if $r v_{i} \notin M$ but $v_{i} \in V(M)$, we put v_{i} into A; if $v_{i} \notin V(M)$, then v_{i} remains outside $A \cup B$. We continue analogously while traversing the tree in preorder. When we decide about the children u_{1}, \ldots, u_{ℓ} of a vertex u, we have three main cases.

- First, let $u \notin V(M)$. Then, if $u_{i} \in V(M)$, we put u_{i} into A; if $u_{i} \notin V(M)$, we put it into neither A nor B.
- Suppose that $u \in A$. If $u u_{i} \in M$, put u_{i} into B; if $u u_{i} \notin M$ and $u_{i} \in V(M)$, put u_{i} into A; if $u_{i} \notin V(M)$, leave u_{i} outside $A \cup B$.
- The case when $u \in B$ is analogous to the previous one. If $u u_{i} \in M$, we put u_{i} into A; if $u u_{i} \notin M$ and $u_{i} \in V(M)$, we put u_{i} into B; if $u_{i} \notin V(M)$, we leave u_{i} outside $A \cup B$.

It is clear that for the constructed sets, (A, B) results in a partition of $V(M)$ such that $M=E_{T}[A, B]$. Therefore, by Lemma 2.4, $D=\bar{A}$ is a super dominating set in T and we may infer $\gamma_{\mathrm{sp}}(T)=n(T)-\alpha^{\prime}(T)$.

Concerning the construction of a γ_{sp}-set of a tree, we remark that a maximum matching of a tree can be obtained in linear time. Once the matching M is in hand, the algorithm described in the proof assigns labels $A, B, \overline{A \cup B}$ to the vertices in preorder, visiting every vertex only once and making a choice according to local properties. Thus, the determination of a γ_{sp}-set of a tree can be done in linear time as stated.

Extending the definition of the subdivision of a graph by setting $S_{0}(G)=G$, the following result can be considered as a generalization of Theorem 2.3(iii).

Corollary 3.2. If $k \geq 0$ and $n \geq 2$, then

$$
\gamma_{\mathrm{sp}}\left(S_{k}\left(K_{1, n}\right)\right)= \begin{cases}\frac{n(k+2)}{2} ; & k \text { even } \\ \frac{n(k+1)}{2}+1 ; & k \text { odd }\end{cases}
$$

Proof. By Theorem 2.3(iii), $\gamma_{\text {sp }}\left(S_{0}\left(K_{1, n}\right)\right)=\gamma_{\text {sp }}\left(K_{1, n}\right)=n$, hence the assertion holds for $k=0$.
It is straightforward to see that if $k \geq 2$ is even, then $\alpha^{\prime}\left(S_{k}\left(K_{1, n}\right)\right)=n \frac{k}{2}+1$, and if $k \geq 1$ is odd, then $\alpha^{\prime}\left(S_{k}\left(K_{1, n}\right)\right)=n \frac{k+1}{2}$. The result now follows by applying Theorem 3.1.

4. Bipartite graphs

By Theorem 3.1, the super domination number and a γ_{sp}-set can be determined in linear time for trees. In this section we show that the same problem is NP-hard over the class of bipartite graphs.

Theorem 4.1.

(a) It is NP-complete to decide whether $\gamma_{\mathrm{sp}}(G) \leq k$ holds if G is a bipartite graph of girth $g(G) \geq 8$ and the positive integer k is part of the input.
(b) It is NP-complete to decide whether $\gamma_{\mathrm{sp}}(G)=n(G)-\alpha^{\prime}(G)$ holds if G is bipartite and $g(G) \geq 8$.

Proof. As $\gamma_{\mathrm{sp}}(G) \geq n(G)-\alpha^{\prime}(G)$ holds for every graph G, the equality in (b) is equivalent to the inequality $\gamma_{\mathrm{sp}}(G) \leq$ $n(G)-\alpha^{\prime}(G)$. Thus, both decision problems (a) and (b) belong to NP. In order to prove that the decision problems in (a) and (b) are NP-hard, we present a polynomial-time reduction from 3-SAT problem, which is a classical NP-complete problem [7].

Let F be a 3-SAT instance with clauses C_{1}, \ldots, C_{ℓ} over the Boolean variables x_{1}, \ldots, x_{s}. We construct a graph G_{F} such that F is satisfiable if and only if $\gamma_{\text {sp }}\left(G_{F}\right) \leq 4 s+3 \ell+1$.

Construction of G_{F} For each variable x_{i}, we take eight vertices that form the set $X_{i}=\left\{x_{i}^{-}, x_{i}^{+}, x_{i}^{1}, \ldots, x_{i}^{6}\right\}$ and add edges such that $x_{i}^{1} x_{i}^{-} x_{i}^{2} x_{i}^{4} x_{i}^{5} x_{i}^{+} x_{i}^{6}$ is an induced path and $x_{i}^{3} x_{i}^{4}$ is a pendant edge in G_{F}. Each clause C_{j}, will be represented by a vertex c_{j} in G_{F}. If x_{i} is a literal in C_{j}, we add an edge $x_{i}^{+} c_{j}$ and subdivide it by a vertex $y_{j, i}$. Similarly, if $\neg x_{i}$ is a literal in C_{j}, we add an edge $x_{i}^{-} c_{j}$ and subdivide it by a vertex $y_{j, i}$. The set of these subdivision vertices will be denoted by Y. To finish the construction, we add two further vertices, namely v and v^{*}, and the edges $v v^{*}$ and $v^{*} c_{j}$ for each $j \in[\ell]$. (See Fig. 1 for illustration.) It is easy to check that the constructed graph G_{F} is bipartite with $n\left(G_{F}\right)=8 s+4 \ell+2$ and, moreover, if G is not a tree, ${ }^{1}$ then its girth is at least 8 .

We first prove that $\alpha^{\prime}\left(G_{F}\right)=4 s+\ell+1$. Let M be a matching in G_{F}. For every $i \in[s]$, the vertices in X_{i} may be incident with at most four edges from M. Each clause vertex c_{j} may be incident with one edge from M. The only edge in G_{F} that is not covered by the previous vertices is $v v^{*}$ and it may belong to M only if $c_{j} v^{*} \notin M$ holds for all $j \in[\ell]$. This proves $\alpha^{\prime}\left(G_{F}\right) \leq 4 s+\ell+1$ and it is easy to find a matching of size $4 s+\ell+1$ in G_{F}. Therefore, $\alpha^{\prime}\left(G_{F}\right)=4 s+\ell+1$. Moreover, every maximum matching contains the following edges: $v v^{*} ; x_{i}^{2} x_{i}^{3}$ and $x_{i}^{4} x_{i}^{5}$ for every $i \in[s]$; one edge between c_{j} and Y for every $j \in[\ell]$; one edge between x_{i}^{+}and $Y \cup\left\{x_{i}^{6}\right\}$ and one edge between x_{i}^{-}and $Y \cup\left\{x_{i}^{1}\right\}$ for every $i \in[s]$.

Now, suppose that $\gamma_{\mathrm{sp}}\left(G_{F}\right) \leq 4 s+3 \ell+1$ holds and prove that the 3 -SAT formula F is satisfiable. Since $\alpha^{\prime}\left(G_{F}\right)=4 s+\ell+1$, by Theorem 2.1 the condition is equivalent with $\gamma_{\mathrm{sp}}\left(G_{F}\right)=4 s+3 \ell+1$. Let D be a minimum γ_{sp}-set in G_{F}. By Lemma 2.4, there are two disjoint vertices sets $A=\bar{D}$ and $B=D^{*}$ such that $|A|=|B|=n\left(G_{F}\right)-\gamma_{\text {sp }}\left(G_{F}\right)=4 s+\ell+1$ and $E_{G_{F}}[A, B]$ is a matching M. Since M is a maximum matching, for every $i \in[s]$, we have $x_{i}^{-}, x_{i}^{+} \in V(M)$ and $x_{i}^{2} x_{i}^{3}, x_{i}^{4} x_{i}^{5} \in M$. By the condition $E_{G_{F}}[A, B]=M$, if $x_{i}^{+} \in A$ holds, then $x_{i}^{5} \in A$ and $x_{i}^{4}, x_{i}^{2}, x_{i}^{-} \in B$ follow. Analogously, if $x_{i}^{+} \in B$, we may conclude $x_{i}^{-} \in A$. Therefore, we may define a truth function $\varphi: X \rightarrow\{$ true, false $\}$ in the following way:

$$
\varphi\left(x_{i}\right)= \begin{cases}\text { true; } & x_{i}^{+} \in B \\ \text { false; } & x_{i}^{-} \in B\end{cases}
$$

[^1]

Fig. 1. Graph G_{F} for the formula $F=\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3} \vee x_{4}\right)$ constructed in the proof of Theorem 4.1.
By Corollary 2.5, we may suppose that $v^{*} \in A$. Consider a clause vertex c_{j}. As $v^{*} c_{j} \notin M$ and $c_{j} \in V(M)$, the vertex c_{j} also belongs to A. If $y_{j, i}$ is the vertex from Y such that $c_{j} y_{j, i} \in M$, then $y_{j, i} \in B$. Suppose first that the other neighbor of $y_{j, i}$ is x_{i}^{+}i.e., the clause C_{j} contains the positive literal x_{i}. As $x_{i} \in V(M)$ and $y_{j, i}$ is already covered by one matching edge, $y_{j, i} x_{i}^{+} \notin M$ and $x_{i}^{+} \in B$ holds. Then, by definition, we have $\varphi\left(x_{i}\right)=$ true and the positive literal x_{i}^{+}satisfies clause C_{j}. Similarly, if the other neighbor of $y_{j, i}$ is x_{i}^{-}, then C_{j} contains the literal $\neg x_{i}$. As $E_{G_{F}}[A, B]=M$, we may infer $x_{i}^{-} \in B$. It implies $\varphi\left(x_{i}\right)=$ false and hence, the literal $\neg x_{i}$ satisfies C_{j}. It is true for all clauses in F and proves the satisfiability of the formula.

To prove the other direction of the statement, we suppose that F is satisfied by a truth assignment $\phi: X \rightarrow$ \{true, false $\}$. Let us define

$$
\begin{aligned}
& D=Y \cup\{v\} \cup\left\{x_{i}^{1}, x_{i}^{3}, x_{i}^{5}, x_{i}^{+}: i \in[s] \text { and } \phi\left(x_{i}\right)=\text { true }\right\} \\
& \cup\left\{x_{i}^{-}, x_{i}^{2}, x_{i}^{4}, x_{i}^{6}: i \in[s] \text { and } \phi\left(x_{i}\right)=\text { false }\right\} .
\end{aligned}
$$

It is easy to check that D is a super dominating set and $|D|=4 s+3 \ell+1$. Indeed, it is enough to consider the following connections:

- v super dominates v^{*};
- if $\phi\left(x_{i}\right)=$ true, then x_{i}^{1} super dominates x_{i}^{-}, x_{i}^{3} super dominates x_{i}^{2}, x_{i}^{5} super dominates x_{i}^{4}, and x_{i}^{+}super dominates x_{i}^{6};
- if $\phi\left(x_{i}\right)=$ false, then x_{i}^{-}super dominates x_{i}^{1}, x_{i}^{2} super dominates x_{i}^{3}, x_{i}^{4} super dominates x_{i}^{5}, and x_{i}^{6} super dominates x_{i}^{+};
- if a clause C_{j} is satisfied by a literal x_{i} or $\neg x_{i}$, then the corresponding subdivision vertex $y_{j, i} \in D$ and $N\left(y_{j, i}\right) \cap \bar{D}=\left\{c_{j}\right\}$ and thus, $y_{j, i}$ super dominates c_{j}.

We have proved that the NP-complete problem 3-SAT can be reduced to the problem of deciding whether $\gamma_{\mathrm{sp}}\left(G_{F}\right) \leq$ $n\left(G_{F}\right)-\alpha^{\prime}\left(G_{F}\right)=4 s+3 \ell+1$ holds. The reduction can be done in polynomial time and therefore, we may conclude that both problems (a) and (b) are NP-complete.

5. Super domination in subdivision graphs

5.1. $(4 t+3)$-subdivisions

For a graph G, let $\widehat{n}(G)$ be the maximum size of a subset $\widehat{V} \subseteq V(G)$ such that there exists an injective mapping $\phi: \widehat{V} \rightarrow$ $E(G)$ so that $v \in \phi(v)$ holds for every $v \in \widehat{V}$. We will say that a function ϕ with these properties is a $D R$-function in G; and if $\widehat{n}(G)=n(G)$, we may say that the vertex set of G has a set of distinct representatives (SDR).

Lemma 5.1. If G is a connected graph that is not a tree, then $\widehat{n}(G)=n(G)$. If G is a tree, then $\widehat{n}(G)=n(G)-1$.
Proof. Associate every vertex $v \in V(G)$ with the set $E(v)$ of edges that are incident to v. First, consider a proper subset X of $V(G)$ and the set $E(X)=\bigcup_{v \in X} E(v)$. In the induced subgraph $G[X]$, every component F satisfies $m(F) \geq n(F)-1$ and,
since G is connected and $F \neq G$, the vertex set of F is incident with at least one edge not contained in the subgraph F. These extra edges are pairwise different for different components of $G[X]$. We therefore conclude $|E(X)| \geq|X|$ for every vertex set $X \varsubsetneqq V(G)$. Notice that it is true for every graph G, no matter G is a tree or not. Consider now the case $X=V(G)$. If G is not a tree, then $n(G)=|X| \leq|E(X)|=m(G)$ and, as Hall's Condition is satisfied for each $X \subseteq V(G)$, there exists a system of distinct representatives for the vertex set of G. That is, $\widehat{n}(G)=n(G)$. If G is a tree, $|V(G)|>|E(G)|$ and there is no SDR for the vertex set. On the other hand, if we consider G as a tree rooted in r and map every non-root vertex v to the edge between v and its parent, the obtained mapping is a DR-function from $V(G) \backslash\{r\}$ to $E(G)$. It proves $\widehat{n}(G)=n(G)-1$ for every tree G.

Theorem 5.2. For every connected graph G and integer $k \equiv 3 \bmod 4$,

$$
\gamma_{\mathrm{sp}}\left(S_{k}(G)\right)= \begin{cases}\frac{k+1}{2} m(G)+1 ; & G \text { is a tree } \\ \frac{k+1}{2} m(G) ; & \text { otherwise }\end{cases}
$$

Proof. Let $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $k=4 t+3$. Observe that $n\left(S_{k}(G)\right)=n+k m(G)$. We first show that

$$
\begin{equation*}
\alpha^{\prime}\left(S_{k}(G)\right) \leq \frac{k-1}{2} m(G)+\widehat{n}(G) \tag{1}
\end{equation*}
$$

Let M be a maximum matching in $S_{k}(G)$. For every super edge $P_{v_{i} v_{j}}$, we have two possibilities:
(a) M contains at most $\frac{k-1}{2}$ edges from $P_{v_{i} v_{j}}$;
(b) M contains exactly $\frac{k+1}{2}$ edges from $P_{v_{i} v_{j}}$ and at least one of v_{i} and v_{j} is covered by a matching edge belonging to $P_{v_{i} v_{j}}$.

As each $v_{i} \in V(G)$ is covered by at most one edge from M, the number of super edges satisfying (b) is at most n. Moreover, if (b) is valid for a super edge $P_{v_{i} v_{j}}$, then $v_{i}\left(v_{i} v_{j}\right)_{1} \in M$ or $\left(v_{i} v_{j}\right)_{k} v_{j} \in M$. In the first case, we define $\phi\left(v_{i}\right)=v_{i} v_{j}$, while we set $\phi\left(v_{j}\right)=v_{i} v_{j}$ in the latter case. (If both edges $v_{i}\left(v_{i} v_{j}\right)_{1}$ and $\left(v_{i} v_{j}\right)_{k} v_{j}$ belong to M, then to keep ϕ injective, we set just $\phi\left(v_{i}\right)=v_{i} v_{j}$ for the smaller index i.) As ϕ is a DR-function, the number of super edges with property (b) is at most $\widehat{n}(G)$. This proves the inequality (1), and together with Theorem 2.2 we conclude

$$
\begin{equation*}
\gamma_{\mathrm{sp}}\left(S_{k}(G)\right) \geq n\left(S_{k}(G)\right)-\alpha^{\prime}\left(S_{k}(G)\right) \geq \frac{k+1}{2} m(G)+(n(G)-\widehat{n}(G)) \tag{2}
\end{equation*}
$$

where, according to Lemma 5.1, the last term is 1 if G is a tree and 0 if G contains a cycle.
To prove the other direction, we construct a γ_{sp}-set D for G. Let ϕ be a DR-function of G with domain $V(G)$ if G is not a tree, and with domain $V(G) \backslash\left\{v_{n}\right\}$ otherwise.
(i) If $\phi\left(v_{i}\right)=v_{i} v_{j}$, let D contain the following vertices from the super edge $P_{v_{i} v_{j}}$:

$$
\left(v_{i} v_{j}\right)_{1},\left(v_{i} v_{j}\right)_{2},\left(v_{i} v_{j}\right)_{5},\left(v_{i} v_{j}\right)_{6}, \ldots,\left(v_{i} v_{j}\right)_{4 t+1},\left(v_{i} v_{j}\right)_{4 t+2}
$$

(ii) If $v_{i} v_{j}$ does not belong to the image set of ϕ and $i<j$, let D contain the following vertices from the super edge $P_{v_{i} v_{j}}$:

$$
\left(v_{i} v_{j}\right)_{2},\left(v_{i} v_{j}\right)_{3},\left(v_{i} v_{j}\right)_{6},\left(v_{i} v_{j}\right)_{7}, \ldots,\left(v_{i} v_{j}\right)_{4 t+2},\left(v_{i} v_{j}\right)_{4 t+3}
$$

(iii) If G is a tree and v_{n} does not have a representative edge in ϕ, then v_{n} also belongs to D. Note that the other vertices of G belong to \bar{D}.

If an internal subdivision vertex, $\left(v_{i} v_{j}\right)_{s}$ with $3 \leq s \leq 4 t+1$, does not belong to D, it is easy to identify a neighbor that super dominates it. A vertex v_{i} with $\phi\left(v_{i}\right)=v_{i} v_{j}$ is always super dominated by $\left(v_{i} v_{j}\right)_{1}$. The subdivision vertices $\left(v_{i} v_{j}\right)_{2}$ and $\left(v_{i} v_{j}\right)_{4 t+2}$ always belong to D; if $\left(v_{i} v_{j}\right)_{1} \notin D$, it is super dominated by $\left(v_{i} v_{j}\right)_{2}$; if $\left(v_{i} v_{j}\right)_{4 t+3} \notin D$, it is super dominated by $\left(v_{i} v_{j}\right)_{4 t+2}$.

No matter whether (i) or (ii) was applied when we specified the vertices in $V\left(P_{v_{i} v_{j}}\right) \cap D$, we added exactly $2 t+2=\frac{k+1}{2}$ subdivision vertices to D in each step. Thus, D contains $\frac{k+1}{2} m(G)$ subdivision vertices and also contains v_{n} if G is a tree. This proves the upper bound

$$
\gamma_{\mathrm{sp}}\left(S_{k}(G)\right) \leq \frac{k+1}{2} m(G)+(n(G)-\widehat{n}(G))
$$

We infer that the equality $\gamma_{\mathrm{sp}}\left(S_{k}(G)\right)=\frac{k+1}{2} m(G)+(n(G)-\widehat{n}(G))$ holds for every graph G as stated.

For connected graphs, Theorem 5.2 and inequality (2) in its proof together imply the following statement. Since $\gamma_{\mathrm{sp}}(F)$ and $\alpha^{\prime}(F)$ are additive under disjoint union of graphs, we may state:

Proposition 5.3. For every graph G and integer $k \equiv 3 \bmod 4$, it holds that

$$
\gamma_{\mathrm{sp}}\left(S_{k}(G)\right)=n\left(S_{k}(G)\right)-\alpha^{\prime}\left(S_{k}(G)\right) .
$$

As the number of tree components in G can be computed in linear time, and $\gamma_{\mathrm{sp}}(F)$ is additive under taking disjoint union of graphs, we conclude the subsection with the following consequence of Theorem 5.2.

Theorem 5.4. If k is a positive integer with $k \equiv 3 \mathrm{mod} 4$, then the super domination number can be computed in linear time over the class of k-subdivision graphs.
5.2. $(4 t+1)$-subdivisions

Theorem 5.5. For every connected graph G and integer $k \equiv 1 \bmod 4$,

$$
\gamma_{\mathrm{sp}}\left(S_{k}(G)\right)= \begin{cases}\frac{k+1}{2} m(G) ; & G \text { contains an even cycle } \\ \frac{k+1}{2} m(G)+1 ; & \text { otherwise }\end{cases}
$$

Proof. Let $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $k=4 t+1$. Suppose first that D is a minimum super dominating set of $S_{k}(G)$ and consider $A=\bar{D}$ and a core B of D. By Lemma 2.4, the edges $E[A, B]$ form a matching M in $S_{k}(G)$. If M is fixed, we have three possibilities for a super edge $P_{v_{i} v_{j}}$.
(a) M contains at most $\frac{k-1}{2}$ edges from $P_{v_{i} v_{j}}$. The set of the corresponding edges $v_{i} v_{j} \in E(G)$ will be denoted by E_{0}.
(b) M contains exactly $\frac{k+1}{2}$ edges from $P_{v_{i} v_{j}}$ and exactly one of v_{i} and v_{j} is covered by an edge from $M \cap E\left(P_{v_{i} v_{j}}\right)$. If this vertex, say v_{i}, is contained in A, we set $v_{i} v_{j} \in E_{A}$. Similarly, if $v_{i} \in B, v_{i}\left(v_{i} v_{j}\right)_{1} \in M$, and $\left(v_{i} v_{j}\right)_{k} v_{j} \notin M$, then the edge $v_{i} v_{j}$ belongs to E_{B}.
(c) M contains exactly $\frac{k+1}{2}$ edges from $P_{v_{i} v_{j}}$ and both $v_{i}\left(v_{i} v_{j}\right)_{1}$ and $\left(v_{i} v_{j}\right)_{k} v_{j}$ belong to M. In this case, we set $v_{i} v_{j} \in E_{2}$.

As $E_{0}, E_{A}, E_{B}, E_{2}$ is a partition of $E(G)$, we may estimate the size of M as follows:

$$
\begin{equation*}
|M| \leq\left|E_{0}\right| \frac{k-1}{2}+\left(\left|E_{A}\right|+\left|E_{B}\right|+\left|E_{2}\right|\right) \frac{k+1}{2}=\frac{k-1}{2} m(G)+\left|E_{A}\right|+\left|E_{B}\right|+\left|E_{2}\right| . \tag{3}
\end{equation*}
$$

By definition, if $v_{i} v_{j} \in E_{A} \cup E_{B}$, then only one of $v_{i}\left(v_{i} v_{j}\right)_{1}$ and $\left(v_{i} v_{j}\right)_{k} v_{j}$ belongs to M. If $v_{i} v_{j} \in E_{2}$, then both $v_{i}\left(v_{i} v_{j}\right)_{1}$ and $\left(v_{i} v_{j}\right)_{k} v_{j}$ are contained in M. Since each vertex $v_{i} \in V(G)$ is covered by at most one M-edge, we infer $\left|E_{A}\right|+\left|E_{B}\right|+2\left|E_{2}\right| \leq n$ and, in turn, we get from (3) that

$$
\begin{equation*}
|M| \leq \frac{k-1}{2} m(G)+n-\left|E_{2}\right| \tag{4}
\end{equation*}
$$

As $|M|=|A|=|\bar{D}|=n\left(S_{k}(G)\right)-\gamma_{\mathrm{sp}}\left(S_{k}(G)\right)$ and $n\left(S_{k}(G)\right)=n+k m(G)$, inequality (4) implies

$$
\begin{equation*}
\gamma_{\mathrm{sp}}\left(S_{k}(G)\right)=n\left(S_{k}(G)\right)-|M| \geq \frac{k+1}{2} m(G)+\left|E_{2}\right| \tag{5}
\end{equation*}
$$

If $E_{2} \neq \emptyset$ or G contains an even cycle, (5) itself proves the required lower bound. From now on, we assume that there is no even cycle in G and that $E_{2}=\emptyset$.

Consider an edge $v_{i} v_{j} \in E_{A}$ with $v_{i}\left(v_{i} v_{j}\right)_{1} \in M$. As M contains $\frac{k+1}{2}$ edges from $P_{v_{i}, v_{j}}$ that includes $v_{i}\left(v_{i} v_{j}\right)_{1}$ but not $\left(v_{i} v_{j}\right)_{k} v_{j}, M$ contains the following edges from the super edge:

$$
v_{i}\left(v_{i} v_{j}\right)_{1},\left(v_{i} v_{j}\right)_{2}\left(v_{i} v_{j}\right)_{3}, \ldots,\left(v_{i} v_{j}\right)_{4 t}\left(v_{i} v_{j}\right)_{4 t+1}
$$

By Lemma 2.4, $v_{i} \in A$ implies $\left(v_{i} v_{j}\right)_{1} \in B$; the latter implies $\left(v_{i} v_{j}\right)_{2} \in B$. Since $\left(v_{i} v_{j}\right)_{2}\left(v_{i} v_{j}\right)_{3} \in M$, we infer $\left(v_{i} v_{j}\right)_{3} \in A$; and so on. We obtain that $\left(v_{i} v_{j}\right)_{s} \in B$ if and only if $s \bmod 4 \in\{1,2\}$; otherwise, $\left(v_{i} v_{j}\right)_{s} \in A$. In the last step, $v_{j} \in B$ also follows. It can be proved analogously that $v_{i} v_{j} \in E_{B}$ and $v_{i} \in B$ implies $v_{j} \in A$.

Let

$$
V^{\prime}=\left\{v_{i}: \exists j \in[n] \text { s.t. } v_{i}\left(v_{i} v_{j}\right)_{1} \in M\right\}, \quad V^{\prime \prime}=\left\{v_{j}: \exists i \in[n] \text { s.t. } v_{i}\left(v_{i} v_{j}\right)_{1} \in M\right\}
$$

and define a DR-function $\phi: V^{\prime} \rightarrow E_{A} \cup E_{B}$ such that $\phi\left(v_{i}\right)=v_{i} v_{j}$ if $v_{i}\left(v_{i} v_{j}\right)_{1} \in M$. Since $E_{2}=\emptyset$, it is an injective function. Moreover, if the edge $v_{i} v_{j}$ is in the image of ϕ, then one from v_{i} and v_{j} belongs to A and the other one to B. Thus, ϕ remains a DR-function on V^{\prime}, if we consider the following bipartite subgraph F instead of G. We first take the induced subgraph $G\left[V_{F}\right]$, where $V_{F}=V^{\prime} \cup V^{\prime \prime}$, and then delete the edges inside $V_{F} \cap A$ and $V_{F} \cap B$. We may also say that this graph F is defined by the edge set $E_{G}\left[V_{F} \cap A, V_{F} \cap B\right]$. By supposition, G contains no even cycle. Therefore, the bipartite subgraph F contains no cycle at all. By Lemma 5.1, $\widehat{n}(F) \leq n(F)-1 \leq n-1$. Consequently, no more than $n-1$ vertices of G are covered by an edge from M in $S_{k}(G)$. This implies $\left|E_{A}\right|+\left|E_{B}\right| \leq n-1$ and, by (3), we infer $|M| \leq \frac{k-1}{2} m(G)+n-(n-1)$ that yields

$$
\gamma_{\mathrm{sp}}\left(S_{k}(G)\right) \geq \frac{k+1}{2} m(G)+1
$$

if G contains no even cycle.
To prove the reverse inequalities, we construct a γ_{sp}-set D for G. First we define an appropriate DR-function ϕ.

- If G contains an even cycle C, take a unicyclic spanning subgraph H of G such that C is the only cycle in H. Then H is bipartite, not a tree, and therefore, by Lemma 5.1, $\widehat{n}(H)=n$. Let A_{H} and B_{H} be the partite classes of H. By Lemma 5.1, there is a DR-function ϕ which assigns a representative edge from $E(H)$ to each vertex from $V(G)$.
- If G contains no even cycle, choose a spanning tree H in G. Again, H is bipartite, but now we have $\widehat{n}(H)=n-1$. Let A_{H} and B_{H} be the partite classes of H. By Lemma 5.1, we can define a DR-function ϕ that assigns a representative edge from $E(H)$ to each vertex from $V(G) \backslash\left\{v_{n}\right\}$.

Having a DR-function ϕ in hand, we define a super dominating set D in $S_{k}(G)$ with a size that matches the required upper bound.
(i) If $v_{i} \in B_{H}$ or $v_{i} \notin A_{H} \cup B_{H}$, we set $v_{i} \in D$.
(ii) If $\phi\left(v_{i}\right)=v_{i} v_{j}$ and $v_{i} \in A_{H}$, let D contain the following vertices from the super edge $P_{v_{i} v_{j}}$:

$$
\left(v_{i} v_{j}\right)_{1},\left(v_{i} v_{j}\right)_{2},\left(v_{i} v_{j}\right)_{5},\left(v_{i} v_{j}\right)_{6}, \ldots,\left(v_{i} v_{j}\right)_{4 t-3},\left(v_{i} v_{j}\right)_{4 t-2},\left(v_{i} v_{j}\right)_{4 t+1}
$$

(iii) If $\phi\left(v_{i}\right)=v_{i} v_{j}$ and $v_{i} \in B_{H}$, let D contain the following vertices from $P_{v_{i} v_{j}}$:

$$
\left(v_{i} v_{j}\right)_{3},\left(v_{i} v_{j}\right)_{4},\left(v_{i} v_{j}\right)_{7},\left(v_{i} v_{j}\right)_{8}, \ldots,\left(v_{i} v_{j}\right)_{4 t-1},\left(v_{i} v_{j}\right)_{4 t}
$$

(iv) If $v_{i} v_{j}$ does not belong to the image set of $\phi, v_{i} \in A_{H}$, and $i<j$, then let D contain the following vertices from $P_{v_{i} v_{j}}$:

$$
\left(v_{i} v_{j}\right)_{2},\left(v_{i} v_{j}\right)_{3},\left(v_{i} v_{j}\right)_{6},\left(v_{i} v_{j}\right)_{7}, \ldots,\left(v_{i} v_{j}\right)_{4 t-2},\left(v_{i} v_{j}\right)_{4 t-1},\left(v_{i} v_{j}\right)_{4 t+1}
$$

(v) If $v_{i} v_{j}$ does not belong to the image set of $\phi, v_{i} \in B_{H}$, and $i<j$, let D contain the following vertices from $P_{v_{i} v_{j}}$:

$$
\left(v_{i} v_{j}\right)_{1},\left(v_{i} v_{j}\right)_{4},\left(v_{i} v_{j}\right)_{5},\left(v_{i} v_{j}\right)_{8},\left(v_{i} v_{j}\right)_{9}, \ldots,\left(v_{i} v_{j}\right)_{4 t},\left(v_{i} v_{j}\right)_{4 t+1}
$$

If an internal subdivision vertex, $\left(v_{i} v_{j}\right)_{s}$ with $3 \leq s \leq 4 t-1$, does not belong to D, it is easy to see that a neighbor super dominates it. A vertex $v_{i} \notin D$ with $\phi\left(v_{i}\right)=v_{i} v_{j}$ is always super dominated by $\left(v_{i} v_{j}\right)_{1}$. The subdivision vertex $u=\left(v_{i} v_{j}\right)_{1}$ does not belong to D, if (iii) or (iv) was applied. In the latter case, $\left(v_{i} v_{j}\right)_{2}$ super dominates u. In the first case, $v_{i} \in B_{H}$ and $\left(N\left[v_{i}\right] \backslash\{u\}\right) \subseteq D$ holds by the determination of D. The subdivision vertex $w=\left(v_{i} v_{j}\right)_{2}$ is missing from D, if (iii) or (v) was applied. In the first case, $\left(v_{i} v_{j}\right)_{3}$ super dominates w. For the second case, the condition in (v) ensures that $v_{i} \in D$. Hence, w is the only neighbor of $\left(v_{i} v_{j}\right)_{1}$ which is outside D. In case (ii), vertex $\left(v_{i} v_{j}\right)_{4 t}$ is super dominated by $\left(v_{i} v_{j}\right)_{4 t+1}$ as in this case $v_{i} \in A_{H}$ implies $v_{j} \in B_{H}$ and therefore, we have $v_{j} \in D$. In case ($i v$), vertex $\left(v_{i} v_{j}\right)_{4 t}$ is super dominated by $\left(v_{i} v_{j}\right)_{4 t-1}$. A vertex $\left(v_{i} v_{j}\right)_{4 t+1}$ is outside D, only if (iii) was applied. In this case, $\left(v_{i} v_{j}\right)_{4 t}$ super dominates it.

Finally, we determine the size of D. Case (i) puts $n-\left|A_{H}\right|$ vertices into D. When the subdivision vertices are considered, we put $\frac{k+1}{2}$ vertices from each $P_{i, j}$ into D, except when case (iii) is applied. There we deal with $\left|B_{H}\right|$ super edges putting $\frac{k-1}{2}$ internal vertices into D from each. This gives

$$
\gamma_{\mathrm{sp}}\left(S_{k}(G)\right) \leq|D|=n-\left|A_{H}\right|+m(G) \frac{k+1}{2}-\left|B_{H}\right| .
$$

By the determination of the DR-function $\phi,\left|A_{H}\right|+\left|B_{H}\right|=n$ if G contains an even cycle; and $\left|A_{H}\right|+\left|B_{H}\right|=n-1$ if every cycle in G is of odd order. Substituting these values in the inequality, we get the required upper bounds on $\gamma_{\mathrm{sp}}\left(S_{k}(G)\right)$. This finishes the proof of the theorem.

Let $\operatorname{oc}(G)$ denote the number of components in G that contain no even cycles. Then Theorem 5.5 directly implies:

Proposition 5.6. For every graph G and integer $k \equiv 1 \bmod 4$, it holds that

$$
\gamma_{\mathrm{sp}}\left(S_{k}(G)\right)=\frac{k+1}{2} m(G)+o c(G)
$$

A shortest even cycle in a graph can be found in polynomial (actually quadratic) time [26], hence the number of even-cycle-free components is easy to determine. Thus we may deduce the following result:

Theorem 5.7. If k is a positive integer with $k \equiv 1 \bmod 4$, then the super domination number can be computed in polynomial time over the class of k-subdivision graphs.

5.3. $4 t$-subdivisions

Theorem 5.8. For every graph G and integer $k \equiv 0 \bmod 4$,

$$
\gamma_{\mathrm{sp}}\left(S_{k}(G)\right)=\frac{k}{2} m(G)+\gamma_{\mathrm{sp}}(G)
$$

Proof. Let $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $k=4 t$. Suppose that D is a $\gamma_{\text {sp }}$-set of $S_{k}(G)$ and consider $A=\bar{D}$ and a core B of D. By Lemma 2.4, the edges $E[A, B]$ form a matching M in $S_{k}(G)$. We have three possibilities for a super edge $P_{v_{i} v_{j}}$.
(a) M contains at most $\frac{k}{2}-1$ edges from $P_{v_{i} v_{j}}$. Let E_{0} denote the set of the edges $v_{i} v_{j} \in E(G)$ with this property.
(b) M contains exactly $\frac{k}{2}$ edges from $P_{v_{i} v_{j}}$. The set of the corresponding edges $v_{i} v_{j}$ in G is denoted by E_{1}.
(c) M contains exactly $\frac{k}{2}+1$ edges from $P_{v_{i} v_{j}}$. In this case, both $v_{i}\left(v_{i} v_{j}\right)_{1}$ and $\left(v_{i} v_{j}\right)_{k} v_{j}$ belong to M, and we set $v_{i} v_{j} \in E_{2}$.

By definitions given for E_{0}, E_{1}, E_{2}, the following is true:

$$
\begin{equation*}
|M| \leq \frac{k}{2} m(G)+\left|E_{2}\right|-\left|E_{0}\right| \tag{6}
\end{equation*}
$$

To prove that $\left|E_{2}\right|-\left|E_{0}\right| \leq n-\gamma_{\mathrm{sp}}(G)$, we first consider a super edge $P_{v_{i} v_{j}}$ so that $v_{i} v_{j} \in E_{2}$. The edges

$$
v_{i}\left(v_{i} v_{j}\right)_{1},\left(v_{i} v_{j}\right)_{2}\left(v_{i} v_{j}\right)_{3}, \ldots,\left(v_{i} v_{j}\right)_{4 t-2}\left(v_{i} v_{j}\right)_{4 t-1},\left(v_{i} v_{j}\right)_{4 t} v_{j}
$$

are all included in M. If $v_{i} \in A$ then, by Lemma $2.4, E[A, B]$ is a matching and the vertices

$$
\left(v_{i} v_{j}\right)_{1},\left(v_{i} v_{j}\right)_{2},\left(v_{i} v_{j}\right)_{5},\left(v_{i} v_{j}\right)_{6}, \ldots,\left(v_{i} v_{j}\right)_{4 t-2}, v_{j}
$$

are from B; while the remaining subdivision vertices belong to A. Therefore, $v_{i} \in A$ implies $v_{j} \in B$ and, similarly, $v_{i} \in B$ implies $v_{j} \in A$.

If $v_{i} v_{j} \in E_{2}, v_{p} v_{q} \in E_{2}$ with $v_{i} \in A, v_{q} \in B$, and G contains an edge $v_{i} v_{q}$, then we say that $v_{i} v_{q}$ is a critical edge. As v_{i} and v_{q} are already covered by M-edges, $v_{i} v_{q} \notin E_{2}$. If $v_{i} v_{q} \in E_{1}$, then the $k / 2$ edges in $M \cap E\left(P_{v_{i}} v_{q}\right)$ have to be

$$
\left(v_{i} v_{q}\right)_{1}\left(v_{i} v_{q}\right)_{2},\left(v_{i} v_{q}\right)_{3}\left(v_{i} v_{q}\right)_{4}, \ldots,\left(v_{i} v_{q}\right)_{k-1}\left(v_{i} v_{q}\right)_{k}
$$

By Lemma 2.4, $v_{i} \in A$ implies $\left(v_{i} v_{q}\right)_{1} \in A,\left(v_{i} v_{q}\right)_{2},\left(v_{i} v_{q}\right)_{3} \in B,\left(v_{i} v_{q}\right)_{4},\left(v_{i} v_{q}\right)_{5} \in A, \ldots,\left(v_{i} v_{q}\right)_{k} \in A$. Finally, we infer $v_{q} \in A$ that contradicts the assumption $v_{q} \in B$. It implies that $v_{i} v_{q} \in E_{0}$. By symmetry, the same is true if $v_{i} \in B$ and $v_{q} \in A$ and therefore, every critical edge belongs to E_{0}.

We now prove that the maximum for $\left|E_{2}\right|-\left|E_{0}\right|$ can be attained without the presence of critical edges. Indeed, if $v_{i} v_{q}$ is a critical edge such that $v_{i} v_{j}, v_{p} v_{q} \in E_{2}$ and $v_{i} \in A, v_{q} \in B$, then we may perform the following changes in M :

- Remove the edges $M \cap E\left(P_{v_{i}, v_{j}}\right)$ from M and replace them by the complement edge set $E\left(P_{v_{i}, v_{j}}\right) \backslash M$. By this change, $v_{i} v_{j}$ is moved to E_{1}, and v_{i}, v_{j} become uncovered by M. So, this step decreases $\left|E_{2}\right|$ by 1 . After this change $v_{i} \notin A \cup B$ and we can replace the (at most) $\frac{k}{2}-1 M$-edges on $P_{v_{i}, v_{q}}$ with the following $\frac{k}{2}$ edges:

$$
\left(v_{i} v_{q}\right)_{1}\left(v_{i} v_{q}\right)_{2},\left(v_{i} v_{q}\right)_{3}\left(v_{i} v_{q}\right)_{4}, \ldots,\left(v_{i} v_{q}\right)_{4 t-1}\left(v_{i} v_{q}\right)_{4 t}
$$

such that we put $\left(v_{i} v_{q}\right)_{1},\left(v_{i} v_{q}\right)_{4},\left(v_{i} v_{q}\right)_{5}, \ldots,\left(v_{i} v_{q}\right)_{4 t}$ into B and the remaining subdivision vertices into A. Since $v_{q} \in B$, this step keeps the property $E[A, B]=M$ and, by Lemma $2.4, D=\bar{A}$ is a super dominating set in $S_{k}(G)$. Note that this modification removes $v_{i} v_{q}$ from E_{0}.

After applying the described changes, $\left|E_{2}\right|-\left|E_{0}\right|$ remains the same and we have less critical edges than before. Thus, performing the steps iteratively while there is a critical edge, we obtain a matching M^{\prime} and sets A^{\prime}, B^{\prime} without critical edges such that $\left|E_{2}\right|-\left|E_{0}\right|$ remains unchanged. As there are no critical edges, the E_{2}-edges now form a matching M^{*} in G such that $E\left[A^{*}, B^{*}\right]=M^{*}$ for the sets $A^{*}=A^{\prime} \cap V(G)$ and $B^{*}=B^{\prime} \cap V(G)$. Applying Lemma 2.4 again, we conclude that $D^{*}=\overline{A^{*}}$ is a super dominating set in G. This yields

$$
\left|E_{2}\right|=\left|M^{*}\right|=\left|A^{*}\right|=n-\left|D^{*}\right| \leq n-\gamma_{\mathrm{sp}}(G)
$$

Now inequality chain in (6) can be continued and we obtain

$$
|M| \leq \frac{k}{2} m(G)+\left|E_{2}\right|-\left|E_{0}\right| \leq \frac{k}{2} m(G)+n-\gamma_{\mathrm{sp}}(G)
$$

which, in turn, proves

$$
\begin{aligned}
\gamma_{\mathrm{sp}}\left(S_{k}(G)\right) & =n\left(S_{k}(G)\right)-|M| \\
& \geq(n+k m(G))-\left(\frac{k}{2} m(G)+n-\gamma_{\mathrm{sp}}(G)\right) \\
& =\frac{k}{2} m(G)+\gamma_{\mathrm{sp}}(G) .
\end{aligned}
$$

In the second part of the proof we construct a super dominating set D of size $\frac{k}{2} m(G)+\gamma_{\mathrm{sp}}(G)$ in $S_{k}(G)$. Let D^{*} be a γ_{sp}-set in G with the corresponding sets A^{*}, B^{*} and matching $M^{*}=E_{G}\left[A^{*}, B^{*}\right]$.
(i) If $v_{i} \in D^{*}$, we set $v_{i} \in D$.
(ii) If $v_{i} v_{j} \in M^{*}$ with $v_{i} \in A^{*}$ and $v_{j} \in B^{*}$, let D contain the following vertices from the super edge $P_{v_{i} v_{j}}$:

$$
\left(v_{i} v_{j}\right)_{1},\left(v_{i} v_{j}\right)_{2},\left(v_{i} v_{j}\right)_{5},\left(v_{i} v_{j}\right)_{6}, \ldots,\left(v_{i} v_{j}\right)_{4 t-3},\left(v_{i} v_{j}\right)_{4 t-2}
$$

(iii) If $v_{i} v_{j} \notin M^{*}$ and $v_{i} \in A^{*}$ then, as $E_{G}\left[A^{*}, B^{*}\right]=M^{*}$, we have $v_{j} \in V(G) \backslash B^{*}$. Let us put into D the following subdivision vertices from $P_{v_{i} v_{j}}$:

$$
\left(v_{i} v_{j}\right)_{2},\left(v_{i} v_{j}\right)_{3},\left(v_{i} v_{j}\right)_{6},\left(v_{i} v_{j}\right)_{7}, \ldots,\left(v_{i} v_{j}\right)_{4 t-2},\left(v_{i} v_{j}\right)_{4 t-1}
$$

(iv) If $v_{i} v_{j} \notin M^{*}$ and $v_{i} \in B^{*}$ hold and also if both v_{i} and v_{j} are outside $A^{*} \cup B^{*}$, we put into D the following subdivision vertices from $P_{v_{i} v_{j}}$:

$$
\left(v_{i} v_{j}\right)_{1},\left(v_{i} v_{j}\right)_{4},\left(v_{i} v_{j}\right)_{5}, \ldots,\left(v_{i} v_{j}\right)_{4 t-4},\left(v_{i} v_{j}\right)_{4 t-3},\left(v_{i} v_{j}\right)_{4 t}
$$

In step (i), we put $\left|D^{*}\right|=\gamma_{\mathrm{sp}}(G)$ non-subdivision vertices into D. Then, for each super edge considered in (ii) - (iv), we put exactly $k / 2$ subdivision vertices into D. As there are no edge $v_{i} v_{j}$ in G with $v_{i} \in A^{*}, v_{j} \in B^{*}$ and $v_{i} v_{j} \notin M^{*}$, we treated each super edge of $S_{k}(G)$ in the steps (ii) - (iv). These sum up $|D|=\frac{k}{2} m(G)+\gamma_{\mathrm{sp}}(G)$.

To check that D is a super dominating set is mainly automatic. We note that if $v_{i} \notin D$, then $v_{i} \in A^{*}$ and there is an edge $v_{i} v_{j} \in M^{*}$ which is considered in (ii). Then, $\left(v_{i} v_{j}\right)_{1}$ super dominates v_{i}. We also remark that in step (ii), the vertex $\left(v_{i} v_{j}\right)_{4 t}$ is super dominated by v_{j} as all the other super edges $P_{v_{j} v_{p}}$ being incident to v_{j} were considered in step (iv). There, subdivision neighbors $\left(v_{j} v_{p}\right)_{1}=\left(v_{p} v_{j}\right)_{4 t}$ were put into D. For a super edge $P_{v_{i} v_{j}}$ that was treated in (iv), the condition implies $v_{i}, v_{j} \in D$. Therefore, $\left(v_{i} v_{j}\right)_{1}$ and $\left(v_{i} v_{j}\right)_{4 t}$ super dominate $\left(v_{i} v_{j}\right)_{2}$ and $\left(v_{i} v_{j}\right)_{4 t-1}$, respectively. It shows $\gamma_{\mathrm{sp}}\left(S_{k}(G)\right) \leq|D|=\frac{k}{2} m(G)+\gamma_{\mathrm{sp}}(G)$, and together with the first part of the proof give the equality $\gamma_{\mathrm{sp}}\left(S_{k}(G)\right)=$ $\frac{k}{2} m(G)+\gamma_{\mathrm{sp}}(G)$ as required.

The problem of deciding whether $\gamma_{\mathrm{sp}}(F) \leq \ell$ holds, clearly belongs to NP. Let ℓ be part of the input of the problem and k be a fixed integer with $k \equiv 0 \bmod 4$. By Theorem 4.1, it is NP-hard to decide whether $\gamma_{\mathrm{sp}}(G) \leq \ell$ holds over the class of all graphs. By Theorem 5.8, $\gamma_{\mathrm{sp}}(G) \leq \ell$ holds if and only if $\gamma_{\mathrm{sp}}\left(S_{k}(G)\right) \leq \frac{k}{2} m(G)+\ell$. Thus, we may conclude the following:

Theorem 5.9. Over the class of k-subdivision graphs, it is $N P$-complete to decide whether $\gamma_{\text {sp }}(F) \leq \ell$ holds, if ℓ is part of the input and k is a fixed integer with $k \equiv 0 \bmod 4$.

5.4. II-matchings

Before continuing our study with the last case for subdivision graphs, we introduce a graph invariant and prove an additional complexity result.

In a graph G, an induced matching is a matching $M \subseteq E(G)$ such that the induced subgraph $G[V(M)]$ contains only the edges from M. We denote by $i(G)$ the maximum size of an induced matching in G. Induced matchings are applicable in network flow problems, secure communication, VLSI design, and elsewhere, cf. [9,21]. To decide whether $i(G) \geq \ell$ holds is known to be NP-hard in many classes of graphs, say in planar bipartite graphs [23] and in claw-free graphs [17]. For exact algorithms for maximum induced matchings see $[20,25]$, and for the complexity aspects of the maximum-weight induced matchings and dominating induced matchings see [15,5], respectively, and references therein.

We further say that a matching M is an II-matching if M can be partitioned into two induced matchings M_{1} and M_{2}. The II-matching number $\mathrm{ii}(G)$ of G is the maximum size of an II-matching in G. We prove that the II-matching number is hard to determine.

Proposition 5.10. It is NP-complete to decide whether $i(G) \geq \ell$ holds, if ℓ is part of the input.

Proof. To decide whether the independence number $\alpha(F)$ of a graph F is at least k is a classical NP-complete problem [12]. We show a polynomial-time reduction from the decision problem of $\alpha(F) \geq k$ to the problem of $\mathrm{ii}(G) \geq 2 k$.

Construction For every graph F, let G_{F} be the graph constructed on the vertex set $V(G) \times V\left(K_{4}\right)$, where $V\left(K_{4}\right)=[4]$, by making two different vertices (x, i) and (y, j) adjacent in G_{F} if either $x y \in E(F)$ or $x=y$. (We note in passing that G_{F} is isomorphic to the lexicographic product $F \circ K_{4}$.) Let $V(F)=\left\{v_{1}, \ldots, v_{n}\right\}$ and let V_{i} denote the vertex set $\left\{v_{i}\right\} \times[4]$ in G_{F}.

Reduction We show that $\mathrm{ii}\left(G_{F}\right)=2 \alpha(F)$ holds for every graph F and therefore, deciding whether $\alpha(F) \geq k$ is equivalent to the problem of whether $\mathrm{ii}\left(G_{F}\right) \geq 2 k$ holds.

First, consider a maximum independent set S in F and define the edge sets

$$
M_{1}=\{(x, 1)(x, 2): x \in S\} \quad \text { and } \quad M_{2}=\{(x, 3)(x, 4): x \in S\}
$$

By definition, $\left|M_{1}\right|=\left|M_{2}\right|=\alpha(F), M_{1} \cup M_{2}$ is a matching in G_{F} and, since S is an independent set in F, both M_{1} and M_{2} are induced matchings. It follows that $\mathrm{ii}\left(G_{F}\right) \geq 2 \alpha(F)$.

Assume now, that we have a maximum II-matching $M=M_{1} \cup M_{2}$ in G_{F}. If the induced matching M_{1} contains a cross edge $x y$, that is an edge $x y$ with $x \in V_{i}, y \in V_{j}$ such that $i \neq j$, then M_{1} cannot cover any other vertex from the neighborhood of x. Equivalently, if $v_{i} v_{i^{\prime}}$ is an edge in F, then $V_{i^{\prime}} \cap V\left(M_{1}\right)$ cannot contain a vertex different from y. Thus, if the cross edge $x y$ is replaced in M_{1} with an arbitrary edge inside V_{i}, the set M_{1} remains an induced matching. As M_{2} is also an induced matching, it covers at most two vertices from V_{i}. We therefore have a vertex $x^{\prime} \in V_{i}$ such that $(M \backslash\{x y\}) \cup\left\{x x^{\prime}\right\}$ is an IImatching and $|M|=\left|M^{\prime}\right|$. Repeating this procedure for all cross edges in $M_{1} \cup M_{2}$, we obtain an II-matching without cross edges. Again, we may refer to the property that if V_{i} contains an edge from M_{p}, for $p \in[2]$, then $V\left(M_{p}\right) \cap V_{i^{\prime}}=\emptyset$ whenever $v_{i} v_{i^{\prime}} \in E(F)$. We may conclude that $\left|M_{p}\right| \leq \alpha(F)$ and hence, $|M| \leq 2 \alpha(F)$. This finishes the proof for $\mathrm{ii}\left(G_{F}\right)=2 \alpha(F)$.

Conclusion As G_{F} is obtained by a polynomial-time construction from F, and the NP-complete problem of deciding whether $\alpha(F) \geq k$ holds can be reduced to the problem of deciding about $\mathrm{ii}\left(G_{F}\right) \geq 2 k$, the latter problem is also NP-hard. It is also clear that the decision problem of $\mathrm{ii}(G) \geq \ell$ belongs to NP. Thus, we may infer that the problem is NP-complete over the class of all graphs.

5.5. $(4 t+2)$-subdivisions

Theorem 5.11. For every graph G and integer $k \equiv 2 \bmod 4$,

$$
\gamma_{\mathrm{sp}}\left(S_{k}(G)\right)=\frac{k}{2} m(G)+n(G)-i i(G)
$$

Proof. Let $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$, and $k=4 t+2$. Choose a $\gamma_{\text {sp }}$-set D of $S_{k}(G)$. Let $A=\bar{D}$ and B an arbitrary core of D. By Lemma 2.4, the edges $E[A, B]$ form a matching M in $S_{k}(G)$. Again, we have three possibilities for a super edge $P_{v_{i} v_{j}}$.
(a) M contains at most $\frac{k}{2}-1$ edges from $P_{v_{i} v_{j}}$. Let E_{0} denote the set of the edges $v_{i} v_{j} \in E(G)$ with this property.
(b) M contains exactly $\frac{k}{2}$ edges from $P_{v_{i} v_{j}}$. The set of the corresponding edges $v_{i} v_{j}$ in G is denoted by E_{1}.
(c) M contains exactly $\frac{k}{2}+1$ edges from $P_{v_{i} v_{j}}$. In this case, both $v_{i}\left(v_{i} v_{j}\right)_{1}$ and $\left(v_{i} v_{j}\right)_{k} v_{j}$ belong to M, and we set $v_{i} v_{j} \in E_{2}$.

By definitions, the following inequality holds:

$$
\begin{equation*}
|M| \leq \frac{k}{2} m(G)+\left|E_{2}\right|-\left|E_{0}\right| . \tag{7}
\end{equation*}
$$

For every edge $v_{i} v_{j} \in E_{2}$ of G, the super edge $P_{v_{i} v_{j}}$ must contain the edges $v_{i}\left(v_{i} v_{j}\right)_{1},\left(v_{i} v_{j}\right)_{2}\left(v_{i} v_{j}\right)_{3}, \ldots,\left(v_{i} v_{j}\right)_{4 t} v_{j}$ from M. Moreover, if $v_{i} \in A$ in $S_{k}(G)$ then, by Lemma 2.4, $E[A, B]$ is a matching in $S_{k}(G)$ and

$$
B \cap V\left(P_{v_{i} v_{j}}\right)=\left\{\left(v_{i} v_{j}\right)_{1},\left(v_{i} v_{j}\right)_{2},\left(v_{i} v_{j}\right)_{5},\left(v_{i} v_{j}\right)_{6}, \ldots,\left(v_{i} v_{j}\right)_{4 t+1},\left(v_{i} v_{j}\right)_{4 t+2}\right\}
$$

The remaining subdivision vertices and v_{j} then belong to A. Therefore, $v_{i} \in A$ implies $v_{j} \in A$ and, similarly, $v_{i} \in B$ implies $v_{j} \in B$ if $v_{i} v_{j} \in E_{2}$. We may therefore partition E_{2} into

$$
E_{A}=\left\{v_{i} v_{j}: v_{i} v_{j} \in E_{2} \text { and } v_{i}, v_{j} \in A\right\} \quad \text { and } \quad E_{B}=\left\{v_{i} v_{j}: v_{i} v_{j} \in E_{2} \text { and } v_{i}, v_{j} \in B\right\}
$$

Suppose now that E_{A} contains two edges $v_{i} v_{j}$ and $v_{p} v_{q}$ and there exists an edge $v_{i} v_{q} \in E(G)$. We will say that $v_{i} v_{q}$ is an A-critical edge. As v_{i} and v_{q} are already covered by M-edges, $v_{i} v_{q} \notin E_{2}$. By the same reason, if $v_{i} v_{q} \in E_{1}$, then the $k / 2$ edges in $M \cap E\left(P_{v_{i}} v_{q}\right)$ are $\left(v_{i} v_{q}\right)_{1}\left(v_{i} v_{q}\right)_{2}, \ldots,\left(v_{i} v_{q}\right)_{4 t+1}\left(v_{i} v_{q}\right)_{4 t+2}$. Referring to Lemma 2.4 again, $v_{i} \in A$ implies $\left(v_{i} v_{q}\right)_{1} \in A,\left(v_{i} v_{q}\right)_{2},\left(v_{i} v_{q}\right)_{3} \in B, \ldots,\left(v_{i} v_{q}\right)_{4 t+2} \in B$, and also that $v_{q} \in B$. As $v_{q} \in A$ was supposed, it is a contradiction. We may infer that $v_{i} v_{q} \in E_{0}$ holds for every A-critical edge. The same is true for the set B; that is if $v_{i} v_{j}, v_{p} v_{q} \in E_{B}$ and a B-critical edge $v_{i} v_{q}$ is present in G, then $v_{i} v_{q} \in E_{0}$.

We now prove that the maximum for $\left|E_{2}\right|-\left|E_{0}\right|$ can be attained without the presence of A - and B-critical edges. Indeed, let $v_{i} v_{q}$ be an A-critical edge such that $v_{i} v_{j}, v_{p} v_{q} \in E_{A}$. We may perform the following alteration in M without decreasing $\left|E_{2}\right|-\left|E_{0}\right|$. First we remove the edges $M \cap E\left(P_{v_{i}, v_{j}}\right)$ from M and replace them by the complement edge set $E\left(P_{v_{1}, v_{j}}\right) \backslash M$. Then, we also remove the at most $\frac{k}{2}-1$ edges $M \cap E\left(P_{v_{i} v_{q}}\right)$ and replace them by the $\frac{k}{2}$ edges $\left(v_{i} v_{q}\right)_{1}\left(v_{i} v_{q}\right)_{2}, \ldots,\left(v_{i} v_{q}\right)_{4 t+1}\left(v_{i} v_{q}\right)_{4 t+2}$. After these changes we update the sets A and B along $P_{v_{i} v_{j}}$ and $P_{v_{i} v_{q}}$ such that, for $x \in\{j, q\}$ and $s \in[4 t+2]$, a subdivision vertex $\left(v_{i} v_{x}\right)_{s}$ belongs to B if $s \bmod 4 \in\{0,1\}$, otherwise it is put into A. The vertices v_{i}, v_{j} are not in A anymore, but we still have $v_{q} \in A$. It can be checked that $E[A, B]$ remains a matching and, by Lemma $2.4, D=\bar{A}$ is a super dominating of $S_{k}(G)$. By this change, both $v_{i} v_{j}$ and $v_{i} v_{q}$ are moved to E_{1}, the number of A-critical edges is decreased, while $\left|E_{2}\right|-\left|E_{0}\right|$ remains the same. By the symmetry of the roles of the sets A and B, if a B-critical edge exists, we may do the analogous changes.

Repeating these changes while there are critical edges, we obtain a matching M and a super dominating set D without decreasing $\left|E_{2}\right|-\left|E_{0}\right|$. The edges in E_{2} still form a matching as every $u \in V(G)$ is covered only one edge from M; and the absence of A - and B-critical edges means that both E_{A} and E_{B} are induced matchings in G. It implies that the obtained M is an II-matching and hence, $\left|E_{2}\right| \leq \mathrm{ii}(G)$. From (7), we now obtain

$$
|M| \leq \frac{k}{2} m(G)+\mathrm{ii}(G)
$$

and we may conclude

$$
\begin{equation*}
\gamma_{\mathrm{sp}}\left(S_{k}(G)\right)=n\left(S_{k}(G)\right)-|M| \geq \frac{k}{2} m(G)+n(G)-\mathrm{ii}(G) . \tag{8}
\end{equation*}
$$

To complete the proof, we show that there exists a super dominating set D of the required cardinality in $S_{k}(G)$. Let $M^{*}=M_{1}^{*} \cup M_{2}^{*}$ be a maximum II-matching in G. The set D is constructed by the following five rules.
(i) A vertex $v_{i} \in V(G)$ belongs to D if and only if $v_{i} \notin V\left(M_{1}^{*}\right)$.
(ii) If $v_{i} v_{j} \in M_{1}^{*}$, then D contains the following vertices from the super edge $P_{v_{i} v_{j}}$:

$$
\left(v_{i} v_{j}\right)_{1},\left(v_{i} v_{j}\right)_{2},\left(v_{i} v_{j}\right)_{5},\left(v_{i} v_{j}\right)_{6}, \ldots,\left(v_{i} v_{j}\right)_{4 t+1},\left(v_{i} v_{j}\right)_{4 t+2}
$$

(iii) If $v_{i} v_{j} \in M_{2}^{*}$, then D contains the following vertices from $P_{v_{i} v_{j}}$:

$$
\left(v_{i} v_{j}\right)_{3},\left(v_{i} v_{j}\right)_{4},\left(v_{i} v_{j}\right)_{7},\left(v_{i} v_{j}\right)_{8}, \ldots,\left(v_{i} v_{j}\right)_{4 t-1},\left(v_{i} v_{j}\right)_{4 t}
$$

(iv) If $v_{i} v_{j} \notin M^{*}$ and $v_{i} \in V\left(M_{1}^{*}\right)$, then $v_{j} \notin V\left(M_{1}^{*}\right)$. In this case, we put the following subdivision vertices into D :

$$
\left(v_{i} v_{j}\right)_{2},\left(v_{i} v_{j}\right)_{3},\left(v_{i} v_{j}\right)_{6},\left(v_{i} v_{j}\right)_{7}, \ldots,\left(v_{i} v_{j}\right)_{4 t-2},\left(v_{i} v_{j}\right)_{4 t-1},\left(v_{i} v_{j}\right)_{4 t+2}
$$

(v) If $v_{i} v_{j} \notin M^{*}$ and $v_{i} \in V\left(M_{2}^{*}\right), v_{j} \notin V\left(M^{*}\right)$, and also if $v_{i}, v_{j} \notin V\left(M^{*}\right)$, we put the following subdivision vertices into D :

$$
\left(v_{i} v_{j}\right)_{1},\left(v_{i} v_{j}\right)_{4},\left(v_{i} v_{j}\right)_{5}, \ldots,\left(v_{i} v_{j}\right)_{4 t},\left(v_{i} v_{j}\right)_{4 t+1}
$$

In step (i) we put $n(G)-2\left|M_{1}^{*}\right|$ non-subdivision vertices into D; in step (ii) we consider $\left|M_{1}^{*}\right|$ super edges and put $\frac{k+2}{2}$ subdivision vertices from each into D; in (iii) $\left|M_{2}^{*}\right|$ super edges are considered and put $\left|M_{2}^{*}\right| \frac{k+2}{2}$ vertices into D. For the remaining edges $v_{i} v_{j}$ of G step (iv) or (v) is applied. In either case, D contains exactly $\frac{k}{2}$ subdivision vertices from $P_{v_{i} v_{j}}$. The size of D is therefore

$$
\begin{aligned}
|D| & =\left(n(G)-2\left|M_{1}^{*}\right|\right)+\left|M_{1}^{*}\right|\left(\frac{k}{2}+1\right)+\left|M_{2}^{*}\right|\left(\frac{k}{2}-1\right)+\left(m(G)-\left|M_{1}^{*}\right|-\left|M_{2}^{*}\right|\right) \frac{k}{2} \\
& =\frac{k}{2} m(G)+n(G)-\left(\left|M_{1}^{*}\right|+\left|M_{2}^{*}\right|\right) \\
& =\frac{k}{2} m(G)+n(G)-\mathrm{ii}(G)
\end{aligned}
$$

It is straightforward to check that D is a super dominating set in $S_{k}(G)$. We notice that if a vertex $v_{i} \in V(G)$ does not belong to D, then there exists an edge $v_{i} v_{j} \in M_{1}^{*}$ and, by (ii), the subdivision vertex $\left(v_{i} v_{j}\right)_{1}$ super dominates v_{i}. If $v_{i} \in V\left(M_{2}^{*}\right)$ such that $v_{i} v_{j} \in M_{2}^{*}$, then $v_{i} \in D$ and $\left(v_{i} v_{j}\right)_{1}$ is v_{i} 's only neighbor which is not in D. Then, v_{i} super dominates $\left(v_{i} v_{j}\right)_{1}$ (that is the same as $\left.\left(v_{j} v_{i}\right)_{4 t+2}\right)$. For a super edge $P_{v_{i} v_{j}}$ considered in (v), both ends v_{i} and v_{j} belong to D and hence, $\left(v_{i} v_{j}\right)_{1}$ super dominates $\left(v_{i} v_{j}\right)_{2}$.

Since the constructed set D is a super dominating set, we may conclude

$$
\gamma_{\mathrm{sp}}\left(S_{k}(G)\right) \leq|D|=\frac{k}{2} m(G)+n(G)-\mathrm{ii}(G)
$$

which, together with (8), complete the proof of the theorem.
As a consequence of Proposition 5.10 and Theorem 5.11, we obtain the following result.
Theorem 5.12. Over the class of k-subdivision graphs, it is NP-complete to decide whether $\gamma_{\mathrm{sp}}(F) \leq \ell$ holds, if ℓ is part of the input and k is a fixed integer with $k \equiv 2 \bmod 4$.

6. Conclusions

We conclude the paper by summarizing our main results on the computational complexity of the following problem.

SUPER DOMINATION (S-DOM) PROBLEM

Instance: A simple undirected graph G and an integer ℓ.
Question: Does $\gamma_{\text {sp }}(G) \leq \ell$ hold?

By Theorems 3.1, 4.1, 5.4, 5.7, 5.9, and 5.12, we can conclude the following summary.

- The S-DOM problem is NP-complete over the following graph classes:
(A) Bipartite graphs of girth at least 8 ;
(B) Class of k-subdivision graphs if k is a fixed even integer.
- The S-DOM problem can be solved in polynomial time over the following graph classes:
(C) Trees;
(D) Class of k-subdivision graphs if k is an odd integer.

Classes (A), (C), and (D) are subclasses of bipartite graphs. However, to get a better picture of the computational complexity of the S-DOM problem on the class of bipartite graphs, we propose the following problems.

Problem 6.1. Find a subclass \mathcal{C} of (A) so that the S-DOM problem remains NP-complete on \mathcal{C}.
Problem 6.2. Find further subclasses of bipartite graphs over which the S-DOM problem can be solved in polynomial time.
The ultimate goal we set is a complete characterization:
Problem 6.3. Characterize the subclasses of bipartite graphs over which the S-DOM problem remains NP-complete.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

Nima Ghanbari would like to thank the Research Council of Norway and Department of Informatics, University of Bergen for their support. Csilla Bujtás and Sandi Klavžar were supported by the Slovenian Research Agency (ARRS) under the grants P1-0297, J1-2452, and N1-0285.

References

[1] S. Alikhani, N. Ghanbari, S. Soltani, Total dominator chromatic number of k-subdivision of graphs, Art Discrete Appl. Math. 6 (2023) 1.10.
[2] M. Arockiaraj, S. Klavžar, S. Mushtaq, K. Balasubramanian, Topological characterization of the full k-subdivision of a family of partial cubes and their applications to α-types of novel graphyne and graphdiyne materials, Polycycl. Aromat. Compd. 41 (2021) 1902-1924.
[3] B. Bollobás, E.J. Cockayne, Graph-theoretic parameters concerning domination, independence, and irredundance, J. Graph Theory 3 (1979) $241-249$.
[4] W. Barrett, S. Butler, M. Catral, S.M. Fallat, M. Shaun, H.T. Hall, L. Hogben, M. Young, The maximum nullity of a complete subdivision graph is equal to its zero forcing number, Electron. J. Linear Algebra 27 (2014) 444-457.
[5] A. Brandstädt, F. Mosca, Finding dominating induced matchings in P_{9}-free graphs in polynomial time, Discuss. Math., Graph Theory 42 (2022) 1139-1162.
[6] M. Dettlaff, M. Lemańska, J.A. Rodríguez-Velázquez, R. Zuazua, On the super domination number of lexicographic product graphs, Discrete Appl. Math. 263 (2019) 118-129.
[7] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, WH Freeman and Co., New York, 1979.
[8] N. Ghanbari, Some results on the super domination number of a graph, Discrete Math. Algorithms Appl. (2023), https://doi.org/10.1142/ S1793830923500441.
[9] M.C. Golumbic, M. Lewenstein, New results on induced matchings, Discrete Appl. Math. 101 (2000) 157-165.
[10] T.W. Haynes, S.T. Hedetniemi, M.A. Henning (Eds.), Topics in Domination in Graphs, Developments in Mathematics, vol. 64, Springer, Cham, 2020.
[11] T.W. Haynes, S.T. Hedetniemi, M.A. Henning (Eds.), Structures of Domination in Graphs, Developments in Mathematics, vol. 66, Springer, Cham, 2021.
[12] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller, J.W. Thatcher, J.D. Bohlinger (Eds.), Complexity of Computer Computations, Plenum, New York, 1972.
[13] S. Klavžar, K. Knauer, T. Marc, On the Djoković-Winkler relation and its closure in subdivisions of fullerenes, triangulations, and chordal graphs, MATCH Commun. Math. Comput. Chem. 86 (2021) 327-342.
[14] D.J. Klein, J.A. Rodríguez-Velázquez, E. Yi, On the super domination number of graphs, Commun. Comb. Optim. 5 (2020) 83-96.
[15] B. Klemz, G. Rote, Linear-time algorithms for maximum-weight induced matchings and minimum chain covers in convex bipartite graphs, Algorithmica 84 (2022) 1064-1080.
[16] B. Krishnakumari, Y.B. Venkatakrishnan, Double domination and super domination in trees, Discrete Math. Algorithms Appl. 08 (2016) 1650067.
[17] D. Kobler, U. Rotics, Finding maximum induced matchings in subclasses of claw-free and P5-free graphs, and in graphs with matching and induced matching of equal maximum size, Algorithmica 37 (2003) 327-346.
[18] M. Lemańska, V. Swaminathan, Y.B. Venkatakrishnan, R. Zuazua, Super dominating sets in graphs, Proc. Natl. Acad. Sci. India Sect. A 85 (2015) $353-357$.
[19] V. Lozin, I. Razgon, Tree-width dichotomy, Eur. J. Comb. 103 (2022) 103517.
[20] V.D. Nguyen, B.T. Pham, P.T. Do, Efficient algorithms for maximum induced matching problem in permutation and trapezoid graphs, Fundam. Inform. 182 (2021) 257-283.
[21] S. Saeedi Madani, D. Kiani, Induced matchings in strongly biconvex graphs and some algebraic applications, Math. Nachr. 294 (2021) $1160-1174$.
[22] B. Senthilkumar, Y.B. Venkatakrishnan, H.N. Kumar, Super domination in trees, Discrete Math. Algorithms Appl. 14 (2022) 2150137.
[23] L.J. Stockmeyer, V.V. Vazirani, NP-completeness of some generalizations of the maximum matching problem, Inf. Process. Lett. 15 (1982) 14-19.
[24] F. Wang, X. Liu, Coloring 3-power of 3-subdivision of subcubic graph, Discrete Math. Algorithms Appl. 10 (2018) 1850041.
[25] M. Xiao, H. Tan, Exact algorithms for maximum induced matching, Inf. Comput. 256 (2017) 196-211.
[26] R. Yuster, U. Zwick, Finding even cycles even faster, SIAM J. Discrete Math. 10 (1997) 209-222.
[27] J. Zhou, L. Sun, C. Bu, Resistance characterizations of equiarboreal graphs, Discrete Math. 340 (2017) 2864-2870.
[28] W. Zhuang, Super domination in trees, Graphs Comb. 38 (2022) 21.

[^0]: सh This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.

 * Corresponding author at: Faculty of Mathematics and Physics, University of Ljubljana, Slovenia. E-mail addresses: csilla.bujtas@fmf.uni-lj.si (C. Bujtás), Nima.Ghanbari@uib.no (N. Ghanbari), sandi.klavzar@fmf.uni-lj.si (S. Klavžar).

[^1]: ${ }^{1}$ We may suppose, without loss of generality, that G_{F} is of girth of at least 8 . Indeed, if G_{F} is a tree, we may consider the formula $F^{\prime}=F \wedge\left(x_{1} \vee \neg x_{1} \wedge x_{2}\right)$. Clearly, a truth assignment satisfies F if and only if it satisfies F^{\prime}, and $\gamma_{\mathrm{sp}}\left(G_{F}\right)=n\left(G_{F}\right)-\alpha^{\prime}\left(G_{F}\right)$ if and only if the same is true for $G_{F^{\prime}}$.

