8 research outputs found

    A Generic Framework for Representing and Analysing Model Concurrency

    Get PDF
    International audienceRecent results in language engineering simplify the development of tool-supported executable domain-specific modelling languages (xDSMLs), including editing (e.g., completion and error checking) and execution analysis tools (e.g., debugging, monitoring and live modelling). However, such frameworks are currently limited to sequential execution traces, and cannot handle execution traces resulting from an execution semantics with a concurrency model supporting parallelism or interleaving. This prevents the development of concurrency analysis tools, like debuggers supporting the exploration of model executions resulting from different interleavings. In this paper, we present a generic framework to integrate execution semantics with either implicit or explicit concurrency models, to explore the possible execution traces of conforming models, and to define strategies for helping in the exploration of the possible executions. This framework is complemented with a protocol to interact with the resulting executions and hence to build advanced concurrency analysis tools. The approach has been implemented within the GEMOC Studio. We demonstrate how to integrate two representative concurrent meta-programming approaches (MoCCML/Java and Henshin), which use different paradigms and underlying foundations to define an xDSML's concurrency model. We also demonstrate the ability to define an advanced concurrent omniscient debugger with the proposed protocol. The paper, thus, contributes key abstractions and an associated protocol for integrating concurrent meta-pro\-gram\-ming approaches in a language workbench, and dynamically exploring the possible executions of a model in the modelling workbench

    Towards Language-Oriented Modeling

    Get PDF
    In this habilitation à diriger des recherches (HDR), I review a decade of research work in the fields of Model-Driven Engineering (MDE) and Software Language Engineering (SLE). I propose contributions to support a language-oriented modeling, with the particular focus on enabling early validation & verification (V&V) of software-intensive systems. I first present foundational concepts and engineering facilities which help to capture the core domain knowledge into the various heterogeneous concerns of DSMLs (aka. metamodeling in the small), with a particular focus on executable DSMLs to automate the development of dynamic V&V tools. Then, I propose structural and behavioral DSML interfaces, and associated composition operators to reuse and integrate multiple DSMLs (aka. metamodeling in the large).In these research activities I explore various breakthroughs in terms of modularity and reusability of DSMLs. I also propose an original approach which bridges the gap between the concurrency theory and the algorithm theory, to integrate a formal concurrency model into the execution semantics of DSMLs. All the contributions have been implemented in software platforms — the language workbench Melange and the GEMOC studio – and experienced in real-world case studies to assess their validity. In this context, I also founded the GEMOC initiative, an attempt to federate the community on the grand challenge of the globalization of modeling languages

    Interoperability and Composition of DSLs with Melange

    Get PDF
    Domain-Specific Languages (DSLs) are now developed for a wide variety of domains to address specific concerns in the development of complex systems. However, DSLs and their tooling still suffer from substantial development costs which hamper their successful adoption in the industry. For over a decade, researchers and practitioners have developed language workbenches with the promise to ease the development of DSLs. Despite many advances, there is still little support for advanced scenarios such as language evolution, composition , and interoperability. In this paper, we present a modular approach for assembling DSLs from other ones and seamlessly evolving them, while ensuring the reuse of associated tools through subsequent versions or across similar DSLs. We introduce the conceptual foundations of our approach, its implementation in the Melange language workbench, and summarize its benefits on various case studies

    Industrial Experience Report on the Formal Specification of a Packet Filtering Language Using the K Framework

    Get PDF
    Many project-specific languages, including in particular filtering languages, are defined using nonformal specifications written in natural languages. This leads to ambiguities and errors in the specification of those languages. This paper reports on an industrial experiment on using a tool-supported language specification framework (K) for the formal specification of the syntax and semantics of a filtering language having a complexity similar to those of real-life projects. This experimentation aims at estimating, in a specific industrial setting, the difficulty and benefits of formally specifying a packet filtering language using a tool-supported formal approach

    Revisiting visitors for modular extension of executable DSMLs

    Get PDF
    Executable Domain-Specific Modeling Languages (xDSMLs) are typically defined by metamodels that specify their abstract syntax, and model interpreters or compilers that define their execution semantics. To face the proliferation of xDSMLs in many domains, it is important to provide language engineering facilities for opportunistic reuse, extension, and customization of existing xDSMLs to ease the definition of new ones. Current approaches to language reuse either require to anticipate reuse, make use of advanced features that are not widely available in programming languages, or are not directly applicable to metamodel-based xDSMLs. In this paper, we propose a new language implementation pattern, named Revisitor, that enables independent extensibility of the syntax and semantics of metamodel-based xDSMLs with incremental compilation and without anticipation. We seamlessly implement our approach alongside the compilation chain of the Eclipse Modeling Framework, thereby demonstrating that it is directly and broadly applicable in various modeling environments. We show how it can be employed to incrementally extend both the syntax and semantics of the fUML language without requiring anticipation or re-compilation of existing code, and with acceptable performance penalty compared to classical handmade visitors

    Recommender systems in model-driven engineering: A systematic mapping review

    Full text link
    Recommender systems are information filtering systems used in many online applications like music and video broadcasting and e-commerce platforms. They are also increasingly being applied to facilitate software engineering activities. Following this trend, we are witnessing a growing research interest on recommendation approaches that assist with modelling tasks and model-based development processes. In this paper, we report on a systematic mapping review (based on the analysis of 66 papers) that classifies the existing research work on recommender systems for model-driven engineering (MDE). This study aims to serve as a guide for tool builders and researchers in understanding the MDE tasks that might be subject to recommendations, the applicable recommendation techniques and evaluation methods, and the open challenges and opportunities in this field of researchThis work has been funded by the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie Grant Agreement No. 813884 (Lowcomote [134]), by the Spanish Ministry of Science (projects MASSIVE, RTI2018-095255-B-I00, and FIT, PID2019-108965GB-I00) and by the R&D programme of Madrid (Project FORTE, P2018/TCS-431

    Modularity and reuse of domain-specific languages:an exploration with MetaMod

    Get PDF
    corecore