

Modularity and reuse of domain-specific languages

Citation for published version (APA):
Sutii, A. M. (2017). Modularity and reuse of domain-specific languages: an exploration with MetaMod. [Phd
Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit
Eindhoven.

Document status and date:
Published: 07/11/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Jul. 2024

https://research.tue.nl/en/publications/3883f853-93a6-4479-884b-026cb288a3ca

Modularity and Reuse of Domain-Specific Languages:
an exploration with MetaMod

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus prof.dr.ir. F.P.T. Baaijens, voor een

commissie aangewezen door het College voor
Promoties, in het openbaar te verdedigen
op dinsdag 7 november 2017 om 16:00 uur

door

Ana Maria Şutîi

geboren te Bacău, Roemenië

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de promotie-
commissie is als volgt:

voorzitter: prof.dr.ir. B. Koren
promotor: prof.dr. M.G.J. van den Brand
co-promotor: dr.ir. T. Verhoeff
leden: prof.dr. J.J. Lukkien

Prof.Dr. B. Rumpe (RWTH)
prof.dr. E. Scott (Royal Holloway University)
dr. E. van Wijk (University of Minnesota)
prof.dr. J.J. Vinju (Centrum van Wiskunde en Informatica)

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in
overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Modularity and Reuse of Domain-Specific Languages:
an exploration with MetaMod

Ana Maria Şutîi

Promotor: prof.dr. M.G.J. van den Brand
(Eindhoven University of Technology)

Copromotor: dr.ir. T. Verhoeff
(Eindhoven University of Technology)

Additional members of the core committee:

prof.dr. J.J. Lukkien (Eindhoven University of Technology)
prof.dr. J.J. Vinju (Centrum Wiskunde en Informatica)
prof.dr. B. Rumpe (RWTH Aachen University)
prof.dr. E. Scott (Royal Holloway University of London)
prof.dr. E. van Wyk (University of Minnesota)

The work in this thesis has been carried out under the auspices of the research school IPA
(Institute for Programming research and Algorithmics).
IPA dissertation series 2017-09.

Part of the work in this thesis has been carried out as part of the European Union’s
ARTEMIS Joint Undertaking for CRYSTAL - Critical System Engineering Acceleration -
under grant agreement No. 332830.

A catalogue record is available from the Eindhoven University of Technology Library
ISBN: 978-90-386-4379-3

c© A.M. Şutîi, 2017.

Printed by the print service of Ipskamp Printing, Enschede, The Netherlands

All rights reserved. No part of this publication may be reproduced, stored in a retrie-
val system, or transmitted, in any form or by any means, electronically, mechanically,
photocopying, recording or otherwise, without prior permission of the author.

Acknowledgements

My PhD has been an incredible journey, during which I have grown both professionally
and personally. Besides the technical knowledge, the PhD made me more confident in my
abilities to take on challenging tasks and it has shown me how to deal with uncertainty.
It has also taught me to be more self-disciplined and resilient in stressful times. On the
fun side, during these four years, I attended inspiring conferences, workshops and summer
schools in various parts of the world. There, I met inspiring people and I have visited
beautiful places. These people and the places I visited, all left a profound mark on me.

It is now time to express my gratitude towards people who have guided, supported,
and encouraged me during the four years of my PhD. In the next paragraphs, I will
mention the people that had the greatest influence on me in this period.

First and foremost, I am really grateful towards my two supervisors, Mark and Tom.
The guidance, liberty, and trust they gave me was of uttermost importance for the
completion of my PhD. Mark has always been the one to give me the high-level overview
and to put my work into perspective. Tom has always been the one to discuss the details
of my work and to show me the beauty of abstraction. Thank you both for the great,
inspiring talks we had these four years. You made my PhD journey a pleasure. Both
of you have showed me the joy of good mentorship and guidance. Moreover, thank you,
Tom, for the tennis games we played Saturday mornings, and the small conversations in
Dutch we always had after each game.

I have always cherished the moments spent with my colleagues. We enjoyed numerous
drinks, barbecues, coffees, and chit-chats together. They have made life at the university
a real delight. My south American colleagues helped me improve my Spanish and
Portuguese, they got me into playing football, and they showed me what a good barbecue
really is. Moreover, they introduced me to “farofa” (no more barbecues without it) and
the famous Pernambuco “bolo de rolo”. My Asian colleagues brought me numerous flavors
from Asia. They showed me the Chinese “sweets”, the real pistachios (not the ones you
find in European shops), the amazing saffran, the smoked tea, and so many other flavors.
I also had a failed attempt to learn Chinese. Last, but not least, my European friends
showed me how diverse Europe itself is and how, despite the differences, we share dishes
that I thought were exclusively romanian! I am especially grateful to my dutch colleagues
who have shared precious tricks and tips on how to get around the dutch culture. I
wholeheartedly thank my colleagues for showing me the joy of diversity. Among my

ii

colleagues, I mention Yanja Dajsuren, Önder Babur, Dana Zhang, Ulyana Tikhonova,
Felipe Ebert, Weslley Silva Torres, Neda Noroozi, Sander de Putter, Josh Mengerink, Fei
Yang, Alexander Serebrenik, Anton Wijs, Luna Luo, Mahmoud Talebi, Thomas Neele,
Alexander Fedotov, Mauricio Verano Merino, Kousar Aslam, Rodin Aarssen, Priyanka
Karkhanis, Guilherme Amaral Avelino, Sangeeth Kochanthara, Omar Alzuhaibi, Sjoerd
Cranen, Sarmen Keshishzadeh, Bogdan Vasilescu, Aminah Zawedde, Yuexu Chen, Maarten
Manders, Dragan Bosnacki, Tim Willemse, Hans Zantema, Jaewon Oh, Alexander Aroyo,
Miguel Botto Tobar, Loek Cleophas, Rob Faessen, Frank Peter, Arash Khabbaz Saberi,
Luc Engelen, Arjan van der Meer, Maciej Gazda, Raquel Alvarez Ramirez, Ion Barosan,
Ad Aerts, Harold Weffers, Maggy de Wert, Margje Mommers-Lenders, Tineke van den
Bosch, and Willeke Quaedflieg.

During these four years, I got involved in various associations and clubs, that have
made my PhD life much more enjoyable and fulfilling. I especially thank my improv
friends, who have provided for numerous magical evenings at the International Hub in
Eindhoven. They have showed me the joy of living in the moment. I express warm thanks
to my Toastmasters friends as well. They have showed me the joy of sharing personal
stories. Last, but not least, I express gratitude to my PhD Council friends. Organizing
events for the PhD community was a very rewarding experience. They have showed me
the joy of giving back to the community.

I express sincere gratitude to my friends, with whom I have spent many wonderful
evenings and weekends. Besides spending relaxing times together, we had many stimulating
conversations about life and work. They have showed me the joy of friendship.

I would also like to convey my gratitude to the students that I have supervised (Jia
Zhang, Stef van Schuylenburg, and Nanne Wielinga) or lectured (2016-2017 PDEng
trainees) during these four years. They have showed me the joy of sharing knowledge.

I am also extremely grateful for the opportunity I have been given to work at Fabien
Campagne’s laboratory at Weill Cornell Medicine in New York. I especially thank Mark
for allowing me to do this internship at a short notice, and Fabien for guiding me through
the entire period. Besides domain-specific language technology, I have learned a great
deal about biology, statistics, and data analysis during this period. It has been a truly
intense learning period. Moreover, I will never forget the magical evenings spent in New
York and the numerous people I met there from all over the world.

I want to thank people from different companies that, during my PhD, have allowed
me to present my work at their offices, and have given me valuable feedback. In no
particular order, I thank Bart Theelen from Océ, Eugen Schindler from Océ, Hristina
Moneva from Océ, Klemens Schindler from Sioux, Remi Bosman from Sioux, Arjan Mooij
from TNO, Markus Voelter from mbeddr, Marc Hamilton from Altran, Ramon Schiffelers
from ASML, and Rob Ekkel from Phillips.

I am also extremely grateful to Charise Walraven, who has designed the cover of this
thesis. The cover represents an abstract representation of my work. Thank you, Charise,
for putting up with me while going through several rounds of revisions.

I would also like to express my deep gratitude to the members of my reading committee,
who had the patience to go through my thesis and give me valuable feedback: Erik van
Wyk from University of Minnesota, Elisabeth Scott from Royal Holloway University of
London, Bernard Rhumpe from RWTH Aachen University, Jurgen Vinju from Centrum
Wiskunde en Informatica, and Johan Lukkien from Eindhoven University of Technology.

I am concluding this section with the people who are dearest to me. I have been
blessed with what might be the most loving and the most inspiring family in the world.
My parents, my sister, and my husband have always been with me, through the happiest

iii

and saddest times. I will conclude this section with a big and warm thank you to them!
They have showed me the joy of unconditional love and support.

Ana Maria Şutîi
Eindhoven, September 2017

Table of Contents

Acknowledgements i

Table of Contents v

1 Introduction 1
1.1 Background . 1
1.2 Highlights of our research . 4
1.3 Research Questions . 6
1.4 Outline . 7
1.5 Research strategy . 10

2 Setting the Context 11
2.1 Model-driven engineering . 11
2.2 Language-oriented programming . 17
2.3 Domain-specific languages . 18
2.4 Language workbenches - Jetbrains MPS 21

3 Language workbench requirements for modularity and reuse 25
3.1 Modularity . 25
3.2 Reuse . 28
3.3 Other qualities . 30
3.4 Language workbench requirements for modularity and reuse 32
3.5 Conclusions . 34

4 MetaMod 35
4.1 Meta-metamodel . 35
4.2 Organization of MetaMod meta-languages 57
4.3 Example DSL and models in MetaMod . 61
4.4 Conclusions . 67

vi Table of Contents

5 Features of MetaMod 69
5.1 Features for modularity and reuse . 69
5.2 Features for language workbench requirements 85
5.3 Related work . 92
5.4 Conclusions . 98

6 Modularity of value models 99
6.1 Introduction . 99
6.2 The Kaja DSL - Jetbrains MPS implementation 101
6.3 The Kaja DSL - MetaMod implementation 101
6.4 Discussion . 103
6.5 Related work . 104
6.6 Conclusions . 105

7 Reuse mappings 107
7.1 Introduction . 107
7.2 Motivating Example . 109
7.3 Reuse mapping . 111
7.4 Reuse mappings in MetaMod . 116
7.5 Execution of a reused operation in MetaMod 121
7.6 Discussion . 122
7.7 Conclusions . 125

8 Delegated operations 127
8.1 Introduction . 127
8.2 Motivating Examples . 129
8.3 The approach of delegated operations . 132
8.4 The approach of delegated operations in MetaMod 135
8.5 Discussion . 139
8.6 Related work . 141
8.7 Conclusions . 143

9 Evaluation 145
9.1 Kaja language . 145
9.2 Expression language . 147
9.3 Bootstrapping . 152
9.4 Other DSLs . 158
9.5 Testing . 159
9.6 Discussion . 160
9.7 Conclusions . 161

10 Conclusion 163
10.1 Contributions . 163
10.2 Discussion . 167
10.3 Future Work . 168
10.4 Concluding remarks . 169

Bibliography 171

A Code generated from the shapes example 183

Table of Contents vii

Summary 189

Curriculum Vitae 193

IPA Dissertation Series 195

Chapter 1

Introduction

In this thesis we present MetaMod, consisting of a collection of mechanisms and meta-
tools, that tackles modularity and reuse in the creation and application of domain-specific
languages. The research we did with MetaMod was an exploration of ideas on better
ways to create domain-specific languages, with an emphasis on the modularity and reuse
qualities. A subset of these ideas lead to a collection of mechanisms for the design and
implementation of DSLs, that we embodied in the implementation of our meta-tools. In the
introduction of the thesis we motivate our research, we present its highlights, we discuss
the research questions, we sketch an outline of the entire thesis and we make our research
strategy explicit.

1.1 Background
The history of software engineering is one of raising the level of abstraction [19]. Program-
ming has evolved from machine code with strings of zeros and ones, and assembly code
with mnemonics, to higher-level programming languages with loops, conditionals, classes,
traits, etc. This raising of the abstraction level has brought an incredible productivity
boost in writing programs and it has also allowed more people to develop software. The
productivity boost happened because this higher abstraction level has decreased the
following gap. On one hand, there is the conceptual model in the mind of the software
developer who wants to solve a problem. On the other hand, there is the representation
of the solution for the problem in the program, solution that needs to be molded with
the abstractions available in the programming language. The difference between the
conceptual model and the actual solution in the programming language represents the
gap aforementioned.

In most cases, the gap between the conceptual models in the mind of the software
developers and the representation of the solution in higher-level programming languages is
still daunting. The abstractions introduced in these higher-level programming languages
are abstractions in the solution space [124] because the concepts used to create programs
have a computing-focused flavor (for loops, while loops, etc.). Besides the solution-space

2 Introduction

abstractions, one could argue that there is another kind of abstraction in these higher-
level programming languages. The other kind of abstraction can be best illustrated with
object-oriented programming (OOP) [103] in Java. This kind of abstraction lives in the
mind of the beholder (user), not in the language itself. When programming in Java, for
instance, the user understands certain predefined classes as abstractions and subsequently
uses them as such, rather than as features of the programming language. Consider, for
instance, class ‘Animal’ with methods ‘eat’ and ‘sleep’. The user can treat the ‘Animal’
class as an abstraction of a real animal, and methods ‘eat’ and ‘sleep’ as an abstraction of
the actions the animal can perform. Nonetheless, these abstractions are intertwined with
general-purpose abstractions such as overloading, overriding, virtual functions, etc. This
intertwining breaks the illusion of programming using concepts from the problem space.
A similar argument holds for other mechanisms, such as software libraries. Moreover,
these ‘in-language’ abstractions, in languages like Java, do not provide domain-specific
optimizations or static error checks that DSLs can provide.

Abstractions of the problem space [124] itself would help in closing the aforementioned
gap because concepts in programming languages would be concepts from the application
domain itself (train, station, etc.). There are new methodologies that advocate the intro-
duction of abstractions of the problem space in the programming languages. Two of these
methodologies are model-driven engineering (MDE) and language-oriented programming
(LOP).

Model-driven engineering advocates to raise the level of abstraction through the use
of models (abstract representations of the real world) in software development and it
uses, among others, domain-specific languages (DSLs) and code generators to achieve
its goal [124]. The goal of MDE and the means to achieve it relate to language-oriented
programming. LOP advocates the creation and application of domain-specific languages
to express solutions in various domains [39, 51, 162]. In particular, when given a new
problem, a DSL engineer1 creates one or more DSLs (if these DSLs do not already exist)
that a DSL user2 employs to express the solution. This solution is expressed at a higher
level of abstraction, using concepts from the problem domain itself. The solution can be
subsequently transformed to executable code as well.

In MDE parlance, the central language aspect3 of a DSL is the metamodel. The
metamodel describes the kinds of nodes and edges possible in a graph data structure that
contains all the relevant information from a program; this graph data structure is called
the abstract syntax. The metamodel itself consists of concepts (equivalent to the nodes)
and relations (equivalent to the edges) between these concepts. Besides the metamodel,
a DSL also involves processing units4, which take models conforming to the metamodel
as input and produce something useful from them as output, such as executable code or
visualizations. A processing unit can be related to any of the following language aspects:
static semantics, interpretation, code generation (more generally, model transformations),
editor, etc. Thus, a processing unit implements a language aspect. It is the metamodel
and its associated processing units that the DSL engineer needs to provide for a complete
definition of a DSL.

Traditionally, the creation of a DSL was a time-consuming endeavor. Fortunately,
their development has been eased with the introduction of specialized environments called

1The DSL engineer is a software developer responsible for implementing DSLs.
2The DSL user is a person (ideally domain expert) using a DSL.
3A language aspect is a constituent part of the definition of a DSL (e.g., code generation, constraints,

editor, etc.).
4Note that the term processing unit is a term that we introduced.

1.1. Background 3

language workbenches [51]. The language workbenches ease the development of DSLs
by offering meta-languages to implement the different language aspects, such as editor,
code generation, constraints, type system, etc. There are also language workbenches that
offer a single, powerful meta-language to develop all the language aspects of a DSL (e.g.,
Rascal [12]).

No matter what facilities they offer to implement the different language aspects of a
DSL, language workbenches need to provide good support for modular and reusable DSLs
as well, in order to fulfill the vision of MDE and LOP. That is because many DSLs have
common parts. For instance, many DSLs need a form of arithmetic expressions. Thus,
reusing arithmetic expressions from other DSLs would speed up the development time of
the new DSLs. It would also increase the quality of the new DSLs if the reused DSLs are
stable. Moreover, in LOP, a combination of DSLs is needed for the implementation of
an application, further motivating the need for modularity and reuse. Additionally, the
benefits of modularity and reuse are already long recognized in software development and
other engineering disciplines (see Chapter 2). By extension, modularity and reuse should
benefit the development of DSLs as well, DSLs that are at the core of MDE and LOP.

One type of language workbench that enables more modularity and reuse in the
creation of domain-specific languages is the projectional language workbench [160]. This
kind of language workbench uses projectional editing, which allows users to directly
manipulate the abstract syntax of the program through the actions they perform when
creating the program in the editor. This is different from the classical way where users
manipulate the text of programs and the compiler parses the text into an abstract syntax.
Language workbenches that employ parsing technologies for the editors exhibit difficulties
in combining the textual notations of the DSLs. Note that we refer here to the difficulties
that the DSL engineers encounter when they combine languages with the purpose of
creating a new language. This is not the case for projectional language workbenches,
because they do not need to parse text or any other notation. Circumventing the difficulty
of combining languages when parsers are involved [68] enables DSL engineers to more
easily mix DSLs that have different notations (not only textual). Arguably, one of the
most advanced projectional language workbenches developed so far is Jetbrains MPS [65].
It was successfully used to implement a considerable amount of inter-operating DSLs [158].
The modularity of DSLs in MPS is based on mechanisms similar to object-oriented
programming in Java.

Looking at modularity and reuse of DSLs in various language workbenches, one
can observe two general tendencies. Many language workbenches approach modularity
and reuse using only inheritance-like mechanisms, or they approach it only outside of
the modeling formalism itself (not considering modularity and reuse in the modeling
formalism). Besides these two tendencies, the implementation of DSLs is a particular case
of software development, so the particularities of DSLs (such as the separate definition of
the metamodel and that of the processing units, or the hierarchies created by the modeled
domain itself) could be further leveraged in language workbenches. Based on the two
tendencies and the observation, we formulate three guiding principles for MetaMod: do
not use only inheritance-like mechanisms, treat modularity and reuse starting from the
modeling formalism and leverage characteristics of DSLs in the features of MetaMod.

Crystal European Project The work carried out during the four year PhD was
partially supported by the Crystal European Union project [6]. The overall goal of
the project was to establish an interoperability specification and a reference technology
platform for safety-critical systems. In particular, we were involved in the DSL brick,

4 Introduction

that was responsible to provide capabilities to design domain-specific languages and
automatically generate code and other artifacts from the models.

1.2 Highlights of our research
In the next paragraphs, we give the main highlights of our research. To guide us during
our research, we have used the three principles formulated in the previous section. As
already argued, many researchers and tool developers approach modularity and reuse
in the creation of DSLs employing mechanisms similar to inheritance only (principles
one), or solving it outside of the modeling formalism only (principle two). That is why,
we set to explore features of modularity and reuse for the creation of DSLs in language
workbenches that depart from these two tendencies and that, at the same time, leverage
the particularities of DSLs during their creation (principle three).

Principle one Many of the existing formalisms for creating languages (e.g., mechanism
in Jetbrains MPS [65]) approach the DSL modularity and reuse with inheritance-like
mechanisms, but we think that this brings unnecessary restrictions to the modularity of
DSLs. These inheritance-like mechanisms, for instance, allow very little adaptation to
the metamodel of a reused DSL in a reusing context. Our mechanisms are more flexible
when it comes to adapting the metamodel of a reused DSL in a new context. We give
details on this in Chapter 4.

Most work on the reuse of DSLs focuses on the reuse of entire DSLs (with some
adaptations); see Section 5.3. We also looked at how to reuse only the processing units of
DSLs where the metamodels of these DSLs are conceptually similar, but do not necessarily
have the same structure (see Chapters 7 and 8). Again, these two types of reuse use
different mechanisms than inheritance-like mechanisms.

Principle two In formalisms for creating languages that do not cater for modularity
(e.g., Ecore [135]), this has been dealt with outside of the modeling formalism only
(e.g., Melange [35]). We will argue that modularity should start from the modeling
formalism itself and go to the processing unit level. This is because, the organization of
the metamodels themselves can influence modularity and reuse of processing units. That
is why, we decided to create our own collection of mechanisms and meta-tools for the
design and implementation of languages, MetaMod, and not adapt an existing formalism
for creating languages. MetaMod is both the mechanisms for creating languages and their
implementation in meta-tools. We do not call MetaMod a language workbench because
we do not have a mechanism and associated meta-tools for custom editors in MetaMod
(which is considered to be a constituent part of a language workbench). Apart from that,
MetaMod has support for all the other parts of a language workbench. In most places in
this thesis it is safe to equate our mechanisms and meta-tools with language workbenches.
When that is not the case, we make it clear in the discussion.

Principle three The implementation of domain-specific languages is a particular case
of software development, and thus, one can take advantage of the particularities of DSLs.
The two reuse mechanisms mentioned in the previous paragraphs take advantage of
the fact that metamodels and processing units are defined separately (characteristic of
MetaMod). Furthermore, we exploited hierarchies created with the metamodel in the
processing units (see Chapter 5).

1.2. Highlights of our research 5

Modularity of models of DSLs Most of our research was geared towards the modula-
rity and reuse features that language workbenches offer for the creation of domain-specific
languages. Nonetheless, the way we designed MetaMod allowed us to have the same
modularity and reuse features for the models of the DSLs, as for the metamodels of the
DSLs (see Chapter 4 and Chapter 6). The fact that these features are already enabled at
the model level means that the DSL engineer does not need to add them to the particular
metamodels of the DSLs they are developing, further easing the development effort of a
DSL.

Implementation of MetaMod As for the meta-tools, we implemented them using
Jetbrains MPS. The definitions and explanations of the mechanisms we introduced are
accompanied by the implementation of these mechanisms in meta-tools in Jetbrains MPS.
We encourage the readers to consult the implementation5 in case of technical doubts.
Furthermore, it is at the implementation level that the relation to projectional editors
comes into play, because we rely on the projectional editing facility of MPS in MetaMod.
That is why we do not consider modularity and reuse for scanning and parsing [141]. As
a result, the default editors of MetaMod are projectional editors.

Exploration Coming up with the mechanisms for the design and implementation of
DSLs was a real exploration. This can also be seen from the commit history of the
implementation of MetaMod, where we have also implemented ideas that we do not
mention in this thesis. Moreover, in the thesis, Chapter 7 and Chapter 8 refer to two
explorations we made in previous versions of MetaMod. One can go back to these versions
by checking out the right branch from the Github repository of our project. In that sense,
version control systems are excellent tools for explorations and for revisiting a previous
exploration.

One phenomenon we observed in our explorations is that no single feature for modula-
rity and reuse is a panacea for all problems. Such features always require trade-offs with
various qualities, and they can be often misused. Not even in software development is
there an universally-accepted mechanism for modularity and reuse.

What complicates the discussion In explaining MetaMod, we often need to deal
with multiple levels at which definitions occur in the programming world, which make
the discussions harder to follow. To get a high-level understanding of these levels of the
world, imagine one is defining a program (also know as the model). This is what we call
the first level of the world. To write this program, you need a language (also known as
the metamodel). Imagine now that we are in a setting where we can define this language.
This is the second level of the world, and this is another kind of definition. Moreover,
we do not use an existing formalism to define the language, so we need to define the
formalism as well. This is called a meta-metamodel; it represents the third level of the
world and it requires yet another kind of definition. We are going to switch often between
these levels of the programming world in the thesis, that of the meta-metamodel, the
metamodel and model. There are important interactions between these levels of the world,
and we will touch on them in the remainder of the thesis.

We summarize the previous paragraph in Table 1.1.
The meta-tools of MetaMod play a role in both the first level and the second level;

this is also the reason to call them ‘meta’-tools. Using the meta-tools, one can define
5https://github.com/farcasia/MetaMod

https://github.com/farcasia/MetaMod

6 Introduction

Definition of ... Related to the ... level of the world
Program Model
Language Metamodel
Formalism for creating a language Meta-metamodel

Table 1.1: Table depicting the level of the programming world to which a certain definition
relates.

metamodels, models complying to metamodels and semantic-carrying operations on the
models.

What further complicates the discussion is the fact that we use one formalism to
describe both metamodels and models, but we try to make things clear in Chapter 4.

1.3 Research Questions
In wishing to accomplish the vision of MDE and LOP as discussed in Section 1.1, we
have set to answer a main research question, that is subsequently split into six, more
focused, research questions.

The main research question is an overarching question and it is related to finding
elements that both MDE and LOP need in order to accomplish their vision, more
specifically, elements of modularity and reuse in the implementation of a DSL. Thus, we
ask the following.

RQ: What are effective ways to achieve modular and reusable definition,
implementation, and application of domain-specific languages?

Answering this main question, (1) we need to identify the reasons and requirements
for modularity and reuse of domain-specific languages, (2) we need to propose ingredients
that accomplish modularity and reuse of domain-specific languages and (3) we need to
see how the proposed ingredients behave in practice. These concerns are treated by the
next six research questions as follows. The first concern is addressed by RQ1, the second
concern is addressed by RQ2, RQ3, RQ4, and RQ5, and the third concern is addressed by
RQ6. Among these, the second concern addresses the core of the main research question.

Before we go on to the questions that tackle the core of the main research question,
we first set the context for and motivate RQ. We do so by diving deeper into modularity
and reuse, by giving reasons for wanting these two qualities in the implementation of a
DSL and by stating requirements for modularity and reuse of domain-specific languages.
Specifically, we ask

RQ1: What are reasons and requirements for modularity and reuse in language
workbenches?

Many works that address the problem of modularity and reuse of DSLs, do so outside
of the modeling formalism itself. That is, they take existing formalisms and add operators
on top of them to make up for the lack of modularity in those formalisms. Although
there are good reasons to do that, such as having to support a legacy formalism, we want
to address modularity from the core of a DSL implementation; this should bring more
opportunities to improve modularity. As a result, we look for a collection of mechanisms
and meta-tools that tackle modularity and reuse starting from the core of a DSL, the
metamodel. The question that we need to answer is

1.4. Outline 7

RQ2: How can we organize metamodels of the DSLs such that we facilitate
modularity and reuse of DSLs?

Although the main language aspect of a DSL is its metamodel, and we address the
modularity and reuse of metamodels with RQ1, implementing the metamodel is only
a part of the DSL implementation effort. We also need support for modularity in the
processing units of these DSLs, processing units that are collections of operations defined
on metamodels. We consequently need to address modularity and reuse at the level of
operations as well. Thus, we ask

RQ3: How can we organize processing units of the DSLs and the operations
in the processing units such that we facilitate modularity and reuse of DSLs?

The previous research questions addressed reuse of entire DSLs, that is, of both
metamodels and operations. Those research questions do not concern the situation
where metamodels of two DSLs, although conceptually similar, have different structures.
Reusing the operations of one of these DSLs in the implementation of the operations of
the other DSL would be a further use case for reuse with DSLs. This leads us to asking
the following question.

RQ4: How can we facilitate reuse of operations despite structural differences
among domain-specific languages?

The previous questions were specifically focused on the implementation of a DSL.
Looking at various DSLs, one can notice that there are recurring elements between these
DSLs. For instance, the use of arithmetic expressions, or logical expressions in DSLs is a
prevalent practice. These types of recurring elements, that come in the form of reusing
existing DSLs, are tackled with RQ2, RQ3 and RQ4. Nonetheless, there are also recurring
elements that can be addressed differently. For instance, many DSLs need the capability
to define models at separate places and to combine them, or to create small variations
of model fragments. DSL engineers thus need to add mechanisms to modularize their
models in the DSL itself. To overcome this, and to further ease the development of DSLs,
we ask

RQ5: What modularity and reuse mechanisms can be applied to models,
irrespective of the DSL?

We finally look at how the mechanisms and meta-tools for the design and implementa-
tion of DSLs, that we introduced while exploring the preceding research questions, behave
in practice. Specifically, we ask

RQ6: How can modularity and reuse features of language workbenches be
evaluated?

These research questions are addressed in the remainder of the thesis. What research
questions are tackled by each chapter is discussed in the next section.

1.4 Outline
Following is the outline for our thesis on MetaMod, a collection of mechanisms and
meta-tools targeting modularity and reuse in the creation of domain-specific languages.
The thesis is split into three main parts. The first part, comprising Chapters 1 through

8 Introduction

3, establishes the research questions, and sketches the context for our research and
the requirements for language workbenches. The second part, comprising Chapters 4
through 6, depicts the main mechanisms that we devised to achieve modularity and
reuse of domain-specific languages. Finally, in the third part, comprising Chapter 9 and
Chapter 10, we evaluate the practicality of the introduced techniques and we revisit our
research questions.

Chapter 2: Setting the context In this chapter, we review the main technologies
and the terminology we use throughout the thesis. Although some parts of it could be
skipped by those familiar with the topic, some of our terminology deviates, for good
reasons, from the more common alternatives. Thus, this chapter should be at least
skimmed through.

Chapter 3: Language workbench requirements for modularity and reuse In
this chapter, we sketch criteria that a language workbench needs to fulfill in order to
be fit for creating modular and reusable domain-specific languages. The chapter starts
with a description of two DSL qualities: the modularity and the reusability qualities. We
first glance at modularity and reuse in other sciences and engineering disciplines, and
then we look at modularity and reuse in general software development. We also give
arguments for modularity and reuse of DSLs in this first part. We then go on to describe
other DSL qualities that interact with the two main qualities, that of modularity and
reuse. The choice of some qualities requires trade-offs with other qualities (doing better
on one will deteriorate the other), or it is aligned with other qualities (doing better on
one will improve the other as well). We then show how modularity and reuse in the
creation of domain-specific languages is related to the expression problem [168] from
software development; the expression problem in software development defines criteria
for the extensibility of software. Finally, we define language workbench requirements
by rephrasing the criteria for the expression problem. This chapter offers an answer to
research question RQ1 and is partly based on the following publication.

[139] E. Schindler, and K. Schindler, and F. Tomassetti and A.M. Şutîi.
Language Workbench Challenge 2016: the JetBrains Meta Program-
ming System. Language Workbench Challenge, 2016.

Chapter 4: MetaMod In this chapter, we define the meta-metamodel of MetaMod
and the other meta-languages implemented in MetaMod, and we provide a complete
example of a DSL built with MetaMod. This chapter offers a complete overview of the
meta-metamodel of MetaMod, both in terms of our mechanisms and the meta-tools that
support these mechanisms. It gives an overview of the features introduced for the benefit
of both the metamodel and the model level. These features also include features that
relate to modularity and reuse. As a result, this chapter addresses research questions RQ2

and RQ5. This chapter is partly based on the following two publications.

[139] A.M. Şutîi, T. Verhoeff and M.G.J. van den Brand. Modular multi-
level metamodeling with MetaMod. Companion Proceedings of the
15th International Conference on Modularity, 2016.

[137] A.M. Şutîi. MetaMod: a modeling formalism with modularity at its
core. Companion Proceedings of the 30th IEEE/ACM International
Conference on Automated Software Engineering, 2015.

1.4. Outline 9

Chapter 5: Features of MetaMod In this chapter, we analyze the features of
MetaMod from two perspectives: that of modularity and reuse, and that of fulfilling
the language workbench requirements. This offers an answer to research questions RQ2

and RQ3. The first part, related to modularity and reuse, finishes with a discussion
on implementing the same DSL with both Jetbrains MPS and with MetaMod, which
contributes to answering research question RQ6 too. At the end of the chapter, we also
make an extensive comparison with existing language workbenches concerning modularity
and reuse. This chapter is partly based on the following publication.

[140] A.M. Şutîi, T. Verhoeff and M.G.J. van den Brand. Exploration of
modularity and reusability of domain-specific languages: an expres-
sion DSL in MetaMod. Computer Languages, Systems & Structures,
2017.

Chapter 6: Modularity of value models Here, we describe the modularity mecha-
nisms that MetaMod is able to provide for models, mechanisms that are the same as for
the metamodels. MetaMod makes these mechanisms available in any model, no matter
what DSL they conform to. Because these modularity mechanisms do not need to be
created in the DSL itself, the effort of creating the DSL decreases. The chapter exclusively
addresses RQ5.

Chapter 7: Reuse mappings In this chapter, we exclusively address RQ4. We
present a mechanism that achieves reuse of operations when the metamodel of the reusing
DSL and the corresponding part of the reused DSL metamodel differ. The mechanism
we present here has some limitations, part of which we mitigate with the mechanism
presented in the next chapter.

Chapter 8: Delegated operations In this chapter, we also exclusively address RQ4.
We present another mechanism of reusing operations despite of structural differences
among DSLs. This new mechanism is more flexible and allows more structural differences
among the reused and the reusing DSL than the mechanism presented in the previous
chapter.

Chapter 9: Evaluation In this chapter, we reflect on some DSLs that we developed
using MetaMod: the expression DSL, the Kaja DSL, the shapes DSL, the bootstrapping
of a subset of MetaMod, and a group of smaller DSLs made of the state machine, Petri net,
and graph DSLs. These DSLs range from small sizes to larger sizes and from imperative
to declarative. We highlight what elements related to modularity and reuse were eased
with MetaMod and what major design decisions we made with these DSLs. Thus, this
chapter addresses research question RQ6. This chapter is partly based on the following
publication.

[140] A.M. Şutîi, T. Verhoeff and M.G.J. van den Brand. Exploration of
modularity and reusability of domain-specific languages: an expres-
sion DSL in MetaMod. Computer Languages, Systems & Structures,
2017.

Chapter 10: Conclusions In this chapter, we revisit the research questions and
summarize the findings for each of them.

10 Introduction

1.5 Research strategy
To set the right expectations, in this section, we report on the research strategy we used in
our work. We categorize our research strategy as suggested by Shaw [128]. The research
strategy is made of three elements: what kind of research questions do we investigate,
what kind of result do we produce, and what kind of validation do we do? We are going
to investigate each of these elements separately in the next paragraphs.

Firstly, the research questions we ask are related to a method or means of development.
In particular, we ask questions about how can one better define, develop and use modular
and reusable domain-specific languages. This translates into ways to organize metamodels,
processing units and their operations, and models.

Secondly, the kind of result we produce is a technique accompanied by a tool. In
particular, the technique we create with MetaMod is arguably a better way of defining
and implementing modular and reusable domain-specific languages. The meta-tools of
MetaMod embody this technique and is publicly available on a Github repository6.

Thirdly, the kind of validation we produce is based on examples. We use a breadth
of examples for validation, from toy examples (the shapes and route DSL examples)
to examples that are slices of reality (the bootstrapping example and the expression
DSL) and standard examples (state machines, Petri nets, graphs). We reflect on these
implementations and their design, using the modularity and reuse lenses. Moreover, we
have two DSLs that are reimplementations of DSLs from Jetbrains MPS, and we can thus
make comparisons between MetaMod and MPS more directly.

6https://github.com/farcasia/MetaMod

https://github.com/farcasia/MetaMod

Chapter 2

Setting the Context

In this thesis we make a series of explorations, during which we touch upon several
methodologies and technologies related to domain-specific languages. This chapter briefly
explains the terminology for these related points. Specifically, these points consist of two
methodologies that employ domain-specific languages to accomplish their goals: model-
driven engineering and language-oriented programming; a more detailed explanation of
domain-specific languages; and a technology used for building DSLs, that of language
workbenches. We go through these points because it is important that one understands
the ideas behind them for the rest of the thesis. Furthermore, in this chapter we highlight
our preferred terminology when alternatives are presented, or we even introduce our own
terminology. For this chapter, and all other chapters of the thesis, we assume that the
reader is fairly familiar with object-oriented programming concepts.

2.1 Model-driven engineering
This section defines one methodology that we use in the rest of our thesis, that of model-
driven engineering. We start with a visual story that goes through most elements of
MDE, and we then explain the formal ingredients that constitute MDE. We finish this
section with a presentation of the most common standards and frameworks for MDE.

We start with a description of how building a modular house would work using MDE.
Consider a construction company creating houses. Assume that this company also has a
technology to build houses from prefabricated pieces (see right-hand side of Figure 2.21).
They have 5 types of prefabricated pieces available: wall with door, wall with window,
simple vertical wall, floor block, and ceiling block (see Figure 2.1). All these prefabricated
pieces have square sides and they all have the same edge length. There are also connections
possible among these pieces, in the form of edge to edge placements, resulting in either
180◦ angles or 90◦ angles among the pieces. The types of prefabricated pieces and the

1The container houses image is published at https://www.flickr.com/photos/javic/
3195578220/in/gallery-sdscad1-72157623532972207/ by Javier Carcamo under license CC BY-
NC-SA (https://creativecommons.org/licenses/by-nc-sa/2.0/).

https://www.flickr.com/photos/javic/3195578220/in/gallery-sdscad1-72157623532972207/
https://www.flickr.com/photos/javic/3195578220/in/gallery-sdscad1-72157623532972207/
https://creativecommons.org/licenses/by-nc-sa/2.0/

12 Setting the Context

possible connections among them form a metamodel in MDE. The metamodel describes
the valid constructs that can be used in models and the relationships among them. Using
these types of prefabricated pieces, we build a model. Consider that we choose six of such
pieces: a floor, a ceiling, one window wall, one door wall and two vertical walls. Connected
in the right way, these give rise to a box in the form of a house (see left-hand side of
Figure 2.2). This model is a representation of a real house (see multiple such houses on
the right-hand side of Figure 2.2). Now that we have a model of the house, we want to
transform this model in meaningful ways. This process is called model transformation
in MDE. In this case, we wish to transform the model of the house into different other
models, e.g., a 2D plan (to be shown to the municipality for approval), or a model showing
the estimated costs. The model can be used in many other phases of the development of
a house.

Figure 2.1: Metamodel elements and connections for creating houses out of prefabricated
components.

Model-driven engineering [23] raises the level of abstraction in programming languages
and brings them closer to the domain of operation. This should result in reducing acci-
dental complexity in software development (complexity introduced by the development
tools, platforms etc.), leaving software engineers to deal mostly with essential complexity
(complexity related to the problem domain itself) [81]. MDE [124] eases software deve-
lopment through the manipulation of models of the problem domain in the development
process. Moreover, these models form the basis for model transformations. The model
transformations play a central role in MDE. A model transformation defines how a
model conforming to metamodel MMa transforms to a model conforming to metamodel

Figure 2.2: Model of a house formed of prefabricated pieces on the left-hand side, and
houses made of prefabricated pieces in the real world on the right-hand side.

2.1. Model-driven engineering 13

MMb . The definition of the model transformation is made on the metamodels, and the
application is made on the models. There are multiple ways to define model transformati-
ons, from using general-purpose programming languages to using specialized languages,
e.g. ATL [69], ETL [80], and QVT [111]. Usually, sequences of transformation reduce
the level of abstraction until getting to executable code. There are many types of model
transformations [99]. Among these types, we mention refactoring, refinement, language
migration, optimization and code generation.

2.1.1 Four-level metamodel hierarchy
One of the most important technical points in MDE is the classical four-level architecture
for metamodeling and its related terms. This four-level architecture governs many of
the MDE tools. It was proposed by the Object Management Group (OMG) [114].
The metamodeling architecture consists of the following four levels: meta-metamodel,
metamodel, model and object. Next, we describe these levels and other closely-related
terms.

A meta-metamodel defines a meta-language to express metamodels and it lives at
level M3 . The meta-metamodel determines the constructs available to create metamodels.
Usually, the meta-metamodel is self-defined; that means its structure is described with
the constructs of the meta-metamodel itself.

A metamodel is an instance of a meta-metamodel and it lives at level M2 . At the
metamodel level, a language for specifying models is defined; the abstract syntax of this
language is defined. In the modular house example, the metamodel would be the types of
prefabricated pieces and the possible connections among them.

A model is an instance of a metamodel, and it lives at level M1 . The model is a
simplified representation of a part of the world, named the system [99]. This is the user
specification level, where users model such systems [114]. In the modular house example,
the model would be the representation on the left-hand side of Figure 2.2.

The objects of the model are run-time instances of model elements defined in the
model. They live at level M0 . In the modular house example, the object level would be
the actual house constructed in reality and captured in the picture on the right-hand side
of Figure 2.2 (the picture actually depicts more than one instance of such a house).

For a better understanding of the different levels of modeling, we will make a couple
of parallels to other technological spaces [86,155]. We make parallels to general-purpose
programming languages in general, to Java programming, to database specifications and
to the grammarware world. These parallels are captured in Table 2.1.

Style In ... express a ... defining ...
MDE Meta-metamodel (M3) Metamodel (M2) Models (M1)
Programming Programming language Data type definition Data type values
Java programming Java Class definition Objects
Databases SQL Database schema Database content
Grammarware BNF Grammar Text (in language

defined by gram-
mar)

Table 2.1: Parallels between the levels in MDE and programming languages [155].

Note that a metamodel is also a model (a model of models), so there are places in the

14 Setting the Context

thesis where we say model and we refer to both kinds of models, metamodels and models
alike. That will be clear from the context.

There are three running terminologies when talking about a lower level in terms of
its direct upper level. In this paragraph, one can replace level (either lower or upper)
with any of the four levels (object, model, metamodel, or meta-metamodel). The lower
level is “an instance of” upper level, the lower level “conforms to” the upper level, or the
lower level is “a value of type” the upper level (see Figure 2.3). The relationships among
the levels also imply relationships among the elements of those respective levels. The
relationships mentioned earlier are called instantiation, conformance and typing. Some
authors [16,49] suggest to use the conformance terminology, in order to distinguish it from
classical instantiation in OOP. In this thesis, we often call instantiation the relationship
between level M2 and level M3, and we call conformance the relationship between level
M1 and level M2. We explain this choice in Chapter 4.1. There are also cases when we
talk in terms of typing, and we specify the cases when we do that in the paragraph on
“Alternative terminology”.

Figure 2.3: The four levels of the OMG metamodeling infrastructure and the three
equivalent relationships between two adjacent levels.

To make the discussions in the following chapters easier to follow, we introduce some
notations. We denote a model M conforming to a metamodel MM with M :: MM ,
and an element in model M , MElement , conforming to an element in metamodel MM ,
MMElement , with MElement :: MMElement . When we define a metamodel element,
we write MMElement :: _ because this is the level where users of a formalism (DSL
engineers) start defining elements. We say that MMElement does not conform to any
element. Actually, MMElement does conform to a general “’Concept” element from the
meta-metamodel, but for simplicity and conciseness, we ignore this at the moment (see
Chaper 4).

Constraints The metamodel itself imposes constraints (also called well-formedness
rules) on models that conform to it. These constraints are imposed by the type of
concepts in the metamodel and the type of relations that can exist between them in
the metamodel. Only types of these concepts and relations can exist in valid models.
Not all well-formedness rules can be captured with the metamodels though. Particular
well-formedness rules can only be captured with user-defined constraints (also called
validation rules). The most common form of an user-defined constraint is an invariant.
The invariant is a property of the model that needs to hold at all times. For instance,
consider a metamodel for modeling student courses. The metamodel can capture a rule
saying that a course has at least one professor teaching it, but rules such as the end

2.1. Model-driven engineering 15

date of a course cannot be before the start date of the course, cannot be captured in
the metamodel itself (because metamodels ultimately only prescribe how model elements
can be related). This kind of rule is captured with an invariant that needs to hold on
the models. One example of a formalism used to express invariants in the MDE world is
OCL [113].

Alternative terminology From all levels, we mostly use the metamodel and the model
levels. We alternatively distinguish between metamodels and models using the following
terms: type models and value models. A type model is a metamodel of other models,
which we call value models. When using the terms type model and value model, there is no
need to refer to the different models with the ‘meta’ keyword prepended to them. We have
introduced this alternative terminology because it is closer to the classical terminology
in general purpose-programming. We use this alternative terminology more often when
we talk about a specific value model, and when we refer to its type model. On the other
hand, when we do not need to refer to specific value models and we talk about a DSL, for
instance, we refer to its underlying metamodel.

Given this alternative terminology, instead of MElement :: MMElement , we can also
say that MElement is of type MMElement .

Multilevel metamodeling Atkinson et al. [8] show the limitations of classical fixed
metamodeling levels and the unsatisfactory workarounds of these limitations, when it
comes to modeling certain domains where more than two classification levels are involved
(the four-level architecture has only the metamodel and model levels as classification
levels). In such cases, the multiple levels need to be ‘squeezed’ or ‘folded’ inside either
the metamodel or the model levels. To solve such problems, they introduce a multilevel
metamodeling environment where an unrestricted number of levels is possible instead of
only the metamodel level and the model level. This is achieved by allowing one model
to play simultaneously two roles, that of a value model, and also that of a type model.
Besides this uniformity, they also introduce the concept of deep instantiation, where
properties defined at a certain level can be instantiated at more than one level below.

2.1.2 Major modeling standards and frameworks
In this part we discuss the major modeling standards and frameworks that have obtained
industrial and academic adoption. In the following chapters, we often refer to these
modeling standards and frameworks so that we show where does MetaMod stand among
existing developments.

2.1.2.1 MOF / EMOF

Meta-Object Facility (MOF) [112] provides the basis for metamodel definitions for OMG’s
family of languages. Besides the capabilities for metamodel definitions, it also adds
capabilities for model management. Essential MOF (EMOF) [112] is a subset of MOF
that closely corresponds to the facilities found in OOP languages. Key modeling elements
in EMOF are classes with properties and operations, associations among these classes and
data types. Another important element in EMOF is the superclass relationship that exists
between two classes and that states that the subclass inherits all properties, associations
and operations of the superclass. An instance of a class is called an object in EMOF and
an instance of an association is called a link in EMOF.

16 Setting the Context

For modularity reasons, MOF introduced packages. Packages in MOF fulfill two
goals, that of partitioning and that of extending metamodels. The partitioning goal
is achieved with package import. Package import makes imported elements from the
imported package directly visible in the importing package. One can specialize classes
from the imported package or may use classes from the imported package as targets in
new associations. The extending goal is achieved with package merge. After package
merge, some classes (those with the same name as in the merged package) in the merging
package get the features of the classes in the merged package.

2.1.2.2 UML

Unified Modeling Language (UML) [114] is used in the design and specification of software
systems, with a focus on software systems written in an object-oriented programming
language. UML is architecturally aligned with MOF in that MOF is the meta-metamodel
of UML (see Table 2.2). UML advocates that the definition of a complex software system
involves many views, and each of these views has a corresponding model diagram in UML
(e.g. class diagrams, sequence diagrams, state machine diagrams or use case diagrams).
The class diagram in particular, is of interest for the discussions in this thesis.

The most important elements of the UML class diagram are the following: the classes,
the associations among these classes, the data types, and the generalization relationship
between classes. As for modularity elements, UML introduced packages, which are used
to group elements and to provide a namespace for the grouped elements (the package
is a subtype of namespace). There are two types of relationships that involve packages:
the package merge relationship, that defines how the content of one package is extended
with the content of another package, and the package import relationship, that allows the
use of unqualified names to refer to package members from other namespaces. These are
similar to package import and merge from MOF.

The UML infrastructure document [114] also specifies how instances of UML models
are represented. The instance of a class in UML is called an object, and an instance of an
association in UML is called a link.

2.1.2.3 EMF

The Eclipse Modeling Framework (EMF) [135] is a modeling framework and code genera-
tion facility for building Java applications from model definitions. EMF is built within
Eclipse [42], a generic framework for tool integration and a Java development environment.
EMF is an open-source project with wide adoption in industry and academia, and it
closely resembles EMOF.

The meta-metamodel of EMF is called Ecore. Ecore has its roots in MOF and UML,
and was designed to map to Java implementations. An Ecore model is the primary source
of information for the EMF code generator. The kernel of Ecore contains EClass, that
models classes themselves, EAttribute, that models the fields of a class, EDataType, that
models simple types and EReference, that models one end of an association between
classes.

One of the modularity elements in Ecore is the package. A package groups related
classes and data types. Packages can also have sub-packages. Another modularity element
in Ecore is the proxy. A proxy is a cross-model reference in Ecore models, which means
that separate Ecore models can reference objects between each other.

2.2. Language-oriented programming 17

2.1.2.4 Levels for UML and EMF

Table 2.2 shows what elements play a role in the top three levels of the OMG metamodeling
architecture in the case of UML and EMF.

Style In ... express a ... defining a set of ...
MDE Meta-metamodel (M3) Metamodel (M2) Models (M1)
UML MOF UML UML models
EMF Ecore Ecore Ecore models

Table 2.2: Elements of three metamodeling levels in the case of UML and EMF.

2.2 Language-oriented programming
In this section we discuss another methodology concerned with increasing the productivity
and quality of software systems, language-oriented programming (LOP). In the end of
the section, we also explain the connection between MDE and LOP.

Language-oriented programming [162] is an approach for software development that
organizes software systems in a middle-out way. It starts from designing a domain-specific
language [52] for the task at hand, instead of, or in addition to using general purpose
programming languages for the task. It then continues in two outward directions, by
developing code generation, interpretation or translation from the DSL (direction down)
and by developing programs in the DSL (direction up) [162]; see Figure 2.4. LOP thus
advocates the creation and application of domain-specific languages to express solutions in
various domains [39, 51, 162]. In particular, when given a new problem, the DSL engineer
creates one or more DSLs (if these DSLs do not already exist) that the DSL users employ
to express the solution. This solution is expressed at a higher level of abstraction, using
terms from the domain itself via DSLs. The solution can be subsequently transformed to
executable code as well. This approach allows DSL users to concentrate on the problem
domain, and it increases the productivity and quality of software development [162].
However, for the vision of LOP to be achieved, it should be easy to create and reuse DSLs
and tools for DSLs.

Figure 2.4: LOP and middle-out development [162].

Note that there are slight variations on the ideas of LOP in the form of extensible
languages, e.g. LISP, F#, Scala, and Groovy [62], or in the form of Unix’s little languages,
e.g. AWK [3] and make [50].

Besides the main domain, in a software system, there are often other secondary domains
playing an important role, such as deployment, user interfaces, paying systems, security,
etc. Using DSLs for each of these domains requires that DSLs can be composed such that

18 Setting the Context

the complete application can be written using DSLs. Thus, language composition plays
an essential role in LOP. This is reinforced by Erdweg et al. [44], that have identified five
types of language composition in LOP: language extension, language restriction, language
unification, self-extension and extension composition.

Both LOP and MDE want to achieve the same goal, to increase the productivity and
quality of software development. Moreover, both of them make use of DSLs to achieve
this goal (see next section for the relation among MDE and DSLs). Where they differ is
in terminology and where they put their focus on. In LOP, the language (metamodel)
and its composition with other languages are at the center, while in MDE, the model and
model transformations are at the center. We use both perspectives in the thesis.

2.3 Domain-specific languages
In this section, we present domain-specific languages in more depth. To get a better
understanding of DSLs, we make comparisons to common technologies, we categorize
DSLs and related aspects, and we present benefits and challenges of DSLs.

Domain-specific languages are computer programming languages of limited expres-
siveness, focused on a particular domain [52]. DSLs allow concise, understandable and
transparent expression with the goal of improving productivity and quality.

The definition of a domain-specific language is ambiguous because it relies on the
term “domain”, which is itself ambiguous. Domain-specificity is not a clear-cut property,
but rather a gradual one. For a better understanding of DSLs, Voelter et al. [157] show
common differences between domain-specific languages and general-purpose languages,
e.g. GPLs are always Turing-complete, while DSLs are often not; GPLs have a large and
complex domain, while DSLs have smaller and well-defined domains; GPLs have a lifespan
of years to decades, while DSLs have a lifespan of months to years; and the evolution of
GPLs is often slow and standardized, while the evolution of DSLs is fast-paced.

The Sapir-Whorf hypothesis [164] states that the principle of linguistic relativity holds
that the structure of a language affects its speakers’ world view or cognition. If we translate
this to the programming world, the programming language that one uses affects the way
the programmer thinks about a solution. Besides languages, tools (languages can also be
considered tools here) can also affect the programmers’ cognition; “The tools we use have
a profound (and devious!) influence on our thinking habits, and therefore, on our thinking
abilities.” [107]. Thus, DSLs can shape the form of the software solutions. A well-designed
DSL increases the chances of a well-designed software system. Users need languages that
allow them to program using concepts from their domain (that would ultimately get
translated into executable code). This would close the gap between the conceptual model
that programmers have about the application and the actual implementation [38].

To better understand DSLs, we compare them to a more well known technique for
encoding domain-specific knowledge, that of software libraries. Software libraries offer a
collection of functions that solve domain-specific tasks. The difference is that software
libraries are dependent on one general-purpose language, do not have a dedicated concrete
syntax, and do not offer static error checking, static optimizations, or relevant IDE
support [157].

Several authors, among which Kurtev et al. [87] observed the convergence of MDE
and DSLs, in that MDE is more and more related to DSL engineering. We adopt this
perspective and we even claim that DSLs are a means to accomplishing the vision of MDE.
In line with this perspective, the central language aspect of a DSL is a metamodel (descri-

2.3. Domain-specific languages 19

bing the structure of the DSL through concepts and relations among these concepts), that
is complemented by auxiliary language aspects, e.g., editor, interpreter, code generator,
model transformations, and constraints. The metamodel is the central language aspect
because all auxiliary language aspects use various techniques that in the end boil down
to operations that make use of the metamodel (they navigate and query the metamodel).
Figure 2.5 illustrates this idea. To make a parallel to the grammar-based world, the
metamodel is the grammar of the DSL, with the difference that the metamodel does not
prescribe a concrete syntax and it contains more semantic information. Moreover, in
MDE terminology, the program (which need not be executable) written using the DSL, is
called a model expressed in the DSL.

Figure 2.5: Language aspects and the central role of the metamodel aspect (icons from
Clip Art library in Microsoft Powerpoint 2010).

External versus internal DSLs There are two main types of DSLs: external and
internal DSLs.

Internal DSLs are created inside a host language. Interoperability among internal
DSLs is more easily achieved (because they are using resources of the same host language),
although external languages designed on the same platform (such as in MPS) can also
interoperate with ease. The concrete syntax for these DSLs is usually restricted to what
the host language allows. Although the DSL can rely on the tools provided for the host
language, these are not custom made for the domain of the DSL.

External DSLs usually need to go through the entire specter of language creation, e.g.
scanning and parsing (these two are eliminated with projectional editors), and creation of
the compiler and interpreter. Moreover, integrated development environments (IDEs) are
also considered part of the programming experience, and it thus becomes important to
provide IDE support for new languages. Modern language workbenches offer facilities to
build IDE support for the new DSLs; for instance, DSLs built with Xtext are supported
in Eclipse, and DSLs built with Jetbrains MPS are supported in IntelliJ IDEA. Although
the DSL engineer has the freedom to define all these elements with an external DSL, this
comes at higher costs than those of implementing an internal DSL. It is external DSLs

20 Setting the Context

that we focus on in this thesis, and thus, our following discussions refer to external DSLs.

Roles There are also two main roles played by developers interacting with DSLs. There
are the DSL engineers and the DSL users. The DSL engineers are language engineers
and they implement the language aspects in collaboration with the domain experts. The
DSL users are the users writing models of the DSL and they should ideally be domain
experts. In some organizations, there is also a third role, that of DSL integrators. The
DSL integrators take the models from the DSL users and process these models further
through model transformations provided by the DSL engineers. In the remainder of the
thesis, we will only refer to DSL engineers and DSL users.

Providing meaning to DSLs The most common ways to provide meaning to DSLs are
the interpretative way (navigate the models and execute code) and the code generation
way, or, more generally, the model transformation way (transform the models to an
implementation in a different language). These are similar to general-purpose programming
language techniques, interpretation, and compilation. Both the interpretative and the
generative ways are encoded in the processing units. Moreover, the processing units are
also statically type-checked (see Section 5.2.2).

Definition and application of processing units To get a better understanding of
the processing units and their interplay with the metamodel and model levels, one should
consider the levels where the definitions and applications of the processing units occur.
The definition of a processing unit occurs at the metamodel level. The application of a
processing unit, on the other hand, happens at the model level. That means that the
operations in a processing unit are written generically on metamodel types, and at the
model level, these operations are applied to instances of the types.

Benefits There are many benefits associated to using DSLs [157]. The size of the DSL
model the DSL user needs to write is presumably smaller than that of the generated code,
thus increasing productivity [145]. Moreover, because of the abstractions used by the DSL,
more meaningful validation and verification can be performed on a DSL model. DSLs
also increase the quality of the model because they only contain the necessary constructs
and repetitive work is automated in the generator. Furthermore, models should be more
long lasting than the code, because although the code might become obsolete (consider a
change of platforms, for instance), models are still relevant. Models can also be used as
a designing and communication tool, and they can involve the domain experts directly.
From these benefits, one can notice the first-class nature of models.

Another benefit of domain-specific languages is that they protect the investment in
the domain [31], in that they do not depend on the language. Think, for instance, of
domain-specific libraries that need a different implementation for each general purpose
language, while in theory, a DSL can be combined with other DSLs.

Challenges There are also challenges associated to using DSLs [157]. The first and
foremost is the effort of building a DSL (we refer only to external DSLs from now on)
and it requires language engineering skills from the software developers. Moreover, other
challenges might come from the fact that the persons building the DSLs and those using
them are different, and that DSLs evolve and need to be maintained. Furthermore, there
is the danger that people keep using the DSLs just because they invested effort and time

2.4. Language workbenches - Jetbrains MPS 21

in them, and they are not as easily willing to change to an alternative. One other critic
that we hear often about DSLs developed in house for various projects is that they require
new employees to learn yet another language. Our view on this is that when the language
is designed well, this should not be a big concern. When someone starts working in a new
place, one first needs to get acquainted with the domain itself, and a well designed DSL
can be part of the process to get acquainted with the domain. Learning how to write
programs in the DSL is learning how to speak the language of the domain.

2.4 Language workbenches - Jetbrains MPS
In discussions of how to implement domain-specific languages, one can not ignore language
workbenches. In this section, we define language workbenches, and we showcase its
characteristics with the help of Jetbrains MPS.

A language workbench is an environment that provides complete support for the
DSL engineers to define a DSL (to implement all language aspects) with one or several
meta-languages; it is also an environment for the DSL users to apply the DSLs. A meta-
language is a language that contains dedicated constructs for implementing a particular
language aspect of a DSL (constraints, code generation, interpretation, etc.). A meta-tool,
on the other hand, is a tool that embodies a meta-language and that takes care of
auxiliary concerns as well, such as persisting the meta-language and its models, provide
infrastructure for code generation, etc. Thus, a language workbench can be viewed as a
collection of meta-languages and meta-tools, that together allow DSL engineers to define
DSLs and DSL users to apply the DSLs.

A particular type of language workbench is a projectional language workbench, which
makes use of projectional editors. In a projectional editor, the user is always directly
manipulating the representation of the projected data (object graph). This is in contrast
to parser-based editors, where the user is manipulating text that is first parsed; the
parser outputs the representation of the data (if the text is a member of the language).
Projectional editors are not a new technology. They have been around since at least the
1980s, with Incremental Programming Environment [98] and the Gandalf project [109].
These editors had usability problems, especially when typing arithmetic expressions [160].
For instance, introducing 1 + 2 meant introducing first the + sign, and then filling in the
left-hand side and the right-hand side arguments. Newer projectional editors, such as
those in Jetbrains MPS [65] and Intentional Domain Workbench [63], have succeeded in
bypassing these problems [160].

To get a better understanding of language workbenches, we present the definition
given by the person who coined this term, Martin Fowler [51]. He proposed the following
characteristics to language workbenches:

1. Users can freely define new languages which are fully integrated with each other.
This first point gets us to the ease of creating DSLs and to the composition of DSLs.

2. The primary source of information is a persistent abstract representation.

3. Language designers define a DSL in three main parts: schema, editor(s), and
generator(s). The schema represents the metamodel in our terminology.

4. Language users manipulate a DSL through a projectional editor. Although this
characteristic exists in the original definition, it is not a defining characteristic

22 Setting the Context

of language workbenches [157]. There are language workbenches that use parser
technology.

5. A language workbench can persist incomplete or contradictory information in its
abstract representation. This is easy with parser-based technology, but more chal-
lenging with projectional editing.

We illustrate the characteristics of a language workbench on Jetbrains MPS. We often
use MPS in the thesis as a comparison, so this description also serves as a reference.
Note that each language workbench usually uses its own terminology for the DSL terms
introduced in this chapter. Such tool-specific terminology will be marked with a superscript
in the case of MPS.

Jetbrains MPS [65] is a projectional language workbench that was designed from the
beginning to accomplish the vision of language-oriented programming [38]. In this thesis,
we mostly refer to the latest available version of MPS at the time of writing, version 3.4.
When this is not the case, we make it explicit.

In MPS, a DSL definition resides in a language moduleMPS and a DSL program resides
in a modelMPS. In a language module, there are several language aspects that a DSL
engineer needs to implement. The basic language aspects are structure (the metamodel),
constraints (the static semantics), editor (the concrete syntax), generator (the model
transformations), behavior (common operations for the concept), and type system. There
are also more advanced language aspects, such as data flow or intentions (they smooth
out the user experience). Most of these language aspects need to be implemented per
concept. Thus, a DSL definition in MPS boils down to implementing the necessary
language aspects (defining operations) for each concept. One can notice that the three
main parts of defining a DSL exist in MPS (as stated by characteristic number three),
but these main parts are complemented by many other language aspects.

As it is the case with many other language workbenches, each language aspect can be
created using a DSL designed specifically for that aspect in MPS. For instance, Figure 2.6
shows a model written in the DSL for editors. The editor consists of cells that contain
information from the model or constant information.

Figure 2.6: The editor for concept Canvas that contains a vertical collection consisting of
a line of cells formed of constant cell Painting and a cell with the name property of the
canvas, and of a list of editors for the contained shapes on the next line.

All the features of MPS described so far relate to characteristic number one of language
workbenches stating that one can freely define new languages.

Moreover, each concept in MPS is persisted in an XML-based format, or a custom
format defined by the DSL engineer. That is why the models can not be rendered in
any other editor, unless those editors know how to interpret the format. In MPS, the

2.4. Language workbenches - Jetbrains MPS 23

models can be projected on screen using one of the available projections defined for them.
These features relate to characteristic number two and four, on persisting the abstract
representation of the models and projecting that abstract representation to the users.

The next paragraphs are related to characteristic number one and the integration of
languages.

There are two main ways to reuse DSLs in MPS. The default one is where one usesMPS

DSL B in DSL A. This means that one can incorporate concepts that exist in DSL B
in DSL A as they are. The definition of concepts in B can not be modified. Thus, this
represents a reuse by reference. The more advanced reuse mechanism is the one where
DSL A extendsMPS DSL B . This means that one can extend any concept that exists
in DSL B in DSL A. This results in the creation of a new concept that inherits all the
properties and behavior of the extended concept. This also allows the customization of
most inherited language aspects in the extending concept. The extension mechanism is
also the most used mechanism in mbeddr [158]. That is mostly because one does not
reuse a DSL as it is, but usually needs to make conservative modifications that cater to
the needs of the reusing context.

Moreover, different language aspects have different extension mechanisms. We are
briefly going to introduce the most common ones. In MPS, the metamodel of a language
is captured in a language aspect called structure. The extension of concepts in MPS is
similar to extension in Java. The extending concept inherits all the properties, children
and references of the extended concept (these represent the relations between concepts),
with the possibility to specialize the type of the references. The constraints can also be
overridden in MPS, with the exception that one can not call the constraints implementation
of the parent concept, as one can do with the keyword ‘super’ in Java. In the behavior
aspect, on the other hand, only the virtual methodsMPS can be overridden. Editors can
be overridden as well, totally or partially through the editor componentsMPS.

Two language aspects that have special extension mechanisms are the generator and
the type system. A generatorMPS is implemented with a set of generator rulesMPS,
that are subsequently applied on the models of the DSLs. When combining languages,
one can create a generation plan with the help of priorities among each two generators.
For instance, when combining language A with generator GenA and language B with
generator GenB , one can specify whether the generator rules of GenA should be applied
before, at the same time, or after the generator rules of GenB . The type system, on the
other hand, uses declarative rules. One defines a typing equation per concept, which
is subsequently used by the type solver engine. A language extension can simply add
new typing equations; in cases of conflict, children concepts can override parent typing
equations.

There are also so-called extension pointsMPS in MPS. This mechanism allows one
to write an abstract class as an extension point that can be implemented by different
extending languages, and one of these extending languages’ implementations can be
chosen by the DSL engineer to take effect.

Because of its projectional nature, MPS is not as good at persisting incomplete or
incorrect information in its abstract representation, as required by characteristic number
five. Nonetheless, it can do that to a certain extent, as can be seen in Schindler et al. [123].
A node, for example an if statement, must have a complete skeleton. It is possible to leave
content out, such as the guard and body in an if statement. The result can be considered
syntactically incorrect since the guard is missing from the if statement. However, the
construction is still structurally sound since it is a valid tree node, albeit with some gaps
to be filled in. Figure 2.7 shows an example of a function with omitted name containing

24 Setting the Context

an if statement missing the guard.

public void <no name>() {

if (<condition>) {

<no statements>

}

}

Figure 2.7: An incomplete function with missing name, containing an if statement missing
a guard.

Chapter 3

Language workbench requirements for modularity and
reuse

The overall quality of a software system can be viewed as a trade-off between different goals
that the software system needs to accomplish when completed. It is this view that we adopt
on the overall quality of a DSL. The overall quality of a DSL is a combination of various
qualities that each serve one goal only. Most DSL qualities we discuss are a paraphrasing
of qualities defined for software systems. At times, there are subtle differences between
qualities for software systems and those for DSLs. In this chapter, we first describe the
two DSL qualities that are the theme of this thesis, modularity and reuse. Then, we briefly
review other DSL qualities and how they are affected by the two main ones. Finally, based
on the two main DSL qualities and inspired by criteria for extending software systems in
general-purpose programming languages, we describe language workbench requirements for
the creation of modular and reusable DSLs.

3.1 Modularity
The first DSL quality we tackle is modularity. We first discuss modularity in general
terms, and then we move on to discuss it in the context of software development in
particular. Finally, we consider modularity of DSLs and also our goals with modularity
of DSLs. Thus, we also partially answer research question RQ1 in this section.

RQ1: What are reasons and requirements for modularity and reuse in language
workbenches?

The desire that systems possess modularity is often motivated by complexity. There is
no consensus among scientists on a definition of complexity, but it is usually characterized
by an involvement of many parts, aspects, details, and notions requiring deep studying or
examination to grasp fully [9]. Thus, the kind of complexity we refer to is complexity as
perceived by humans [167]. In a famous study in cognitive psychology, Miller [106] argued
that the number of objects that an average human can hold in working memory is seven

26 Language workbench requirements for modularity and reuse

plus or minus two. In a later study, this number was deemed even smaller by Cowan [29].
He argued that the number of chunks that a young adult can hold in working memory is
around four.

Humans have the same cognitive limitations when studying the elements and the
relationships between these elements in models. This problem is exacerbated by the
larger and more complex models [81] that stem from applying MDE to larger and more
complex systems and domains. In order to understand complex models, humans need
mechanisms to organize those models and the mechanisms could come from modularity.
The definition of modularity itself is linked to complexity by some authors. For example,
Garud et al. [54] define modularity as an efficient strategy to organize complex products
and processes.

Other definitions of modularity rely on the definition of its building blocks, the modules
(or units, pieces, subsystems, components) [55]. A definition from software design considers
modularity as ‘tools for the user to build large programs out of pieces’ [22] with the
purpose to encapsulate what can change, or the ‘building of a complex product or process
from smaller subsystems that can be designed independently yet function together as a
whole’ [10].

Some authors refrain from giving an explicit definition of modularity and instead look
at it from multiple viewpoints, giving criteria, rules, and principles for modularity [103].

In dealing with complexity, modularity has proven to be a good ally for engineers in
all kinds of fields. The alleged benefits of modularity from the point of view of product
design (not necessarily software products) are numerous [55]. Modularity promotes
interchangeability (welcoming experimentation); economies of scale due to the use of
components across product families; ease of product updating and maintenance; ease
of design and testing due to decoupling, parallel development or comprehensibility; and
manageable complexity [11, 55]. Furthermore, regarding the other main quality targeted
in this thesis, modularity also encourages code reuse. This is not automatic; one can have
modularity without actually having practically reusable components.

There are also downsides to modularity, especially when over-modularizing. Often, it is
not clear how to achieve the right modularization, and it is essential that one avoids not only
under-modularization (that leads to difficult maintenance), but also over-modularization
(that leads to many relationships to manage and hinders understandability) [97]. Thus,
paradoxically, modularity itself, if done wrong, can lead to an increase in complexity.
Moreover, modularization often requires more thought up-front during the design and
has to be planned systematically. Modularization also increases total size, because there
is overhead in interfaces and coupling.

Next, we look at modularity in software development. At this level, modularity is
usually captured in the formalisms, the programming languages or the tools.

Modularity in the software development literature Modularity in computer pro-
gramming languages has a rich history. We look at three influential studies on this subject
in the literature.

At first, modular programming was associated with an assembly of programs from
subroutines [77,167]. Yourdon et al. [167] talk about cohesion and coupling in modular
modules. Coupling means the degree of interdependence between modules and cohesion
means the degree to which elements of a module belong to that module. Interestingly,
coupling and cohesion are interrelated; even more, the two measures are correlated (as
one increases, the other decreases). The authors define good systems as systems that
have low coupling and high cohesion. Meyer [103] notes that the discussion of module

3.1. Modularity 27

modularity around coupling and cohesion in this case is limited by the scope of structured
programming and its focus on subroutines.

Modularity is also related to the concept of ‘separation of concerns’, that was defined
by Dijkstra [36], and it underlines the fact that “one tries to deal with the difficulties,
the obligations, the desires, and the constraints one by one". Concerns are captured in
software through language and tool mechanisms (classes and extension of classes in OOP,
for instance) [142].

Later, Meyer [103] brought a set of criteria, rules, and principles that guarantee
modules to be self-contained and organized in a stable architecture. He considers a design
methodology to be modular if it respects the following five criteria: decomposability,
composability, understandability, continuity, and protection. Decomposability refers to the
property of being able to decompose a software problem into a number of smaller problems
connected by a simple structure and that can be extended in the future independently
of each other. Composability refers to the property of being able to compose software
elements in order to produce new systems. Understandability means that a module can
be understood independently, without having to inspect other modules or by having to
inspect only a few of them. Continuity refers to the fact that a small change in the
specification of a software triggers changes in a small number of modules. Protection
refers to the fact that an abnormal condition in a module at runtime propagates to a small
number of other modules. From these criteria, five rules follow: direct mapping (structure
in software maps onto the structure in the domain), few interfaces (low coupling), small
interfaces (there is not much information communicated among two coupled modules),
explicit interfaces, and information hiding. Furthermore, five principles follow from these
rules: linguistic modular units (units correspond to syntactic units in the language used),
self-documentation (information about the module is part of the module itself), uniform
access (all services of a unit should be accessible through a uniform notation that does
not reveal implementation details), open-closed (modules are opened for extension, but
closed for modification), and single choice (when the software system supports a list of
variants, one and only one module knows about the exhaustive list of variants). Note
that “closed for modification” in the previous sentence means that the reusing entity can
not modify the original source of the reused unit from the reusing context.

Why modularity of DSLs in particular? Coming back to DSLs, we first state the
reasons for modularity of DSLs. DSLs are usually designed to solve a clearly defined task,
and it is thus essential to be able to combine several DSLs to capture all the information
of an application [84]. A big, monolithic DSL encompassing all these separate DSLs would
clearly deteriorate the overall quality of the DSL, it would be less maintainable and it
would be harder to evolve. For instance, mbeddr [158] is an example of a non-trivial
collection of integrated languages, that consists of 81 different languages. Creating one
monolithic language encompassing these 81 languages would probably be unmanageable.

Modular language implementations facilitate language evolution because modular
implementations ease the process of changing a DSL implementation and its related
tools [12]. This happens in the evolution process of a DSL. One difference between DSLs
and GPLs is that DSLs evolve at a faster pace [157]. This happens because the process of
getting a DSL in good shape can be an exploratory process. Moreover, the user is most
of the times accessible locally, so implementers get feedback from the users immediately
and they can change the DSLs accordingly.

The need for extensibility in general programming languages (adding new features
to a programming language) also offers an insight into why modularity of DSLs is

28 Language workbench requirements for modularity and reuse

important [165]. There are many reasons one would want to extend a language: security,
static checking, language design, optimization, style, or teaching [110].

The goal for modularity A paper from 1968 [28] emphasizes the fact that identifica-
tion of modules, contents, and interconnections has to be consciously designed with explicit
system goals in mind. More recently, Don Batory [13] says that the most important
aspect of modularity is its goal.

In most cases, the main goal for modularity in our explorations is the reuse of the
modularized DSL units1, but we often also have understandability as a goal. Note that
modularity of DSL units means modularity of both the metamodel and of the processing
units.

3.2 Reuse
The second DSL quality that we cover is reuse. We discuss it in general terms and in the
context of software development, in particular. In the end, we state why we need reuse of
DSLs, thus contributing to research question RQ1.

RQ1: What are reasons and requirements for modularity and reuse in language
workbenches?

Before we start the discussions, note that modularity and reuse are closely linked.
There is an interplay between the two. Firstly, modularity helps reuse. One monolithic
component is clearly less reusable than smaller components. Furthermore, Meyer [103]
considers that modularity encompasses extendibility and reuse. Secondly, most of the
times, reuse also implies adaptability of the reused artifact to some degree, which leads
to extendibility, which further leads to modularity [103].

Software reuse is interwoven with the birth of software engineering. The NATO
software engineering conference in 1968 is considered by many the birthplace of the
software engineering discipline [85]. Software reuse was proposed at this conference as
a means to solve the software crisis, the problem of building large software systems in
a controlled and reliable way. Software reuse is a way of building software that entails
reusing existing artifacts instead of building everything from scratch or copy-and-pasting
artifacts. There are multiple ways to abstract, select, specialize, and integrate the reused
artifacts [85].

There are a handful of expected benefits [103] associated to reuse. One might expect
improvements in speed of time-to-market (one has less software to develop), decreased
maintenance effort (someone else is responsible for the evolution of the reused component),
reliability (if reused components come from a reputed source), efficiency (if components
are developed by experts in the field), consistency (style of the component influences the
style of the developed software), and investment (components are a way of preserving the
know-how).

However, reuse comes with its own challenges. Reuse adds extra dependencies to
the software system, which could result in maintainability issues [118]. Moreover, reuse
implies the use of abstractions that could lead to more mental complexity. For instance,
the templating mechanism in C++, that enables generic programming in C++, is a form

1A DSL unit is a DSL (metamodel and processing units); we use the word unit in association with
DSL when we want to emphasize the fact that the DSL can be part of other DSLs.

3.2. Reuse 29

of reusing algorithms for different types. Although a powerful form of reuse, templates are
also more complex and, thus, harder to grasp by programmers. In addition, developing
reusable artifacts is harder than developing non-reusable artifacts. It is often the case
that a non-reusable artifact evolves (is refactored) into a reusable artifact.

Reuse in the software development literature We now explore reuse in general
software development. We are not exhaustive in our exploration of the reuse techniques
in software, but we touch on the most well known ones.

Probably one of the oldest forms of software reuse is copy and paste. This is an
opportunistic type of reuse, because although it gives good results in terms of time to
market, it can create maintainability problems (bugs have to be solved in multiple places,
for instance). There are a multitude of works highlighting problems related to code
duplication [41].

When it comes to software reuse, constructs of the programming language itself can
promote reuse. One can think of constructs such as functions. They take an input through
the in parameters, make some computation and produce an output through the out
parameters. Calling this function more than once is equivalent to reusing the computation
more than once.

There are also more systematic ways to reuse software. A systematic form of reuse
consists, for instance, of software libraries. A software library allows users to reuse
functions from the library. On the same line are software frameworks [133]. A software
framework allows users to reuse a set of classes and to override methods of those classes.
Yet another form of reuse are design patterns [53]. They are more abstract, in the
sense that design patterns are not directly transformable to code. Design patterns are a
description of how to solve a commonly occurring problem in software design.

More advanced forms of reuse were facilitated by OOP via classes, fields, methods,
generics, etc.; explicit design is needed to ensure that some of these artifacts are reusable.
A class incorporates a set of fields and methods that can be reused by any object
instantiating the class. Moreover, the inheritance mechanism in OOP itself is a reuse
mechanism, because of the reuse and adaptation of fields and methods of the super-class
in the sub-class. The organization of classes into packages and jar files is again another
way of reuse [58].

Two other forms of software reuse are generic programming and code generators.
Generic programming allows reuse through the use of generic types in the definition of
an algorithm, types that are to be instantiated later via parameters [31]. Thus, one
algorithm can be reused with different specific types. A code generator, on the other
hand, is a program that takes a specification of a piece of software and generates its
implementation [31].

DSLs themselves are a form of reuse. A DSL captures domain expert knowledge in
the metamodels and the generators. This knowledge is reused every time a DSL user
creates models of the DSL and generates the executable code.

Why reuse of DSLs in particular? Although DSLs themselves are a form of reuse
(as argued in the previous paragraph), our main interest in this thesis is the reuse of the
DSL implementation itself, the metamodel and the processing units, at the level of the
DSL engineer. Tangentially, we also touch on the reuse of value models at the level of the
DSL user.

As discussed in Section 2.2, to accomplish the vision of LOP we need mechanisms to
more easily create DSLs. One way of creating DSLs easier, is by reusing parts of other

30 Language workbench requirements for modularity and reuse

DSLs in the development of the current DSL.
Given that implementing DSLs is a particular form of software development, by

extension, all benefits and challenges from software reuse are valid for DSL implementations
as well (this argument also holds for the modularity of DSLs).

3.3 Other qualities
In this section, we discuss a few other DSL qualities that are not part of the main qualities
that we target in the thesis, modularity and reuse, but that are influenced by these two.
The influences can be both positive (an increase in one quality leads to an increase in the
other), or negative (an increase in one quality leads to a decrease in the other quality).
Most of the following qualities are paraphrasing of software qualities as discussed by
Meyer [103], except for the last two qualities, expressiveness and learning curve. We argue
that these two qualities are particularly important for DSLs.

3.3.1 Correctness and robustness
Correctness is the ability of a DSL to function according to its specification. Specification
in this case encompasses two elements: the domain specific tasks that the DSL should
encode and the semantics of these tasks. The specification thus answers these two
questions: what are the tasks that the DSL should be able to express and what is the
meaning of each of the constructs encoding a task? If a DSL does not do what is supposed
to do, then none of the other qualities matter. Thus, being correct comes first. On
the other hand, enforcing correctness is hard, because the specification can be unclear;
deciding on the most essential collection of tasks that the DSL should handle can be
challenging. One could try correct-by-construction techniques, or rely on testing and
debugging facilities [103].

Robustness is the ability of a DSL to handle abnormal conditions. The specification
tells how a DSL is supposed to behave under normal conditions, that is, when the DSL
users introduce correct DSL models. Besides that, it should also give appropriate error
messages in case of abnormal conditions. Robustness thus complements correctness [103].

The correctness and robustness of the DSL is linked to the DSL models, because it is
with the DSL models that the DSL can be tested: can we express a particular solution
in the DSL and do we obtain the expected results from the DSL? The DSL engineers
can enforce correctness and robustness by adding type systems, extra semantic checking
rules, or data flow analysis checks to their DSLs. For instance, Jetbrains MPS allows DSL
engineers to create type systems, checking rules and data flow analysis for their DSLs [65].

Correctness and robustness are affected by modularity and reuse as well. In order
to obtain a correct and robust DSL, one needs to pay attention to the semantics of the
composition of different DSL units. Moreover, when we reuse DSL units from other
sources, those DSL units need to be correct and robust themselves, to ensure that the
reusing DSL unit is correct and robust.

3.3.2 Performance
Performance is the ability of a DSL to be efficient in terms of processor time used, memory
footprint and bandwidth used in communication devices [103]. For DSLs, in particular,
this translates to how efficient is the generation of code from the processing units and
how efficient is the generated code itself.

3.3. Other qualities 31

Both modularity and reuse affect performance. The effects can be both negative
and positive. Looking at the efficiency of generating code, for instance, managing the
combination of separate DSL units is more involved than managing one unit that contains
everything. On the other hand, one can benefit from modularity through generating code
separately for each processing unit and through making incremental generation (only
generate the code of those processing units that are modified, or the processing units
with modifications in the associated metamodels since the last generation).

3.3.3 Understandability and usability
Understandability is the ability of a DSL to be grasped by DSL engineers with an
acceptable amount of effort. Understandability is inevitably linked to humans. Humans
are the ones that benefit or are hindered by a hardly understandable DSL. This quality
relates to the human cognitive limitation discussed in Section 3.1. How easy is it for a
human to understand the metamodels, and the processing units?

Modularity, in particular, should have a positive impact on understandability. Dividing
the information into multiple units and combinations that are coherent and cohesive helps
humans better grasp the units and their combination.

Usability, on the other hand, is the ease with which a DSL engineer can manipulate the
different DSL aspects. Usability is influenced by the maturity of the language workbench.

3.3.4 Expressiveness
The degree to which abstractions in a DSL are intuitive for and related to the domain
of operation defines expressiveness. Having all the abstractions to express solutions in a
particular domain, but not more, defines an expressive and focused DSL.

If a DSL is not expressive enough, users are reluctant to use it. Making a DSL
expressive enough can be an iterative process. DSL engineers can receive feedback from
the DSL users when it comes to adding missing functionality to their DSLs (or even
remove unused functionality). They could even observe how DSL users make use of their
DSLs, and they could abstract common patterns of usage into new abstractions in the
DSL. There is also another side to expressiveness. Although abstractions in a language
allow expressing a certain solution, the abstractions could be too complicated for the
majority of the DSL users, thus restricting the number of users. As a result, expressiveness
could influence understandability and usability in a negative way.

3.3.5 Learning curve
The amount of time one needs to get acquainted to a DSL is an important aspect for
DSLs in terms of adoption. Because of the small domain of operation of a DSL, it is
essential that the DSL is easy to get started with and easy to get productive with.

Tools play an important role in this quality aspect. Tools could offer helping pointers
for DSL users getting acquainted with the DSL: sample models written in the DSLs,
tool-tips, common usage scenarios, etc.

Understandability, usability and expressiveness have an influence on the learning
curve. The more understandable, usable and expressive a DSL, the easier it is to become
productive with it. Moreover, performance also influences the learning curve. If a user
needs to wait long for processing results, that can lead to a significant increase in the
learning time. Furthermore, modularity also influences the learning curve because people

32 Language workbench requirements for modularity and reuse

can approach understanding of sample models by first looking at smaller units and then
at the combinations.

3.3.6 Discussion on DSL qualities
Some qualities described in this chapter are governed by contradicting forces. One needs
to make compromises and prioritize the qualities that their DSL needs to posses. All the
qualities can affect each other both positively and negatively.

3.4 Language workbench requirements for modularity
and reuse

The qualities that we mainly focused on during this research are modularity and reuse of
DSLs, mostly on the DSL metamodel and processing unit levels. Based on these qualities
and based on criteria for such qualities in software development, we explored requirements
that language workbenches need in order to facilitate the creation of modular and reusable
DSLs. Thus, we contribute to research question RQ1 in this section.

RQ1: What are reasons and requirements for modularity and reuse in language
workbenches?

Both modularity and reuse are strongly linked to extensibility. The original software
and the extended software are two separate units (modularity), while the extension reuses
the original software (reusability). Extensibility, on the other hand, is linked to software
evolution. Software evolves over time, which makes it a prerequisite for software to be
extendible. This is hard because of the so-called expression problem that manifests when
extending software systems [168]. The expression problem occurs when the software
developer is not able to extend datatypes with new data variants and, at the same time,
to add operations to the datatypes. A solution to the expression problem needs to fulfill
certain criteria, such as non-duplication of the original code or strong static-typing of
the solution. A variant introduced by Zenger et al. [168] called the extended expression
problem, introduces one more criterion that says that independent extensions should
work together, because this last criterion would allow programmers to make extensions
in a non-linear fashion. As a result of the limitations of the mainstream programming
languages regarding the expression problem, developers often need to implement complex
designs that anticipate various dimensions of variability [60].

In software systems, the kind of solutions that a programming language offers to the
expression problem are seen as an indicator of the expressive power of a language. That is
why we have adapted the extended expression problem criteria to language workbenches.

The requirements for language workbenches that we are about to formulate are a
paraphrasing of the extended expression problem criteria in terms of domain-specific
languages. Because the development and application (which involves creation of models,
and transformations, code generation, etc.) of domain-specific languages can be seen as a
special case of software development, the criteria for a solution to the extended expression
problem in language workbenches is also a special case of the original criteria.

Below, we present five requirements for language workbenches that focus exclusively
on modularity and reuse of DSLs. Language workbenches are tightly linked to the
meta-languages used to implement the DSLs; so, most of the requirements will reference

3.4. Language workbench requirements for modularity and reuse 33

the meta-languages. We now state these five requirements, and then we will discuss each
requirement in more detail.

1. When reusing a DSL unit, the meta-language allows a DSL engineer to add new
elements (concepts and relations) and new processing operations on reused concepts
to the reused version of that DSL unit.

2. The meta-language offers strong static type checking of the DSL implementations:
no processing operation is applied on elements that it cannot handle.

3. The meta-language should be such that reusing a DSL unit does not require to
modify or to duplicate the reused DSL unit.

4. The meta-language should be such that if you have a type-checked DSL unit for
which code was generated, then reusing that DSL unit should not require type
checking it again, and regenerating the code.

5. The meta-language allows the combination of independently developed DSL exten-
sions.

The first requirement states that extensibility should be possible for both metamodel
elements and operations on reused concepts. This requirement caters, on one hand, for
the extensibility of the metamodel, and, on the other hand, for the extensibility of the
processing units. The additions proposed by this requirement are useful not only for
the extensibility of a DSL unit, but also for the general reuse of a DSL unit, where one
needs to adapt the reused unit to the reusing context. One might notice that we have
made a slight addition to the extended expression problem that was defined for extensible
software. We consider the addition of both concepts and relations as new elements. In
the definition of the extended expression problem, they only consider the addition of
new data variants. In MetaMod, the equivalent of a data variant is a concept which is a
subtype of another concept. The addition of a new data variant would mean the addition
of a new concept that is a subtype of a reused concept. We decided to introduce also
relations involving a reused concept (either as a source or as a target concept) so that
the augmentation of the reused concepts is possible. It is often the case that the reused
concepts need to adapt to fit in the new context, that of the reusing DSL (see example
with CContainer in Section 5.1).

The next three requirements state that the additions suggested in the first requirement
should satisfy some properties. Not any solution to extending the metamodel and the
processing units qualifies as a good solution.

The second requirement states that DSL implementations should be statically type-safe.
This mainly translates to enforcing that, at compile time, an operation of a processing
unit is called on arguments that satisfy the type requirements of the operation definition.
This offers more protection against errors to the DSL engineers and, thus, increases their
confidence in the implementation.

The third requirement states that the reuse of a DSL unit should happen without the
modification of the reused DSL unit or without its duplication. A solution that wouldn’t
satisfy this requirement, would be a very invasive solution. Modifying the original DSL
unit for the purpose of the reusing DSL unit is a bad practice, because this might break
the intentions of the original DSL unit and it might break other DSL units that depend
on the original DSL unit. Duplicating the reused DSL unit in the reusing DSL unit, on
the other hand, brings maintenance problems, because errors need to be fixed in multiple

34 Language workbench requirements for modularity and reuse

places. Moreover, the code base increases because one has multiple copies of the same
DSL unit.

The fourth requirement states that the reused DSL units should not need re-type
checking or regeneration of code when reused in other DSL unit. That is, the reused
DSL units and their generated code remain as they are from the point of view of the
type checker and code generator, even when used in a new context. This decreases the
generation time and the type-checking time as well (both are important for the DSL
engineers when it comes to ease of development). We made a slight modification to
this requirement, because we talk about generation of code, and not about compilation.
That is because the DSLs need to generate code from the processing units first, before
the generated code is compiled. Generation is accompanied, in the end, by compilation,
because the generated code needs to be compiled.

The fifth requirement states that DSL extensions that were defined independently
should be composable. This requirement ensures that DSL engineers can work separately
on different extensions, in a non-linear fashion [168], and that they can combine the
extensions in one extension. Combining two extensions can require some glue code; this
is not forbidden by the criterion.

3.5 Conclusions
In this chapter, we analyzed, firstly, the two main qualities that are the focus of our thesis,
modularity and reuse, in the realm of software engineering. We motivated the need for
modularity and reuse in DSLs, and we mentioned how these two qualities translate to
DSLs. Furthermore, we analyzed other qualities for DSLs and how they are influenced
(positively or negatively) by the two main ones. Our contribution here is that, although
these qualities were initially defined for software applications, we have modified them
for DSLs (with slight differences at times). Moreover, based on these qualities and the
expression problem from software engineering, we have defined requirements for language
workbenches in regard to modularity and reuse of DSLs. Again, our contribution consists
in paraphrasing the criteria for the expression problem in software engineering for language
workbenches (with slight additions and modifications).

Chapter 4

MetaMod

There are two main reasons why we defined our own mechanisms and meta-tools for the
design and implementation of DSLs in the form of MetaMod. First and foremost, we
wanted to introduce elements of modularity and reuse starting from the core of a DSL,
the metamodel, and ending with the processing units. We did not want to tackle the
issue only outside of the modeling formalism itself. Secondly, to experiment with our
ideas on modularity and reuse, we needed a simple metamodeling language. A full-scale
metamodeling language, like MOF or even EMOF [112], contains redundant modeling
elements [153], and an exploration of modularity mechanisms in such a context would be
cluttered by the extra modeling elements. Thus, we had modularity, reuse and simplicity
in our mind while designing MetaMod. These goals have guided many of the decisions we
made in the construction of MetaMod. Simplicity, in particular, motivated the design of
a minimalistic and uniform meta-metamodel. The mechanisms developed for MetaMod
are captured in abstractions of meta-languages; these meta-languages are part of the
meta-tools. In this chapter we introduce all meta-languages of MetaMod and, in the end,
we showcase all the meta-languages on an example DSL.

4.1 Meta-metamodel
In this section we define the core component of MetaMod, the meta-metamodel (defined
in Section 2.1.1). This component is described first, because all other components of
MetaMod depend on it. Moreover, through describing this component, we give an answer
to research questions RQ2 and RQ5.

RQ2: How can we organize metamodels of the DSLs such that we facilitate
modularity and reuse of DSLs?

RQ5: What modularity and reuse mechanisms can be applied to models,
irrespective of the DSL?

MetaMod has a multilevel nature, because of two reasons. Firstly, the meta-metamodel
defines the structure for both type models and value models, viz. an instance of the

36 MetaMod

meta-metamodel can be either a type model or a value model. Secondly, the conformance
relationship between a value model and a type model is captured in the meta-metamodel
(this will be detailed in Section 4.1.1.1). Note the terminology we use; we say that type
models and value models are instances of the meta-metamodel, while we say that a
value model conforms to a type model. We chose this terminology to make clear the
relationships between the meta-metamodel and the type or value models (instantiation),
versus the relationships between the type and value models (conformance).

All elements of the meta-metamodel of MetaMod are captured in the diagram in
Figure 4.1. The diagram is represented in the visual syntax of MetaMod; we give full
details of the visual syntax in Section 4.1.5.2. At this point, the reader is not expected to
understand the diagram in its entirety. We will now explain what the reader needs to
understand from this diagram. Firstly, note that the definition of MetaMod in Figure 4.1
is circular, because it uses a subset of MetaMod to define MetaMod. It is like defining
Lisp [166] by presenting a Lisp interpreter written in Lisp. Such definition is circular,
but it is still considered useful [120]. Secondly, our implementation of MetaMod in MPS
serves as the formal definition. But since this may be even less accessible to the reader, it
suffices for now to have an understanding of Figure 4.1 based on MOF [112] (described in
Section 2.1.2.1). The way in which the semantics of MetaMod diverges from MOF are
not important at the moment. Thus, in MOF terms,

• the rectangles are classes (we call them concepts),

• the filled arrow lines are associations in MOF (we call them relations),

• and the open arrow lines are superclass relationships in MOF (we call them subtype
relationships).

A relation in MetaMod has a direction so that one can distinguish the two ends of the
relation: the source, represented by the straight end, and the target, represented by the
filled arrow end. The name in the label of a relation represents the name of the relation.
The cardinalities of the relation are represented at the left-hand side of the named label
for the source and at the right-hand side of the named label for the target. At this point,
one can notice that there exists a subtype_of relationship in the diagram, and that in the
legend, the open arrow line itself is denoted as a subtype_of relationship. Again, that
is because we describe MetaMod using MetaMod. For the moment, one can interpret
visual constructs in the diagram as MOF terms (e.g., subtype relationship with superclass
relationship). With the explanations in each of the next sections, MetaMod diagrams
should become clearer.

All the elements in Figure 4.1 are explained in the next sections, where the definitions
are given in an incremental fashion starting with the core elements, extending it with
groups and then with fragment abstractions and applications. In the end, we present the
elements that are introduced for implementation purposes, and that are not part of this
diagram.

The definitions we present in this thesis are not mathematical in nature. The main
reason for this is that mathematically rigorous definitions are less accessible than we desire.
Note that the focus of this thesis is not on formal semantics of languages and related proofs.
Therefore, we have chosen to employ natural language descriptions, examples, procedures,
and algorithms to create the definitions. Do keep in mind that these definitions are also
accompanied by the Jetbrains MPS implementation of MetaMod.

4.1. Meta-metamodel 37

Figure 4.1: The meta-metamodel of MetaMod. This figure highlights the three parts of
the meta-metamodel.

4.1.1 Core
The core of MetaMod contains the basic elements that can model a domain. More
specifically, it is formed by concept and relation (see Figure 4.2).

Figure 4.2: The core of the meta-metamodel of MetaMod.

Definition 1 A concept denotes an entity of a model defined in MetaMod.

Example 1 For instance, if we define a type model to describe the railway infrastructure
in a country, we use concepts such as train station, rail segment, switch, road crossing,
etc.; we refer to such concepts as type concepts.

Example 2 If, on the other hand, we discuss value concepts in the railway infrastructure
example, we use concepts such as train station Amsterdam, train station Vienna, etc.; we
refer to such concepts as value concepts.

A parallel can be drawn between type concepts in MetaMod and classes in MOF [112],
and between value concepts in MetaMod and elements in MOF. One difference is that type
concepts (unlike classes) do not have attributes or operation signatures. Attributes can
be modeled with relations, so they can be dropped from a minimalistic meta-metamodel;
remember that the minimalistic characteristic was motivated by the simplicity goal.
Operations, on the other hand, are modeled separately from the type models for modularity

38 MetaMod

reasons. This way, the same type model can be used with different operations. Another
difference is that concepts do not own any relations (this is unlike in MOF, where classes
own associations). We made this decision for modularity reasons and we explain it in
later sections. One last difference is that concepts do not have properties such as abstract,
in order to preserve the minimalistic nature of MetaMod.

Definition 2 The relation1 element is a relationship between a source concept and a
target concept, with a source and target cardinality.

Example 3 If we get back to the railway infrastructure DSL, there is a relation called
direct_connection between one train station and another train station; we refer to such
relations as type relations. There can be multiple direct connections from one train station,
so the cardinality of the direct_connection relation will be zero-to-many at the source.
There can also be multiple direct connections to one train station, so the cardinality of the
direct_connection relation will be zero-to-many at the target.

Example 4 If, on the other hand, we discuss about value relations in the railway in-
frastructure example, we say that there is a relation of type direct connection between
train station Amsterdam Central and train station Amsterdam South; we refer to such
relations as value relations.

A parallel can be drawn between type relations in MetaMod and associations in MOF,
and between value relations in MetaMod and links in MOF. For simplicity reasons, we
drop the properties of the associations, such as ordered and unique; the ordered property
can be modeled with extra relations in the type model, and the unique property can be
achieved with constraints. On the meta-metamodel level, we do not define the relation
element as part of the concept element, for modularity reasons (explained in detail in
later sections). This is unlike associations that are part of a class and links that are part
of an element.

Concepts and relations, together with the “has_source” and “has_target” relationships,
form the bare minimum for modeling. All the other elements (subtyping, groups, fragment
abstractions, etc.) are introduced for modularity or convenience reasons.

Now that we have introduced concept and relation, we can also give a better explanation
of the meta-metamodel having as instances both type models and value models. We
explain this with the help of a few figures. Figure 4.3a shows that a type relation and two
type concepts are instances of elements Relation and Concept from the meta-metamodel.
Similarly, Figure 4.3b shows that a value relation and two value concepts are instances
of elements Relation and Concept . The explicit conformance relationships between type
model elements and value model elements is then represented in Figure 4.4.

4.1.1.1 Conformance relationships (conforms_to relation)

In this section we define the conformance relationship between a value model and a type
model. The conformance relationship dictates the structural constraints of a value model.
This relationship is defined in terms of concept conformance and relation conformance
(see Figure 4.2 and the conforms_to relationships of Relation and of Concept).

In Figure 4.5 we depict separately two levels, the type model and the value model
levels, that are encoded together in the meta-metamodel in Figure 4.1. Figure 4.5 makes

1To avoid confusion, relation is used when referring to the technical term introduced in the definition
of MetaMod. A relationship is a generic association, that is not necessarily related to MetaMod elements.

4.1. Meta-metamodel 39

(a) Visual representation of type model instan-
ces of the meta-metamodel.

(b) Visual representation of value model in-
stances of the meta-metamodel.

Figure 4.3: Visual representation of instances of the meta-metamodel. All elements in
the instances comply with the structure prescribed by the meta-metamodel.

Figure 4.4: The conformance relationship between type model elements and value model
elements represented explicitly.

it clear that the conformance relationships go from one level to the other. The relationship
between these two levels with actual instances was shown in Figure 4.4. Note that at the
value model level the subtype_of is used only if the value model also represents a type
model. That is because the subtype_of relationship gets its meaning at the instance level.

Figure 4.5: Two model levels and the conformance relationships among them.

40 MetaMod

The presence of the conforms_to association in the meta-metamodel and the fact
that elements of the meta-metamodel describe both value models and type models, give
rise to a multilevel modeling environment. Moreover, the conformance relationship can
also give meaning to type models, by saying that the semantics of a type model can be
expressed as the collection of the value models that conform to it.

In the following definitions, we assume that there exist conformance links among value
concepts and type concepts, and between value relations and type relations. This is the
default case for modeling tools, because when one introduces a concept or a relation in
a value model, she also says what concept it conforms to, or what relation it conforms
to, respectively. Moreover, we denote all super-concepts of concept X in zero or more
steps by allSuperConcepts(X). Zero steps means concept X , one step means all concepts
in zero steps plus all direct super concepts of X, two steps means all concepts in one
step and all direct super-concepts of the direct super-concepts of X , and so on. In a
similar manner we denote all the sub-concepts of concept X in zero or more steps by
allSubConcepts(X). Finally, we also call a direct relation of a concept X a relation that
has concept X as a source or a target explicitly in the model, and not through subtype
relationships.

Definition 3 A value model A conforms to a type model B if and only if all the concepts
in model A conform to concepts in model B and all the relations in model A conform to
relations in model B .

Definition 3 is represented in Figure 4.6.

Figure 4.6: Visual representation of the definition of conformance between a value model
and a type model, from Definition 3.

We represent conformance relationships with the conforms_to operator, ‘::’. For
instance, concept CV conforms to concept CT is denoted as CV :: CT , and relation RV
conforms to relation RT is denoted as RV :: RT . Once more, the definition in textual
form might be hard to follow, so we also represent it visually in Figure 4.7. The textual
definition of concept conformance is as follows:

Definition 4 A concept CV conforms to a concept CT if and only if:

1. for all direct relations RV :: RT where CV is a source concept in the value model,
there exist direct relations RT with one of allSuperConcepts(CT) as a source concept
in the type model;

4.1. Meta-metamodel 41

2. for all direct relations RV :: RT where CV is a target concept in the value model,
there exist direct relations RT with one of allSuperConcepts(CT) as a target concept
in the type model;

3. for all direct relations RT where one of allSuperConcepts(CT) is a source concept
with lower bound cardinality greater than zero in the type model, there exists a
number at least equal to the lower bound cardinality, but not greater than the upper
bound cardinality of relations RV :: RT with CV as a source in the value model.

4. for all direct relations RT where one of allSuperConcepts(CT) is a target concept
with cardinality greater than zero in the type model, there exists a number at least
equal to the lower bound cardinality, but not greater than the upper bound cardinality
of relations RV :: RT with CV as a target in the value model.

Figure 4.7: Visual representation of the definition of conformance between two concepts,
from Definition 4.

The definition of relation conformance is represented visually in Figure 4.8. The
textual definition is as follows:

Definition 5 A relation RV conforms to a relation RT if and only if:

1. the source concept of RV conforms to one of allSubConcepts(source concept of RT);

2. the target concept of RV conforms to one of allSubConcepts(target concept of RT).

Notice that the definition of conformance takes into account the subtype relationship.
This way, the meaning of the subtype relationship can be inferred from the definition of
conformance. Moreover, the definition of conformance takes into account cardinalities,
and, again, the meaning of cardinalities can be inferred from this definition.

42 MetaMod

Figure 4.8: Visual representation of the definition of conformance between two relations,
from Definition 5.

4.1.1.2 Subtype relationships (subtype_of relation)

In this section we define the subtype relationship, relationship that plays an important
role in the type models. The subtype relationship is a relationship between a concept S
(the source concept) and a concept T (the target concept). We call source concept S ,
the sub-concept, and the target concept T , the super-concept. The subtype relationship
is introduced for reusability reasons, because this relationship allows the use of value
concepts of type S in relations where value concepts of type T are expected. Thus, the
subtype relationship gets its meaning and use at the instance level. Moreover, as we will
show in Chapter 5, we leverage the subtype relationship in the implementation of the
processing units.

The subtype relationship is similar to the superclass relationship in MOF. We have
multiple inheritance in MetaMod, but we do not allow cyclic dependencies between
concepts. This decision is in line with our simplicity goal.

Initially, we designed MetaMod without the subtyping relationship. We soon realized
that the effort to create metamodels was daunting and error-prone (because we had to
repeat relations that would only need to be defined for the super-concept with subtyping)
and that we would not be able to create polymorphic operations based on concepts from
the type models. These two concerns were serious enough to surpass the simplicity goal.

We chose to have only concepts and relations in the core because of the desire to
design a minimalistic meta-metamodel that can still be as expressive as MOF (although
not as accurate because of the absence of properties such as unique, ordered, abstract,
etc.).

4.1.2 Group extension
At this point, with the elements from the core, we have concepts and relations that can
be part of type or value models (or both) in MetaMod. With these elements, we can not
split models, or we can not reuse other models. In the discussion in Chapter 3, we argued
why we want a mechanism for splitting and reusing models.

Our work was an exploration of mechanisms for modularity and reuse. In this
exploration, the central and simplest mechanism for modularity that we devised for
MetaMod is a form of grouping. If we look at programming languages, we see that
grouping is an essential aspect and it occurs often. One can think of object-oriented
programming languages where there are many types of groupings: groupings of classes
into packages, groupings of methods and fields into classes, groupings of statements into
methods, groupings of variable declarations into parameter lists and so on.

We explain the group mechanism as an extension to the core of the meta-metamodel.
The group extension and its additions to MetaMod are defined in Figure 4.9 and they are

4.1. Meta-metamodel 43

explained in the next sections.

Figure 4.9: The group extension of the core meta-metamodel of MetaMod.

4.1.2.1 Model elements

Definition 6 The group is the root modeling element of a model of MetaMod that
contains other modeling elements (concepts, relations and other groups) as a unit.

The contents of a group are captured with the contains relation from Figure 4.9. An
extra constraint on this relation, and that cannot be captured in the diagram, is that a
group cannot contain itself. Moreover, the group actually represents a type model or a
value model. The notion of a group has been introduced for organizational purposes. We
could have made this relationship part of the meta-metamodel (see Figure 4.10), but we
decided not to do that because of the simplicity goal.

Figure 4.10: A value model or a type model is a group.

Properties One important property of groups regarding modularity is that groups can
share concepts. That means the definition of a concept can reside in different groups.
By the definition of a concept we mean the set of all relations where the concept is a
source of. This helps in the definition of a complex concept (involved in many relations)
and it also helps in the definition of a system with many parts, where the same concept
is involved in more than one part of the system. For instance, in the Ecore metamodel
description [135], concept EClass appears both in the kernel group and in the classifiers
group. That is because EClass is a core concept in Ecore and it thus needs to be part of
the kernel group, but it only gets a complete definition in the classifiers group.

Another important property of groups for modularity is that groups can share relations .
There are cases where the same relation naturally lies in two groups. For instance, in
the Ecore metamodel description [135], there are relations that appear both in the kernel
group, where they discuss the central elements of Ecore, and also in other groups. For
instance, classes have attributes in Ecore, and so there is a relation between the class
element and the attribute element in Ecore. This relation appears both in the kernel
group of Ecore, because classes with attributes are at the core, and in the structural
features group, because attributes are structural features.

44 MetaMod

Moreover, groups can reuse other groups. That means that modeling elements inside
of the reused groups are made available in the reusing group. Cyclic reuse among groups is
not permitted. This design decision is in line with the simplicity goal by keeping modeling
constructs easy to reason about.

The fact that groups that reuse other groups with sharing of concepts and relations is
a natural way of describing domains, is proved by how various structures are described
in official documents and books. In these documents, one can notice that groups are
described in separation and they are also described in combination with other groups,
with which they share concepts and relations. Among these descriptions, we mention the
one of the Ecore metamodel in the Eclipse modeling framework book [135], the one of
UML in the standard UML infrastructure and superstructure documents [114,115], or the
one of MOF in the core specification document [112]. Our meta-modeling facility with
its modularity mechanisms can capture such descriptions the same as these documents
(groups in separation and groups in combination with sharing of elements). Moreover, we
follow the same structure when we describe MetaMod itself. We describe it in terms of
three groups: the core group, the group extension, and the fragment abstraction extension.

Parallel If we draw a parallel with MOF, groups can be compared with packages. The
difference is that groups can share relations and concepts. This sharing can, nonetheless, be
obtained in MOF using two types of operations, package import and package merge [112].

Fragment Finally, the last element of the group extension is the fragment.

Definition 7 The fragment is a unifying model element from which all modeling ele-
ments in MetaMod are inheriting.

This model element is called a fragment, because every modeling element in MetaMod is
a model fragment that can be used in other model fragments.

4.1.2.2 Semantics of groups

To better understand the grouping mechanism, we show a flattened view of a group, where
its reused groups are dissolved. The flattening is possible because there are no cycles
(groups, directly or indirectly, containing themselves). Unfortunately, this discussion
will be interleaved with some implementation details as well, because the way we assign
identities to elements in MetaMod is relevant during flattening.

The semantics of a group are given by how a group can be flattened. The flattening
operation transforms a group into a group without reused groups, thus obtaining a flat
collection of concepts and relations. From the resulting collection of concepts, duplicates
are eliminated (as concepts with the same identity can be involved in different reused
groups). The way we determine that two concepts have the same identity is encoded
in Algorithm 2 in Section 4.1.4, the implementation section. We have outlined the
algorithm in the implementation section because the equality between two concepts
depends on how one chooses to identify a concept in the implementation. As for the
resulting list of relations, only “exact same relation” duplicates (relations having the
same name and the same source and target types) are eliminated. We do so because
different combinations of sub-concept and concept sources and targets do not necessarily
create completely overlapping relations; see Figure 4.11 and the different cardinalities
of the a_to_b relations. The way we determine “exact same relations” is formalized in

4.1. Meta-metamodel 45

Algorithm 3 in Section 4.1.4. From the list of “exact same relation” duplicates, we keep the
relation that was introduced by the most recent group, or in case of a tie, the one defined
in the group having the smallest lexicographical name (again, this is an implementation
detail). The most recent group is the group that is in a reusing relationship to the other
groups.

Because we only eliminate “exact same relation” duplicates, it can still happen that in
a value model, for a certain combination of source and target value concepts, there are
multiple type relations with the same name available to conform to. Let these relations
be called R. That happens because R relations have the same name and the sources and
targets are in subtype relationships. In this situation, we sort R relations, which have the
same name, but different concept types. We first sort based on which relations have more
specific concept types as source, and then, in case of a tie, which relations have more
specific concept types as target. When we have the two value concepts specified in a value
relation conforming to R, the R is going to be the first match among Rs where the value
concepts are instances of type concepts in relation R. For an example, see Figure 4.11,
where R is a_to_b.

Figure 4.11: On the left-hand side of this figure, we showcase a type model containing
relations with the same name but with different source and target concepts that are in a
subtype relationship. On the right-hand side, we showcase the sorted relations, and an
example of what relation is chosen for given value concepts a and subB.

4.1.3 Fragment abstraction and application extension
For the fragment abstraction extension, we envisioned a simple reuse mechanism to
capture fragments of models with placeholders, where the placeholders will be substituted
by actual model elements at the places of their application. This triggered the idea of
using the substitution mechanism available in lambda calculus. Note that we are using
lambda calculus for its substitution power mostly, and not for its computational power.
Moreover, the fragment abstraction and application extension was part of our exploration
and we did not integrate it smoothly with all features of MetaMod (see Section 5.2.2).
The additions made to MetaMod with the fragment abstractions and applications are
defined in Figure 4.12 and they are explained in the next sections.

46 MetaMod

Figure 4.12: Fragment abstraction and application extension of the group meta-metamodel
of MetaMod.

4.1.3.1 Pure untyped lambda calculus

The pure untyped lambda calculus is a computational paradigm where computations are
achieved via substitutions. Its language is formed of lambda terms. A lambda term, in
the pure untyped lambda calculus, can be any of the following:

• a variable x ;

• a lambda abstraction λx .t , where x is a variable and t is a lambda term;

• or a lambda application ts, where t and s are lambda terms.

The essential operation in untyped lambda calculus is called β-reduction. The β-
reduction rule states that an application of the form (λx .t)s is reduced to t [x := s]. This
means that x is going to be substituted by s in the body of t . Variable x is called a bound
variable in this case because it is bound to the lambda abstraction where it was declared.

4.1.3.2 Model elements

The lambda calculus elements defined in the previous subsection have the following
counterparts in MetaMod: a lambda abstraction is a fragment abstraction, a lambda
application is a fragment application and a bound variable is a placeholder. Because
all these elements are subtypes of the fragment element, they can be used anywhere in a
group. Moreover, a placeholder is not typed, so anything can be plugged in a placeholder
as long as the resulting model with the replacements is a valid model. Whether this is a
valid model is to be discovered once the fragment abstraction is applied. This can be done
at modeling time, when it is triggered by the user, or it can be done before processing
the model, when it is triggered by MetaMod.

Fragment abstractions and applications help with the reuse goal. The model ele-
ments fragment application, fragment abstraction and placeholder residing in the meta-
metamodel itself, give users the possibility to abstract away commonly occurring patterns
and reuse them. Moreover, fragment abstractions can be viewed as a generalization of
groups when the body of a fragment abstraction is a group (and this is how we generally
use fragment abstractions at the moment).

4.1. Meta-metamodel 47

4.1.3.3 Semantics of fragment applications

The semantics of the fragment application is given by how it is reduced. The first strategy
to reduce fragment applications in MetaMod is a variation of call-by-name reduction [127].
We chose this reduction strategy because it is easy to implement and because it is enough
for the simple cases we mostly use it for, that of substituting a specific model element.
Moreover, the call-by-name strategy is also employed by the second reduction strategy
we provide.

In Algorithm 1, the reduction process is depicted for a fragment element F . The
reduction strategy is called on the constituent elements of fragment F (line 8 in Algo-
rithm 1), except when fragment F is a fragment application (line 1 in Algorithm 1). For
fragment applications, we make a reduction of F .has_left. If the result is a fragment
abstraction, then we make a reduction on the result of the substitution of F .has_right for
the placeholder F .has_left.binds in the body of the fragment abstraction. Otherwise, the
fragment application does not reduce. One can see that the reduction process is based
on substitution (line 4 in Algorithm 1). To better grasp Algorithm 1, Figure 4.13 shows
the reduction of a lambda application and Figure 4.14 shows the reduction of a lambda
abstraction.

Note that because we use a projectional environment, we do not need to worry about
some issues that other implementations of lambda calculus are confronted with, such as
name capturing. In textual substitution, name capturing happens when the substitution
conflicts with the name of a free variable. In projectional editing, even if the substituting
variable and the free variable have the same name, they are actually different variables.

Algorithm 1 Reduce(Fragment F)

1: if F is FragmentApplication then
2: replace F .has_left by Reduce(F .has_left) . Recursive call
3: if F .has_left is FragmentAbstraction then
4: substitute F .has_right for F .has_left.binds in F .has_left.has_body
5: replace F by Reduce(F .has_left.has_body)
6: end if
7: else
8: for relation R where F is a source concept do
9: replace F .R by Reduce(F .R)

10: end for
11: end if

We also have a variation of normal-order-reduction [127] to reduce lambda terms
in MetaMod. We introduced normal order reduction because we also played with the
computational power of lambda calculus, and the call-by-name reduction does not ne-
cessarily reduce a term to its normal form (form that can not be reduced anymore with
beta reductions), while normal order reduction does. This allowed us to experiment with
meta-programming [156] facilities, though in an inefficient way. This was part of our
exploration, and we left the computational part out in the end because the models were
going too much towards an imperative style [138].

48 MetaMod

Figure 4.13: The steps of Algorithm 1 applied on a fragment application.

Figure 4.14: The steps of Algorithm 1 applied on a fragment abstraction.

4.1.4 Implementation extensions
In the previous sections, we treated MetaMod as something more abstract, independent
of its textual and visual representations. In this section, we introduce the visual and
textual representations of MetaMod. Before that, we discuss on implementation concerns
of MetaMod and extra elements that we introduced for implementation.

4.1.4.1 Named elements

For implementation purposes, we have added a name attribute to the concept, relation,
group, and fragment abstraction elements. Naming is the way to identify these modeling
elements in MetaMod. Names are not necessary for identification in graphical models,
but they are necessary in textual models. Given that MetaMod has both a visual and a
textual representation (see Section 4.1.5) for its models, we have also introduced names

4.1. Meta-metamodel 49

for the modeling elements that can be referenced in textual models.
Now that we know how to identify various elements in MetaMod, a more precise

definition of when two concepts or two relations have the same identity can be given.
These definitions are given in Algorithm 2 and Algorithm 3. The algorithm for “exact
same relations” (mentioned in Section 4.1.2.2) is similar to Algorithm 3, just that in line
11, only exact concepts are accepted, and no sub-concepts.

Algorithm 2 AreSameConcept(Concept C0, Concept C1) returns boolean

1: if C0 == _ && C1 == _ then
2: return true
3: end if
4: if C0 == _ ‖ C1 == _ then
5: return false
6: end if
7: if (C0.name == null ‖ C1.name == null) then
8: return false
9: end if

10: if (C0.name == C1.name) && AreSameConcept (C0.conforms_to, C1.conforms_to)
then

11: return true
12: end if
13: return false

Algorithm 3 AreSameRelation(Relation R0, Relation R1) returns int

1: if R0 == _ && R1 == _ then
2: return true
3: end if
4: if R0 == _ ‖ R1 == _ then
5: return false
6: end if
7: if R0.name == null ‖ R1.name == null then
8: return false
9: end if

10: if (R0.name == R1.name) && (AreSameRelation (R0.conforms_to,
R1.conforms_to)) then

11: if (AreSameConcept(R0.source, R1.source) ‖ R0.source is sub-concept of
R1.source ‖ R1.source is sub-concept of R0.source) && (AreSameConcept (R0.target,
R1.target) ‖ R0.target is sub-concept of R1.target ‖ R1.target is sub-concept of
R0.target) then . For “exact same relations”, only the exact concepts are accepted,
and no sub-concepts

12: return true
13: end if
14: end if
15: return false

One restriction that we impose as a result of introducing names for groups is that they
have unique names in the modeling space. The restriction is in place for the disambiguation

50 MetaMod

of reused groups. Although it would be no problem for the projectional environment itself
to identify two different groups with the same name, for a human user, that would not be
the case.

4.1.4.2 Extra elements introduced for implementation

The elements we present in this section were introduced as a result of practical observations
while implementing DSLs with MetaMod. These complications arose because we chose
names as identifiers for elements in MetaMod. Firstly, we noticed that when a fragment
abstraction creates a regular concept, C , and the fragment abstraction is applied twice
in the same model, then the two applications would create concept C twice in the same
model. This would be erroneous in many cases. For instance, consider a fragment
abstraction that creates a concept of type Circle, called NewCircle, and assigns a position
and a radius to this circle by means of relations. Applied twice, NewCircle will have
two positions and two radii assigned to it (see Figure 4.15a), which is erroneous because
the associated metamodel does not allow it (see Figure 4.19). To solve this, we have
introduced the generational concepts. Secondly, we noticed that when one reuses other
groups, she might not want to mix certain reused concepts with concepts having the
same name and conforming type concept in the current model (by default, they would be
considered as having the same identity). For instance, consider type model G , that reuses
type models G1 and G2 . If both G1 and G2 contain concept C :: _, then reusing them
in G would result in treating both occurrences of C :: _ as the having the same identity
in G . Because there are cases when we want C :: _ from G1 to be different from C :: _
in G2 in the reusing group G , we have introduced equivalence classes and the unique
field. All these new elements are explained in the next paragraphs.

Generational concepts One element that we introduced specifically for the fragment
abstractions is the generational concept. The generational concept has a name so that
it can be referenced inside of the fragment abstraction, but this name is changed at
application time by MetaMod. This construct is needed to create different concepts for
different applications in the same model. For instance, if we go back to the example with
circles in the previous paragraph, and we make NewCircle a generational concept, we
obtain two different circles at application time (see Figure 4.15b).

Equivalence classes By default, in MetaMod, if one reuses two concepts that have
the same name and the same type concept, they are considered to have the same iden-
tity. Nevertheless, there are cases when we wish that two concepts with the same name
and type concept be different. Consider the case of a type model called StateMachines
that reuses both simple state machines, SimpleStateMachine and composite state machi-
nes, CompositeStateMachine. Type model SimpleStateMachine contains a type concept
State :: _ and type model CompositeStateMachine contains a type concept State :: _. In
type model StateMachines we do not want the State :: _ from the simple state machines
to be the same as the State :: _ from the CompositeStateMachines.

We introduced the equivalence classes so that DSL users can specify that a certain
reused concept is not equivalent with other concepts with same name and same type
concept in a given reusing group. With the introduction of equivalence classes, two
concepts have the same identity if they belong to the same equivalence class. Moreover,
the introduction of equivalence classes prevents the regeneration of code for the reused

4.1. Meta-metamodel 51

(a) Lambda abstraction applied twice in the
same model. This leads to an unintended
model, because NewCircle has two relations
of type has and two relations of type radius,
which is not allowed by the metamodel (see
metamodel in Figure 4.19).

(b) Lambda abstraction applied twice in the
same model. This time, new circle concepts
are created at the application because they
are generational concepts.

Figure 4.15: Applications of lambda abstractions with and without generational concepts.
These two model snippets are screenshots from MetaMod. The textual syntax of MetaMod
is explained in Section 4.1.5.1, but here we give an explanation of the model snippets in
words. Both model snippets start with a lambda abstraction that has a name followed by
bound variables (introduced with λ), and followed by the body of the abstraction. In both
cases, the body consists of defining a value concept and two value relations that conform
to type relations has and radius. The lambda abstractions are followed by two lambda
applications where values are assigned to the bound variables; immediately after the right
arrow, the result of the application is shown (the body of the lambda abstraction with
the bound variables assigned).

groups (see Section 5.2). A simple renaming would require that code from reused groups
be regenerated.

An equivalence class is a list of concepts in a model that have the same name and
type concept, and that represent equivalent concepts (concepts that have the same
identity). A model is characterized by a set of equivalence classes. When reusing a
group, the DSL engineer or user can specify what concepts from the reused group are
not allowed to be mixed with concepts having the same name and concept type in the
current model. We call those concepts from the reused groups uniques. Going back to the
example of state machines introduced two paragraphs before, we can declare State from
SimpleStateMachine and State from CompositeStateMachine as unique in StateMachines .
Figure 4.16 shows how we define uniques in MetaMod.

Algorithm 4 shows how MetaMod computes the equivalence classes for a group.
A few informal rules that follow from Algorithm 4 for calculating the equivalence

52 MetaMod

Algorithm 4 CreateEquivalenceClasses(Group G)

1: Let list L be the list of concepts defined directly in G
2: Let eqClasses be the list of equivalence classes of G, initially empty . An equivalence

class is itself a list of concepts.
3: . First we create equivalence classes for concepts declared directly in G, that have

the same identity according to Algorithm 2.
4: for index i in range [0, size of L] do
5: if Li is not in any equivalence class of eqClasses then
6: Create equivalence class Eq
7: Add Eq to eqClasses
8: Add Li to Eq
9: for index j in range [i+ 1, size of L] do

10: if AreSameConcept(Li, Lj) then
11: Place Lj in Eq
12: end if
13: end for
14: end if
15: end for
16: Let eqClassesReused be the list of equivalence classes from reused groups, initially

empty
17: for reused group RG of G do
18: Add all equivalence classes from CreateEquivalenceClasses(RG) in

eqClassesReused
19: end for
20: . Then, we add equivalence classes to G for all concepts that were defined unique in

reused groups.
21: for eqClass in eqClassesReused do
22: if any concept in eqClass is defined unique in G then
23: AddUniques(eqClass, eqClasses) . AddUniques first checks whether eqClass

intersects (concepts with the same identity) with other equivalence class in
eqClassses , and if so, then it adds the difference to the equivalence class of eqClasses.
Otherwise, it adds eqClass as a new element to eqClasses.

24: remove eqClass from eqClassesReused
25: end if
26: end for
27: . Finally, we add the rest of the equivalence classes to G from reused groups.
28: for eqClass in eqClassesReused do
29: AddNonUniques(eqClass, eqClasses) . AddNonUniques first checks whether

eqClass intersects (concepts with the same identity) with other equivalence class in
eqClassses , and if so, then it adds the difference to the equivalence class of eqClasses.
Otherwise, it checks whether eqClass intersects (same name) with other equivalence
class in eqClasses, and if so, then it adds the difference to the equivalence class of
eqClasses. Otherwise, it adds eqClass as a new element to eqClasses.

30: end for

4.1. Meta-metamodel 53

Figure 4.16: The StateMachine group. This is a screenshot from MetaMod. This
textual syntax is explained in Section 4.1.5.1, but here we give an explanation of
the screenshot in words. The StateMachines group reuses SimpleStateMachine and
CompositeStateMachine, while defining State as unique in both reused groups. Then, the
StateMachine group itself defines a concept State.

classes are that ‘uniques’ have priority, ‘uniques’ are greedy, ‘uniques’ propagate from
lower groups to upper groups, and ‘non-uniques’ with same name and conforming concept
are part of the same equivalence class. In MetaMod, the creation of equivalence classes
for a group and its containing groups is triggered whenever the DSL engineer or user is
editing a model and adds a concept to this model.

Going back to the example of state machines, Figure 4.17 shows the equivalence classes
of group StateMachines as calculated by Algorithm 4.

Figure 4.17: The equivalence classes of StateMachines. The visual representation of the
equivalence class contains a list of concepts that were defined in all reused groups of group
StateMachines, including group StateMachines (introduced by the line “all concepts”).
These concepts all have the same name and the same conforming concept (we list them
in the representation because users can click on the concept and go to its definition).
The equivalence class also contains references to reused groups defining these concepts
(introduced by the line “all containing groups”). This representation is for debugging
purposes, but we show it here for clarity.

With the introduction of the equivalence classes, the algorithm for determining that
two concepts have the same identity changes; it is not Algorithm 2 anymore. The check
now boils down to verifying whether the two concepts are from the same equivalence
class.

54 MetaMod

4.1.5 MetaMod syntax for models
We have implemented the ideas presented in Section 4.1 into MetaMod using Jetbrains
MPS. MetaMod has both a textual and a graphical syntax, and the same model can be
projected using any of these two syntaxes. We use examples in both syntaxes throughout
the thesis.

4.1.5.1 Textual syntax

The textual syntax of our models is “mostly textual”, because there are a few graphical
additions to make some of the elements stand out. This also means we can not use
BNF [96] to describe the syntax. Both value and type models are projected in the same
way, with slight differences.

The textual syntax of MetaMod consists of the following elements.

• Concepts are described by the name of the concept (or an empty space if the concept
is unnamed) followed by the ‘::’ symbol and the name of the concept to which the
concept conforms (or the ‘_’ symbol if there is no such concept). See Figure 4.21
and type concept Circle, for an example.

• Relations are described by a source concept followed by the source cardinality, the
‘[’ symbol, and a dashed line. Above the dashed line lies the name of the relation
(or an empty space if the relation has no name) and underneath the dashed line
lies the name of the relation to which the relation conforms (or the ‘_’ symbol if
there is no such relation). This sequence is followed by the ‘]’ symbol, the target
cardinality, and the target concept. Note that the notation with dashed lines spans
multiple lines, making this “more than a textual” notation. See Figure 4.21 and
type relation radius, for an example.

• Groups are described by the name of the group (or an empty space if the group is
unnamed) followed by a ‘::’ symbol, the name of the type model to which the group
conforms (or the ‘_’ symbol if there is no such type model), the ‘group’ keyword,
the ‘{’ symbol, a list of fragments and the ‘}’ symbol. The groups are enclosed with
a border for an extra visual hint of the structure of the model, making this “more
than a textual” notation again.
To reuse other groups, one can introduce a line that starts with ‘reuse’, followed
by the name of the group that is to be reused and a list of concepts that are to be
treated as unique. See Figure 4.21 and group Circle, for an example.

• Subtype relationships are described with a concept followed by the ‘is a’ words and
a super-concept. See Figure 4.21 and the subtype relationship between circle and
shape, for an example.

• Fragment abstractions are described with the name of the fragment abstraction, fol-
lowed by the ‘=’ symbol, the symbol ‘Λ’, the name of the placeholder, the ‘.’ symbol
and the body of the fragment abstraction. This notation was inspired by the lambda
calculus notation. See Figure 4.28 and fragment abstraction 3ConcentricCircles, for
an example.

• Fragment applications are described by a left fragment followed by the name of the
placeholder we are substituting and the right fragment. See Figure 4.29 and the
fragment application on 3ConcentricCircles, for an example.

4.1. Meta-metamodel 55

Even if one can not create a custom syntax for MetaMod models, using fragment
abstractions, fragment applications and groups, users can obtain models with custom
look and feel (see Figure 4.29 and the application of 3ConcentricCircles).

4.1.5.2 Visual syntax

Models in MetaMod also have a visual representation. The explanation of these elements
follows:

• Concepts are represented by a rectangle containing the name of the concept, followed
by ‘::’ and the concept to which it conforms. See Figure 4.21 and concept Circle,
for an example.

• Relations are represented by a filled arrow line labeled with the name of the relation,
and the relation to which it conforms, and the source and target cardinality at
the left-hand side and right-hand side of the label. The source concept and target
concept are the source and target of the arrow line, respectively. See Figure 4.21
and type relation radius, for an example.

• Groups are enclosed in a thin border box with the name of the group followed by
‘::’, the group to which this group conforms and by opening curly parentheses. The
curly parentheses enclose a rectangle with the containing model elements of the
group. The reused groups appear as green rectangles labeled with the name of the
reused group. See Figure 4.21 and group Circle, for an example.

• Subtype relationships are represented by an open arrow line labeled with ‘is a’. The
sub-concept and super-concept are the source and target concepts of the arrow line,
respectively. See Figure 4.21 and the subtype relationship between circle and shape,
for an example.

• Fragment abstractions are represented as in the textual notation, just that the
body will be visual. In the body, placeholders are represented with dark magenta
rectangles labeled with their names. See Figure 4.28 and fragment abstraction
3ConcentricCircles, for an example.

• Fragment applications are represented by a yellow rectangle labeled with the name
of the lambda abstraction, and with edges towards all its arguments. The edges
are labeled with the name of the argument. See Figure 4.29 and the fragment
application on 3ConcentricCircles, for an example.

4.1.6 Related work
In this section, we are going to look at modularity mechanisms targeted at value models
(models of DSLs) and type models (metamodels). In most works on metamodels presented
in the following paragraphs, there are no mechanisms to incrementally add relations to
reused concepts, that are valid in a reusing context. They mostly rely on techniques
similar to inheritance, where additions are made on inheriting concepts. Moreover, many
of the works do not consider modularity mechanisms for value models, leaving those to
be encoded in the type models themselves.

One of the most recent works on providing modularity for value models includes the
work of Nuno Amalio et al. on Fragmenta [5]. Fragmenta establishes a mathematical

56 MetaMod

theory of model fragmentation for MDE that offers fragmentation strategies for value
models. Thus, the way fragmentation is done in value models is determined at the type
model level. With our approach the fragmentation in value models is not enforced by the
DSL engineers.

The work on concern oriented software design [4] is also of relevance for us. The
mechanism used in concern oriented development is based on concerns, which are units
of reuse that encapsulate software models. A concern has three interfaces (variation,
customization, and usage) that are used when instantiating the concern. Concerns are
based on Reusable Aspect Models (RAMs) [75]. The focus in the concern oriented software
design is on software models and on the metamodel level.

The work of Clark et al. [25] on a Meta-Modeling Framework (MMF) describes an
interesting approach geared towards the creation of OO modeling languages. The two
features of OO modeling technology the mechanism employs are package specialization
(for support of reusable, modular, incremental language design) and package templates
(for parametric model elements). The mechanism is focused on the metamodel level of a
language definition and on OO modeling languages.

Catalysis [40] is a software design mechanism based on UML and focused on the
specification and design of component-based systems. The mechanism is built on three mo-
deling concepts: the type (the behavior of one object), the collaboration (the interactions
among a group of objects) and the refinement (from business models to specifications to
implementations). Recurring patterns of these three concepts are captured in frameworks
with the help of template packages. The mechanisms is focused on the models used in
the design of a software system.

Another interesting work is that of Varro et al. [153] on VPM, a visual, precise and
multilevel metamodeling framework. They also rely on a kernel language formed of a few
constructs, that they designed in order to alleviate the various problems they identified in
MOF itself, among which structural redundancies in MOF are mentioned. They present
mechanisms of reuse for both the static structure and dynamic structure of models.
In what regards the static structure, they use refinement (meaning inheritance and
instantiation) for classes, associations and packages alike. This gives rise to a mechanism
of reuse. This style of extension does not allow for augmenting classes in reusing contexts.
Moreover, we also have fragment abstractions and fragment applications that allow for
reuse with variation points.

The work on generic metamodeling with concepts, templates and mixin layers of Juan
de Lara et al. [32, 34] is implemented in a tool called MetaDepth. They use templates
and so-called concepts to define requirements on the parameters of the templates.

Similar works are those described by Heidenreich et al. [56] and Clark et al. [26].
Heidenreich et al. describe a mechanism to accomplish language-independent model
modularization. The mechanism is based on using interfaces for the language fragments to
be combined. Then, Clark et al. define metamodel composition with the help of package
extensions and package templates. Given that the composition mechanism was defined
at the package level, it can be that the modularity capability is limited due to coarse
granularity.

In the Reuseware Composition Framework [59], a generic approach to add modularity to
arbitrary languages is defined. This approach is part of the Invasive Software Composition
mechanism [7] and it uses a gray-box composition technique, interfaces, hooks and
composition operations.

Another work, that on role-based language composition [163] transfers role-based
modeling to the metamodels. Here, roles define placeholders for class types and a semantic

4.2. Organization of MetaMod meta-languages 57

contract for objects that will play the roles. The composition of the languages is made
by an external composition program. In contrast to our work, role-based language
composition works at the metamodel level only.

UML package merge [114] is a mechanism to provide modularity in UML. It is a
relationship between two packages and it indicates that the contents of the target package
are merged into the contents of the source package under certain rules. Similarly, Kompose,
a generic approach for automatic model composition is made in two steps: matching
(specific to each modeling language) and merging (generic). On the same line of work,
proxies in EMF allow for the partitioning of models [135]. On the other hand, none of
these mechanisms provide parameterization techniques.

4.1.7 Challenges
In the previous sections we have introduced and motivated the elements of the meta-
metamodel. Here, we present a couple of challenges that these new elements might
pose. Firstly, the way relations are shared among groups could create difficulties for DSL
engineers. They might find it hard to understand what cardinalities apply for a value
relation conforming to a type relation that was duplicated in the type model (see Figure 4.11
again for an example). Secondly, the sharing of concepts might create difficulties as
well for DSL engineers, because it can be hard to keep track of the equivalence clases.
Thirdly, another challenge is raised by the fragment abstractions and the placeholders
being untyped. Only after the application is the user notified of errors (although they can
apply the fragment application in-place, thus allowing MetaMod to check the placeholders
are of the right type). The first two challenges could be alleviated with good tool support
(showing the equivalence classes and the duplicates per group, showing the relation chosen
by the algorithm, etc.). The third problem could be solved by adding types to the
fragment abstractions.

4.2 Organization of MetaMod meta-languages
In this section, we give an overview of the main meta-languages we have built for MetaMod.
MetaMod is composed of six main meta-languages, dealing with the structure of DSLs
(models and lambda calculus), the documentation of models (documentation), the API
functions for querying and navigation of models (generic functions), the processing of
models (processing units) and the model transformations (model transformations). These
meta-languages were implemented using Jetbrains MPS. The implementation in MPS
accompanies the definitions and the explanations of all the mechanisms for the design
and implementation of DSLs we describe in this thesis.

MPS gave us freedom in the choice of notations for meta-languages of MetaMod. The
projectional nature of MPS enabled the “almost textual” and visual notations presented
in the previous section. Moreover, we have reused various other languages provided by
MPS while building MetaMod itself. This was useful in getting a working prototype of
our meta-languages ready within a few months.

The organization of the meta-languages in MetaMod is depicted in Figure 4.18. We
leave out the languages that we reused from MPS, and concentrate only on the meta-
languages that we built for MetaMod. In the following paragraphs, we present all these
meta-languages. We have one more main component meta-language that is not in the
figure and that we will present in Section 7, the MappingChangeableModules.

58 MetaMod

Figure 4.18: The meta-languages of MetaMod. What language reuse and extension mean
in MPS is presented in Section 2.4.

4.2.1 Models
The Models meta-language is at the center of the meta-languages of MetaMod. This
component contains most of the elements of the meta-metamodel that we described in
Section 4.1, except for the fragment abstraction, fragment application and placeholder.
These other elements are captured in the Lambda Calculus meta-language, that is reused
in the Models meta-language.

4.2.2 Lambda Calculus
The Lambda Calculus meta-language has all the elements of untyped lambda calculus and
it also provides two types of reductions for the lambda terms: a call-by-name reduction
and a normal order reduction. This language can be used independently of MetaMod, for
instance, for teaching purposes.

4.2.3 Documentation
The Documentation meta-language allows developers to write documentation for the
models. This meta-language embeds elements from the Models meta-language. The
documentation can lead to better understanding of the models and their modular structure
because in the documentation one can explain the models, can provide embedded examples
and can reference model elements that are written in separate files. On the other hand,
modularity of models also helps during documentation because groups create a context in
which to discuss about finer-grained elements (distinct groups and their contents).

For an example that captures most of the features of the documentation meta-language
see Figure 4.23 in Section 4.3.1.3.

4.2.4 Generic functions
The Generic functions meta-language is a collection of primitive API functions and
MetaMod types that help navigate, query, and create models. Moreover, we also define
operations (the constituents of processing units) and ways to organize these operations in
the Generic functions meta-language.

The functions that we provide for navigating and querying models follow. Note
that the left and right angle brackets, “〈” and “〉”, in the following definitions denote a

4.2. Organization of MetaMod meta-languages 59

placeholder, a value that needs to be introduced when writing the function.

• 〈VM 〉.conceptsOfType(〈CT 〉): outputs those value concepts from value model VM
that conform to type concept CT ;

• 〈CV 〉.@src#〈RT 〉# in (〈VM 〉): outputs those value concepts from value model
VM that are the target of a value relation conforming to type relation RT , where
the source is value concept CV ;

• 〈CV 〉.@tgt#〈RT 〉# in (〈VM 〉): outputs those value concepts from value model
VM that are the source of a value relation conforming to type relation RT , where
the target is value concept CV ;

• 〈CT1 〉.isTypeOf (〈CT2 〉) in (〈VM 〉): outputs true if CT1 is a subtype of CT2 , and
false otherwise; this is done in the context of value model VM and its type model;

• 〈CV 〉.castTo(〈CT 〉) in (〈VM 〉): tells the type system to treat CV as conforming
to type concept CT ; this is done in the context of value model VM and its type
model;

• 〈CV 〉.strValue: outputs the name of concept CV .

The ‘@src’ and ‘@tgt’ functions always return a list of values, no matter the multiplicity
end of the target or source concept. Moreover, one can notice that there are no operations
for updating value models in this list. These operations are less interesting; they simply
allow for the creation and deletion of concepts, groups, subtypes, and relations.

We also introduce the following three types.

• The GroupType#〈GT 〉# denotes value models that conform to type model GT ;

• The ConceptType#〈CT 〉# denotes value concepts that conform to type concept
CT .

• The RelationType#〈RT 〉# denotes value relations that conform to type relation
RT .

Note that, in the thesis, we will be referring to concept types when we talk about types
that occur in operations of the processing units, and that originate from type concepts.
As a reminder, a type concept is a concept from a type model. The same discussion holds
for group types and relation types.

4.2.5 Processing units
The Processing units meta-language provides facilities for processing units and their
operations: operation call resolution and operation overriding. The operations in the
processing units are an extension of methods from the base language of MPS (that is a
reimplementation of Java). That is why operations look similarly to Java methods, and
can also have Java types as arguments.

The main code generator for MetaMod that we implemented in MPS is defined as
part of this meta-language. This code generator transforms the processing unit operations
into Java code, that is then run on the value models. We denote this by processing
unit transformation. We need to distinguish the processing unit transformation from the
following situation. The operations in the processing units themselves can contain code
that generates code. We denote this by code generation with the processing units. In the
next paragraphs we further explain these two types of generation.

60 MetaMod

Processing unit transformation For the purpose of explaining the transformation
of the processing units into code, we need to introduce the notion of multi-operation
here. A multi-operation is a special type of operation that can be overridden in MetaMod.
No other type of operation can be overridden in MetaMod. We give full details on the
multi-operation in Chapter 5. Moreover, we also give one more detail about the processing
unit, the fact that it is defined per group and language aspect. Again, we give full details
on the aspect reuse of processing units in Chapter 5.

A processing unit is defined for a group and for a language aspect. Assume we have
groups Gi, where i ∈ [1, g], available in the model space, and processing units PUAj

Gi

defined for groups Gi and aspects Aj , where j ∈ [1, a]. The highlights of the processing
unit transformation are as follows:

• For all i ∈ [1, g], a Java interface, IGi
, is generated from every group.

• For all i ∈ [1, g], IGi
implements interfaces IGk

, where Gi reuses Gk directly, where
1 ≤ k ≤ g.

• For all i ∈ [1, g], all multi-operations defined in PUAj

Gi
, where j ∈ [1, a], are placed

as operation signatures in IGi
.

• For all i ∈ [1, g], a Java class, CGi
, is generated from every group.

• For all i ∈ [1, g], CGi implements interfaces IGi .

• For all i ∈ [1, g], CGi contains a collection field with all classes CGk
, where Gi reuses

Gk recursively.

• For all i ∈ [1, g], operations from PU
Aj

Gi
, where j ∈ [1, a], are placed as methods in

CGi
.

• In the generated code, the name of a multi-operation is prepended with the string
‘multi_’ and appended with the names of the parameter types.

• In the generated code, the name of an operation that overrides a multi-operation is
made of the name of the operation concatenated with the names of the parameter
types (we call this the actual name).

• The implementation of the interface operations in CGi
is made of a switch among

the different overriding operations in the order of the specificity of the arguments,
as will be explained in Section 5.1.

• A call to a multi-operation in the processing unit is generated into a call to the
interface operation implementation.

In summary, we generated Java classes per group and we expressed the flattened
reuse hierarchy of groups as compositions in the generated Java classes. Moreover, we
introduced Java interfaces per group so that multi-operations defined for any reused
group are implemented in the Java classes generated per group. Lastly, we implemented
multi-operations with a switch on the runtime type of the arguments of the multi-operation
call such that the appropriate overridden method is chosen.

In Appendix A, we have placed code generated from the example with shapes from
Section 4.3. All elements we talked about in this section can be inspected there.

4.3. Example DSL and models in MetaMod 61

Code generation with the processing units A DSL engineer can also generate
code while processing the value models. For this purpose, MetaMod offers extra API
functions to the processing units.

Because the processing units are an extension of the base language of MPS, we are able
to combine them with other extensions built for the base language. One extension that
we use for generation purposes is an API to create Java nodes programmatically, openapi ,
from package org .jetbrains.mps.openapi (this package was created by the MPS team).
Another extension for creating Java nodes programmatically, but that is more compact,
is jetbrains.mps.lang .quotation (this package was also created by the MPS team). The
quotations are environments enclosed between %(and)%, that can be written inside
the operations of a processing unit and that function similarly to template languages.
One can write target Java code in this environment, and can escape to the scope of the
operation in the processing unit by using so-called anti-quotations. The quotations and
openapi were developed by the MPS team to be used in the language aspect DSLs of
MPS itself. They are used in the type system DSL of MPS, for instance, to create the
inferred type nodes. An example of code generation with the processing units can be seen
in Section 9.3.

4.2.6 Model transformations
The Model transformations meta-language provides support for creating transformations
from DSLs written in MetaMod to other DSLs written in MetaMod. The model transfor-
mation meta-language is actually an extension of the processing units meta-language and
it brings in new functionality related to creating the output model. This meta-language
is described in more detail in Chapter 8.

4.2.7 Discussion
One can notice that the Models component is reused in all other components, except
for lambda calculus, that is actually part of the definition of the models. Thus, the
implementation of MetaMod itself has the models meta-language as a central meta-
language. We discuss about this phenomenon of a central component in Section 9.6.

4.3 Example DSL and models in MetaMod
In this section we present examples written in the main meta-languages of MetaMod.
We describe type models, simple value models, value models with fragment abstractions,
documentation models, processing units and extensions of DSLs. That is so one gets an
idea of the process of creating DSLs and models of these DSLs in MetaMod. The DSL
we use in all these examples is a DSL to create 2D shapes at specified points on a canvas,
and it is called the Canvas DSL. The two incremental extensions to the Canvas DSL are
related to adding a new type of shape and adding colors to the shapes, respectively.

The entire metamodel of the Canvas DSL is defined in Figure 4.19; this metamodel
does not contain the elements from the two extensions. A canvas can contain two types
of shapes, circles and rectangles, and all shapes are characterized by a position on the
canvas. The assumption we make is that for the circle, the position represents its center,
and for the rectangle, the position represents its upper-left corner.

62 MetaMod

Figure 4.19: All the concepts and relations in the Canvas DSL - flattened view.

4.3.1 Implementation steps
To implement the DSL, we start off by implementing the metamodel and example
models. We then build documentation models and processing units for various aspects,
e.g. visualization and constraints.

4.3.1.1 Type models

We build metamodels in MetaMod using the group construct. All the groups we have
built for the Shapes language, including the two extensions, are shown in Figure 4.20.
Most of these groups require information from other groups and add its own information.
For instance, the Circle group is defined in Figure 4.21. Thus, looking at the Circle group,
we see that shapes are imported first, because the circle type is a subtype of the shape
type which was defined in group Shape. Besides the inherited position which represents
the center, the circle also needs a radius; thus, we define a radius relation for the circle.

Figure 4.20: The components of the Canvas DSL.

4.3. Example DSL and models in MetaMod 63

Figure 4.21: The Circle group in its textual form on the left-hand side and in its visual
form on the right-hand side.

4.3.1.2 Value models

We write a model that contains one circle and one rectangle in the new Canvas DSL.
We are modularizing the top-level model by creating two separate models: one that
specifies the details of the circle (see Figure 4.22) and one that specifies the details of the
rectangle (see Figure 4.22). Then, the top-level model reuses the previous two and places
them on the canvas (see Figure 4.22). This example illustrates how value models can be
modularized the same way as type models. One can notice that the value model defining
a circle conforms to type model Circle and the value model defining a rectangle conforms
to type model Rectangle, but they are both reused in a value model that conforms to type
model Canvas. This is possible because both groups Rectangle and Circle are reused by
group Canvas in the metamodel.

Figure 4.22: Value models defining a rectangle, a circle, and a canvas containing a circle
and a rectangle.

64 MetaMod

4.3.1.3 Documentation

We also attach documentation to the Canvas DSL. This comes in the form of a document
with chapters as in Figure 4.23. The document contains actual references to model
elements, which means that a change in the original model will propagate automatically
to the documentation. Moreover, the example also includes an embedded model example.

Figure 4.23: Documentation for the Canvas DSL. There are references to actual model
elements represented in blue and a model example embedded in this documentation.

4.3.1.4 Processing units

There are many types of processing that could be performed on the shapes language,
from defining extra constraints on the shapes, to visualizing them in different tools, and
checking mathematical properties on them. In this particular case, we do not need to
define extra constraints on the models. We only want to draw the shapes on the canvas.
That is why we create a processing unit with an aspect called Draw and we associate it
to the Shape group. Here, we define a multi-operation called drawShape that draws the
shape using a Java graphics object (see Figure 4.24). This multi-operation can then be
overridden for a particular type of shape in groups reusing Shape; for instance, see the
overridden operation for a circle shape in Figure 4.25.

To generate the actual drawing, the drawShape operation is subsequently called by
another operation, createPanel, that creates a Java panel object to show the shapes in a
GUI component. We mention this other operation, createPanel, because it is going to
play a role later in an extension.

4.3.2 Extension one
The first extension showcases a simple way to augment a language. We add a new concept
to draw on the canvas, the Square concept, and we create a group reusing both Square
and the old canvas, called CanvasExt. We chose to make square a subtype of rectangle.
Thus, we need to define a constraint, checking that the length and the width of the square
are the same (see Figure 4.26). We also define a main operation for the group CanvasExt,

4.3. Example DSL and models in MetaMod 65

Figure 4.24: The multi-operation drawShape.

@override drawShape

operation drawShape(GroupType#Circle# inputGroup, ConceptType#Circle# circle, Graphics graphics) returns void {

graphics.drawOval(circle.@src#has# in (inputGroup).first.@src#x# in (inputGroup).first.intValue,

circle.@src#has# in (inputGroup).first.@src#y# in (inputGroup).first.intValue,

circle.@src#radius# in (inputGroup).first.intValue, circle.@src#radius# in (inputGroup).first.intValue);

}

Figure 4.25: The overriding of multi-operation drawShape for shape Circle. In this figure,
one can see navigation and querying functions that we defined in Section 4.2. Because all
the ‘@src’ and ‘@tgt’ functions return a list, no matter the multiplicity of the target or
source ends of a relation, we use operation first to get the value for single-valued ends.

where we simply call the main operation defined for the original canvas. No changes to
glue the original canvas with the new shape are needed. That is because square is of type
shape and a canvas contains shapes.

Figure 4.26: Constraint checking that width and length are the same for a square shape.

4.3.3 Extension two
The second extension showcases an augmentation that is more invasive. We embed colors
into the Canvas DSL and add a relation from the Shape concept to a color concept.
Besides these additions to the metamodel, that are shown in Figure 4.27, we also need
to make changes to the processing units. That consists in rewriting the createPanel in
a new operation called createPanelWithColor, where we first change the color of the
graphics object to the color of the shape before drawing the shape. Moreover, in the main
operation we call createPanelWithColor instead of createPanel.

An alternative would have been to make createPanel a multi-operation, and to override

66 MetaMod

Figure 4.27: The group for the second extension in its textual form on the left-hand side
and its visual form on the right-hand side.

it in the extended language. That implies having access to the original language, and
making a non-invasive change. On the other hand, one could predict that such a change
might take place and she could flag the createPanel operation as a multi-operation from
the beginning. This shows the kinds of decisions DSL engineers face when they need to
think of extensions.

4.3.4 Models with fragment applications
It is at the value model level that is most valuable to capture groups with placeholders,
because there are more repetitive structures happening at this level. For instance, we
have defined a fragment abstraction for defining three concentric circles in Figure 4.28.
The body of the fragment abstraction is a group with placeholders x, y, radius1, radius2
and radius3.

Figure 4.28: A fragment abstraction in its textual form on the left-hand side and its
visual form on the right-hand side.

The application of the fragment abstraction is shown in Figure 4.29.

4.4. Conclusions 67

Figure 4.29: A fragment application in its textual form on the left-hand side and its visual
form on the right-hand side.

4.3.5 Running the processing unit on the value model
Once we run the operations in the processing units associated to the Draw aspect and
the Canvas group on a value model, we obtain a canvas with all the shapes in the model
drawn on the canvas. To understand how does the processing unit get to run on the
value model, see Figure 4.30. The processing unit contains concept types, groups types
and relation types from the type model, and it makes use of these types in the code for
navigating and processing value models. This code then transforms to executable code
(such as described in Section 4.2.5). The generated code can then be run on any value
model that is an instance of the type model for which the processing unit was defined.

Figure 4.30: Figure showing how does the processing unit run on a value model.

4.4 Conclusions
In this chapter, we have defined the meta-languages of MetaMod. We have started with
the central meta-language, the meta-metamodel, that defines type and value models.
We have described it incrementally, starting with the core, and then adding the group
extension, the fragment abstraction and application extension, and the implementation
extension. The features of the meta-metamodel were guided by the goals we had with
MetaMod: modularity, reuse and simplicity. Our contributions here consist of the way
groups and group reuse share concepts and relations, the combination of model elements

68 MetaMod

with lambda calculus in fragment abstraction and application, and the incorporation of
the conformance relationship in the meta-metamodel to create the multilevel nature of
MetaMod.

We have then defined the other meta-languages of MetaMod. With the help of these
meta-languages we have described the API functions for navigating and querying the
models (the generic functions meta-language), and the way we generate code from the
processing units (the processing unit meta-language). This is where we made another
contribution. The way we generate code from the groups and their associated units is, to
the best of our knowledge, unique. Other language workbenches usually generate a class
per concept, while we generate a class per group; this, in turn, facilitates modularity and
opens the possibility for separate generation (see Section 5.1.3.1).

Finally, we have presented the implementation of a DSL that highlights all of the
meta-languages. Despite the simplicity of the meta-metamodel, we have sufficient power
to create non-trivial DSLs.

Chapter 5

Features of MetaMod

In this chapter, we discuss the features of MetaMod from two different perspectives, that
of modularity and reuse, and that of fulfilling the language workbench requirements. In
the end, we discuss related work and we look back at the contributions of this chapter.

5.1 Features for modularity and reuse
In this section, we discuss features of MetaMod that contribute the most to the creation
of modular and reusable DSL units. Although there might be other features in MetaMod
that contribute to some degree to modularity and reuse of DSL units, we have chosen
to illustrate only those that we think have the biggest impact. We demonstrate these
features using examples from an expression DSL unit implemented in MetaMod. This
expression DSL unit is presented in Section 9.2 and it is advised that one reads Section 9.2
before reading this section. In the process of discussing the features of MetaMod, we also
get into implementation details of the expression DSL unit. The features we discuss in
this section are as follows.

• That metamodels are organized and manipulated via groups that share concepts;

• That groups (through reuse) and concepts (through subtyping) give rise to two
separate hierarchies: the group hierarchy and the concept hierarchy;

• That operations are defined in the processing unit and its associated group;

• That processing units do not have state, but they only have operations;

• That multiple dynamic dispatch is made on the concept hierarchy, raw Java types,
and the group hierarchy.

Thus, this section addresses both research questions RQ2 and RQ3.

RQ2: How can we organize metamodels of the DSLs such that we facilitate
modularity and reuse of DSLs?

70 Features of MetaMod

RQ3: How can we organize processing units of the DSLs and the operations
in the processing units such that we facilitate modularity and reuse of DSLs?

As a convention, in the next subsections, we use the notations of Table 5.1.

notation
group G or H
aspect X or Y
processing unit PU X

G

Table 5.1: Generic notations.

Each of the next subsections will discuss one feature. A subsection has the following
structure: high-level discussion (we refrained from using any implementation details in
this part), and meta-tools implementation details, with examples. Moreover, the focus in
this section is going to be more on type models than on value models, because we talk
about implementations of DSLs.

5.1.1 Metamodels are organized and manipulated via groups that
share concepts

We have approached the issues of modularity and reusability starting from the core
language aspect of a DSL, the metamodel. This is where we define and organize concepts
and relations between them. The structure of metamodels is captured in the meta-
metamodel that is depicted in Figure 5.1. This figure is the expansion of Figure 4.9 from
Section 4.1, that represents the group extension. We expand it here for clarity.

As a small reminder, to understand the structure of metamodels in MetaMod, one
needs to understand a couple of things, viz. the notion of a model element, or a fragment,
of which MetaMod distinguishes three kinds, viz. Group, Concept and Relation. One also
needs to understand the relationships between these model elements. In particular, a
Group can contain zero or more Fragments, and a Relation relates a source Concept to a
target Concept. Moreover, there are also the conformance and the subtyping relationships
defined on a concept. Although apparently simple, there are interesting implications of
the organization of model elements given in Figure 5.1, as can be seen in the next two
subsections.

5.1.1.1 High-level discussion

We have chosen to organize the metamodels into elements called groups. Groups are
containers of groups, concepts, and relations. Note that a model, and in particular a
metamodel, is a group. We refer to metamodels as groups when we want to put the
emphasis on the organizational nature of the metamodel.

A group can reuse any other group (see relationship contains with Group as a subtype
of Fragment in Figure 5.1). The only constraint on metamodels in MetaMod is that the
reuse graph is acyclic. The semantics of group reuse is that a reusing group is equivalent
to a group where the contents of all the reused groups are copied inside of the reusing
group, recursively. The group reuse mechanism is a generalization of both the extension
and the default reuse in MPS. One major difference with the mechanisms of language
reuse in MPS is that reused concepts in MetaMod can have their definition1 augmented in

1Note that the definition of a concept consists of all the relations where the concept is a source of.

5.1. Features for modularity and reuse 71

Figure 5.1: The meta-metamodel of MetaMod depicting the three main modeling elements:
concepts, relations and groups, and the relationships among them.

reusing groups. Augmenting a concept means adding new relations in the reusing group,
where the concept is a source of these relations.

Augmenting properties Augmenting concept definitions in reusing groups is mainly
enabled by two properties of the group: concept sharing among groups and groups
owning relations. The concept sharing mechanism of MetaMod is captured in relationship
contains between Group and Fragment in Figure 5.1. Concept is a type of Fragment and
the source cardinality of contains is ∗, which means that the same concept can be part
of multiple groups. Moreover, the property of groups owning relations is also captured
in relationship contains in Figure 5.1. Again, Relation is a type of Fragment and, thus,
relations are part of groups. We call these two properties, the augmenting properties.
The consequences of these two properties and how they empower augmenting concept
definitions in reusing contexts is explained in the next paragraphs.

Consequences of augmenting properties As a result of the augmenting properties,
the definition of a concept C is formed of all the relations where C is a source in the
current group and all its reused groups. Figure 5.2 shows an example that exploits this
consequence. Thus, relations can be added to a reused concept in any reusing group. This,
in turn, leads to encouraging modular definitions of the metamodels. Yet another way of
interpreting this consequence is that a group can confer more power to reused concepts.
According to Stroustrup, “a concept does not exist in isolation; it co-exists with related
concepts and derives much of its power with relationships with related concepts” [136].
This actually resembles a much older theory in cognitive science, the “Theory-Theory”,
that says that “Concepts are representations whose structure consists in their relations to
other concepts as specified by a mental theory” [89].

Another consequence of the augmenting properties is that the definition of a concept
can be split among different groups. Figure 5.3 shows an example that exploits this
consequence. One can argue that having the definition of a concept split among different
groups will make it harder to grasp the complete definition of a concept in a group but
this can be solved with good tool support. The tools can show alternative views with the
complete definitions of the concepts in a given group.

Additionally, the augmenting properties can lead to having less concepts in the
metamodel because it reduces the need for concepts that are meant for implementation

72 Features of MetaMod

Figure 5.2: The two groups on the left-hand side show an incremental definition for
concept Shape. The group on the right-hand side is a flattened view (reused groups
eliminated) of group CanvasExtension.

Figure 5.3: Excerpt from the Ecore metamodel. The definition of a class is split between
behavioral features and structural features. The behavioral features of a class are
captured in group BehavioralFeatures and structural features of a class are captured in
group StructuralFeatures. The two definitions come together under the Ecore group.

only. To better illustrate this point, consider the following example. Assume that concept
CContainer , which represents a container, accepts only a certain concept CContent as
its content (there is a one to many relationship between CContainer and CContent).
Concept CContent is introduced just to distinguish concepts that can be contained in
CContainer . Any concept that we wish to place in CContainer needs to be a subtype of
CContent . When reusing a concept from another DSL unit, CExternal , we cannot place
it in CContainer , unless we specify CExternal is a subtype of CContent . In MetaMod,
one can simply define CExternal as a subtype of CContent . In comparison, this is not
possible outside of the reused DSL in inheritance-based language workbenches, like MPS.
The only way to augment the definition of a reused concept in MPS is by first creating
a new concept extending the reused concept that we want to augment. This implies
we need to extend CExternal to specify that it is also a subtype of CContent (which
might actually not be possible if there is no multiple inheritance support and CExternal
is already a subtype of some other concept). This is not an ideal approach, because

5.1. Features for modularity and reuse 73

the extended CExternal and CExternal itself, represent, conceptually, the same concept.
Figure 5.4 shows an instance of this example.

Figure 5.4: Modeling of a webpage and a textbox. This an instance of the container exam-
ple, where the concept WebPage is CContainer , the concept WPElement is CContent ,
and the concept TextBox is CExternal .

5.1.1.2 Meta-tools implementation details, with examples

MetaMod implements the ideas described in the previous section. One important im-
plementation point is that we have chosen to identify concepts by their name. Thus,
whenever a group reuses two (or more) other groups, and these other groups contain
identically named concepts that conform to the same concept, C :: T , then concepts
C :: T denote one and the same concept in the reusing group. There is also a mechanism
in MetaMod to specify that a concept in a reused group is different from any other concept
in the reusing group, and this was explained in Section 4.1.

In the next paragraphs, we take excerpts from the expression language defined in
Section 9.2.

In regard to concept sharing, as an example, consider concept Expression in group
Contract and concept Expression in group ExpressionsAndTypes. Looking at Figure 9.5,
one can see that the two groups are defined separately. Subsequently, when the two
groups are reused in the combination group ExpressionsAndTypesAndContract, the two
concepts Expression represent the same concept.

In regard to adding relations to a concept in reusing groups, as an example, consider
the combination of group Alternatives with group SimpleTypes, that is defined in group
BaseExprAndSimpleTypes in Figure 5.5. Table 5.2 depicts the concepts relevant for this
discussion from groups Alternatives and SimpleTypes. Group SimpleTypes defines, among
others, boolean literals. One of the boolean literals it defines is the OtherwiseLiteral . This
literal is used in expressions that have multiple boolean branches, and OtherwiseLiteral
represents the default branch (in case that conditions of the other branches do not hold).
Moreover, group SimpleTypes also defines a constraint which specifies thatOtherwiseLiteral
can only be placed in a IValidOtherwiseContainer. That is because there are operations
of OtherwiseLiteral that make use of the fact that OtherwiseLiteral is contained in
a IValidOtherwiseContainer. Group Alternatives, on the other hand is made of an
alternatives expression that has multiple branches, where a branch is called an AltOption.
Each of the alternative branches has relations to two expressions: one representing a

74 Features of MetaMod

condition and one representing the expression to be evaluated in case the condition holds.
When we combine SimpleTypes with Alternatives, we declare AltOption as a subtype
of IValidOtherwiseContainer (see Figure 5.5), because we want the otherwise literal to
be part of an alternative branch in the condition part. We could not do this in group
Alternatives, because Alternatives was not aware of OtherwiseLiteral, and we could not
do this in group SimpleTypes, because SimpleTypes was not aware of the AltOption
concept. The most logical place to insert this subtype relation is in the combination of
Alternatives and SimpleTypes, without creating a new AltOption that extends the original
one. Thus, in the new context, that of the combination, AltOption is a valid container for
OtherwiseLiteral concepts.

Group Concepts defined in the group
Alternatives AltOption

SimpleTypes
OtherwiseLiteral
IValidOtherwiseContainer

Table 5.2: Part of the concepts defined in groups Alternatives and SimpleTypes.

Figure 5.5: Introduction of a subtype relation when combining base expressions
with simple types. Concept AltOption is from group Alternatives and concept
IValidOtherwiseContainer is from group SimpleTypes.

5.1.2 Groups (through reuse) and concepts (through subtyping)
give rise to two separate hierarchies: the group hierarchy
and the concept hierarchy

The reuse relationships for groups in the metamodels give rise to a group hierarchy and the
subtype relationships give rise to a concept hierarchy. In MetaMod, we take advantage of
these hierarchies from type models (value models do not count here) by making operations
polymorphic at runtime over the hierarchies. That means the same operation can have
multiple implementations for different type concepts or groups that are in a child-ancestor
relationship in these hierarchies. At operation call, the actual implementation is selected
on the runtime type of the arguments.

5.1. Features for modularity and reuse 75

5.1.2.1 High-level discussion

The group hierarchy is generated by the group reuse mechanism. The group reuse
mechanism has similarities to inheritance in object-oriented programming languages. In
this respect, one could say that the reusing group inherits the model elements in the
reused group. That is so, because the reusing group gets the contents, i.e., contained
model elements, of the reused group, and it can also add extra relations, concepts, and
groups. Moreover, when using groups as types in the operations, we consider the reusing
group as a subtype2 of the reused group. That means the reusing group can be used in
place of the reused group in the operations. That is, in processing units of reusing groups,
operations defined with a reused group type parameter can be called, instead, with a
reusing group type argument; thus, the group hierarchy is used in the type system of
MetaMod.

Thus, the group reuse mechanism has two roles: reuse of model elements and subtyping
on the operations level. The latter role gives yet another perspective on group reuse:
given that the group represents a metamodel and that the metamodel is the core part of
a DSL, one could say the DSL engineer treats DSLs as classes, and passes DSL models
around as objects.

On the other hand, the concept subtype hierarchy is given explicitly in the metamodel
through the subtype relationship among concepts (see Figure 5.1, and the subtype_of
relationship). On the metamodel level, the concept subtype relationship is a way of
inheriting relations. That means that the sub-concept can be part of all relations that the
super-concept can be part of. On the processing unit level, a sub-concept is a subtype of
a super-concept in the type system of MetaMod. This implies that a sub-concept can be
used anywhere where a super-concept is expected in operations of processing units.

5.1.2.2 Meta-tools implementation details, with examples

In MetaMod, a group value, concept value, or relation value conforms to a concept type,
a relation type, or a group type. All types describe a set of values that conform to the
type. The types are defined in a metamodel (type model), while the values are defined in
a model (value model). Note that the operations are always defined on the group types
and concept types level, and they are applicable to the group values and concept values
level.

In the processing units, MetaMod denotes a group type with GroupType## and
a concept type with ConceptType##. Between the hashtags, the DSL engineer can
specify a concrete group name from the metamodel and a concrete concept name from
the metamodel. For instance, defining the operation typeOf for the Binary group and
concept BinaryExpression requires having these two types as parameters (see Figure 5.6).
Because of the group hierarchy and the concept hierarchy, this operation can be called
with any reusing group of Binary and with any sub-concept of BinaryExpression.

Figure 5.6: Signature of operation typeOf for binary expressions.

2Note that this does not have anything to do with the subtyping relationship on concepts, but it has
to do with the subtyping notion from programming languages theory [91].

76 Features of MetaMod

The group and concept hierarchies are used extensively in the operations of the
processing units. Something that might be counter-intuitive is that group types and
concept types are both used as types in operations of the processing units, despite concepts
being contained in groups in the metamodel.

5.1.3 Operations are defined in the processing unit and its asso-
ciated group

A processing unit is the unit of organization for the operations that process the models.
The operations in the processing unit navigate and query the models, while at the same
time they perform computations on the data obtained from the models. The way the
processing units are organized is important because it influences the understandability
and maintainability of the DSL implementation, and it also influences the chances that
the DSL is reused.

The previous two features discussed were centered around the organization of the
metamodels. We will see that the organization of the metamodels via the groups influences
the organization of the processing units. This reinforces the importance of a good
mechanism to group the metamodels.

5.1.3.1 High-level discussion

There are two dimensions to a processing unit: the processing unit is defined per group
and per aspect; an aspect is a string that spells out the purpose of the processing unit (the
same way the name of a class spells out the purpose of the class). The notion of aspect
here is related to language aspects; related, and not the same, because DSL engineers can
use aspect more loosely, and call code generation differently, for instance. DSL engineers
are not limited to a fixed set of aspects in MetaMod (although they will probably define
the usual ones as well, such as, code generation); they can define operations for any aspect
they see fit. In that sense, aspect can be interpreted to mean any goal that the processing
unit is meant to accomplish. For a comparison, we take the case of MPS. In MPS, there
are a limited number of language aspects to define for a DSL: structure, editor, intentions,
type system, etc.

A processing unit is a collection of operations and it can define operations with type
concepts (concepts from the associated group, including concepts from reused groups) as
parameters. This has important consequences on the extensibility of DSLs. It results in
the freedom to add operations over reused concepts in reusing groups. Operations are not
defined on the concept (like in the OO paradigm), but with the concept as a parameter
(like in the functional paradigm). This is a key difference between MetaMod and many
other language workbenches.

If we make a comparison between concepts and classes in Java, we see why it is easy
to add operations to a concept in MetaMod, but not to a class in Java. In Java, and many
other OOP languages, methods are mostly owned by classes, and no new methods can
be added to a given class (we do not consider an extension of it) outside of its definition
location. On the other hand, operations in our case are associated to groups. That means,
operations handling reused concepts can be added in processing units of the containing
groups. This resembles the mechanism of open-methods, where the methods are not
owned by the classes [119]. Note that this is different from extending the class and adding
the methods in the extended class. What is happening in MetaMod is that in a reusing

5.1. Features for modularity and reuse 77

context, new operations handling reused concepts can be created, without first extending
the concept.

One important characteristic is that a processing unit, PU X
G , can reuse other aspects,

for instance, X reuses Y . That means, processing unit PU X
G has access to operations

from all processing units defined for the reused aspect, Y , and for any reused group of
G or G itself. Although one could argue that the processing units create a hierarchy as
well through the aspect reuse, we do not use this hierarchy in the type system. That is
because we introduces aspect reuse of processing units only for organizational and reuse
purposes.

A processing unit is influenced directly by aspect reuse and indirectly by group reuse.
More formally, processing unit PU X

G has access to operations of any processing unit PU y
h ,

where H × Y = {(h, y)|h ∈ H and y ∈ Y }, with H × Y the cartesian product, H the set
formed of G and all its reused groups, recursively, and Y the set formed of X and all its
reused aspects, recursively. For an example, see Figure 5.7.

Moreover, the reuse order of the aspects of a processing unit is irrelevant. Aspects
reuse of processing units does not affect the semantics of the processing unit: a processing
unit with a reusing aspect is equivalent to a flattened processing unit containing the same
operations as the processing units defined on reused aspects and on reused groups.

Figure 5.7: Figure showing a hypothetical group reuse hierarchy on the left-hand side and
a hypothetical aspect reuse hierarchy on the right-hand side. Given these two hierarchies,
PU X

G would have access to operations in PU X
G , PU Y

G , PU X
G1

, PU Y
G1

, PU X
G2

, PU Y
G2

, PU X
G3

,
and PU Y

G3
.

5.1.3.2 Meta-tools implementation details, with examples

In MetaMod, processing units are defined in a separate file, and they contain a set of
operations.

Adding operations to reused concepts is one of the highlights of the processing units.
We illustrate this feature by looking at the combination of group Contract with the
core group, ExpressionsAndTypes. The group ExpressionsAndTypes defined an operation
called typeOf for concepts that will be part of the type system of the DSLs extending
ExpressionsAndTypes. When combining the expressions and types with contracts, we
want to make a concept from contract, ContractItem, a part of the type system of the
obtained DSL. This entails overriding operation typeOf for the ContractItem concept. If
owned by the concept itself, the operation typeOf on ContractItem could not be declared
in the new DSL, outside of the original definition for ContractItem. On the other hand,

78 Features of MetaMod

in MetaMod, we can add a typeOf operation to ContractItem because ContractItem is
part of the DSL combining ExpressionsAndTypes with Contract (see Figure 5.8).

Figure 5.8: Signature of operation on ContractItem residing in the combination of the
core DSL, ExpresssionsAndTypes, and DSL Contract.

5.1.4 Processing units do not have state, but they only have
operations

Another feature that helps to a large extent with the reuse of DSLs, is that processing
units do not have and do not modify any state (for comparison, in Java classes, a state
would be represented by a field, also known as instance variable).

5.1.4.1 High-level discussion

Processing units are collections of operations, and they do not have any state information.
This simplifies reuse because there is no state that the operations can affect, and therefore,
no undesired interactions among states in operations either.

In OOP, multiple inheritance of state is the one that causes most problems, and not
multiple inheritance of behavior (methods) [122]. In the latter, conflicting operations can
be solved with overriding.

The sole goal of the aspect reuse mechanism of the processing units is thus to
reuse operations. Moreover, there is no sub-typing relationship created as a result of
the aspect reuse in processing units. Aspect reuse in processing units resembles the
traits mechanism [122], where they emphasize the advantages of only reusing methods
(operations) of classes.

5.1.4.2 Meta-tools implementation details, with examples

All language aspects of the expression DSL units have been implemented with operations
that process elements of the metamodel. Processing in MetaMod starts with a main
operation. Everything is handled through parameters and parameter passing, without
changing state in the processing units.

Note that we can combine Java code with the processing units. DSL engineers can
create any Java classes and they can make use of these classes in the operations of the
processing units.

5.1.5 Multiple dynamic dispatch is made on the concept hierar-
chy, raw Java types, and the group hierarchy

Multiple dynamic dispatch is the process that allows a program to choose the most
specific operation based on the runtime type of multiple parameters, in contrast with
single dynamic dispatch that makes the choice based on one parameter. The dynamic
dispatch mechanism is essential when reusing DSLs, because we often need to change the

5.1. Features for modularity and reuse 79

behavior of operations in the reused groups based on the new context (the reusing group)
and based on new sub-concepts.

5.1.5.1 High-level discussion

One of the main benefits of OOP comes from runtime polymorphism, also known as
dynamic dispatch. This has been one of the reasons to bring dynamic dispatch into
MetaMod. Besides that, dynamic dispatch takes further advantage of the two hierarchies
that metamodels give rise to: the group hierarchy and the concept hierarchy.

In MetaMod, we call operations with multiple dynamic dispatch capabilities multi-
operations. The dispatch is made only on these parameters: concept types, the raw Java
types, and group types. We have already explained that the concept types and group
types come from hierarchies in the metamodel. Java types, on the other hand, come from
the operations being an extension of methods from Java and Java types being allowed as
parameters.

The way we make this dispatch is encoded in the call resolution mechanism that has
the following two main steps:

• Sort the overriding operations based on the specificity of the operation parameter
types.

• The operation call is delegated to the first operation, Op, in the sorted list of
overriding operations where the type of runtime parameters are more specific than
or equal to the parameter types of Op.

The comparison among overriding operations is detailed in Algorithm 5. The gist
of it is that in comparing two overriding operations, we give priority to the operation
that has the first more specific concept type parameter in the order parameters appear
in the parameter list. If all concept type parameters have the same specificity, then we
select the operation that has the first more specific raw Java type parameter in the order
parameters appear in the parameter list. If, again, all raw Java type parameters have
the same specificity level, then we select the operation that has the first more specific
group type parameter in the order parameters appear in the parameter list. Finally, if
these parameter types have the same specificity level, the operation with the smallest
lexicographical actual name is returned. The actual name of an overriding operation is
the name of the operation concatenated with the names of its parameter types (the actual
name is computed by MetaMod during the dispatch).

In the call resolution algorithm, one can notice that the decision on which operation
to choose is based on multiple concept type parameters. This was motivated from the
experience of building DSLs in MPS, where we noticed that in type system aspects, they
often needed to make decisions based on the type of multiple concept type parameters.
Because of that, they added custom support for these cases in MPS (see the operator
overloading feature in the MPS documentation [66]).

It was equally important that in these multi-operations we also make multiple dynamic
dispatch on the raw Java types. This was also motivated from the experience of building
DSLs in MPS. In the interpreter DSL built by the mbeddr team [95], for instance, they
check the Java types to which the left and right expressions of a binary expression evaluate,
so that they decide on the operation to be performed on the binary expression. For
example, if both types are integers, then integer arithmetic can be performed, while if one
type is real, then real arithmetic is performed. However, we can do the checking only on
raw Java types because at runtime we lose the generics information due to type erasure.

80 Features of MetaMod

Algorithm 5 Comparator of 2 operations for dynamic dispatch

1: procedure Comparator(op0, op1)
2: . Procedure that returns the operation with most specific parameters. Returns 1

if op0 is more specfic, −1 if op1 is more specific and 0 if they are at the same level of
specificity.

3: . pop0i / pop1i represents parameter on position i in the parameter list of op0 /
op1

4: for all parameter pop0i of type ConceptType from left to right do
5: if pop0i is subtype of pop1i then
6: return 1
7: else if pop1i is subtype of pop0i then
8: return −1
9: end if

10: end for
11: for all parameter pop0i of type RawJavaType from left to right do
12: if pop0i is subtype of pop1i then
13: return 1
14: else if pop1i is subtype of pop0i then
15: return −1
16: end if
17: end for
18: for all parameter pop0i of type GroupType from left to right do
19: if pop0i is a reusing group of pop1i then
20: return 1
21: else if pop1i is a reusing group of pop0i then
22: return −1
23: else
24: return lexicographical comparison result among actualName(op0) and

actualName(op1)
25: end if
26: end for
27: end procedure

At the same time, we also do multiple dynamic dispatch on the group type. This
allows us to modify the behavior encoded in operations in different contexts (we consider
the group to be the context). This is enabled by the fact that the first parameter of an
operation is always the group type that the processing unit is defined on.

In Algorithm 5, we use an asymmetric [119] technique to compare the different
overriding operations. That means that the order of the parameters matters in the call
resolution.

One of the consequences of the comparison described in Algorithm 5 is that if there are
multiple overriding operations with the same arguments defined in different groups that
are not in a reuse relation to each other, then the operation for the smallest lexicographical
group name is chosen. To change this default choice, the operation can be overridden in
a containing group.

For a better understanding of the call resolution mechanism, let us take an example
with the type hierarchies that are depicted in Figure 5.9. The Gs are group types, the

5.1. Features for modularity and reuse 81

C s are concept types and J s are Java raw types. Let us also assume that C0 is defined in
G0 , C1 and its subtype relationship to C0 in G1 and C2 and its subtype relationship
to C0 in G2 . Moreover, assume we have the following operations, where Foo0 is the
multi-operation:

Foo0 = foo (G0,C0 , J0)
Foo1 = foo (G1,C0 , J1)
Foo2 = foo (G2,C0 , J1)
Foo3 = foo (G3,C0 , J0)
Foo4 = foo (G1,C1 , J1)
Foo5 = foo (G2,C2 , J0)

Then, using the comparator in Algorithm 5, we get the following order, from most
specific to most general: Foo4 , Foo5 , Foo1 , Foo2 , Foo3 and Foo0 . Looking at the more
interesting cases:

• operation Foo1 comes before Foo2 because G1 comes before G2 in lexicographical
order;

• operation Foo4 comes before Foo5 because C1 and C2 are not in relation to each
other and J1 is a subtype of J0 ;

• operation Foo3 comes before Foo0 because G3 is a subtype of G0 .

Figure 5.9: Type hierarchies relevant for the foo example operation.

Although one might say that it is hard to understand what operations can get called
from this abstract example, in practice, at least in our experience with building the
expression language where we have dozens of overridings, it was not hard to understand
what operation will be called.

5.1.5.2 Meta-tools implementation details, with examples

In MetaMod, the operations in processing units have the look-and-feel of Java methods.
The difference is that they are not defined within a class, but they are defined for a
certain aspect and for a certain group.

The first parameter of an operation in MetaMod is of a group type. This is because
all operations in MetaMod are tied to a group and the group can access concepts and
relations defined in that group. There are no other restrictions to the parameters of the
operations.

In order to be considered for overriding, an operation needs to have the annotation
‘multi-operation’. Once operations in PU X

G are tagged with the multi-operation annotation,
they can then be overridden in any PU y

h , where h and y are again elements of the cartesian
product mentioned in Section 5.1.3.1.

82 Features of MetaMod

Consider the example of the typeOf multi-operation. We declare this multi-operation
in an aspect called SystemWide_ET associated to the group ExpressionsAndTypes. The
operation is depicted in Figure 5.10 and it needs to be overridden by all the concepts that
are typed in the reusing groups. The default implementation returns an error message.
Groups reusing the ExpressionsAndTypes group override this multi-operation, such as
group Binary and group UnaryExpressions. The signatures of two overriding operations
can be seen in Figure 5.11. Let us take the Binary example. The operation is rewritten
for the Binary group type, which is a subtype of the ExpressionsAndTypes group type
because Binary reuses ExpressionsAndTypes. Moreover, the operation is rewritten for the
BinaryExpression concept type, which is a subtype of the empty concept type. Note that
the empty concept type, ConceptType##, is a supertype of all concept types.

Figure 5.10: Operation computing the type of a concept in a processing unit associated
to the group ExpressionsAndTypes. Note that the syntax of operations in MetaMod is
close to the syntax of Java.

Figure 5.11: Signatures of operations that override typeOf from Figure 5.10 with specific
arguments.

5.1.6 Discussion
In this section, we highlight the main differences between the MPS approach and the
MetaMod approach when implementing the expression language. Thus, this section also
offers an answer to research question RQ6.

RQ6: How can modularity and reuse features of language workbenches be
evaluated?

Moreover, we draw parallels between the approach in MetaMod and general-purpose
programming approaches so that we get a better understanding of MetaMod.

5.1.6.1 Comparison between MPS and MetaMod implementations

There are a few differences between MPS and MetaMod that influence the ease of
developing modular and reusable DSLs. We are mostly going to use the term extensibility

5.1. Features for modularity and reuse 83

in this section because reusability is strongly linked to extension, and extension is the
preferred term in MPS

Looking at the various language aspects of a DSL, one can notice that each language
aspect in MPS has its own extension mechanism. Firstly, this contributes to the high
learning curve of MPS. Secondly, and more importantly, at least in our own experience,
it is hard to decide what needs to be in a reusable DSL unit given that each language
aspect can be extended in a different way. One needs to have a very good understanding
of how each language aspect can be extended when designing a reusable DSL unit. It is
worth mentioning that each language aspect in MPS is defined using a dedicated DSL,
which is a common practice in language workbenches. Nonetheless, this does not mean
that the extensibility aspect should also be treated differently from language aspect to
language aspect.

In comparison, the modularity mechanism in MetaMod is uniform across all language
aspects. Although we might decide to create a DSL for a specific aspect of a processing
unit (the same way other language workbenches have a DSL for each language aspect),
the modularity mechanism should be underneath that, and should surface to the DSL
engineer in a way consistent to the syntax of the DSL of the aspect itself. Incidentally,
an example of that can be seen in the language aspect for an editor in MPS. If we would
consider that the underlying modularity mechanism in MPS is based on operations that
can be overridden (which is not the case for all language aspects in MPS), then we can
look at the editor as a function implementing the look-and-feel of a concept. Moreover,
this editor can be composed of multiple editor components, that can be again regarded
as functions. Thus, the editor function is calling the editor components functions, and
all these functions can be individually overridden in an extending concept. This is an
example of how an underlying modularity mechanism can surface in the DSL of a language
aspect.

Moreover, in MPS, one cannot modify a reused concept in a reusing context, neither in
the extension, nor in the default reuse case. One can only make additions to an extending
concept. This results in spawning more concepts than conceptually needed, especially
in trivial cases such as the one with concept CContainer in Section 5.1.1. Many times,
concepts need small additions in new contexts. Thus, when reusing DSLs, one needs a
mechanism different from inheritance to make additions to reused concepts; it is tedious
to extend the reused concept and all its sub-concepts to fit the new context.

One major difference between MPS and MetaMod is that, in MPS, DSL users are
allowed to combine DSLs in the user space (the DSL users choose the languages and the
extensions they need in a solution, without prior combination by the DSL engineers),
while in MetaMod, the DSLs are combined by the DSL engineers. It is probably because
of the combination of DSLs in the user space, that some language aspect extensions are
more restricted in MPS.

Nonetheless, MPS is an excellent tool and this is proven by the multitude of languages
that were built in it by the mbeddr team and their customer experiences [158].

One of the downsides of MetaMod is that there are going to be performance losses
at generation time (when we create the running code from the processing units) and at
runtime (when we run the generated code of the processing units). There are plenty of
optimizations that can be made to the generation process, but the most important one is
that generation can be done incrementally. That implies to regenerate code for processing
units of the modified groups and their containing groups only, instead of constantly
regenerating all the code.

Moreover, although dynamic dispatch gives greater flexibility in language reuse, it

84 Features of MetaMod

might cause comprehension problems. Assume a DSL user knows concept A from language
LangA and she knows that this concept has a certain behavior. Now, assume LangA is
reused in LangB , and the behavior of concept A is overridden in LangB . This change
might cause confusion for a DSL user familiar with both LangA and LangB .

5.1.6.2 Parallels with other approaches

The processing units in MetaMod retain the advantages of common OOP languages
through the use of dynamic dispatch, the concept types hierarchy and the group types
hierarchy. Processing units also bypass a few of the limitations of common OOP languages,
e.g. the expression problem [168]. It does that by allowing the addition of both metamodel
elements and operations to reused DSL units and multiple dynamic dispatch.

There were attempts in the the realm of general-purpose programming languages to
bypass some of the limitations of common OOP languages in extensions of OOP languages,
such as Java [27], or in more general proposals, such as aspect-oriented programming [74]
and mixin class composition [18]. In comparison, we did the bypassing in a more specific
programming context, that of developing DSLs. Developing a DSL is a special case
of general-purpose programming, and we took that into account when developing the
processing units, for instance, by relating a processing unit to a group and an aspect.
Moreover, processing units having access to other processing units for reused groups
and reused aspects, and the call resolution mechanism for multi-operations, are also a
consequence of the specific context of developing DSLs.

At the same time, MetaMod clearly separates the data (the metamodel) and its
behavior (the processing units). In many language workbenches the data is tied to the
behavior. This is the view of common OOP implementations, where data and code are
encapsulated together inside a class. We depart from this view, in that the behavior is
dependent on the data, but the data can be reused in separation, without the behavior or
with select behavior units (processing units).

For a better understanding of the mechanisms available in MetaMod, we also do a
comparison with two kinds of inheritance, according to the classification of Meyer [104].
He presents model inheritance (“’is-a” relationships between abstractions in the model),
and software inheritance (relations in the software itself, and not the model). The subtype
relationship in the metamodel achieves the model inheritance, and reuse of processing
units (that boils down to reuse of groups and aspects) achieves the software inheritance.

Moreover, we can draw a parallel between our approach and context-oriented pro-
gramming (COP) [60]. The layers in COP can be compared to the processing units
in MetaMod; more accurately, the layer corresponds to the aspect associated to the
processing unit. Layers can be activated/deactivated, the same way aspects can be reused
or not in certain processing units. On the other hand, behavioral variation is obtained
with multi-operations in MetaMod. At call resolution time, the operation is chosen based
on its name, group (context), concepts, and raw Java types.

Lastly, there is a parallel between the mechanisms of MetaMod and the multi-
dimensional separation of concerns as described by Tarr et al. [142]. A processing
unit of MetaMod, together with its associated aspect and group, can be compared to a
dimension. The multiple dimensions are given by the multiple aspects implemented for a
group. The composition of dimensions, on the other hand, is achieved through the reuse
of processing units.

5.2. Features for language workbench requirements 85

5.2 Features for language workbench requirements
We now take each requirement presented in Section 3.4 and we discuss how it is fulfilled in
MetaMod. The requirements are defined for the type model level, so in the discussions in
the following section we concentrate on this level. This section contributes to the answers
to research questions RQ2 and RQ3.

RQ2: How can we organize metamodels of the DSLs such that we facilitate
modularity and reuse of DSLs?

RQ3: How can we organize processing units of the DSLs and the operations
in the processing units such that we facilitate modularity and reuse of DSLs?

As noted in Section 3.4, the requirements are related to the extended expression
problem that was introduced by Zenger et al. [168], so we use the example provided in
their technical report [168] throughout this section. The original example was written using
data types and processors on the data types, and we make a one-to-one transformation
into type models and processing units. The example is about expressions, in particular,
the plus expression and the numeral expression.

We start with a simple Base type model that contains concepts Exp and Num (see
Figure 5.12). A processing unit associated to this type model then defines an eval function
on the expressions (see Figure 5.13). For this reason, the processing has aspect Eval
associated to it. We subsequently extend Base with a new concept, Plus, and then we
extend Base with a new operation, show. The extensions are going to be presented in the
next subsections.

Figure 5.12: The Base type model.

5.2.1 When reusing a DSL unit, the meta-language allows a DSL
engineer to add new elements (concepts and relations) and
new processing operations on reused concepts to the reused
version of that DSL unit.

This first requirement proposes that the extension of the DSL unit be possible both on the
metamodel dimension and the processing unit dimension. We have presented the features
for these additions in more detail in Section 5.1. A short summary follows. Assume
that G0 is a group, and that G1 is a group that reuses G0 . The addition of data is
enabled by the addition in G1 of concepts and the addition of relations involving reused
concepts from G0 . Then, the addition of new operations is achieved through defining new

86 Features of MetaMod

Figure 5.13: A processing unit defined for the type model Base and for the evaluation
aspect.

processing units with operations on the new concepts in G1 and on the reused concepts
from G0 .

As an illustration of these additions, one can look at the two extensions of Base. The
first extension defines a new Plus expression (see Figure 5.14). For the plus expression to
be complete, we define an eval operation for it (see Figure 5.15).

Figure 5.14: The Base type model extended with a Plus expression.

The second extension adds a new processing operation on the Exp type concept. This
extension does not add anything to the type model (see Figure 5.16), but adds one new
operation, show (see Figure 5.17). For that reason, the processing unit is defined for
aspect Show.

Besides what has been shown possible by these two extensions (namely, the addition of
new concept types, and new operations), the first requirement proposes that new relations
be added to the reused concepts as well. An example of this addition was shown in the
extension of CanvasExtExt with colors in Section 4.3.2. In this extension, we added colors
to the shapes via a relation between the reused Shape and Color . In this new context,
that of CanvasExtExt , shapes have also colors.

Non-breaking additions We are now going to informally demonstrate why the ad-
dition of relations to the reused concepts (that can exist both as source or as target of

5.2. Features for language workbench requirements 87

Figure 5.15: The eval operation defined for expression Plus. The notation |GroupName|
represents the group name where the called operation is defined. This notation is available
only in overriding operations, because one might want to call the current operation
recursively, the multi-operation itself, or some other overriding operation, and they all
have the same name.

Figure 5.16: The BaseShow type model reuses Base, but does not add anything.

Figure 5.17: The show operation defined for expressions.

the relations) does not break operations defined originally for the reused concepts. We
assume we do not need to explain the addition of concepts, because this is the common
case in mainstream OOP languages, like Java, where this addition translates to adding
completely new classes and subclasses of existing classes.

The main point of this informal demonstration is that, in general, we only make
conservative additions to a reused DSL unit in a reusing context. That means that the
additions one makes to a reused DSL unit should not break structural or user-defined
constraints defined on the original reused DSL unit. There are two cases that could create
problems. Firstly, one can add contradictory constraints to the reusing DSL unit. For
instance, if a user-defined constraint of the reused DSL unit says that there should always
be a path between a concept of type CA and a concept of type CB , but a constraint of

88 Features of MetaMod

the reusing DSL unit says that there should never be a path between those two, clearly
no value model will be able to satisfy both constraints. This way, the value model will not
be valid, and the operations will not be executed on it. Secondly, if one needs to forbid a
model element from the reused DSL unit in the new DSL unit, then there are two cases.
If the forbidden element is a concept, then we write a constraint checking for the presence
of that concept in the value models and we report an error if the concept occurs. If, on
the other hand, the forbidden element is a relation, then the actions required from the
DSL engineer depend on the cardinalities of the relation’s ends. If the relation has zero as
the lower bound at both ends, then the DSL engineer only writes a constraint checking
that the relation does not appear in the value models. Otherwise, in the editor aspect,
she needs to add a default value for the mandatory end of the relation.

5.2.2 The meta-language offers strong static type checking of the
DSL implementations: no processing operation is applied
on elements that it cannot handle.

The additions that were discussed in the previous requirement cannot occur ad hoc, but
they need to be made under certain conditions. This second requirement imposes one
condition, that the processing units are strongly statically type-checked.

MetaMod processing units have been implemented by reusing the Java implementation
of MPS, called the base language. Operations in MetaMod are actually extensions of
methods from the base language of MPS. Thus, everything that is allowed in a method
in Java is allowed in an operation in MetaMod, except for the this and super references,
because they do not have meaning for processing units. As for the type system, we use
the type system rules defined for Java, and we add rules for the types and operations
introduced by MetaMod. All the new types and type rules introduced by MetaMod, and
their interplay with Java types and type rules enforce the strong static type-checking of
the DSL implementations. For instance, an error is reported in Figure 5.18 when we try
to call an operation with the wrong argument type.

Figure 5.18: Error reported for operation call with wrong argument type.

We used the facilities of MPS to make the interplay between the type system of Java
and that of MetaMod. Firstly, MPS allows language concepts to be declared as types. We
made the group type, GroupType#〈GT 〉#, and the concept type, ConceptType#〈CT 〉#,
part of the type system, by declaring them as MPS types, and making them subtypes of
the Java Object type. As a consequence, everywhere where Java objects are allowed, one
can place group types and concept types, e.g. in collections and type declarations.

Secondly, MPS has a DSL for defining type system rules. The type system rules come
in many forms, but we have used mostly ‘type of’ rules, ‘supertypes of’ rules and checking
rules.

For a better understanding of how these rules function, we will give some examples from
MetaMod. For instance, consider the type of function 〈CT1 〉.isTypeOf (〈CT2 〉) in 〈VM 〉.
The type of this operation (which is represented as a node in MPS) is boolean (see Figure

5.2. Features for language workbench requirements 89

5.19 for the implementation in MPS), so we tell the type-checker that whenever it is
asked the type of this operation, it should report boolean. Other times, determining
the type of an operation needs more computations. For instance, the type of operation
〈CV 〉.@src#〈R〉# in 〈VM 〉 is a list type, where the type of an element in the list is the
type concept that was defined as target of relation R in the type model of VM .

Figure 5.19: The type system rule that says that the type of node isTypeOf, as implemented
in MPS, is boolean. This syntax is specific to type system equations that MPS offers
with the type system language.

Another kind of rule for the type system is the ‘supertypes of’ rule. With this rule,
one can build a set containing types that are to be treated as supertypes of the type
under discussion. For instance, in MetaMod, we take all the super-concepts of a concept
C in a subtype relation in the metamodel, recursively, and make these the supertypes of
C .

We have also used checking rules to verify the signature of overridden operations (they
should always match a multi-operation) and the signature of constraint operations (they
should always return a boolean), for instance. An example of incorrect signature for an
overridden operation is shown in Figure 5.20.

Figure 5.20: Error reported in the signature of an overriding operation. The notation
|Base| suggests that the eval operation called is that from the Base group, viz. the
multi-operation.

One point where both Java and MetaMod break the strong static typing is the
down-casting operator. In MetaMod, the 〈CV 〉.castTo(〈CT 〉) in 〈VM 〉 operator is a
down-casting operator (the concept type of CV has to be a super-type of CT) and it can
only check whether the concept type of CV is actually CT at runtime.

Another point where MetaMod breaks the strong static typing is in the multi-operations.
The body of the multi-operation stands as the default case for when and overriding
operation is not defined for a certain parameter type. Thus, MetaMod fulfills the strong
static typing requirement only to a certain degree.

It is important to note that, before being type-safe, MetaMod also checks that
value models comply to the structural and user-defined constraints. This is fulfilled by
construction in MetaMod. A value model that breaks the structural constraints is going to
be flagged as erroneous during typing. We did this by using the constraints aspect of MPS.

90 Features of MetaMod

As for the user-defined constraints, in the current implementation, they are checked just
before any processing unit code is run on the value models. Thus, no processing unit code
is going to be run on a value model that breaks the user-defined constraints. MetaMod
reports errors in the console if the value model breaks the user-defined constraints. In the
future, we plan to do these checks while the user is typing.

Note that when fragment abstractions and applications are present in the value models,
one needs to apply the fragment applications first, and then she can proceed with the
writing of the processing units on the resulting value models. This is because the fragment
abstraction extension was part of our exploratory process, and we did not integrate it
smoothly will all features of MetaMod.

5.2.3 The meta-language should be such that reusing a DSL unit
does not require to modify or to duplicate the reused DSL
unit.

This third requirement enforces another condition on the way additions introduced by
requirement one can be made. The condition is that language workbenches do not modify
or duplicate the reused DSL units. We have two parts to the DSL units: the type models
(groups) and the processing units. We will show that neither of these are modified or
duplicated in the reusing DSL units.

In the case of the type model, at runtime, the algorithms of MetaMod look at concepts
and relations recursively in the reused groups. The reused groups are unaware of the
additions made to reused concepts in reusing groups. These additions are available only
in groups where the reusing groups are present. Thus, the algorithms implemented in
MetaMod know how to navigate the reused groups, and no duplication or modification of
the original reused groups is needed.

In the case of the processing units, they only make calls to operations in reused
processing units. As a result, there is no need to modify operations from reused processing
units at the place of definition, or to duplicate those operations. Moreover, one can
override operations from reused processing units if needed and then a call to such an
operation is going to be redirected to the overriding operation.

5.2.4 The meta-language should be such that if you have a type-
checked DSL unit for which code was generated, then reu-
sing that DSL unit should not require type checking it
again, and regenerating the code.

This fourth requirement enforces another condition on the way additions introduced by
requirement one can be made. The condition is that no regeneration of code and no
re-type checking of the reused DSL units occurs in the reusing context. There are two
features of MetaMod that could raise problems here: reusing groups with uniques and
the multi-operations.

Reusing other groups with uniques does not lead to changes neither in the generated
code nor in the type-checking of the reused groups or its processing units. The equivalence
classes for a given group, G , do not change when G is reused in some other groups.
Moreover, in the generated code, the concepts are represented with their name appended
to the name of the group they belong to; so, we always know to what equivalence class the
concept belongs in the generated code (see Figure A.3 and Rectangle.Rectangle). When

5.2. Features for language workbench requirements 91

running the generated code, MetaMod is always checking the equivalence classes of the
top-most group3, and the code generated by the reused groups contains concepts that
the top-most group knows about. Note that the generated code here refers to the code
generated by transforming the processing units into Java code (see Section 4.2.5).

As for multi-operations, where the algorithm places the code for the multi-operation
counts for modularity. The multi-operation needs to know about all overriding operations.
The solution we chose was to place a dispatching method in the MetaMod generated
code of each group that contains a multi-operation in the associated processing units;
the multi-operation could be defined in the processing units of the group itself, or the
processing units of its reused groups.

Although no regeneration is needed for the reused DSL units, their source still needs
to be present at runtime because generating code for the reusing DSL unit needs the
reused groups and their processing units around so that it can collect information about
the overriding operations, for instance.

Note that the current implementation of MetaMod does not have the separate genera-
tion implemented. Nonetheless, we are confident this is possible because of the informal
discussion in this section and because of tests we have conducted on the generated code.
In Solution Tests, model separateGeneration in the Github repository, one can find a
two DSL units that we used to test that DSL units with uniques and multi-operations
generate the same code when reused in different places.

5.2.5 The meta-language allows the combination of independently
developed DSL extensions.

This fifth requirement enforces another condition on the way additions in requirement
one can be made. The condition is that the combination of independently developed DSL
extensions is possible. In MetaMod, this translates to combining groups in MetaMod and
to rewriting operations for the combination in case of need. The amount of effort to glue
the extensions depends on whether the extensions have conflicting features or not.

Let us go back to the example we started with in this section. In the discussion
of the first requirement, we introduced two new extensions to Base, namely BasePlus
and BaseShow. These two extensions are independent extensions. We combine the two
extensions in BasePlusShow (see Figure 5.21). For this combination, we create an aspect,
EvalShow, that reuses both the Eval and the Show aspects defined by previous processing
units. Moreover, we add a show operation to expression Plus (see Figure 5.22). This was
the only operation that was missing from the combination.

Figure 5.21: The BasePlusShow metamodel reuses the two independent extensions,
BasePlus and BaseShow.

3The top-most group is the type model of the value model on which we run the generated code.

92 Features of MetaMod

Figure 5.22: The EvalShow aspect with the show operation defined for expressions.

Note that each extension can do their own augmentation, independent of each other
(they do not interfere). They start interfering only once they are combined.

When combining two extensions, the same overriding operation can exist in both
extensions. By default, the overridden operation residing in the group with the smallest
lexicographical name is given priority, but one can decide to override the operation in the
combination, if the default behavior is not desired.

Another issue to take care of during combinations is the different aspects defined for
the different extensions from the combination. To make use of all the aspects from the
extensions, the combination needs to reuse all these aspects in the processing unit for the
main aspect.

5.3 Related work
In this section we look at features for modularity and reuse in a handful of other language
workbenches. We skip MPS as it was already discussed in Section 2.4. Moreover, we also
look at systems used in the grammar world, and especially at systems from the attribute
grammar world. We do so because they have relevant extension mechanisms for the
grammars and the compilers.

5.3.1 Language workbenches
For the next three tools, we are not going to make a direct comparison because we do
not have enough information on them. Nonetheless, the available information is relevant
enough to include it here.

Intentional Software Intentional Software [63], a continuation of Intentional Program-
ming [130,131], is among the first creators of a language workbench. The code is closed
source and there is not much information available. From the few resources we could
reach [63, 157], we could not deduce all the internal workings. The structure is described
slightly differently in Intentional Software. The relations between concepts are not part of
the concept itself, which is also the case in MetaMod, but unlike in MetaMod, they also
allow defining operations on the relations, and the relation can be reused together with the
operations defined on them. Moreover, they also define operations for references, which
allows references to have different projections, for instance. On the other hand, adding
new constructs to a reused language in a reusing context seems to be easily achievable.

5.3. Related work 93

Cedalion Cedalion is a language for LOP [92, 93]. It is not a traditional language
workbench per se, because it enables the creation of internal DSLs, but it brings features
from language workbenches, such as structure, projection, static semantics and type
system definitions. These are additional to the support for dynamic semantics that comes
from the host language itself, Cedalion. Cedalion is built on top of Prolog and it is itself
a logic programming language with the extra facilities for DSL creation mentioned above.
In terms of modularity and reusability, there seems to be a tight connection between
the structure of the language and all its other aspects (projection, type checking, static
semantics, dynamic semantics, etc.). This hinders reuse because all the language aspects
of a DSL need to be reused, regardless of the needs of the reusing context. Thus, one
cannot use the structure together with only a selection of the language aspects, they come
as a package. Moreover, from the examples provided in the literature, it is also not clear
how can one modify the behavior of a reused language. On the other hand, extending a
language with new constructs seems to be easily achievable [94].

Whole Platform Whole Platform [132] is another language workbench, but although
not closed source, there is not much documentation available online. It has an interesting
mechanism, called foreign types relations where one can define relations among types of
the current language and types of other languages. These relations can be equivalence
or subtyping relations. It is not clear though in what ways the behavior of the external
languages can be modified or added to.

In the following paragraphs, we are going to describe a few of the most know language
workbenches from the perspective of features for modularity and reuse.

Xtext Xtext [15] is a textual language workbench based on EMF. Referencing another
language in Xtext requires importing the metamodel of that other language. This enables
the DSL engineer to reference the metaclasses (type concepts) and to use them as base
types. On the other hand, extending another language in Xtext allows one to override a
grammar rule (concrete and abstract syntax) of a reused metaclass. However, it does not
allow to add to a reused concept, but only to override it completely. Xtext also leverages
the ANTLR parser [117], which means that during the composition of languages extra
care needs to be taken for grammar ambiguities (or it can even be impossible to make
the combination). Moreover, a very restrictive feature in Xtext is that it can only extend
one other language. This can be very limiting in practice as, for instance, the mbeddr
ecosystem of languages could not be built in Xtext [157]. As for the dynamic semantics
of the language, this can be specified using other languages, e.g., Xtend [15], ATL [69], or
ETL [80]. Thus, modularity and reuse at the operations depends on the features of these
languages.

MetaEdit+ MetaEdit+ [72] is a commerical graphical language workbench for domain-
specific modeling. In their book on domain-specific modeling [73], the authors of Meta-
Edit+ specify that languages can be integrated either through model transformations,
or at the language level. At the language level, modeling languages can be integrated
with shared or linked modeling constructs. For instance, a data concept can be used on
one hand to specify a workflow model and, on the other hand, to specify the database
schema. Thus, concept reuse among different DSLs is possible. On the other hand, it
is not clear to what extent code generation reuse is possible. Code generation is done
with the help of a template language, and we think that template languages are not fit

94 Features of MetaMod

for modularity, because one has to specify an entire entity from the target language, thus
limiting the modularity of the DSL generation to the modularity available in the target
language. Nonetheless, one interesting aspect of MetaEdit+ is that every DSL created
is an extension of or an addition to the language workbench itself [47]. This probably
gives the possibility to reuse many of the language aspects that are already defined in
the language workbench. Moreover, MetaEdit+ does not use parsing, allowing arbitrary
notations to be combined.

Spoofax Spoofax is a language workbench that uses declarative DSLs to define all
language aspects [70]. Each DSL has its own modularity and reuse mechanism. For
instance, the abstract and concrete syntax modules, called the SDF3 (formerly SDF2)
modules, can import other modules for reuse or separation of concerns. Moreover, a
module may extend the definition of a non-terminal in another module. This is equivalent
to adding new relations to a reused concept in MetaMod in the context of the reusing
group. The dynamic semantics of a language, defined with DynSym (formerly Stratego)
makes use of rewriting rules. For modularity reasons, these are not pure rewriting rules,
but they have been extended with dynamic rules (to make the rules context-aware) and
programmable rewriting strategies (to control the application of rewritings). Although
being able to control the order of rewriting rules using strategies offers flexibility, it can
be tedious to define such strategies (for instance, defining the order for rewrite rules of all
the sub-concepts of the expression concept).

What is interesting to note is that both in the case of Xtext and Spoofax, one can
delegate modularity to the generated target language. That is, one can use Java classes,
inheritance and overriding to provide modularity to the DSLs themselves [157].

Monticore Monticore [83, 84] is a textual language workbench. Its main modularity
mechanisms are multiple language inheritance and language embedding that are assisted
by the parser, editor and tree traversal algorithms. Inheritance allows incremental changes
to a language and embedding allows to combine different language fragments. Monticore
is based on a grammar definition language that allows defining a concrete textual syntax
as well as the abstract syntax of a language. On language inheritance, the extending
grammar defines only the differences between the original language and the new one.
Differences consist in adding new productions and overriding existing productions in the
original language. This way, algorithms written for the original language work also for
the new language, with the exception of the operations for the overridden productions,
which need to be modified. They also introduce the notion of language interface, that can
be implemented by a concrete production in a sublanguage. One drawback is caused by
the lexical analysis that restricts the kinds of sublanguages one can build for a language.
On language embedding, the lexer and parser are compiled separately per language, and
a super-ordinated lexer/parser delegates the task to the adequate language. To combine
languages, a special DSL is used for the configuration of the language components
and their communicating rules. One more interesting feature of Monticore is that it
adds associations in the grammar definition language, thus bringing it closer to the
metamodeling world, but also making it more difficult to establish links among objects
after parsing. Monticore also takes care of the modular development of domain-specific
tools associated to the languages. For the combination of languages, modular visitors are
employed where the visitors invoke the different methods automatically. For language
inheritance, the different visitors can be subtyped to change the behavior of newly added
or overwritten productions.

5.3. Related work 95

Melange Another recent work is that of Deguele et al. on Melange [35], a meta-language
for building DSLs by assembling and customizing legacy DSL artifacts. Melange uses EMF
to define the metamodel and Kermeta 3 (K3) [37] to define the operational semantics.
In Melange, the focus lies on reusing legacy artifacts. Their work is based on typing
relations and defines a set of operators for language assembly and a set of operators for
language customization (extensions and restrictions). In Melange, a language is defined
by abstract syntax, semantics and a model type (this can be inferred automatically).
A model type is a structural interface over the metamodel of a language, and it itself
takes the form of a metamodel. Most operators that Melange introduces are targeted
at reusing either the metamodel or the semantics as is, plus glue code. The language
inheritance operator, on the other hand, is the only one meant to reuse and adapt the
original language.The inheriting metamodel can modify the inherited metamodel to the
extent to which the structural interface is not violated. It is also not clear what operations
from the inherited language can be overridden in the inheriting language. This probably
depends on Kermeta, the language used to define operational semantics for Melange.

Kermeta Kermeta [37,67] is a language that can specify operational semantics or trans-
lational semantics for Ecore metamodels. Kermeta makes up for the lack of modularity in
Ecore, by allowing the addition of features (attributes and references) and methods to the
classes of the Ecore metamodels via aspects. This does not solve the modularity problem
of Ecore, but makes up for it outside of the modeling formalism. Moreover, additions
to the metamodels are not made using the Ecore files, but using Kermeta files instead,
thus mixing concerns in the Kermeta files (additions of both structural and behavioral
aspects). Kermeta, together with two other languages, one for defining ecore metamodels,
and one for defining OCL constraints, forms the Kermeta language workbench. In this
language workbench, a DSL implementation requires an abstract syntax (via Ecore), a
static semantics (via OCL), and a behavioral semantics (via Kermeta language). As in
MetaMod, in Kermeta, one can create variants of a language, by mashing up different
behavioral and static semantics with a given ecore file. An advantage of this approach is
that Kermeta is inter-operable with many other tools built for the Ecore ecosystem (e.g.,
Xtext for defining the textual syntax of a language, and Sirius for defining the graphical
syntax of a language).

Neverlang Neverlang [147] is a framework for language development. A language com-
ponent is a self-contained bundle where syntax is put in relation to different evaluation
phases (processing units in our terminology). An evaluation phase has several features
(operations in our terminology). A feature can also be associated with a placeholder,
meaning that the feature does not have an implementation in this language component.
This creates an unsatisfied dependency in the language component. A language imple-
mentation is a set of language components where all these dependencies are satisfied. In
Neverlang, the way to extend a language is by providing a placeholder in the extended
language and mapping it to a feature in another language component. Moreover, the
underlying execution semantics of Neverlang is based on a modular visitor pattern. This
allows extension both on the processing phase dimension and on the language constructs
dimension. The focus in Neverlang is on the composition of languages, where variation
points in the language are defined in the language component itself.

96 Features of MetaMod

Rascal Rascal is advertised as a DSL for meta-programming, but it can be considered
a language workbench as well, because it can deal with all aspects of language design and
implementation [12]. Rascal is the continuation of the ASF+SDF Meta-Environment [148].
It supports extensible concrete syntax (defined with grammars), abstract syntax (defined
with abstract data types) and operations on these concrete and abstract syntax trees
(defined with functions, which are rewrite rules in disguise) [12]. The definition of any
language aspect is made in a module in Rascal and there are two ways to reuse a module
in Rascal: import and extend. One interesting aspect is that modules are lexically closed.
A consequence of this is that when one imports module B into module A, although
operations in module B can be called in module A, nesting of data structures from A and
B does not work well when calling operations, because the operations in B are treated
locally, without knowledge of operations and structures in A. This can be solved by
extending the module, instead of importing it. For grammars and ADTs, the contents
of the extending and extended modules are simply merged. Because Rascal uses a
scannerless GLL algorithm for parsing [126], ambiguities have to be dealt with when
extending grammars, and Rascal allows that with the help of a list of reserved keywords.
Extending functions, on the other hand, relies on pattern-based dispatch, where a function
can be provided for each case in an algebraic data type. Interestingly, they have default
function definitions in Rascal that behave as a catch all rule when no other rules are
applicable. Another goal of the default function definition is to signal that these can
be overridden in extending languages. Thus, later extensions of languages have to be
anticipated by making functions default.

5.3.2 Extensible languages and compilers
The following tools are from the grammar world and are related to extensibility.

JastAdd JastAdd [43] is a meta-compilation system that supports extending compilers
and related tools, e.g., specialized analyzers and transformation tools. The modularization
and extensibility of languages in JastAdd are enabled by three main ingredients: object-
orientation, static aspects and declarative computations. The object-orientation aspect
comes from the object-oriented abstract grammar that generates a Java class hierarchy
with deep class hierarchies, late bound methods and reuse through inheritance. The static
aspect, on the other hand, comes from no behavior declared in the abstract grammar, but
outside, in behavior modules. These modules can contain both new equations, but also
new attributes for the AST node classes. Finally, the declarative computations come from
the behavior modules being declared in a declarative way. In comparison, in MetaMod,
we can add to the structure of the reused concepts (their equivalent is AST node classes);
that is, we can add relations to concepts in new contexts (new containing groups), and
not only subtype concepts in new contexts.

SugarJ SugarJ [45] integrates syntactic extensibility into the libraries; libraries being
the main extension mechanism of programming languages. SugarJ involves extending the
grammar of the base language and defining a transformation of SugarJ nodes into the
base-language AST. The extensibility power of SugarJ relies, to a large extent, on the
extensibility power of SDF and Stratego, because it uses SDF and Stratego underneath,
and thus, all the comments that we made in the paragraph with Spoofax hold for SugarJ
as well. This work was generalized with Sugar* [46], where the base language can be an
arbitrary language, and not necessarily Java.

5.3. Related work 97

AbleJ AbleJ [152] is an extensible language framework that allows importing domain-
specific extensions into an extensible implementation of Java 1.4. The tool supports
the modular specification of composable language extensions. The extensible language
is specified as a complete attribute grammar and language extensions are specified as
attribute grammar fragments. If they fulfill a few restrictions, language extensions in
AbleJ can be designed to be composable with other language extensions without any
intervention from the DSL user side. This restricts the types of language extensions to
a certain extent. The extensibility of the attribute grammar specification, done with
Silver [150], is enabled by forwarding [151], collection attributes [17], pattern matching
and aspect productions [150]. One downside of AbleJ is that they combine the concrete
syntax, the abstract syntax and processing operations in the same module, which means
that the language cannot be reused with select processing operations in other projects.

LISA In the realm of attribute grammars, a similar line of work is that of Mernik
et al. in LISA [100–102] that described multiple inheritance and templates in attribute
grammars. An attribute grammar is composed of a grammar, a finite set of attributes and
a finite set of semantic rules. LISA (Language Implementation System using Attribute
grammars) is a language description system for language composition. Mernik [100] is
using similar concepts to those in general software object-oriented programming to define
modularity in grammars. He defines inheritance in attribute grammars as inheritance of
lexical, syntax and semantic specifications.

Polyglot Another approach is that of Polyglot [110], which is an extensible compiler
framework that supports the creation of compilers for languages similar to Java. They
use various object-oriented design patterns in the traversal of the extended AST, such as
abstract factories, delegation and proxies to increase the extensibility of the framework.

5.3.3 Discussion of language workbench requirements fulfillment
for language workbenches in related work

Some of the language workbenches discussed in Section 5.3.1 do not allow the addition of
relations involving a reused concept as a source to the reusing or extending languages.
In few cases, this restriction happens because of the way one generates code from the
metamodels. For instance, if one generates a Java class per concept and adds the relations
with the concept as a source in the fields of this class, then, an extending context cannot
add fields anymore to this class. Language workbenches that fulfill this requirement are
Rascal, Spoofax, Kermeta and Monticore.

To the best of our knowledge, the discussed tools do fulfill the second requirement
related to strong static typing, and the third requirement related to the modification or
the duplication of the reused DSL units. As for the fourth requirement, that deals with
the regeneration of code, only Neverlang and MPS seem to fulfill it. The process used
to generate code is even more important for this requirement. For instance, Kermeta
generates one Scala trait per class for the mashup of the static semantics and that of the
behavioral semantics. This means that the addition of new methods and new constraints
to a class will require the regeneration of the Scala trait.

Finally, the fifth requirement is again fulfilled by most language workbenches, with
the exception of Xtext, that does not allow the extension of more than one language.

98 Features of MetaMod

5.4 Conclusions
In this chapter, we have presented features of MetaMod from two different perspectives:
that of modularity and reuse, and that of fulfilling the language workbench requirements
we discussed in Chapter 3. Through these two descriptions, we gave a complete picture
of MetaMod. The features for modularity and reuse were showcased on a non-trivial
expression language, that is a reimplementation of part of an expression language from
MPS. This also allowed us to make an extensive comparison between MetaMod and MPS.
At the same time, we showed how are the language workbench requirements fulfilled
with the help of more or less the same features discussed for modularity and reuse. This
allowed one to see the same features from yet another angle.

One can notice that the features we discussed in the context of modularity and reuse
fulfill other roles as well. For instance, multi-operation and overriding could be considered
as control abstractions. Furthermore, the metamodel elements could be considered as
data abstractions. In this chapter, and in the first section in particular, we looked at all
these abstractions using modularity and reuse as lenses.

The contributions we have made in this section are manifold. Firstly, we have leveraged
two hierarchies created by the metamodel, that of the group reuse and that of concept
subtyping. They are used in the type system of the processing units. Secondly, we have
introduced multiple dynamic dispatch with an unique operation call resolution (that
sorts the concept types, the Java raw types, and the groups types; thus, we consider
the characteristics of DSLs). Thirdly, we have made a combination of declarative and
OO with the processing units and the operations that they contain (reuse of operations
among processing units, no state, multi-operations). The usability and the usefulness of
the features for MetaMod was demonstrated through the expression language reimple-
mentation and the informal demonstration that the language workbench requirements
hold with MetaMod. Finally, we made an extensive comparison to MPS with the help of
the expression language, and we have presented an extensive list of language workbenches,
with their modularity and reuse features.

Chapter 6

Modularity of value models

In today’s landscape of more and more software-driven functionalities, spanning more
and more fields, model-driven engineering (MDE) promises to ease the development of
software. To accomplish this goal, MDE employs domain-specific languages (DSLs). The
problem is that, on one hand, DSLs are not easy to create, and, on the other hand, as a
result of the increased software-driven functionalities, they need to deal with bigger value
models. In dealing with these big value models, modularity mechanisms at the value model
level are employed regularly by DSLs. These mechanisms need to be introduced over and
over again into the developed DSLs, adding to the effort of creating them and to the effort
of learning them (especially when DSL users have to deal with multiple DSLs). To ease
the development of DSLs, we propose to introduce a modularization of value models that
is independent of the DSLs. MetaMod offers two mechanisms, viz. groups and fragment
abstractions, that can be used for modularity in value models.

6.1 Introduction
With the increased use of software in all fields of business, the need for automating software
construction increases. In the context of today’s software development challenges, model-
driven engineering promises to bring improvements. MDE raises the level of abstraction
in programming languages and brings them closer to the domain of operation. In MDE,
domain-specific languages - computer programming languages, usually declarative, with
limited expressiveness and focused on a particular domain - are key players.

One drawback of DSLs is that creating them requires a significant amount of work.
Moreover, the large value models that DSL users need to deal with nowadays complicate
the creation of DSLs even more. That is so because DSL engineers need to cater for these
big value models by introducing modularity mechanisms into the DSLs themselves. For
instance, if one needs a concept for grouping in the value models, this needs to be defined
in the metamodel. Sometimes, the same modularity mechanisms need to be added to
different DSLs over and over again (it might be possible to reduce this burden via reuse
on the level of type models). This adds to the effort of designing and implementing the

100 Modularity of value models

DSLs considerably.
Moreover, the problem of repeatedly adding modularity mechanisms for value models

in the DSLs was also identified by people in industry that we talked to at the beginning
of the Crystal project1. They told us that, most of the times, they need to add at least a
macro system to their domain-specific languages in order to deal with repetitive structures
and with large value models.

That is why we looked at how modularity exists at the value model level. There are
two main types of modularity that we encountered at the value model level in the DSLs
that we worked with.

The most basic type of modularity for value models is simple grouping. Taking a look
at any programming language, one can see them from a grouping perspective: classes are
grouped into packages, properties and methods are grouped into classes, statements are
grouped into blocks or methods, formal and actual parameters of methods are grouped
into enclosing parentheses, variable declarations of the same type can be grouped together
and so on. We call this type of modularity, modularity-in-the-small. It concerns a value
model or a value model fragment that exists in the same location. This type of modularity
has as goal increasing the understandability of the models.

Another basic type of modularity is related to some form of importing existing value
models. This also includes the mechanism of libraries. This type of modularity can have
many flavors depending on the strategy used to handle the namespaces of the value models.
The strategies employed to resolve various kinds of conflicts between the importing and
imported value models are diverse. For instance, one can choose to keep the namespaces of
the value models separate, or to merge them based on names, or to explicitly disambiguate
the use of any ambiguous name, etc. We are going to call this modularity-in-the-large.
This type of modularity has as goals increasing the understandability of models, reducing
the time to construct the models, reducing the size of models (when the alternative is
incorporating the copy) and reducing maintenance effort (change only reused module,
rather than all copies).

That is why we introduced generic mechanisms that cover these two common modu-
larity use cases and that can be used in value models of newly developed DSLs. They
considerably ease the burden of the language developers because they do not need to
add constructs in the metamodels of the DSLs for these forms of modularity on value
models anymore. Moreover, tooling can provide different kinds of syntactic sugar for these
mechanisms to help DSL users. This chapter thus deals with research question RQ5.

RQ5: What modularity and reuse mechanisms can be applied to models,
irrespective of the DSL?

Of course, we do not cover the modularity mechanisms that need semantic information.
If DSLs need special rules for the scoping of groups, for instance, the DSL engineer will
need to implement the modularity mechanism herself. Moreover, if the DSL users need
more complex modularity mechanisms in their value models, they would need to provide
it themselves.

The next sections cover the implementation of a DSL, called Kaja, in Jetbrains MPS
and that in MetaMod, followed by a discussion of these implementations. Moreover, we
then present related work and we conclude the chapter.

1As can be seen on the first page of the thesis, this work was partially sponsored by the European
Union project named Crystal.

6.2. The Kaja DSL - Jetbrains MPS implementation 101

6.2 The Kaja DSL - Jetbrains MPS implementation
Kaja is one of the DSLs in the samples project that comes with an installation of Jetbrains
MPS. It was implemented by the MPS team to highlight features of MPS. In this section
we discuss the Kaja DSL that comes with MPS 3.2 from April 9, 2015.

The Kaja DSL is a DSL for specifying the route of a robot through a grid where
there are walls and marks. The dimension of the grid is fixed and the grid has exterior
walls by default, but the walls inside the grid and marks are introduced by the DSL
user. The DSL user also introduces the journey of the robot through the grid. Thus, the
Kaja DSL consists of commands to build the layout of a grid of cells and place marks
in this grid, which we call grid commands. The grid commands consist of building and
destroying walls at given coordinates in the grid, and of dropping and picking marks at
given coordinates in the grid. The Kaja DSL also consists of commands to specify actions
that a robot can do in the grid, which we call robot commands. The robot commands
consist of stepping, dropping marks, picking marks and turning to the left. Besides the
grid and robot commands, there are also meta-commands for repeat statements, while
loops, if statements, and trace messages. The meta-commands are accompanied by logical
expressions that check whether a cell is full, it has a mark, it has a wall, or the robot
is heading in a certain direction. Examples of grid commands, robot commands and
meta-commands, can be seen in Figure 6.1.

For complicated routes and actions through the grid, the size of Kaja value models can
clearly increase to a point where a flat value model is barely understandable. The DSL,
thus, requires some support for modularity of the value models. The DSL implementers
of Kaja have added two special instructions for that. The first addition are routines,
where the DSL users can encapsulate a list of commands. A routine can be called in the
value model, and its commands are expanded at the calling place. The second addition
are libraries. Libraries are collections of routines that can be imported in value models to
make the routines available in the value models. Examples of routine calls and definitions,
and a library definition, can be seen in Figure 6.1.

Adding support for routines and libraries to a DSL is not trivial. This clearly increases
the amount of work needed to implement the DSL. There are structure, editor, constraints,
data flow and code generation aspects defined for routine calls, routine definitions and
libraries.

In the next section we show how this kind of routines and libraries are offered to value
models of MetaMod, irrespective of the DSLs.

6.3 The Kaja DSL - MetaMod implementation
The implementation of the Kaja DSL in MetaMod did not require introducing constructs
for defining and calling routines, or for defining and using libraries. This was possible
because MetaMod offers the same modularity mechanism at the value model level as at
the type model level. This is enabled by the meta-metamodel of MetaMod, that defines
both type models and value models.

As a short reminder, the modularity mechanism provided in MetaMod is based
on groups and parameterized groups. Groups are meant to organize model elements
and due to their semantics, they are self-sufficient. Parameterized groups (also called
fragment abstractions) are a generalization of the groups and are based on model element
substitution. One novel aspect in fragment abstractions is the fact that we leveraged

102 Modularity of value models

(a) A library with two routines that define grid
commands

(b) A script with library imports (the require
instruction), routine calls and routine definitions.

Figure 6.1: Examples of grid commands, robot commands, meta-commands, routines and
libraries. The syntax in this figure is the syntax defined for the Kaja DSL by the MPS
team.

the substitution mechanism in untyped lambda calculus by combining untyped lambda
calculus with modeling elements, as explained in Section 4.12.

Going back to the Kaja DSL, we implemented the grid commands, the robot commands
and the meta-commands. On the other hand, we did not need to implement the routine
definitions, the routine calls and the libraries. That is because routine definitions can
be replaced by fragment abstractions. Even more, the fragment abstractions are more
powerful than the routines in Kaja, because one can also have placeholders in fragment
abstractions. On the other hand, routines in Kaja do not have parameters. Then, routine
calls can be replaced by fragment applications. Finally, libraries can be declared in
separate groups and reused in the current group.

Due to the default syntax of MetaMod (either the textual or the visual one), that
is more verbose than the custom syntax for Kaja developed in MPS, we show a part of
the playground definition and a part of the maze script defined in Figure 6.1. These two
parts are shown in Figure 6.2 and Figure 6.3.

6.4. Discussion 103

Figure 6.2: Fragment abstraction for building a simple playground that given a command
list, places walls in two cells and drops an mark in another cell. The grid commands are
built with an application of gridCommand. Moreover, we explicitly encode the order of
the commands with the pred relation.

Figure 6.3: Value model of Kaja that builds a simple playground and that tells the
robot to move around according to commands defined in findDoor. A script for Kaja in
MetaMod is made of a command list for grid commands and a command list for robot
commands.

6.4 Discussion
The modularity mechanisms offered to value models by the meta-metamodel itself in
MetaMod can decrease the development time of new DSLs. Elements such as routines,
libraries and strategies to handle the namespaces are not trivial to get right in a DSL.
However, there are also limitations to this mechanism. If a different conflict resolution
strategy, or a different scoping strategy are needed for the modularity mechanisms of the
new DSLs, then the DSLs need to introduce these modularity mechanisms themselves.
Nonetheless, DSL engineers could piggyback these modularity mechanisms on top of
(parameterized) groups. So, not everything needs to be defined from scratch.

As already mentioned, in MetaMod, DSL engineers cannot create their own custom
syntax. Nonetheless, the fragment abstraction and fragment application elements give
programs a custom look-and-feel. For instance, one can look at the fragment application

104 Modularity of value models

for grid commands in Figure 6.2. The name of the lambda application followed by a
grouping with placeholder name and actual argument create a domain specific look. Of
course, if the name of the fragment abstraction and those of the placeholders are not
suggestive, then there is no such custom look-and-feel.

Modularity at the value model does not reflect in the API functions for querying value
models, because MetaMod treats reused value models as if they would be defined in the
value model itself. Moreover, MetaMod treats fragment applications as if their result
would be defined in the value model itself. That means, when querying for concepts and
relations, the concepts and relations from the reduction of fragment applications and
those from reused models are returned together with the concepts and relations defined
directly in the value model. To solve this, we could introduce API functions that return
reused value models, fragment abstractions and fragment applications. This would also
allow customization of the modularity mechanism for the value models of the newly built
DSLs. This is part of future work (see Chapter 10.3).

One relevant question is whether when introducing custom syntax for DSLs, the syntax
of the grouping mechanism and that of fragment abstractions will be satisfactory. That
is, will the syntax of the grouping mechanism and that of the fragment abstractions be
in line with the custom syntax of the DSL? One way we could tackle this is to redefine
the editor for the grouping mechanism and the fragment abstraction mechanism for the
purpose of the newly built DSL.

6.5 Related work
The related work discussed in Section 4.1.6 is also relevant for this section. Here we
present in more detail only three approaches, that we found most relevant.

Fragmenta [5] aims to modularize models by metamodel-defined fragmentation. In
this theory, a model is a container of clusters, which, in turn, are containers of other
clusters and fragments. Fragments can reference elements from other fragments of the
same model by means of proxies and according to the fragmentation strategy in the
metamodel. The way elements from other fragments are referenced is dictated by the
type of design chosen in the strategy for the metamodel: top-down (continuation) or
bottom-up (importing). To create the overall model, Fragmenta has two composition
operators: one based on set-union composition (merges fragments without resolving the
proxies) and colimit composition (merges fragments by resolving the proxies). For the
composition to be free of inheritance cycles, there are local fragment constraints that need
to hold. One of these constraints is that proxies cannot inherit. If we make a parallel
to our approach, we can equate fragments to groups, clusters to groups, and proxies to
concepts with the same name and conforming type concept. Moreover, when fragmenting
a type model, we do not impose any restrictions on the equivalent notion of a proxy. In
case of an inheritance cycle, MetaMod will report an error to the DSL engineer. Moreover,
we do not prescribe the fragmentation strategy at the type level, and we let the DSL
users decide on how they want to organize their value models.

There is an entire class of related work on aspect-oriented modeling (AOM) [2].
One work in the realm of AOM is that of Heidenreich et al. [56], where they discuss
modularization techniques for arbitrary domain-specific languages. They based their work
on the Invasive Software Composition approach [7] and implemented it in Reuseware [59].
In this work, they provide fragment components with reference points and variation
points. These points give rise to two pairs: “hook-prototype” for the variation point and

6.6. Conclusions 105

its replacing fragment, and “slot-anchor” for the reference point and its bound fragment.
Moreover, a fragment composition interface defines a set of ports that are linked to
reference points and variation points. The fragment interfaces are defined by the fragment
developer, while a fragment user defines fragment composition programs. An optional
step is to extend the metamodel to specify only a select part of the original metamodel
elements as valid variation and reference points, thus restricting which compositions are
possible at the value model level.

Note that the previous two related works address the issue of modularity for value
models outside of the formalisms themselves. Both of them build on top of several
formalisms, one of them being Ecore [135].

Jetbrains MPS offers default facilities to structure the programs of a language. A
program written using MPS languages is called a model. The model is a collection of root
nodes. The model has also meta-information, such as imported models and the languages
that the root nodes of the model conform to. Furthermore, the models are bundled into
a module. A special kind of module is the solution. Models can be imported from the
current solution, or from other solutions as well. Moreover, DSL engineers are given API
functions that allow them access to imported models, so that during the generation, for
instance, they are aware of the structure. Note that, in MPS, languages can be composed
at runtime as well. One downside of this is that the DSL user might need to specify an
ordering for the generators of the languages involved in the model, thus making them
aware of the implementation details.

6.6 Conclusions
The biggest contribution of this chapter was to showcase that MetaMod and its meta-
metamodel offers modularity mechanisms for the value model level. We have seen from
the Kaja example, that in the MetaMod implementation of Kaja we did not need to
introduce elements such as routines and libraries. We think that many simple DSLs do
not need more advanced modularity mechanisms than these ones.

These modularity mechanisms at the value model level, provided by the meta-
metamodel itself, lead to a decrease in the development time of a DSL and also to
more robust DSLs, because these modularity mechanisms are well tested by many other
DSLs. Furthermore, having the same modularity mechanisms in multiple DSLs makes
these DSLs easier to learn as well (it is often the case that DSL users need to work with
several DSLs). On the other hand, more advanced modularity mechanisms still need to
be introduced by the DSL users in the DSLs.

Chapter 7

Reuse mappings

One of the impediments to the wide adoption of DSLs is their high cost of design, im-
plementation and maintenance. Some of these impediments can be alleviated by reusing
language aspects of previously developed DSLs. We propose a mechanism whereby ope-
rations (for interpreters, model transformations, etc.) defined on a base DSL unit can
be reused in structurally dissimilar DSL units. Our mechanism relies on the observation
that these operations have in common a means of querying models. Once a query on
the base DSL unit can be expressed in terms of queries on structurally dissimilar DSL
units, the operations become reusable in the dissimilar DSL units. We enable this with
our mechanism called reuse mapping. To demonstrate the feasibility of our ideas, we have
implemented the mechanism of reuse mapping in MetaMod. In addition, we also discuss
how the mechanism of reuse mapping can be supported by other tools.

7.1 Introduction
One of the biggest problems of DSLs is the high cost of designing, implementing and
maintaining a DSL [149]. Each DSL is designed with a certain purpose and with certain
users in mind, and so, even in the same domain, there can be a lot of variations among the
DSLs and their underlying metamodels. That can be seen in the collection of metamodels
existing on AtlanMod Zoo1, where different metamodels exist for the same problem
domain (e.g., 11 different Petri net metamodels) [121]. Although logically extending each
other, the corresponding Petri net metamodel parts differ to a large extent. This leads
to the reimplementation of the operations associated to these metamodel parts, because
they depend heavily on the metamodel. Consider the examples in Figure 7.1 that are
taken from the AtlanMod Zoo. In the Petri net metamodel in the upper part of the figure,
the arcs between transitions and places are represented through relations, while in the
Petri net metamodel in the lower part of the figure, they are being represented through
explicit arc concepts. Although it contains more details (the arc weight, for instance),

1http://web.emn.fr/x-info/atlanmod/index.php?title=Zoos - website with a collection of
metamodels used in different languages

http://web.emn.fr/x-info/atlanmod/index.php?title=Zoos

108 Reuse mappings

the lower-part metamodel logically embeds the upper-part metamodel. However, the
differences between the two metamodels make it difficult to reuse the operations defined
on the upper-part DSL in the lower-part DSL.

Figure 7.1: Metamodels of two Petri net variants taken from AtlanMod Zoo. The two
diagrams are drawn using MetaMod.

The mechanism that we present in this chapter facilitates the creation of DSLs by
leveraging previously implemented DSLs. We make it possible to reuse language aspects
of a base DSL unit even in structurally dissimilar DSL units, called reusing DSL units.
The key observation that lead us to create the mechanism described in this chapter is that
all the constituents revolving around the metamodel (model transformations, interpreters,
etc.) are implemented with some kind of operations, and what these operations have in
common is that they query the model (take, for instance, queries in QVT [111]). This
triggered the idea that the operations associated with a base DSL unit become reusable
once the querying functions from the base DSL unit can be translated in terms of querying
functions from the reusing DSL unit. These translations among DSLs are obtained with
the mechanism of reuse mapping. Note that only the operations of the base DSL unit are
reused, and not its metamodel.

We have implemented the mechanism of reuse mapping in MetaMod. Nonetheless, it
is possible to implement it in other language workbenches as well. Our reuse mechanism
can be applied as long as the metamodels and querying functions on value models exist in
the language workbench, which is the case for most language workbenches. Metamodels
are the central components in graphical language workbenches (e.g. Microsoft DSL
Tools [105]) and projectional language workbenches (e.g. MPS [65]). In textual language
workbenches the metamodel is encoded in the grammar of the DSLs. The metamodel can

7.2. Motivating Example 109

be automatically reconstructed from the grammar (cf. Xtext [146]), or the metamodel
can be the base for the grammar (cf. EMFText [57]).

Compared to other approaches, one of the characterizing features of our approach is
that it does not require that the metamodels of the reusing DSLs have identical parts
with the metamodel of the base DSL. Moreover, we are also supporting multiple levels of
reuse mapping, giving rise to a chain of reusing DSL units. That is, imagine a Petri net
DSL reusing operations from a simpler Petri net DSL that, in turn, reuses operations
from a graph DSL. This is a chain of reusing DSLs, and operations in the graph DSL
should be available in the last Petri net in the chain. Lastly, at the price of making a
reuse mapping, one can reuse all the operations defined on the base DSL unit. To get an
idea of the benefits, imagine a graph DSL and its operations being reused. There are a
handful of operations that can be defined on a graph, from graph processing algorithms
and statistical information on the graph to operations that transform it to all kinds of
forms usable with visualization tools. The graph structure is very common in many
other structures, and so having these operations already implemented can decrease the
development effort significantly.

One limitation of our approach is the fact that it cannot reuse operations that update
the value models, but only operations that navigate and query the value models. Why
this limitation is in place will become clear in the next sections.

Moreover, the related work discussion is treated in the next chapter, because there we
discuss another mechanism of reuse in the context of structurally dissimilar DSL units.

The major contribution of this chapter is the introduction of the mechanism of reuse
mapping among DSL units. This leads to reusing operations defined on the base DSL unit
in the reusing DSL units even when the metamodel of the base DSL unit is not identical
to part of the metamodel of the reusing DSL unit. Given that these operations are used
in the implementation of model transformations, interpreters, etc., such a mechanism can
decrease the development time of DSLs and increase their quality (by reusing stable base
DSL units). With this solution we give an answer to research question RQ4.

RQ4: How can we facilitate reuse of operations despite structural differences
among domain-specific languages?

7.2 Motivating Example
In this section, we are going to present the examples that triggered the work on reuse
mapping. To this end, we consider graphs and another classical formalism, state machines.
State machines can be viewed as graphs, and this can be exploited in the DSLs by reusing
operations on the graphs in the context of state machines.

7.2.1 Graphs
Figure 7.2 depicts the metamodel of a DSL for plain directed graphs (without labels and
weights). According to this metamodel, a graph consists of nodes that are linked with
each other via edges.

There is a set of common operations that are used on graphs. For instance, the node
and edge counts, the fan-in and fan-out of nodes, unreachable nodes from a certain node,
etc., are used in various other algorithms. They could be part of a collection of common
operations over graphs. Other collections could contain operations that translate the
graph to other formats for visualization purposes (e.g., DOT [1] files). Furthermore,

110 Reuse mappings

Figure 7.2: Metamodel of a plain directed graph.

operations that implement various kinds of graph processing algorithms can be considered
part of yet another collection. These are only a few examples of operations that can be
envisioned for graphs. Having the ability to reuse these operations in other DSLs that
involve graphs can bring significant value. This is even more valuable, as graph structures
can be found in many other metamodels. Figure 7.3 depicts the signatures of five common
operations defined on the graph DSL.

Figure 7.3: Signature of five common operations defined on the graph DSL. This is a
screenshot from MetaMod. The variation in syntax is explained in Section 7.4.2.

7.2.2 State machines
Figure 7.4 depicts the metamodel of a DSL for state machines (simplified version of UML
state machines [90]). We now discuss how the state machine can be viewed as a graph.
This view on state machines can be obtained if one considers states as nodes and state
machines as graphs. In this view, the role of the nodes relation from the graph metamodel
can be fulfilled in the state machine metamodel with the states relation. What about
the edge relation among nodes in the metamodel? Its role is fulfilled by the Transition
concept in the state machine and its source and target relations to the State concept.
Thus, the role of the edge relation from graphs can be fulfilled by a group of elements in
the state machines.

We want to define an operation in the state machine DSL that deletes states unrea-
chable from the initial state (states for which no path exists in the state machine that
passes through them). The goal is to reuse the unreachable nodes operation from the
graph DSL. To make that possible we have to relate state machines to graphs, which is
feasible given the discussion in the previous paragraph. In that case, an operation from
the state machine could reuse the unreachable nodes operation from the graph DSL, as
depicted in Figure 7.5.

7.3. Reuse mapping 111

Figure 7.4: Simplified metamodel of a state machine.

Figure 7.5: Definition of the simplifyStateMachine operation for the state machine DSL
that reuses the unreachable nodes operation from the graph DSL.

This section illustrated the motivation for reusing operations defined on a base DSL
in dissimilar DSLs; these reusing DSLs do not necessarily embed the structure of the base
DSL. We explain how we achieve this with our reuse mechanism in Section 7.3.

7.3 Reuse mapping
In this section we describe steps required by our reuse mechanism, its visualization at the
value model level, and extra validity conditions. Before that, we define two terms that we
use in the remainder of the chapter: DSL units and their interfaces. Note that DSL units
have an extra ingredient in this chapter, the operation signatures. Moreover, interfaces
play a role only in this chapter. Interfaces and signatures were part of our exploration
process and they were most useful for this phase of our work.

Definition 8 A DSL unit consists of:

• a metamodel,

• operation signatures,

112 Reuse mappings

• and operation definitions.

If we denote the metamodel by MM , the operation signatures by OS , and the operation
definitions by OD , a DSL unit is the following tuple:

DSL = 〈MM,OS,OD〉 ,

where the operation signatures are defined in the operation definitions.
Given these three constituents of DSL units, we define an interface of a DSL unit as

follows:

Definition 9 The interface of a DSL unit consists of:

• its metamodel,

• and its operation signatures.

Thus, the interface of a DSL unit is the following tuple:

DSLI = 〈MM,OS〉 ,

Now, consider that we have a DSL for graphs,

DSLb = 〈MMb, OSb, ODb〉 ,

and that we are developing a DSL for state machines, DSLr , with the following interface:

DSLIr = 〈MMr, OSr〉 .

As already discussed in Section 7.2, DSLr can intuitively be viewed as DSLb ; the
question is how to enable this in tools such that we can reuse operations of DSLb in
DSLr? For that, we need to define a reuse mapping between the two DSLs.

7.3.1 Steps for the reuse mapping
The reuse mapping between two DSLs is asymmetric. That is so, because the two DSLs
involved in the reuse mapping play two different roles: one is a base DSL unit and one is
a reusing DSL unit. Any DSL unit can potentially play any of the two roles. In the case
presented in this section, DSLb is the base DSL unit and DSLr is the reusing DSL unit.

The steps required for our reuse mechanism are: (1) provide the reuse mapping, (2)
translate the operation signatures (done automatically) and (3) translate the operation
definitions (done automatically, as well).

What makes the explanations in the following sections hard to follow is the mix of
meta levels that we need to deal with: the definitions that occur at the type model level
and the execution and its effects that occur at the value model level.

7.3.1.1 Providing the reuse mapping

This step is carried out by the DSL engineer. A definition of the reuse mapping follows.

Definition 10 A reuse mapping is a mapping from the base DSL unit to the reusing
DSL unit that specifies how type concepts of the base DSL unit translate to type concepts
of the reusing DSL unit and how relation queries from the base DSL unit translate to
functions in the reusing DSL unit.

7.3. Reuse mapping 113

The definition takes this direction of mapping because the operations from the base
model will be executed on the reusing model. Thus, those operations need to be written
in terms of concepts and queries of the reusing DSL unit.

A visualization of the reuse mapping defined between graphs and state machines can
be seen in Figure 7.6. In this figure, one can see the mapping of the type concepts in the
top-level box and the mappings of the type relations in the two bottom-level boxes. In
the visualization, the type relations from graphs map to groups of type elements in state
machines. These groups of type elements can be captured in a function that traverses the
elements in the group, doing some processing as well, if needed.

Figure 7.6: Visualization of reuse mapping between graphs and state machines.

Hence, there are two parts to the reuse mapping: the mapping of the type concepts
and the mapping of the relation queries.

Reuse mapping of type concepts
The part of reuse mapping that is straightforward to define is the mapping of the type
concepts because it is a one-to-one mapping.

Reuse mapping 1 For every type concept in the base DSL unit, Cb, there is one and
only one type concept in the reusing DSL unit, Cr , to which Cb is mapped.

The reuse mapping of type concepts is not necessarily injective, that is, the same type
concept in the reusing DSL unit can be mapped by different type concepts in the base
DSL unit. Moreover, the reuse mapping of type concepts is not necessarily surjective,
because not all of the type concepts in the reusing DSL unit need to be mapped by the
base DSL unit. Looking at Figure 7.6, one can see that the type concepts from the graph
DSL, Node and Graph, are each mapped to one type concept in the state machines DSL,
State and StateMachine, respectively.

Reuse mapping of relation queries
Relations in MetaMod are bidirectional, so we need to handle both ends of a relation
during the reuse mapping. To get an understanding of the returned elements when
querying one end of a relation, consider Figure 7.7, where we show a type model and a
value model that conforms to the type model. In this case, for instance, a query for target
value concepts of value relation conforming to R with value concept S1 as a source, would
return a set composed of value concepts T0 , T1 and T2 . That is so, because all the value
relations connecting S1 with T0 , T1 and T2 , respectively, conform to type relation R.

114 Reuse mappings

Figure 7.7: Figure depicting a type model on the left-hand side and a value model
conforming to this type model on the right-hand side. The A :: B notation means that
value concept or value relation with name A conforms to type concept or type relation
with name B .

To define the reuse mapping for relation queries, consider a type relation RT with source
type concept CTS and target type concept CTT in the base DSL unit: CTS − RT − CTT .
Then:

Reuse mapping 2 For every type concept CTS in relation CTS − RT − CTT in the
base DSL unit, there is a function f (CTS ,RT) that returns a set of instances conforming
to the mapped type concept of CTT from the reusing DSL unit.

The same definition holds for the other end of relation RT , where an instance of
the target CTT is given as the parameter of f . At execution time, function f returns
instances conforming to type concepts from the reusing DSL unit, because the execution
takes place on a value model of the reusing DSL unit.

To make this step clearer, consider the reuse mapping in Figure 7.6. When querying for
the target value concepts of type relation edge, given a source value concept conforming
to Node, the result is expected to be a set of value concepts that conform to Node in the
context of the graph DSL. When translating this to the state machines DSL, the result is
expected to be a set of value concepts that conform to State, given that Node is mapped
to State in the reuse mapping for type concepts.

7.3.1.2 Translating operation signatures

Once the reuse mapping is provided, the interface of the reusing DSL changes as follows:

DSLIr′ = 〈MMr, OSr ∪OSb′〉

The reuse mapping brings the operation signatures from the base DSL unit (changed
to b′ because of the translation of the signatures) to the reusing DSL unit (changed to
r ′ because it contains new signatures). As a consequence, the DSL engineer can call
these operations to implement operations specific to the reusing DSL unit. Making a
parallel between our reuse mapping mechanism and the object-oriented paradigm, one
can consider the operations from the signature as being public operations of the reused
DSL unit and all the other defined operations from the reused DSL unit as being private
operations.

The operation signatures from the base DSL unit change accordingly, and that is why
we have a union with OSb′ instead of OSb in DSLr ′ . The translations that occur in the
signatures are straightforward: each argument type and each return type that are type
concepts of the base DSL unit translate to type concepts of the reusing DSL unit (see
Figure 7.3 and Figure 7.17 for such a translation). These translations are taken from the
reuse mapping of the type concepts. Note that this step is automated.

7.3. Reuse mapping 115

7.3.1.3 Translating operation definitions

Once all the operation signatures are translated, the operation definitions need to be
translated as well. The translation of an operation definition means translating the
occurrences of type concepts and relation queries from the base DSL unit to the reusing
DSL unit in the body of the operation. This is done with the help of the reuse mapping.
All occurrences of type concepts from the base DSL unit are translated using the reuse
mapping on concepts. All occurrences of the relation queries from the base DSL unit, on
the other hand, are translated with the reuse mapping on relation queries. How this is
done exactly in MetaMod is shown in Section 7.5. Again, note that this step is automated.

In the current implementation, we translate all the operations from the base DSL
unit, because any of these can be called from the operations that appear in the signature.
Recall that reuse mappings work only if the operations are not updating the value model.
Thus, we now assume that no operation is updating the value model. In the future, we
could check what operation updates the value model and flag this operation and all other
operations that call it, such that they cannot be used in the signatures and they are not
considered for translation.

7.3.2 Reuse mapping at the value model level
Reuse mappings are defined at the metamodel level, but the tool executes them at the
value model level. In this subsection we describe what happens at the value model level
intuitively when using our reuse mechanism.

An illustration that captures the gist of the reuse mapping at the value model level is
depicted in Figure 7.8. On the left-hand side of the figure is a value model conforming
to DSLr . Here, with red circles, we have depicted value concepts conforming to type
concepts from DSLr that are mapped in the reuse mapping. These value concepts can
be interpreted as value concepts conforming to type concepts from DSLb , because of
the one-to-one type concept mapping. On the right-hand side of the figure, we have
extracted these value concepts and we have reconstructed value relations from the reuse
mapping for relation queries (fabricated example). This gives rise to the value model
representation from DSLb . The idea is that value concepts conforming to type concepts
from DSLr embed the value concepts conforming to type concepts from DSLb . That is,
the value model conforming to DSLr contains different relations and extra value concepts
compared to its representation as DSLb . Note that the representation as a base DSL unit
is a virtual value model in the sense that the value model of the base DSL unit is not
constructed anywhere in memory, but it exists implicitly with the reuse mapping.

Figure 7.8: Figure depicting a model of a reusing DSL unit on the left-hand side and its
representation as a base value model on the right-hand side.

116 Reuse mappings

7.3.3 Validity conditions for reuse mapping
There are three extra conditions that should hold in order for the reuse mapping to be
valid:

1. The subtype relationship between two type concepts in the base DSL unit needs to
be preserved between the mapped type concepts in the reusing DSL unit.

2. The constraints on the base DSL unit (structural and additional constraints) hold
on the virtual value model of the base DSL unit.

3. The reused operations from the base DSL unit only contain querying functions and
no updating functions for value models.

The first condition states that subtype relationships from the base DSL unit need to
be preserved in the reusing DSL unit. That is so, because sub-concepts can be queried for
relations existing in their super-concepts in operations of the base DSL unit, and these
queries need to be mappable to something valid in the reusing DSL unit. Moreover, it
also assures consistency between type hierarchy queries on the base DSL unit and on the
reusing DSL unit.

The second condition asserts that a valid reuse mapping requires that the virtual base
model respects the constraints (structural and additional constraints) defined on the base
DSL unit. Note that checking the constraints can be done automatically on the virtual
value model of the base DSL because operations for constraints only use queries on the
value model. That means constraints defined for the base DSL can simply be run on the
value model of the reusing DSL unit.

The third condition states that the operations that are reused from the base DSL unit
do not contain calls to API functions that update the value models. That is so, because a
deletion or an addition of a base value relation, for instance, can trigger many actions on
the value model of the reusing DSL, and some of these actions can not be automated.
Think, for instance, of the graph and state machine example. Adding an edge to the
graph model, would require adding a new concept of type Transition in the reusing model,
but no decision can be made on the kinds of actions and events that this transition is
associated with.

7.4 Reuse mappings in MetaMod
In this section we showcase the mechanism of reuse mapping in the context of MetaMod.
The reuse mapping mechanism is implemented in a meta-language called MappingChan-
geableModules in MPS. This meta-language depends on the Models meta-language and
extends the GenericGroupMethods meta-language. Meta-language MappingChangeable-
Modules extends some of the operations in GenericGroupMethods.

7.4.1 Querying functions and metamodel types in MetaMod
In this subsection, we illustrate how we handle querying functions from the base DSL
unit in the reusing DSL unit in MetaMod with the help of reuse mappings. How this can
be extended to other metamodeling languages is shown in Section 8.5.

In essence, a metamodel in MetaMod is made of the following elements: type concepts,
type relations and a type concept hierarchy. When querying a value model, we need the

7.4. Reuse mappings in MetaMod 117

following functionality: to search for value concepts in the model, to verify hierarchical
relationships among type concepts, and to find an end of a relation given the other end.
These are all the functions we need to query a value model, and these also exist in various
forms in other environments (see Section 8.5). This functionality is captured with the
API functions presented in Section 4.2.

We now show how the API functions and types are translated from the base DSL unit
to the reusing DSL unit.

The reuse mapping of the relation queries guarantees that the two querying functions,
@src and @tgt , will behave correctly in the reusing DSL unit and the reuse mapping
of the type concepts assures that functions conceptsOfType, isTypeOf , and castTo, and
the ConceptType refer to the right concept types in the reusing DSL unit. Basically, a
reuse mapping from the base DSL unit to the reusing DSL unit specifies indirectly how
querying functions and type concepts from the base DSL unit are replaced in order to
reflect the structure from the reusing DSL unit.

All the operations in the processing units use only these four functions to query
the value models. For instance, the definition of four common operations for graphs is
depicted in Figure 7.9. The pieces of text with a blue background highlight type concepts
and type relations from the metamodel.

Figure 7.9: Definition of four common operations for the graph metamodel.

7.4.2 Examples of reuse mappings
We use the examples introduced in Section 7.2 to illustrate reuse mappings. The reuse
mapping from the graph metamodel to the state machine metamodel are shown in
Figure 7.10. Note that in the figures with reuse mappings, metamodel elements that
correspond to the base DSL unit have a blue background, while metamodel elements
that correspond to the reusing DSL unit have a yellow background. Moreover, the reuse
mapping mechanism was developed in a previous version of MetaMod, that lives in branch
ReuseMethod1 in the Git repository of MetaMod. There are three differences in the
querying functions of MetaMod. The first difference is that in the latest version of the
querying functions the value model appears as a parameter, while in the version for reuse
mappings the value model is not a parameter; (in (〈VM 〉) does not appear anymore in
〈CV 〉.@src#〈RT 〉# in (〈VM 〉)). The value model is considered fixed and it is considered

118 Reuse mappings

to be the input value model. Partly for the same reason, the second difference is that
GroupType is not parameterized with the name of the group (the group type is always
considered the group type specified in the header of the processing unit). Moreover, the
multi-operation feature is not present in this version of MetaMod.

We now explain the reuse mapping labeled 1 in Figure 7.10. Given the nodes relations
and a value concept of type Graph as source of these relations, the result should be a
set of value concepts of type Node (see the metamodel of the graph DSL in Figure 7.2
and the nodes relation with Graph as a source and Node as a target). That is, given a
fixed value concept of type Graph, and all the instances of the nodes relation that have
this instance as a source, the function returns instances of type Node. How does this
translate to the context of the state machine DSL? The mapped concept for Graph is
StateMachine and the states relation fulfills the same goal as the nodes relation. Thus,
we use the StateMachine concept as a source for the states relation to obtain concepts
of type State (see the metamodel of the state machine DSL in Figure 7.4 and the states
relation with StateMachine as a source and State as a target). Node concepts map to
State concepts, thus obtaining valid return types. In the reuse mapping labeled 2 in
Figure 7.10, one can see the reverse query function on the nodes relation.

Each type relation is handled by two mappings, one where the source concept is known
and one where the target concept is known.

Figure 7.10: Reuse mappings from graphs to state machines. The notation (ConceptType)
means an instance of type ConceptType. In the body of the mapping, the instance is
always of type the type concept resulting from the mapping of the concept in the prologue.

Now we are going to discuss how did we map the edge relation. For that, one should

7.4. Reuse mappings in MetaMod 119

look at the edge relations with an instance of Node as a source in the reuse mapping
labeled 3 in Figure 7.10. In the context of state machines, this is equivalent to looking for
the target states given a source state in a transition. To obtain the target states starting
from a source state, we iterate over the transitions that are attached to the states via the
source relations, and then we return the states that are attached to the transitions via
the target relations. This reuse mapping gives a hint of the power of the mechanism. The
metamodel of the base DSL unit does not need to be embedded in the metamodel of the
reusing DSL unit for the reuse mapping to be applicable.

7.4.3 Chaining of reuse mappings
One interesting feature of our approach is that reuse mappings can also be chained. To
this end, we first present two flavors of the Petri net metamodels.

Figure 7.11: Simple Petri net metamodel.

Figure 7.11 shows the first flavor of Petri net metamodel which we call simple Petri
nets. Simple Petri nets can be viewed as graphs. To this end, the role of concept Node in
the graph metamodel is played by concept PN_Node in the simple Petri net metamodel.
Thus, both places and transitions play the role of nodes in Petri nets. Moreover, the
role of relation edge from the graph metamodel is played by both the input and output
relations in the simple Petri net metamodel. These translations are captured in the reuse
mapping from graphs to Petri nets in Figure 7.12.

Now imagine that we implement the Petri net DSL in Jetbrains MPS and that we
want to render the Petri net value models graphically. If one wants to accomplish this in
Jetbrains MPS, a plugin for graphical visualizations can be used. However, this plugin
requires that the metamodel has a certain structure. In particular, each relation to be
visualized must be ‘classified’, i.e., have a corresponding concept in the metamodel. In the
Petri net example, if we want to represent both places and transitions with geometrical
figures in the visualization, and the relations between them with edges, then we need to
turn these relations into concepts. This is just an example of why one would want to
create this flavor of Petri nets. Figure 7.13 shows the modified Petri net metamodel. We
are going to refer to this flavor as the visualization Petri net.

This second flavor of Petri nets has a different structure for visualization purposes, but
the operations available on the simple Petri nets should be available on the visualization
Petri net as well. That is so, because the visualization Petri nets have been introduced to
cater for the structural needs of the plugin. The visualization Petri nets need the same
operations as those from simple Petri nets. An excerpt of the mapping between simple
Petri nets and visualization Petri nets is shown in Figure 7.14.

After these two levels of reuse mapping, one is still able to use the operations from
the graphs in the visualization Petri nets. This is shown in Figure 7.15. In the operation

120 Reuse mappings

Figure 7.12: Reuse mappings from graphs to simple Petri nets.

Figure 7.13: Visualization Petri net metamodel.

statisticalInformation of the visualization Petri net we are printing some information on
the number of nodes and arcs in the model.

7.5. Execution of a reused operation in MetaMod 121

Figure 7.14: An excerpt of the mapping from simple Petri net to visualization Petri net.

Figure 7.15: Operation definition for the visualization Petri net metamodel that reuses
the number of nodes and number of edges operations from the graph metamodel.

7.5 Execution of a reused operation in MetaMod
In this section, we give a few insights into how the mechanism of reuse mapping is
implemented in MetaMod. To this end, we take Petri nets as an example again.

The most interesting part of the execution is the one related to how MetaMod handles
the call of an operation from the base DSL unit in the context of the reusing DSL unit.
To understand this, consider the visualization Petri net, the simple Petri net and the
graph DSLs. Let us trace an invocation of the fanIn operation when it is called on a
visualization Petri net value model. Figure 7.16 shows the definition of the method fanIn
in the graph DSL. The body of the method is expressed in terms of a querying function
on the metamodel of the graph DSL. That is, the function queries for the source nodes of
the edge type relation with value concept node (parameter of the operation) as a target.
When called in the context of the visualization Petri net DSL, this querying function
needs to be re-expressed in terms of querying functions on the visualization Petri net
metamodel. The querying function for type concept Node as target for type relation edge
is handled by the reuse mapping from graphs to simple Petri nets (see Figure 7.12). In
Figure 7.12, in the reuse mapping that we labeled 4, one can see the translation in terms
of simple Petri nets of an instance of type concept Node as target for type relation edge.

In Figure 7.16, the body of the fanIn operation for visualization Petri net contains
a call to function Node_asTarget_edge instead of the querying function on metamodel
elements of the graph. The body of this function is actually the reuse mapping labeled 4
from Figure 7.12. Again, because this reuse mapping is using querying functions on the

122 Reuse mappings

simple Petri net metamodel, these need to be transformed into querying functions on
the visualization Petri net metamodel. This is done in the reuse mapping from simple
Petri nets to visualization Petri nets, part of which can be see in Figure 7.14. In this
figure, the reuse mapping that we labeled 5 is expressing how instances of type concepts
Transition as source for type relation input are translated. Again, in Figure 7.16 one
can see how in the body of the Node_asTarget_edge function, the querying function
on Transition as a source for type relation input is transformed into a function call,
Transition_asSource_input . The body of this function contains the reuse mapping
labeled 5, which is expressed in terms of elements of the visualization Petri nets. Thus,
the fanIn operation for the visualization Petri nets only needs to handle querying functions
expressed on the metamodel of the visualization Petri net DSL, which it knows how to
handle.

Figure 7.16: Visualization of how the fanIn operation from the graph DSL is executed on
the visualization Petri net DSL.

One more important aspect to illustrate in the execution is how the operation signatures
of the base DSL unit are translated into operation signatures of the reusing DSL unit by
means of the reuse mapping of the concepts. For instance, the operations defined on the
graph DSL and depicted in Figure 7.3 are translated into the operations in Figure 7.17
such that they are expressible in the visualization Petri net DSLs. The correspondences
between the concepts of the two DSLs was established with the help of the reuse mapping
in Figure 7.12 and Figure 7.14.

7.6 Discussion
In this section we are going to draw a parallel between our mechanism of reuse mapping
and object-oriented programming (OOP) in an effort to get a better understanding of its

7.6. Discussion 123

Figure 7.17: Signatures of operations for the graph DSL transformed into signatures of
operations for the visualization Petri net DSL.

basics. Moreover, we are going to discuss benefits, limitations, guidelines and ways to
implement the reuse mapping in other tools.

To some extent, there is a parallel among our mechanism and specialization in object-
oriented programming. One can regard the base DSL unit as a base class and the reusing
DSL unit as a specialization of the base class. Similar to OOP, the reusing DSL is required
to have the structural and behavioral characteristics of the base DSL, but it can also have
additional structural and behavioral characteristics. The parallel is not complete because
structural-wise, only the concept inheritance hierarchy is required, and not the relations
among concepts.

7.6.1 Benefits and limitations of the reuse mapping
The biggest contribution of the reuse mapping mechanism is leveraging previously deve-
loped DSL units in the context of structural differences among the corresponding parts
of the DSL units. Once the mapping between the metamodel of the base DSL unit and
the metamodel of the reusing DSL unit is made, one can reuse operations defined on the
base DSL unit in the reusing DSL unit (see Figure 7.15 and the reuse of noOfNodes and
noOfEdges operations).

The reuse mapping pays off especially for base DSL units with a large number of
operations, having many details to them (think only of the complexity of the graph
processing algorithms).

Given the reuse mapping mechanism, one possible scenario is to create repositories
of stable base DSL units that occur in multiple projects. These can capture reoccurring
patterns in DSL design. Using the base DSL units and our reuse mechanism, DSL
engineers can benefit from the operations defined on them in their own DSLs. One can
also imagine reusing legacy DSL units as base DSL units, when those legacy DSL units
are stable enough.

One limitation of the reuse mapping mechanism is the creation of extra function calls
from the translation of the relation queries. This could result in performance penalties.
Another limitation is the fact that a change in the metamodel of the base DSL unit, will
most likely require a change in the reuse mapping as well. That is why, the base DSL
unit should be a stable DSL unit.

7.6.2 Guidelines for the mechanism
If one creates a DSL unit with the sole purpose to be a base DSL unit, we have a few
guidelines to make it as reusable as possible without compromising on functionality:

124 Reuse mappings

• Prefer relations over concepts. The more concepts one can transform into relations,
the more reusable the base DSL unit. For instance, if we chose edge to be a concept
in the graph metamodel in Figure 7.2 instead of a relation, then we could not map
it to the simple Petri net (see Figure 7.11). That is because we do not have a
corresponding concept for edge in the simple Petri net metamodel.

• Make multiplicities of relation ends as encompassing as possible. For instance,
consider creating a state machine with multiple start states instead of a state
machine with a single start state, because then, the one with a single start state is
a particular case of the one with multiple start states. Multiplicity violations on
the virtual base model are caught with checking the constraints defined for the base
DSL unit.

• Avoid subtype relationships. The fewer the subtype relationships, the fewer the
restrictions that need to hold for the reusing DSLs.

7.6.3 Interaction of reuse mapping with other features of Meta-
Mod

In this section, we look at how other features of MetaMod, and especially features missing
from branch ReuseMethod1 , interact with the reuse mapping mechanism. For this section,
assume we are mapping the reusing DSL with top-level group, Top.

The modular structure of the groups created with group reuse does not affect reuse
mappings, because operations defined for reused groups operate only with metamodel
elements that are known in the top-level group, Top, that is being mapped. Thus, those
metamodel elements are mapped as well.

The multi-operation feature of MetaMod is not present in branch ReuseMethod1.
Nonetheless, the addition of multi-operations should not add any complications, because
it can be treated as a normal operation from the perspective of the reuse mapping.

The parameterized GroupType#〈GT 〉# is also not present in branch ReuseMethod1.
Nonetheless, a simple solution to this addition would be to translate all group types to
the top-level group type, GroupType#Top# (thus, all the generated queries are allowed).

7.6.4 Possible implementations for existing tools
One way to support the reuse mapping mechanism in other tools is to avoid functions
that update the models in reused operations and to map the querying functions from the
base model such that they are valid in the reusing DSL model.

Consider the following scenario: one creates DSLs by creating metamodels in the
Eclipse Modeling Framework EMF [135] and by creating grammars for them using Xtext
so that models can be represented textually. Moreover, consider the model management
language Epsilon Object Language - EOL [79]. This language can be used to navigate,
create and update models. Using EOL as a language for specifying operations for the
DSLs, our mechanism should be applied in the context of EOL. To make that possible,
one needs to consider the following steps:

• Reusable operations are not allowed to use creating and updating model functions.
In the specific case of EOL, functions like newInstance(), delete(), and add(Any) and
remove(Any) on the collections belonging to the model are not allowed. Moreover,
feature accesses on classes cannot appear on the left-hand side of an assignment

7.7. Conclusions 125

(an attribute or a reference of a class are accessed via the class with the ‘.’ or ‘→’
operators).

• We need to provide a reuse mapping for classes in the base model and for feature
accesses in the model (this is more straightforward than in MetaMod because
MetaMod has double navigation on a relation, while in EOL we can only access
elements in the direction of the reference).

The operation signatures in this case could be considered the operation signatures
of the classes defined in the metamodel itself, as there are no other modules where the
signatures are specified.

7.7 Conclusions
In this chapter we showed how to leverage previously created DSL units in the imple-
mentation of new DSLs when the base DSL unit and the reusing DSL units do no have
structurally identical parts. This was accomplished with the reuse mapping mechanism,
that translates querying functions on the base DSL unit in terms of querying functions
on the reusing DSL units. The benefits of the reuse mapping mechanism were showcased
on a graph DSL as a base and state machines and Petri nets DSLs as reusing entities. As
a result of applying reuse mappings on these examples, one can reuse all the operations
defined on the graph DSL in the state machines and Petri nets DSLs. This could lead to
an increase in the development productivity and also an increase in the quality of the
DSLs. Although the mechanism is currently implemented in MetaMod, reuse mapping
could be transferred to other technologies as well as noted in Section 7.6.4.

Chapter 8

Delegated operations

Most language workbenches provide support for reuse of DSL aspects when one DSL is
structurally similar to other DSL. The problem is that, although logically similar, the
corresponding parts in these DSLs can differ considerably in structure because of the
specific usage scenarios that they are developed for. In the last chapter, we have presented
a possible solution to this in the form of the reuse mapping mechanism. The problem
was that reuse mappings enforced the subtype hierarchy to be preserved, which we found
limiting in many cases.

In this chapter, we propose another approach for reusing language aspects from an
existing DSL in the definition of another DSL despite the structural differences among
the two. These DSL aspects are ultimately implemented in the language workbenches
using operations. Our approach enables reusing operations defined on a base DSL (the
existing DSL) in the context of a DSL under development, and it has two levels: the
definition and the execution. On the definition level, the DSL engineer writes model
transformations from the DSL under development to the base DSL, and she also writes
the reused operations’ signatures in the DSL under development. On the execution level,
the reused operations are called on the model of the DSL under development and they are
executed on its base model representation. Our approach is called delegated operations
because reused operations from the base DSL in the DSL under development are delegated
to the base model representation. Our approach of delegated operations is able to cope
with bigger structural differences between the base DSL and the corresponding part in the
DSL under development than reuse mappings.

To test the feasibility of our approach, we have implemented it in MetaMod. Moreover,
we showcase the approach on a case study.

8.1 Introduction
The tools used to implement DSLs, language workbenches, offer little support for reuse
of DSLs that are structurally different. This is important to achieve, given that DSLs
targeting the same domain often involve different metamodels. This happens because

128 Delegated operations

DSLs are built for specific purposes, and thus, the metamodel reflects the specific usage
scenarios (see explanation in Section 7.1).

In this chapter, we present our approach of delegated operations, which consists of
reusing operations defined on a base DSL in a DSL under development, even when the
metamodel of the base DSL is structurally different from the corresponding part in the
metamodel of the DSL under development. Our approach is explained at two levels: the
definition and the execution level. On the definition level, model transformations are
used to transform the value models of the DSL under development to value models of
the base DSL. Furthermore, instead of reimplementing the operations from the base DSL
for the DSL under development, only a redefinition of their signatures in the DSL under
development is needed. This can be partially automated in many cases. On the execution
level, whenever these operations are called on a value model expressed in the DSL under
development, their execution is delegated to the base DSL representation and executed
on that representation. With this solution, we contribute to research question RQ4.

RQ4: How can we facilitate reuse of operations despite structural differences
among domain-specific languages?

Our approach thus focuses on the reuse of auxiliary DSL aspects1 and not the reuse of
metamodels. The metamodels form the connection between the base DSL and the DSL
under development by defining a model transformation among them.

Delegating operations to the base model representation can lead to more efficient
computations because computations are done at the right level of abstraction. Take as an
example a compositional state machine DSL (contains composite states) and a simple
state machine DSL. Instead of writing operations that model check the compositional
state machine, it is more convenient to have a representation of the compositional state
machine value model as a simple state machine value model and perform the model
checking operations on the simple state machine value model. If one implements the
model checking operations directly on the compositional state machines, the operations
need to keep track of the composed states at all steps of the computations, leading to a
significant overhead. Computations at the right level of abstraction could outweigh the
performance penalty caused by the introduction of a new level of indirection with our
approach.

Another advantage of the approach is the fact that there can be significant structural
differences between the metamodel of the base DSL and the logically corresponding part
in the metamodel of the DSL under development. Many of the existing approaches of
reuse require that you have the same metamodel or a small variation of it (see Section 8.6).
This is restrictive, especially for domain-specific languages, which are created for specific
purposes.

Moreover, the approach leverages existing DSL implementations. There are DSLs and
variations of them that occur frequently in other DSLs. As an example, take a graph
description DSL. The graph structure can be found in many other DSLs and given the
amount of graph processing operations that can be defined on a graph DSL, the advantage
of reusing them in the other DSLs is significant.

One limitation of our approach of delegated operations is the fact that reused operations
that modify the base model representation do not propagate the modifications back to the
model of the DSL under development. That is not a problem, however, for DSL aspects

1An auxiliary DSL aspect (or language aspect) is any DSL aspect that is not the metamodel, which is
considered the central DSL aspect. Thus, interpretation, code generation, etc., are auxiliary DSL aspects.

8.2. Motivating Examples 129

such as code generators, interpreters or model transformations that do not modify the
source model. They only need to query the source value models.

We have implemented our approach of delegated operations in MetaMod, and we have
tested it on a number of case studies; some of these we give as examples in this chapter.
With our approach we implemented applications of reuse that cannot be achieved with
other approaches for reuse; for instance, a composite state machine DSL reusing the
operations of a simple state machine DSL.

8.2 Motivating Examples
In this section, we discuss three example DSLs: a graph DSL, a simple state machine DSL
and a composite state machine DSL. The main idea of these examples is that a simple
state machine can be regarded as an extension of a graph, and a composite state machine
can be regarded as an extension of a simple state machine. So why not reuse operations
defined on the graph DSL and the simple state machine DSL in the simple state machine
DSL and the composite state machine DSL, respectively?

You will notice that the structure of the graphs and simple state machines is slightly
different from the structure of the corresponding DSLs in the previous chapter. This is
reinforcing the idea that metamodels for the same DSL can take many different forms,
depending on the specific usage scenario. Moreover, we introduce the composite state
machines in this chapter. Note that the reuse of simple state machine operations in
composite state machines was not possible with reuse mappings.

8.2.1 Graph DSL
The first DSL is a graph DSL. The metamodel of the graph DSL is depicted in Figure 8.1.
The concepts that play a role in the graph DSL are the graph concept, the node concept
and the edge concept. The graph is directed, so the edge is associated to a source and a
target node.

Figure 8.1: Metamodel of a plain directed graph. This is a snapshot from our tool,
MetaMod. An explanation of the elements in this diagram is given in Section 4.1.5.2.

There are numerous operations that can be defined on a graph model (for code
generation purposes, analysis, etc.), from graph processing algorithms to transformations
and visualization formats for different tools. Many of these operations are not trivial to
implement. That is why it would benefit DSL engineers to have a reference graph DSL
with all kinds of operations defined on it for reuse of DSLs that have a graph flavor to
them. The signature of some operations defined on graphs can be seen in Figure 8.2.

130 Delegated operations
for group Graph

facet GraphProcessing

operation noOfNodes(GroupType#Graph# inputGroup) returns int

operation noOfEdges(GroupType#Graph# inputGroup) returns int

operation fanIn(GroupType#Graph# inputGroup, ConceptType#Node# node) returns int

operation fanOut(GroupType#Graph# inputGroup, ConceptType#Node# node) returns int

operation unreachableNodes(GroupType#Graph# inputGroup, ConceptType#Node# startNode) returns list<ConceptType#Node#>

Figure 8.2: Operation signatures for the graph metamodel.

8.2.2 Simple state machine DSL
The next DSL we explore is a simple state machine DSL. The metamodel of the state
machine DSL is represented in Figure 8.3. There are states and transitions with events
and actions. An important observation here is that the state machine can be seen as an
extension of the graph. States can be seen as nodes of the graph and transitions can be
seen as edges of the graph. Besides these, there are more details added to the simple
state machine DSL. Thus, in theory, the operations defined for the graph DSL could be
reused for the simple state machine DSL, e.g., the operation for finding dead states in the
state machine DSL (see Figure 8.4) could be the same as the operation for unreachable
nodes from the graph DSL (see Figure 8.2). Note that this depends on the semantics of
the simple state machine.

Figure 8.3: Metamodel of a simple state machine.

There are numerous operations that can be implemented for the state machine as
well. Consider, for instance, the operations for model checking a state machine. These
operations check that certain properties hold on a state machine, e.g., a state is always
eventually reachable. Reusing these operations in other DSLs that can have a simple
state machine representation would greatly benefit the DSL engineers. The signature of
some operations defined on simple state machines can be seen in Figure 8.4.for group SimpleStateMachine

facet ModelChecking

operation deadStates(GroupType#SimpleStateMachine# inputGroup, ConceptType#State# startState) returns

list<ConceptType#State#>

operation checkDeterminism(GroupType#SimpleStateMachine# inputGroup) returns boolean

operation generateNuSMV(GroupType#SimpleStateMachine# inputGroup) returns NuSMV

operation sIsAlwaysEventuallyReachable(GroupType#SimpleStateMachine# inputGroup, ConceptType#State# s, NuSMV nuSMV)

returns boolean

operation sIsGloballyTrue(GroupType#SimpleStateMachine# inputGroup, ConceptType#State# s) returns boolean

operation sRespondsToPGlobally(GroupType#SimpleStateMachine# inputGroup, ConceptType#State# s, ConceptType#State# p)

returns boolean

operation fanIn(GroupType#SimpleStateMachine# inputGroup, ConceptType#State# state) returns int

Figure 8.4: Operation signatures for the simple state machine metamodel related to model
checking. In these operations, NuSMV represents the symbolic model checker [24].

8.2. Motivating Examples 131

8.2.3 Composite state machine DSL
Lastly, there is the DSL for composite state machines. This DSL differs from the
simple state machine DSL because it has an additional state, the composite state that
contains other states, both simple and composite states. This gives rise to a hierarchical
organization of the states. The composite state machine can be regarded as a simple
state machine (through a transformation) and model checking operations defined for the
simple state machine could be executed on the composite state machine.

Figure 8.5: Metamodel of a composite state machine.

8.2.4 Reuse terminology and questions
Our approach to reuse operations defined on a DSL in another DSL is usable in cases
when one of the metamodels logically extends the other, but the structure in the extended
metamodel is not necessarily similar to the equivalent part of the structure in the extending
metamodel. We consider two different DSLs:

• A base DSL, BL, with a metamodel, and operations defined on it, OpBL.

• A DSL under development, LUD , with a metamodel, and for which operations are
being defined, OpLUD .

Our intention is to reuse OpBL in LUD . Thus, there are two asymmetric roles in the
relationship between two DSLs, one is the BL and one is the LUD . Going back to the
examples in Section 8.2, one can notice at least two applications for reuse: first, the graph
DSL is the BL and the simple state machine DSL is the LUD , and, second, the simple
state machine DSL is the BL and the composite state machine DSL is the LUD .

The questions that arise from the intention of reusing OpBL in LUD are as follows:

• How does the signature of the reused operations from OpBL transform when these
operations are reused in OpLUD (we denote them by OpLUD_BL)?

• What is the semantics of OpLUD_BL in terms of OpBL?

The approach we describe in the next section answers these two questions.

132 Delegated operations

8.3 The approach of delegated operations
In this section we cover our approach for reuse of auxiliary DSL aspects. The description
that we provide in the next subsections is independent of MetaMod. For the delegated
operations, we use only ingredients that can be found in other language workbenches. We
start with two main insights behind our approach, and we then continue to explain the
two levels of the approach, the definition and the execution.

There are two main insights behind our approach of delegated operations. Keep in
mind that these are not necessarily new insights. The first insight is that the metamodel
is the central aspect of a DSL, and all the other DSL aspects, auxiliary DSL aspects,
depend on it. This led to the decision to make the metamodel of a DSL the connection to
other DSLs. The connection between two DSLs is established through defining a model
transformation between the two metamodels of the DSLs. The second idea is that we do
not necessarily need to execute operations on the LUD value model, but we can delegate
them to a different representation of it, the BL value model.

For the purpose of the following explanations, we consider a generic operation that
has two types of parameters: in and out parameters.

A visual description of the definition and execution of the approach of delegated
operations can be seen in Figure 8.6 and Figure 8.7. Figure 8.6 depicts the steps that
define the approach and their succession. First, a model transformation needs to be
created between the LUD and the BL. Afterwards, the operations from LUD that are
executed on the BL need to specify the delegated operation from BL and the conversions
of the in and out parameters. Then, Figure 8.7 depicts the execution of the approach.
First, a model transformation is applied on the LUD value model (step 0.0), resulting
in a BL representation of the LUD value model that is validated (step 0.1). The BL
operations that are called on elements of the LUD value model are delegated to the BL
value model after the conversion of the in parameters (step 1). After the operation is
executed, the converted out parameters are returned to the LUD value model (step 2).

Figure 8.6: High level description of the definition process of the delegated operations.

The DSL engineer defines the approach of delegated operations at the metamodel
level. To define it, she needs to take the following two steps:

• Define (write) a model transformation from the LUD metamodel to the BL meta-
model;

• Define (write) the signature of the LUD operations that reuse BL operations;

8.3. The approach of delegated operations 133

Figure 8.7: High level description of the execution process of the delegated operations.

– Indicate delegated operation from BL;

– Indicate conversion operations for in parameters;

– Indicate conversion operations for out parameters.

To understand the approach of delegated operations, it is also important to look at
its execution steps. The execution of our approach is done at the value model level. The
execution steps are as follows (note that all these steps are executed automatically):

• The model transformation is applied on the value model of the LUD ;

• The resulting BL value model representation is checked for validity;

• The execution of an operation op ∈ OpLUD_BL is delegated to the BL value model
representation;

• The in parameters of operation op are converted;

• The operation op is executed on the BL value model representation;

• The out parameters that resulted from the execution of operation op are converted
and returned to the LUD value model.

Note that the model transformation is executed once for the LUD value model, and
all the operations use the resulting base value model representation. That is why the BL
value model representation is read-only for the LUD context. That means, modifications
made by operations in OpLUD_BL on the base value model are dropped in the calling
context, that of LUD .

Moreover, there is a validity check executed on the BL value model representation
immediately after the transformation. That happens because the operations associated
to a metamodel are implemented with the assumption that the value models they are
executed on are structurally valid (they conform to the metamodel) and they fulfill the
user-defined constraints (extra constraints that are not captured in the metamodel). That
is why, the resulting value model of the transformation must be valid with respect to two
types of constraints: structural and user-defined.

In the following subsections, we focus on the two steps that the DSL engineer needs
to undertake to define the approach.

134 Delegated operations

8.3.1 Model transformations
The first step in our approach definition is to define a correspondence between the two
DSLs. This is achieved by defining a model transformation from the LUD metamodel to
the BL metamodel.

We give a classification of the model transformation required by our approach, based
on the categories specified by Mens et al. [99]. The model transformation that one needs
to define for the approach:

• is exogenous because the two DSLs are different (e.g. from the simple state machine
DSL to the graph DSL);

• is vertical because usually the LUD has more details than the BL (e.g. the simple
state machine DSL has more details than the graph DSL);

• is performed in the same technological space (e.g. at the moment, in MetaMod);

• has small complexity, in general, because the BL metamodel should be logically
similar to part of the LUD metamodel, although not necessarily structurally (e.g.
the simple state machine metamodel logically contains the graph metamodel);

Usually, model transformation languages have different types of transformations
[99]. There is a distinction between one-to-one transformations and other types of
transformations. This distinction is important for the next step of the approach definition,
and it will be illustrated in Section 8.4.

8.3.2 Operation signatures for OPLUD_BL

The DSL engineers can create LUD operations that they delegate to BL operations. This
is done by creating an operation signature for the LUD operation. In the signature, they
also need to specify the BL operation to which the LUD operation delegates and the
conversion functions to and from BL concepts for the parameters of the LUD operation.
For in parameters, one needs to specify conversion functions that take a LUD value
concept and convert it to a BL value concept. For out parameters, one needs to specify
conversion functions that take a BL value concept and convert it to a LUD value concept.

For instance, take the operation fanIn (see Figure 8.2) from the graph DSL. The node
parameter has type Node from BL. Assume that the DSL engineer wishes to reuse this
operation in the simple state machine. That means she needs to write the operation
signature using LUD type concepts in the signature instead of the BL type concepts. For
that, she needs to specify a counterpart in the simple state machine for type concept
Node. In this case, the counterpart is State. The DSL engineer also needs to specify how
a value concept of type State converts into a value concept of type Node because node
is an in parameter (see Figure 8.8). This conversion function is used by our approach
when delegating an operation call with a specific parameter of type State to the BL value
model, to find out the corresponding value concept of type Node in the BL value model
representation.

Not all operations from the BL need to be reused in the LUD . For instance, in the
case of the simple state machine DSL, the DSL engineer could be interested in the reuse
of only a high-level model checking operation. In turn, this operation could contain calls
to many other model checking operations for the simple state machine. Because not all
operations from the BL are reused in the LUD , we say that we reuse fragments (parts)
from the auxiliary DSL aspects of BL.

8.4. The approach of delegated operations in MetaMod 135

Figure 8.8: Visual description of operation delegation.

To answer the last two questions in Section 8.2.4, in our approach, the signature of
the operations is handled by the DSL engineers (although at least part of the signature
can be derived automatically; see Section 8.4). On the other hand, the semantics of an
op ∈ OpLUD_BL (operation in the list of LUD operations delegating to BL) is given by
the transformations of the parameters of op and the semantics of the delegated operation
from BL.

8.4 The approach of delegated operations in MetaMod
In this section we demonstrate the approach of delegated operations in MetaMod using
the examples of the graph DSL, the simple state machine DSL and the composite state
machine DSL.

Before we dive into any further details, remember that all the operations associated
to a metamodel in MetaMod are a variation of Java methods. Thus, in parameters are
the parameters of an operation and out parameters are the returned elements and all the
elements wrapped in an object given as a parameter.

An overview of the steps for defining our approach and that are completed by either
the DSL engineer or MetaMod, follows:

• Define model transformations (DSL engineer);

• Define signatures of delegating operations (DSL engineer and MetaMod, partially):

8.4.1 Model transformations
The model transformation language that we have designed for MetaMod is an imperative
transformation language. A model transformation is created per source and target
metamodel, and it consists of a set of operations. The model transformations are applied
on value models that conform to the source metamodel of the model transformation.
Moreover, there is a main transformation operation from which the entire transformation
process starts.

There are three types of operations in the model transformation language of MetaMod:

• The transformation operation (see Figure 8.9); this is a one-to-one transformation.
That means that it can have one and only one LUD type concept as a parameter
and it can return one and only one BL type concept. This operation can be used
for converting the in parameters of the delegating LUD operations as well.

• The helper operation (see Figure 8.10); this is a many-to-many transformation.

• The conversion operation (see Figure 8.11); this is an operation that is not used
as a transformation. It is used for the conversion of in and out parameters of the
delegating LUD operations.

136 Delegated operations

All the operations in the model transformation language have at least two fixed
parameter types. These are the first two parameters and represent the input type group
(metamodel) and the output type group (metamodel). Thus, if transforming from a simple
state machine DSL to a graph DSL, the first parameter type of an operation would be a
SimpleStateMachine type group and the second parameter type would be a Graph type
group.

The body of the operations of the model transformation can contain any computations,
but an important component is a simple API to create model elements (besides the
one for querying model elements that was described in Section 4.2). A few elements of
the API can be seen in Figure 8.9. The figure depicts the transformation operation for
transforming a state from the simple state machine DSL into a node from the graph DSL.
In the body of the transformation, a new node is created and it is given the same name
as the state.

The transformation operation (the one-to-one transformation) is a non-injective and
non-surjective function. That is because there can be multiple LUD value concepts
mapped to the same BL value concept (thus, the non-injectivity), and the same BL value
concept type can be created by multiple transformation operations (thus, the image of
the transformation operation is smaller than its co-domain, implying non-surjectivity).
Moreover, the signature of the transformation operation is fixed. Its parameter types are
the input type group, the output type group, and the LUD type concept. The returned
type of the operation is the BL type concept.

For efficiency reasons, we cache the results of the transformation operations. That
is because the same model transformation can be called multiple times in the course of
performing a model transformation. Moreover, they can also be called when converting
parameters and return values of the delegating LUD operations, and we do not want to
modify the output value models anymore at that point.

transformation State2Node(GroupType#SimpleStateMachine# inputGroup, GroupType#Graph# outputGroup,

ConceptType#State# state) returns ConceptType#Node# {

ConceptType#Node# node = create ConceptType<Node>;

node.set name(state.strValue);

outputGroup.add to contents(node);

return node;

}

Figure 8.9: A state from the simple state machine DSL transforms into a node in the
graph DSL. This is an example of a transformation operation. One can notice API
functions of MetaMod for creating model elements: create ConceptType##, set name
on model elements and add to contents on groups.

There are cases when model transformations cannot be completed only with one-to-one
transformations. For instance, a composite state machine transition transforms to a series
of other transitions in the simple state machine. That is, each transition with a composite
state as a source transforms into multiple transitions, one for each state in the source
composite state. For these cases, we have created the helper operations. These can have
any number of parameters. The signature of a helper operation for the creation of a
transition is depicted in Figure 8.10. Again, the first two parameters of the operation are
fixed and are the input and output type groups.

The third type of operation for model transformations, the conversion operation, is
created specifically to convert parameters of the delegating LUD operations, both in and

8.4. The approach of delegated operations in MetaMod 137

Figure 8.10: A transition and two states in the composite state machine DSL transform to
a transition in the simple state machine DSL. This is the signature of a helper operation.

out parameters. The conversion operation can be used to convert multiple parameters of
the delegating LUD operation into one parameter of the BL operation, for instance. An
example of a conversion operation is shown in Figure 8.11.

conversion Node2State(GroupType#Graph# inputGroup, GroupType#SimpleStateMachine# outputGroup, ConceptType#Node# node)

returns ConceptType#State# {

for (ConceptType#State# state : outputGroup.conceptsOfType(ConceptType#State#)) {

if (node.strValue.equals(state.strValue)) { return state; }

}

return null;

}

Figure 8.11: A node from the graph DSL is converted into a state from the simple state
machine DSL. This is an example of a conversion operation. One can notice API functions
and MetaMod types we discussed in Section 4.2.

When conversion functions are called, in the conversion of in and out parameters
of the delegating LUD operations, the output group (value model) is already available.
That means that one can query the output value model from the conversion operation.
This is what is happening in the example in Figure 8.11 as well. The states and the nodes
in the input and output value model have the same name (because of the transformation
operation in Figure 8.9), and that means that a node originates from a state with the
same name. This is correct under the assumption that different nodes have different
names in the simple state machine.

8.4.2 Operation signatures for OpLUD_BL

An operation signature for delegating operations in MetaMod has other sections besides
the formal parameters and return value. Firstly, there is a section, @delegate, where the
delegated operation is specified. Secondly, there is a @conversions in section where the
conversion operations are specified for the in parameters and a @conversions out section
where the conversion operations are specified for the out parameters. Lastly, there is a
@precondition section where constraints that need to hold on the actual parameters are
specified.

A concrete example of how we handle operation signatures for OpLUD_BL is shown
in Figure 8.12. The figure defines how the operation touchedStates in the simple state
machine DSL is delegating to the operation touchedNodes in the graph DSL. We see in
the conversion section of the operation signature how the in parameter, startState, is
transformed into startNode. The transformation operation itself is used for conversion.
The output group, outputGroup, is used for type-checking only because the State2Node
operation will not modify the output group, it will only return the node from the cache.
Moreover, the alreadyTouched list is used both as in and as out parameter. For the in
conversion, the State2Node transformation operation is used, while for the out conversion,
the Node2State conversion operation is used.

138 Delegated operations

Figure 8.12: The touchedStates operation from the simple state machine DSL delegates
to the touchedNodes operation from the graph DSL. The conversion of the parameters is
handled in the @conversions in and @conversions out sections.

Note that in MetaMod, the conversion of parameters can be partially automated (not
implemented currently) when the number of parameters, their multiplicity and their order
coincides in the LUD operation and the reused BL operation. In that case, the type
information of both the BL and LUD operations is known and MetaMod can look up
transformation operations that take the LUD type and transform it to a BL type for in
parameters. Only transformation operations are searched because they are one-to-one
transformations. Moreover, transformation operations can be looked up for out parameter
conversions as well. That is because the results of these transformation operations are
cached and the source LUD value concept for a given BL value concept can be returned.
If there are multiple source LUD value concepts that created the BL value concept, the
first one could be returned.

Given that the output model of the transformation needs to fulfill the structural and
user-defined constrains (as discussed in Section 8.3), MetaMod automatically checks these
constraints on the output model. If the output model is not valid with respect to these
constraints, the model transformation needs to be modified such that it creates a valid
output model.

8.4.3 Implementation in MPS
The version of MetaMod where we implemented this reuse mechanism can be found on
our Github project on branch ReuseMethod2. In the latest version of MetaMod, in the
querying functions, the value model appears as a parameter, while in the version for
delegated operations, the value model is not a parameter. The value model is considered
fixed and it is either the input value model or the output value model. Moreover, the
multi-operation feature is not present in this version of MetaMod.

The way we tackled delegated operations in the implementation is the following. The
body of the delegating operation first checks whether the precondition holds, and then
performs the conversion of the in parameters, according to the @conversions in section
of the delegating operation. Afterwards, the call to the delegated operation with the
converted parameters is made. The last step is to convert the out parameters and return
the result, if any. These conversions are also taken from the conversions out section of
the delegating operation.

8.5. Discussion 139

The previous steps are implemented using the template generation language of MPS.
The way that the call to the delegated operation is made in this template is depicted in
Figure 8.13. Depending on whether the return type of the operation is void or not, one
or the other statement in the figure is generated.

Figure 8.13: Template for placing a call to the delegated operation in the body of the
delegating operation. The condition for generating the first statement (1) is that the
return type of the delegating operation is not void. For the opposite condition, when the
return type is void, the second statement (2) is generated.

8.5 Discussion
In this section we discuss trade-offs, observations, tool support, advantages and limitations
of our approach.

Trade-offs Because the model transformation should have a small complexity, the
benefit of reusing the operations from BL should outweigh the effort of defining model
transformations and writing operation signatures (which can be partly automated).
Translating concepts from one language fragment to the other should be easier than
implementing algorithms for a non-trivial problem domain. Take, for instance, the case
of simple state machines and composite state machines. The model checking operations
defined for the simple state machines are not trivial, but the transformation from composite
state machines to simple state machines is straightforward. Moreover, the transformation
from a simple state in the composite state machine to a state in the simple state machine
is one-to-one, easing also the conversions of the parameters, as most parameters in
model checking operations are states. Thus, using our approach required less effort than
developing everything from scratch in this case.

Although our approach introduces a new level of indirection, again, the benefit of
reusing the operations from BL should outweigh the performance penalty. The application
of the model transformation is done once, and used by all the operations. Moreover, the
fact that the computations are done at the right level of abstraction should outweigh the
extra calls to the delegated operation and the conversion functions (some of which can

140 Delegated operations

be handled from cache). For instance, model checking operations made directly on the
composite state machine would need to keep track of the composite states at all steps,
adding overhead.

Observations One of the highlights of our approach is the fact that reused operations
from the base DSL, although executed on the BL value model representation, are called
from the LUD value model. Therefore, there is an interaction between the BL value
model representation and the LUD value model. The operations from OpLUD_BL are
called on concepts from the LUD value model, and delegated to the BL value model,
which also needs to return the out parameters back to the LUD value model.

Another observation is that the approach presented in this chapter would benefit
greatly if the underlying language workbench had a way to modularize the metamodels.
That would result in using smaller metamodels in the construction of the language, and,
as a result, smaller metamodels would be available for use in our approach. If base DSLs
are big and monolithic, and if one needs only a part of that DSL, transforming to the
entire DSL is unnecessary, if not also impossible (think of a complex expression language
with all possible kinds of expressions in it, e.g. bitwise operations, set operations and
interval operations).

In addition, our approach is generic because it could be implemented in other language
workbenches as well. As long as there exists a way to represent metamodels in the language
workbench, and a model transformation language, this approach can be implemented
there as well.

Tool support Tool support plays an important role in our approach. The tools should
offer a convenient way of defining the signatures of the delegating operations, together
with the conversions. In MetaMod, we did that by creating dedicated sections for the
conversions, one for defining the delegated operation and one for preconditions.

Advantages and limitations The major advantage of the approach is that it leverages
previously developed auxiliary DSL aspects. One can treat a stable DSL (even legacy DSL)
as a base DSL. Moreover, by transforming to a base DSL and executing operations on the
BL value model representation, operations are executed at the right level of abstraction.
Take, for instance, the simple state machine and the composite state machine. The model
checking operations can be performed irrespective of the composite states. Finally, the
metamodels of the base DSL and the DSL under development can vary significantly. This
is important for DSLs, as they are designed for specific usage scenarios, and capturing
that in the DSL, and ultimately in the metamodel, results in variations of the metamodels
even for DSLs in the same domain.

Furthermore, we have discovered cases of reuse that, to the best of our knowledge,
cannot be covered by other approaches for reuse. For instance, reusing the operations of
the simple state machine DSL in the composite state machine DSL is not possible with
other approaches for reuse (see Section 8.6).

One concern that might arise with the approach is that it introduces a new dependency
in LUD , that to BL. That can lead to problems if BL changes or if BL has errors. That
is why, one should use a stable language as BL.

Another concern with the approach arises when an operation executed on the BL
value model updates the BL value model. Such an update is not propagated to the LUD
value model. That means that one cannot reuse BL operations that modify the BL value

8.6. Related work 141

model if one needs those modifications visible in the LUD value model. On the other
hand, if the updates do not need to be propagated back, this is possible.

8.6 Related work
There are a multitude of approaches for reuse in software, in general, and in DSLs,
in particular. In this section, we focus on a few major directions in the related work:
transformations to semantic domains, genericity, templating, inheritance, composition,
model transformation reuse, and more general works. We treat model transformation
reuse separately because it represents a considerable part of the related work.

Transformations to semantic domains The work on semantic anchoring of Chen et
al. [21] is using model transformations from a DSL under development to a semantic unit, a
formalism that has a formal and precise semantics. This transformation is called semantic
anchoring because the resulting value model can be interpreted based on the operations
defined by the semantic unit. Compared to our approach, there is no interaction between
operations defined directly on the DSL under development and the semantic domain to
which is transforms. The operations defined on the semantic domain are executed in
isolation from the DSL under development.

Genericity One relevant approach is the work on generic types in metaDepth by Juan
de Lara et al. [33]. In their approach they use so-called concepts to define requirements
for metamodels. They have two types of concepts: structural concepts and hybrid
concepts. The structural concepts define structural requirements only and can be bound
to metamodels that embed the same structure as the structural concept. On the other
hand, in a hybrid concept, they delay some structural decisions by means of defining
operations that need to be implemented by the user of the hybrid concept. In the end,
both types of concepts have code generation, interpretation or simulation attached to
them, which can be reused once the concepts have been bound to a metamodel. In
contrast with our mechanism, any of the structural elements of the hybrid concept have
to appear without modification in the binding metamodel. The DSL engineer needs
to anticipate what elements will vary and what elements will be fixed in the binding
metamodel. In our case, any of the structural elements can have different representations
in the LUD . Furthermore, with our reuse mechanism, one can treat legacy DSLs as base
DSLs because the DSLs do not need to be specially designed to be base DSLs. Another
difference with metaDepth is that a hybrid concept is not an actual DSL unit because one
cannot attach an editor to it, since some structural decisions are encoded in operations
(and thus, one cannot visualize the LUD value models as BL value models, for instance).
On the other hand, our mechanism does not permit to have operations that modify the
base value models if we want the modifications propagated back to the LUD value model.

Templating In the UML world, one of the most related works is that on the templating
mechanism [115]. The template contains a signature where formal template parameters
are specified and the substitution of the formal template parameters by actual template
parameters is called binding. After the binding is made, all different variants are going to
reuse the operations associated to the metamodel. This is one other way of approaching
reuse, not only of operations, but also of structure. On the other hand, that means there

142 Delegated operations

cannot be any structural differences among the two DSLs, which is important given that
DSLs are created for specific usage scenarios.

Inheritance There are also approaches that use inheritance mechanisms in the con-
text of domain-specific languages. In Monticore, Krahn et al. [84] introduce language
inheritance and embedding. With these two mechanisms, besides the extension of the
concrete and abstract syntax, also the operations of the DSL are going to be reused in
the resulting DSL. Another work that uses both specialization and templates is that on
the Meta Modeling Language [25]. Furthermore, Varro et al. [153] define inheritance
relationships not only for classes, but also for associations and packages. There are also
language workbenches that approach reuse via inheritance. For instance, Jetbrains MPS
allows to extend another language and also to extend separate concepts from the extended
language [159]. In all these cases, the structural variations among the parent DSL and the
corresponding part in the child DSL cannot be too sizeable because the child is inheriting
the structure of the parent and can modify it to a very small extent.

Composition The work on Melange by Degueule et al. [35] focuses on reusable and
modular DSLs. They achieve this with a set of assembly operators (merging and weaving)
and a set of customization operators (slicing, merging and inheritance). For all these
operators, the operational semantics of the composed languages is based on the component
languages. Unlike in our case, they reuse the operations associated to the exact components
that go into the resulting language.

An interesting mechanism, described by Berg et al. [14], is focused on the composition of
separate metamodels with the goal of reusing the operational semantics of the component
metamodels from the composition. They do so by creating an unification model for the
metamodels of the DSLs involved in the composition and by creating a linking model for
the models of the DSLs. In their mechanism, proxy classes are added to the composition
of the metamodels. This way, the operational semantics of the two languages can interact
at runtime. One limitation that we see is that linking on the model side can be tedious
for large models.

The current language workbenches offer various mechanisms for composition of the
different aspects of a DSL (concrete syntax, transformations, etc.) [47]. Again, the
structural variations possible between the original DSL and the DSL in the composition
is much more restrictive than in our approach.

Model transformation reuse Another set of related work is that on model transfor-
mation reuse. There are many types of reuse for model transformations [88], and the
type that we are covering with our approach is that on generic transformations with the
source metamodel as the generic part.

One work on generic meta-model transformations is that of Varro et al. [154]. They de-
fine generic meta-model transformations (higher-order model transformations - HOTs) by
using type variables instead of concrete model types. Then, by using meta-transformations,
they transform the HOT into a first-order transformation by replacing type variables with
concrete model types. The structural variability between the metamodels cannot be that
big in this case.

Another work on generic model transformations is that of Cuadrado et al. [30]. They
use the notion of a structural concept from de Lara et al. [33], but they allow features in
bindings to be bound to OCL expressions. This reuse mechanism is more limited than

8.7. Conclusions 143

ours, because it requires one-to-one mappings for all elements in the base language, for
instance.

The work on model typing of Steel et al. [134] is relevant to us as well. They define
model types as a set of object types, or, more precisely, as a set of MOF classes and
the references that they contain. These model types can be used as types in model
transformations, thus making the transformations applicable to any of the object types
in the set of the model type. An object type in this context is a metamodel. A more
recent work by Chechik et al. [20] generalizes the model typing work by introducing
coercive subtyping which allows reuse for transformations that tolerate specific violations
of the model subtyping. Our mechanism allows for more variation among the reusing
DSL fragments, as long as a model transformation resulting in a valid BL value model
can be created.

Another work that builds on model typing and that treats the reuse of model trans-
formations is that of Moha et al. [108]. They first extend the notion of model subtyping
to make it more inclusive, and present a mechanism of model transformation reuse. This
mechanism requires building model transformations for a generic metamodel that contains
only the necessary information for the model transformations. Then aspects and derived
properties are weaved into metamodels that reuse the model transformations such that
they become a subtype of the generic metamodel. In comparison, our approach does
not require interfering with the structure of the reusing DSL metamodel, making it less
invasive.

General A more general work on reuse is that of Kienzle et al. [76]. They note that
reuse of artifacts always involves a combination of one or more of the following interfaces:
variation (available variants that the artifact encapsulates), customization (how to tailor a
generic artifact to a specific application) and usage (structural and behavioural elements
accessible from the artifact). They also apply this work to DSLs [125], but again, the
reused behaviour is applicable on structures identical to the reused structure.

8.7 Conclusions
In this chapter, we have presented another approach for the reuse of fragments of DSL
aspects, called the approach of delegated operations. The definition of the approach
consists of model transformations from a DSL under development to a base DSL and of
delegating operations for the DSL under development to the base DSL. The advantages of
our approach are the following: it leverages previously developed DSLs, the metamodels
of the two DSLs can differ significantly, and the operations are executed at the right level
of abstraction. There is also a limitation of the approach: updates that are made on the
base value model representation by reused operations are not propagated back to the
value model of the DSL under development.

We also presented an implementation of this approach in MetaMod together with a
few examples of DSLs that made use of the approach. One could see how the approach
helped with reusing DSL operations associated to the graph DSL and the simple state
machine DSL, respectively.

Our approach opens up new possibilities of reuse, because the corresponding parts of
the metamodels of the two DSLs can differ structurally more than in other approaches.
This allows us to handle reuse situations that are impossible to handle with other
approaches.

Chapter 9

Evaluation

We evaluated MetaMod with the help of various DSLs. These DSLs play a double role
in the evaluation, that of highlighting features for modularity and reuse of MetaMod and
that of demonstrating the feasibility of building these DSLs with MetaMod. The DSLs
range from small sizes to large sizes, where the size of a DSL is given by the number of
concepts and relations in the metamodel and the number of operations in the processing
unit. They are also at different levels on the scale from declarative to imperative, and they
target different domains.

The chapter is organized around the DSLs that we created in MetaMod. We chose this
organization because each DSL shows different features for modularity and reuse, and each
DSL touches on slightly different aspects of the feasibility of building a DSL with MetaMod.
For each DSL, we present the design decisions we made for the DSL, we highlight the
main features of MetaMod that the DSL has made use of and we reflect on the main
advantages and challenges we encountered in the process of implementing the DSLs. We
conclude the chapter by reflecting on all of our DSL designs and implementations, and
we highlight one commonly occurring pattern in the reusable DSLs, that of a hot-spot
DSL. We noticed this is one of the most helpful patterns when building reusable DSLs in
particular, and we assume that it can be useful for the creation of most reusable DSLs as
well.

9.1 Kaja language
The Kaja language was presented in Chapter 6. Kaja has a mix of declarative and
imperative constructs, but it is more inclined towards imperative constructs (e.g., the
while loop, the repeat loop and the procedure). This language is a translation of the Kaja
language from the samples project of MPS into MetaMod. The implementation of this
DSL in MetaMod can be found in the Github repository in Solution Kaja, model kaja.
In the next three paragraphs, we give three reasons why we re-implemented Kaja.

The main purpose of implementing this language in MetaMod was to highlight
MetaMod’s support for modularity and reuse at the level of value models. For instance,

146 Evaluation

there was no need to introduce definitions of routines and calls to routines, and definitions
of libraries and imports of libraries in the implementation in MetaMod. To support these
generic modularity mechanisms at the value model level, we made use of the fragment
abstractions and applications, and the group organization of the models.

At the same time, Kaja is also an example of a language that offers basic imperative
language constructs, such as while loops, if statements, procedures, and libraries. This
gets us to the auxiliary purpose of implementing Kaja, that of evaluating MetaMod using
a DSL with an imperative flavor to it.

Incidentally, because this DSL was implemented at a time when we did not have
multi-operations and overriding in MetaMod, it also shows the difficulties that the lack of
these features bring. The lack of multi-operations and overriding made the implementation
very tedious, because in the processing units of MetaMod, whenever we needed to call
the operations to evaluate commands or logical expressions, we had to write a switch
on the type of command or logical expression. For that, we wrote an operation called
dispatchCommand and one called dispatchLogicalExpression, that checked the runtime
type of the command and that of the logical expression parameter and called the respective
operations. This solution brought new problems though, because in this situation we had
to implement operations that would be fit for reused groups in the top-most group Kaja.
For instance, we had to write the operation evaluating the and logical expression in the
processing unit of Kaja because and calls the dispatch operation for logical expressions
on both the left-hand side expression and the right-hand side expression, and only the
dispatch operation of Kaja knows about all the logical expressions. Not being able to
write operations in the appropriate group hinders modularity and reuse to a great extent.

The difficulties in implementation stemming from not having the multi-operations and
the possibility to override them has also shaped the organization of the DSL units of Kaja
in the implementation in MetaMod. The DSL units that form Kaja are depicted in Figure
9.1. For instance, we did not reuse Commands in GridRobotCommands (commands to
move the robot and to pick marks), ComputationalCommands (commands like while or
if), or GenericBuilderCommands (commands to build the grid). These commands all
come together under Kaja. If, on the other hand, we had multi-operations and overriding,
we would have reused Commands in all previous groups related to commands, so that we
can override an execute command operation, for instance. Then, Commands would have
been a central DSL unit of Kaja, because many other groups from Kaja would use model
elements from it and would override operations of this DSL unit.

To give you an idea of the scale of the Kaja DSL, here are a few statistics (pertaining
to the metamodels only, and not the value models):

• Number of concepts: 39

• Number of relations: 41

• Number of operations: 71

• Number of DSL units: 8

The next section is going to be about the reusable expression language we implemented
in MetaMod. The Kaja DSL itself makes use of a subset of logical expressions, and
we implemented this subset together with Kaja. That is because at the moment we
implemented Kaja, the expression DSL was not yet implemented.

9.2. Expression language 147

Figure 9.1: The organization of DSL units in Kaja. The dashed arrows represent the
arrows that would be present if the implementation had multi-operations and overriding.

9.2 Expression language
In this section we describe the iets3 expression DSL, its implementation in MPS by the
mbeddr team and the implementation of a subset that we did in MetaMod. Examples
from this DSL are also used in Chapter 5 and they highlight the use of features such as
multi-operations, multiple dynamic dispatch, and inheritance of concept types and group
types. Here we make a more high-level presentation of the expression DSL. This is also
an example of a DSL with an imperative flavor. The MetaMod reimplementation can be
found in the Github repository in Solution Expressions, model iets3ExpressionsV1 .

9.2.1 The iets3 expression DSL
The iets3 project [71] is a specification environment for software systems built by the
mbeddr team. On top of this specification environment, DSL engineers build concrete
tools, where the components of iets3 are reused. One of the core components of iets3 is
its expression DSL. The iets3 expression DSL consists of seven language modules: base,
simple types, lambda, collections, path, repl, tests and toplevel. This is a comprehensive
expression DSL because it covers features encountered in a large pool of programming
languages (among the less mainstream features we mention path expressions, option types,
attempt types, closures, higher-order functions, unit tests, etc.).

The iets3 project was designed for reuse in real-world DSLs that the mbeddr team is
building for their clients. As a consequence, the iets3 expression DSL was designed with
reuse in mind. The DSL offers an implementation for most important language aspects;
structure, behavior, editor, constraints, type system (a strict one to ensure safety) and
interpretation.

Many of these DSL units are coarse grained and also depend on each other (some
dependencies also give rise to cycles), essentially meaning that when you want to reuse one
part of a DSL unit, you have to reuse the entire DSL unit, plus the dependencies that it
has. For instance, the base DSL unit contains many other DSL units, such as alternatives
expressions, binary arithmetic expressions, unary arithmetic expressions, attempt types,

148 Evaluation

contracts, option types, validity types, etc. The simple types, on the other hand, contain
only three DSL units, the String, Numeric and Boolean, but they have a dependency
on the base DSL unit, which means that reusing the Boolean DSL unit would result in
reusing all the simple types and the base expressions. Nonetheless, the undesired concepts
from the dependencies can be forbidden in models by imposing additional constraints, for
instance. The dependencies between the simple types, the lambda and the base expression
DSL units is shown in Figure 9.2.

Figure 9.2: The organization of three expression DSL units in MPS. Reusing and extension
in MPS were introduced in Chapter 2.

9.2.2 The MetaMod expression language
Our goals with the reimplementation of the iets3 expression language in MetaMod were (1)
to provide smaller units that can be reused in isolation (without surreptitiously bringing
in lots of dependencies), and (2) to allow reuse of combinations of those smaller units
(by predefining such combinations; cf. Figure 9.6). Moreover, we wanted to see how
larger implementations from MPS could be captured with MetaMod and to what degree
modularity features of MetaMod ease the creation process.

We considered the base, simple types and lambda DSL units to be the most relevant
DSL units. We have completely translated the concepts from the simple DSL units and
the lambda DSL unit, but we have translated only part of the concepts of the base DSL
unit. We selected those concepts that we encountered in many other DSLs we worked
with. We have reimplemented all the language aspects from MPS, with the exception of
the editor (because this would require a dedicated meta-language), and the interpreter
for the lambda DSL unit (because of time constraints). From a visual inspection on the
expression language in MPS, the selection of concepts and operations we made for the
translation to MetaMod covers the most important MPS features used in the creation of
the expression language in MPS.

We tried to stay as close as possible to the intention of the original (in most cases we
have one-to-one translation of concepts), and we restricted ourselves to reorganization
into smaller DSL units. The additional DSL units that are part of the three top-level
DSL units (base, simple types and lambda) can be seen in Figures 9.3 through 9.5. Note
that we kept the top-level DSL units from the iets3 expression language, but we have
further divided their content into additional DSL units.

In MetaMod, most operations for behavior, constraints, type system and interpretation
are captured in the top-level DSL units: base, simple types and lambdas. On the other
hand, there are still important operations of the type system and interpretation aspects
captured in the combinations of the base expressions with the simple types. The features
of MetaMod that allowed redefining the type system and the interpretation in the
combinations are explained in Chapter 5. The interesting combinations that lie at the

9.2. Expression language 149

Figure 9.3: The DSL units forming the DSL unit for base expressions in the MetaMod
implementation.

Figure 9.4: The DSL units forming the DSL unit for simple types in the MetaMod
implementation.

Figure 9.5: The DSL units forming the DSL unit for lambda expressions in the MetaMod
implementation.

intersection of base expressions and simple types are captured in Figure 9.6. For an
example of a metamodel, the metamodel of the top-level group, BaseExprAndSimpleTypes,
is depicted in Figure 5.5 in Chapter 5.

To give you an idea of the scale of the rewritten expression DSL we obtained in

150 Evaluation

Figure 9.6: The most relevant combinations among base expressions and simple types are
captured in separate DSL units and united under DSL unit BaseExprAndSimpleTypes.
This is part of the MetaMod implementation.

MetaMod, here are a few statistics:

• Number of concepts: 90

• Number of relations: 41

• Number of operations: 300

• Number of DSL units: 34

The expression language itself was built in a modular way, through reuse of DSL units.
In Figures 9.3, 9.4, 9.5 and 9.6, one can see for each DSL unit what other DSL units
it reuses. Thus, the expression DSL is an example of building a modular language in
MetaMod. Moreover, these DSL units have been built with the goal to be reusable in
other DSLs. Thus, one can see examples of how to design reusable DSL units with the
expression language.

Modularity Modularity comes from decomposing the three original DSLs into smaller
DSL units. Most of the DSL units communicate through the core expressions and types,
in the sense that they reuse the core ExpressionsAndTypes group and they override
operations from the core. Whenever these operations are called, the appropriate override
available in the context of the processed model is called. For instance, the type of an
expression is defined in an operation in the core expressions and types group. Whenever
extending an expression, this operation can be overridden for the new expression and
whenever we reuse the expression in a new group, the operation can be changed again; cf.
Section 5.1.5.2.

Reuse We have a core DSL unit, ExpressionsAndTypes, that is being reused by almost
all other DSL units, directly or indirectly. The DSL engineer interacts with the reused core
DSL unit by creating DSL units that extend the reused DSL unit. The extension takes
the form of (1) reusing groups that add relations to the core group, and (2) processing
units that override operations or add new operations to the processing units of the core

9.2. Expression language 151

group. Both of these happen in the context of the extending DSL units. In that respect,
the core DSL unit behaves like a hot-spot or a nucleus.

Trade-offs Smaller DSL units that are built for reuse also come with trade-offs. One
question is how many combinations of smaller DSL units should the DSL engineer create?
Some could argue that predefining certain combinations is just a convenience, since the
DSL engineers could also do that afterwards. One reason is that a handful of similar
combinations are most likely going to be created by many DSL engineers, so it is more
efficient to provide such combinations in a central place. Another reason is that often,
operations can be written only by combining groups. For instance, the combination of
numerics and binary operations needs to type check and interpret the effects of adding
two numerics, subtracting two numerics, etc.

Because of these two reason, the DSL engineer of the reusable DSL units needs to
tackle the hardest combinations to implement, together with the overall combination.
This way, the reusing DSL engineers know how the combinations can be tackled in
case they want to reuse other parts that are not covered by smaller combinations. For
instance, in the combination between base expressions and simple types, we decided to
combine separately the binary DSL unit with numerics, the unary DSL unit with numerics
and so on. We think these are the most common situations occurring in practice, and
they are also the hardest combinations to implement because many type checking and
interpretation operations can only be written in these combinations. Moreover, we also
create the overall combination, that in group BaseExprAndSimpleTypes, where we cover
everything that was not covered by the smaller combinations.

Discussion If an organization similar to the one of MetaMod would be chosen for the
original iets3 expression DSL implementation in MPS, the DSL engineers would need to
introduce concepts only for implementation purposes to create the combinations in MPS,
as opposed to the implementation in MetaMod. For instance, consider the combination
between alternatives and simple types in BaseExprAndSimpleTypes. The AltOption
concept (representing an option of the alternatives operation), that was initially defined
in the Alternatives group, needs operation getAllOtherwiseSiblings in the combination,
as part of its behavior aspect. The problem in MPS is that one can not add operations
to the behavior aspect of a reused concept unless a new concept extending the reused
concept is created; thus, this results in adding a concept only for implementation purposes
to the structure. In MetaMod, on the other hand, there is no need to create this new
concept. The operation getAllOtherwiseSiblings can be simply added to the processing
unit of BaseExprAndSimpleTypes in MetaMod.

A more detailed discussion on the benefits that MetaMod offers in this re-implementation
of the iets3 expression language can be found in Section 5.1.6.1. There, we make a com-
parison between the implementations in MetaMod and in MPS.

One challenge that we faced in this exercise, was a performance one, both in the time
to generate code from the processing units and the time to run the processing units on
the value models. There are many parts of the current MetaMod implementation that
can be optimized (e.g., the way we query the models is not efficient), and we detail some
of the possible optimizations in future work, Section 10.3.

152 Evaluation

9.3 Bootstrapping
In this section, we present how we created DSL units that define a subset of MetaMod in
MetaMod itself. We had four reasons to do this exercise. These reasons also point out
what does bootstrapping bring to the evaluation. Firstly, bootstrapping is a good form of
testing the bootstrapped application. It demonstrates that MetaMod is mature enough to
implement a non-trivial application, MetaMod itself. Secondly, it is an exercise where we
highlight the multilevel nature of MetaMod. In this exercise we define a subset, MetaModb ,
of MetaMod in MetaMod (we subscript with b the bootstrapped subset of MetaMod and
its elements); we define a DSL in MetaModb , called DSLMetaMod ; and we define a model
in DSLMetaMod . Thirdly, it is an intellectual challenge as well because it is non-trivial to
design and implement in MetaMod the different meta-languages of MetaMod. Fourthly,
this exercise is a first step towards making MetaMod ‘self-supporting’, that is, a step
towards using MetaMod outside of MPS.

Before we go on to describe the steps we took in the implementation, we make three
remarks. Firstly, what is special about the implementation of the bootstrapping exercise
is that we are able to build not just MetaModb (a subset of MetaMod in MetaMod),
but also a DSL and a model of this DSL using MetaModb . With all the other DSLs
we present in this chapter, one can define conforming models. That is also the case for
MetaModb , but those models are actually also metamodels, and hence they can have
conforming models as well. Other platforms would require that one first loads MetaModb

into the environment [82], and then she would be able to build the DSL and the model.
This is an advantage of having multilevel meta-tools. Secondly, MetaModb is not the full
implementation of MetaMod, it is just a subset. Through this exercise, we show what it
would take to implement MetaMod in MetaMod, but we do not perform it completely, and
we use just a subset of elements from MetaMod. Thirdly, MetaMod itself is a collection
of meta-languages, which means that the implementation of MetaMod in MetaMod is an
example of implementing a modular language.

Next, we define the high-level process of bootstrapping MetaMod. Because DSL
technology takes its roots from programming languages [48], we are going to make a
parallel to bootstrapping a compiler.

T-diagrams The process of implementing a compiler in the language that the compiler
knows how to compile, is called bootstrapping a compiler [144]. We now illustrate
traditional bootstrapping schemes using T-diagrams. We depict a T-diagram in Figure 9.7.
The T-diagram represents a compiler for the left-hand side language (called the source
language, S), written in the bottom language (called the implementation language, I)
and generating the right-hand side language (called the target language, T). We will
refer to this T-diagram as SIT . A traditional bootstrapping scheme can be explained
with T-diagrams and is depicted in Figure 9.8. In a traditional scheme, we want to get to
the situation in step three, where we have a full language implementation F , written in
a native language, N , and producing native language code, N . We get to this result in
two steps. In step one, we write a compiler in N for a subset of the language, S , that
produces N . In step two, we write a compiler for the full language F in the subset S ,
generating code in N . Feeding FSN (step two) to SNN (step one), we get FNN (step
three). After step three, FNN is a ‘fixpoint’ of FNN, meaning that this compiler can be
used to maintain itself (without having SNN and FSN).

Using a process that resembles that of bootstrapping a compiler, we defined the
meta-languages of MetaMod in MetaMod itself. Figure 9.9 depicts the two steps that we

9.3. Bootstrapping 153

Figure 9.7: A T-diagram from compiler technology.

Figure 9.8: The three T-diagrams involved in the traditional bootstrapping scheme. The
number inside the circle in the middle of the diagram represents the step number.

undertook for the bootstrapping and the resulting third step. In step one, we fully built
MetaMod using MPS (as explained in the previous chapters of the thesis), by generating
Java from the input MetaMod DSL definitions and conforming models. Our first step
differs from traditional bootstrapping schemes in two ways. Firstly, we did not build a
subset of MetaMod in MPS, but we built it fully in MPS. This is because we only want to
demonstrate bootstrapping, as opposed to implementing it for practical reasons. Secondly,
we did not use Java as an implementation language, but instead used the MPS platform
(which in the end transforms everything to Java). Now, going back to step two in the
bootstrapping process, the step illustrated in this chapter, we built a subset of MetaMod
using MetaMod itself, by generating Java from the input subset of MetaMod. Again,
here we built only a subset of MetaMod to demonstrate that bootstrapping is possible
with MetaMod. Finally, step three is the output of feeding step two to step one. We
obtained a compiler for a subset of MetaMod as a source language, and Java as the target
language, by using Java as an implementation language. This process can be continued
by adding features to the subset of MetaMod we already created, MMb .

Figure 9.9: The three T-diagrams involved in the bootstrapping of MetaMod. The number
inside the circle in the middle of the diagram represents the step number.

154 Evaluation

Subset of MetaMod The subset, MetaModb , of MetaMod we implemented in step
two of the bootstrapping process (denoted as MMb in Figure 9.9) consists of two models,
MetaModModelsb and MetaModPUsb . Model MetaModModelsb contains the elements
of the group extension of the core meta-metamodel of MetaMod (see Section 4.1 and
Figure 4.9). Thus, we do not implement the fragment abstractions and applications in this
subset. Model MetaModPUsb , on the other hand, represents a subset of the constructs in
the processing unit of MetaMod. Figure 9.10 shows model MetaModPUsb and Figure 9.11
shows the groups that make up MetaModPUsb . One can notice that we did not introduce
aspects in MetaModPUsb . So, we constructed a minimalistic version of the processing
units. Operations are also minimalistic because they have parameters, a body made of
statements, and a return type only. We did not implement the multi-operation or the
overriding annotations, for instance. This minimalistic version of the processing units
looses modularity and reuse features, but that is not of concern for the purpose of this
exercise. Furthermore, we introduced two types of statements, a logging statement (for
printing strings on the console) and an expression statement (a statement made of an
expression). We also introduced three types of expressions, an operation that returns
value concepts that are of a given type (the conceptsOfTypeb operation), an operation
that can be applied on operation conceptsOfTypeb and that returns the first value concept,
and an operation call expression. These are the basic constructs from the processing units
of MetaMod that we used in step two of the bootstrapping process.

Figure 9.10: Definition of MetaModPUsb , as a group.

MetaMod generates Java code from the processing units, and so MetaModb needs
to generate Java code as well from the processing units of the DSLs implemented in
MetaModb . The combination of “quotations” and “openapi” from MPS with the processing
units (we discussed this combination in Section 4.2.5) allowed us to easily write code
generation using the processing units, while at the same time having the modularity
mechanism provided by the processing units. Figure 9.12 shows an operation that
generates an expression for a compact function invocation, which is an invocation of a
closure literal. This is what MetaMod generates from the conceptsOfType operation.

Multilevel nature of MetaMod Now that we have built a subset, MetaModb , of
MetaMod in MetaMod, we also construct a DSL in MetaModb , DSLMetaMod , and
a model in this DSL, ProgramDSLMetaMod . As mentioned in the motivation, the
bootstrapping example also showcases the multilevel nature of MetaMod; there are three

9.3. Bootstrapping 155

Figure 9.11: All groups that play a role in MetaModPUsb , directly or indirectly, via reuse
relationships.

PU_CreateConceptsOfType_ConceptsOfType

for group ConceptsOfType

aspect CreateConceptsOfType

reuses CreateExpression

@override createExpression

operation createExpression(GroupType#ConceptsOfType# inputGroup, ConceptType#ConceptsOfType# conceptsOfType,

node<ClassConcept> languageMetamodel, TransformationMaps transfMap) returns node<CompactInvokeFunctionExpression>

{

node<CompactInvokeFunctionExpression> compactInvocation = <{ =>

yieldAll inputGroup.getRepresentativesNamedConcepts().

where({~it => it.conformsTo.isInstanceOf(RefToNamedConcept) &&

it.conformsTo : RefToNamedConcept.ref.name.equals(

"$(conceptsOfType.@src#argument# in (inputGroup).first.@src#concept# in (inputGroup).first.strValue

)$"); }); }()>;

return compactInvocation;

}

Figure 9.12: An example of code generation in MetaMod with processing units that use
quotations from MPS.

levels of conformance between MetaModb , DSLMetaMod , and ProgramDSLMetaMod . In
a non-multilevel language workbench, one would be able to write just MetaModb and
DSLMetaMod .

Levels of conformance Figure 9.13 defines the three levels of conformance invol-
ved in the example: level two (MetaModb), level one (DSLMetaMod), and level zero
(ProgramDSLMetaMod). As already discussed, there are two main parts to level two:
MetaModModelsb and MetaModPUsb . Then, at level one we build a value model of the
type model from level two. This has also two main parts, a DSL unit defining the concepts
and relations of DSLMetaMod , called DSLMetaModModels , and a DSL unit defining a par-
ticular processing unit instance, called DSLMetaModPU . The final level, level zero, defines
a value model, ProgramDSLMetaMod , which conforms to DSLMetaMod . The processing

156 Evaluation

unit defined at level one will be applicable on this value model, ProgramDSLMetaMod .

Figure 9.13: The conformance relations among the three levels modeled with MetaMod.
The models at all three levels are instances of the meta-metamodel of MetaMod.

We now discuss the characteristics of DSLMetaMod and ProgramDSLMetaMod .

Level one At level one, we created a value model that conforms to type model
MetaModModelsb , called DSLMetaModModels, and that contains only two concepts,
C0 :: Concept and C1 :: Concept (see Figure 9.14). We also created a value model
(conforming to type model MetaModPUsb), DSLMetaModPU , that contains two methods,
metLog and metCallingMetLog . Figure 9.15 defines this model. These two models are
value models for level two and type models for level zero.

Figure 9.14: Value model DSLMetaMod with two concepts.

We applied the processing units defined at level two on DSLMetaModPU . The code
generated as a result of processing DSLMetaModPU is depicted in Figure 9.16. This code
can further be used for level zero. That is why we create a small processing unit at level
one (see Figure 9.17) that simply calls metCallingMetLog on value models at level zero.

9.3. Bootstrapping 157

Figure 9.15: Value model of DSLMetaModPU with two methods and associated to group
dslInMetaMod from Figure 9.14.

public class dslInMetaMod {

public node<NamedGroup> inputGroup;

public dslInMetaMod(node<NamedGroup> inpGroup) {

inputGroup = inpGroup;

}

public void metCallingMetLog() {

metLog({ => yieldAll inputGroup.getRepresentativesNamedConcepts().

where({~it => it.conformsTo.isInstanceOf(RefToNamedConcept) &&

it.conformsTo : RefToNamedConcept.ref.name.equals("C0"); }); }().first);

}

public void metLog(node<NamedConcept> param0) {

info "Log message!";

}

}

Figure 9.16: The Java class generated from DSLMetaModPU . Method metLog has a
parameter of type concept C0 (which was generated into a node〈NamedConcept〉) and a
body made of one logging statement. Method metCallingMetLog has no parameters and
calls method metLog with one parameter, the first value concept from the value model at
level zero that has type concept C0 .

Figure 9.17: Processing unit making use of the generated class dslInMetaMod .

Level zero At level zero, we created a very simple value model (conforming to
DSLMetaMod) that contains only one concept, co :: C0 (see Figure 9.18). Moreover,
we also applied the processing unit PU_RunDSLMetaMod_DSLMetaMod from level one
on this value model and we got the logging statement in the console.

158 Evaluation

Figure 9.18: A value model of DSLMetaMod that contains only one concept.

Some statistics To give you an idea of the scale of the bootstrapping example, here
are a few statistics:

• Number of concepts: 42

• Number of relations: 57

• Number of operations: 17

• Number of DSL units: 23

Conclusions This example has illustrated the multilevel nature of MetaMod through
three levels of conformance in MetaMod, where level one represents a type model for level
zero and a value model for level two. The fact that an element can be both a type and a
value is made possible by the multilevel nature of MetaMod. This has enabled us to both
create a subset of MetaMod in MetaMod and to test it. The example can be found on
the Github repository of MetaMod in Solution Tests, model bootstrapCore.

With this example, we also demonstrated that bootstrapping can be achieved with
MetaMod. Nonetheless, at this stage, through this bootstrapping scheme, we cannot
escape out of MPS because we use it to create the models (that are persisted as XML files).
Note that this also corresponds to the traditional situation of compiler bootstrapping,
where one would not automatically get an editor for the language. The editor has to be
written separately.

An interesting exercise would be to create MetaMod with even more features as a
DSL in MetaModb . This would require four levels of conformance, and it would also be a
very challenging intellectual exercise (more than a practical exercise).

We conclude with two remarks on the bootstrapping exercise, remarks that are
important for the discussion in this chapter. Firstly, the bootstrapping example is a
combination of an imperative language (the part on processing units) and of a declarative
language (the part on models). Secondly, we want to point the central role that group
MetaModModelsb and group Expressionb play (see Figure 9.11). That is because almost
all other groups in the figure reuse these two groups, directly, or indirectly.

9.4 Other DSLs
In this section, we review a few DSLs that we already mentioned in different chapters
and that were built either for a course or workshop, or for showcasing advantages and
disadvantages of a mechanism.

The shapes language One DSL with a declarative flavor, the shapes language, was
already covered in Section 4.3. The focus in that section was on highlighting all the steps of
building a DSL, from type models, value models, and processing units, to documentation,

9.5. Testing 159

fragment abstractions, fragment applications, and DSL extensions. This DSL can be found
on the Github repository in Solution CaseStudies, model Courses/OOTICourseShapes.

This DSL is an excellent demonstration of the feasibility of the ideas we have imple-
mented in MetaMod. The DSL is small enough to easily follow the implementation and big
enough to showcase most features of MetaMod. One noticeable benefit of implementing
the shapes language with MetaMod, was the ease of creating the second extension, the
one where we added a color to the shape (see Section 4.3.3). This would not be possible
in MPS, unless one would create a new type of shape, where we add the color property.
This, in turn, would require creating a new circle, rectangle and square, that inherit from
the new shape.

In models of this DSL we used the fragment abstractions and applications because
we had fragments of models that could be nicely generalized into a fragment abstraction
(such as the 3ConcentricCircles in Section 4.3). Applying such an abstraction a few times
in a model paid off in terms of time invested in writing the abstraction and conciseness.
Moreover, the fragment applications give a more compact and ‘domain-specific’ look to
the models, that do not have a custom syntax otherwise. Another observation we had
during this exercise is that the generational concepts are very useful in our case to create,
for instance, distinct circles in the 3ConcentricCircles example. On the other hand, the
generated names are not visually appealing or do not have relevant names, but this is the
price we have to pay for generational concepts.

In this language, we noticed the central role that the Shapes group is playing. Many
other groups in this language depend on it, reuse elements from it, and override operations
associated to it.

The route language The route DSL is a DSL for describing routes made of forward
and turn commands. This DSL is very similar to the shapes DSL in that it also generates
a Java frame to draw the route and it has a similar structure to that of the route, except
that in this case the central group is represented by the commands. Moreover, it also
has similarities to Kaja, because they both describe routes, but the route DSL is much
simpler. That is why we do not describe it in the thesis. The DSL can be found on the
Github repository in Solution CaseStudies.

Graphs, state machines and Petri nets We have also designed various graph
DSLs, state machine DSLs and Petri net DSLs. These DSLs were built for the two
mechanisms that do not require structurally identical metamodels in the reused DSL
and the reusing DSL: the reuse mapping and delegated operations from Section 7 and
Section 8, respectively. Their implementation can be found on the Github repository on
branches ReuseMethod1 and ReuseMethod2 , respectively.

These were very small DSLs, and there were no particular central groups noticeable.
These DSLs have highlighted the feasibility of the reuse mapping and that of delega-
ted operations, but also the limitations of the reuse mapping in contrast to delegated
operations.

9.5 Testing
We defined around 30 DSLs (each formed of several DSL units) that represent regression
tests for MetaMod. These DSLs have as a sole purpose to test that certain features
of MetaMod behave as expected. They verify that either constraints (structural or

160 Evaluation

user-defined) hold on more intricate models, that invalid models report errors, or that
the processing of certain models yields the expected results. These tests can be found
on the Github repository under Solution Tests. Although these tests are not necessarily
interesting for analysis, they are important to maintain the quality of the meta-tools of
MetaMod.

We have used the ‘unique’ field of group reuse most intensively in the testing section.
Our experience with it was in general positive, but we also had abstract examples where
things were a bit confusing. Because of the way the algorithm for equivalence classes
works (see Section 4.1.4), it is sometimes hard to understand what elements are from the
same equivalence class. Fortunately, in the tool, auto-completion and the possibility to
visualize the equivalence classes were of great help. Moreover, the difficulties could have
also been caused by the abstract nature of the examples themselves, because the concepts
in these examples did not mean anything in particular.

9.6 Discussion
In most DSLs we built, we noticed the formation of one or more core DSL units. In the
context of a DSL consisting of a collection of DSL units, a core DSL unit is one that most
other DSL units reuse, directly or indirectly. More specifically, the other DSL units use
model elements and override operations from these core DSL units. We call a core DSL
unit a hot-spot DSL unit. For instance, in the case of the expression language, we placed
most of the operations that were later overridden by other DSL units, in the processing
units of group ExpressionsAndTypes. In the case of bootstrapping with MetaModb , the
hot-spot DSL units were MetaModelsb and Expressionb ; and in the case of the shapes
language, the hot-spot DSL unit was the Shapes DSL unit. One bigger DSL that was built
without a hot-spot group is the Kaja DSL. As already argued in Section 9.1, this hindered
its modularity because of not being able to place the operations in the appropriate DSL
units.

There are two other important remarks about the hot-spot DSL unit structure. Firstly,
consider DSL D that consists of a collection of DSL units, Units , and that has a hot-spot
DSL unit, H . The fact that concepts from Units are subtyping concepts from H , and
that operations from Units override operations from H , leads to the DSL units in Units
to interact indirectly in D . Secondly, the hot-spot DSL unit is usually the main part
of the domain (the commands were the most important in Kaja, although this was not
visible from the reuse relation among groups; the shapes were the most important in
Shapes; expressions and types were the most important in Expression; and the models
were the most important in the bootstrapping example, together with expressions for the
operations).

Phenomenons with core artifacts were noticed in other branches of software develop-
ment as well. If we take a look at the feature-oriented software development community
in particular, we see that there are usually hot-spot features in a program [129]. These
features interact with many other features. At the same time, work on between-module
connections in OOP [143] has shown the same trend, where a few modules are highly
connected with most other modules. The hot-spot DSL unit is also in line with the idea
of building a “core, elegant language” [46], and then extending it with extra features.

A hot-spot DSL unit should not be confused with a “God DSL unit” though. A “God
DSL unit” is a paraphrasing of the God class [116]. A God class is an anti-pattern in OOP
design, where a class gets burdened with too many responsibilities (methods, attributes).

9.7. Conclusions 161

Most complexity of the application lies in this class, and it delegates messages to other,
less complex classes. The previous sentences could easily be translated to DSLs if we
changed the term “class” to the term “DSL unit”. The God DSL unit is not applicable
to a hot-spot DSL unit, because the hot-spot DSL unit does not know of the other DSL
units that extend it, and it does not delegate anything to them. Moreover, the complexity
of the DSL does not lie in the hot-spot DSL unit, but it is distributed among all the DSL
units.

Another observation we have from implementing these DSLs is that their implementa-
tion is an incremental process, especially where modularity is concerned. The process
of designing the appropriate groups takes increments. Moreover, the appropriate group
organization should be established before attaching processing units to the groups. The
domain itself and its organization should drive the processing, and not the other way
around.

We also noticed that the fragment abstractions and applications were particularly
useful for the value models. They helped both in adding a custom look-and-feel to the
value models, but also helped with avoiding duplication in the value models.

Note that the mechanisms for modularity and reuse of DSLs that we built for MetaMod
and that we used in this evaluation, are only enablers, and not panaceas. One must use
these mechanisms appropriately and judiciously (which involves trade-offs). During the
creation of the evaluation DSLs, we have devised a few guidelines, and we have mentioned
them in the chapters where we describe the mechanisms of MetaMod.

The last observation we make is that some of the DSLs we developed, were developed
at a time that certain features of MetaMod were still missing. That taught us valuable
lessons as well. For instance, this is how we discovered that not having multi-operations
and overriding hinders modularity and makes extension harder.

9.7 Conclusions
In this section, we reflected on the design of a few DSLs we implemented with MetaMod,
and we also highlighted the features of MetaMod that allowed us to achieve modularity and
reuse of the DSLs. We looked at small-sized and big-sized DSLs, and at DSLs with different
degrees of imperative or declarative constructs. These DSLs demonstrated the feasibility
of the ideas underlying MetaMod and also showed cases where the implementation of a
DSL is eased with MetaMod (as opposed to other language workbenches, such as MPS).
In particular, the reimplementation of DSLs originally built with MPS, such as Kaja and
the expression language, helped to a great extent to highlight useful features of MetaMod.

Thus, in this section, we offer an answer to research question RQ6.

RQ6: How can modularity and reuse features of language workbenches be
evaluated?

Chapter 10

Conclusion

In this chapter we conclude the thesis by revisiting the research questions from Chapter 1.
Moreover, we discuss the main contributions and we sketch directions for future research.

10.1 Contributions
The work in this thesis was motivated by the visions of model-driven engineering (MDE)
and that of language-oriented programming (LOP). Both these methodologies heavily
use domain-specific languages (DSLs) in the software development process. Thus, the
ease of developing, reusing, and applying DSLs is paramount to accomplishing the visions
of MDE and LOP. Ideally, when creating a DSL, the DSL engineer should be concerned
only with the complexity of the application domain he is capturing. Tools to create DSLs
should not stand in their way. With the advent of language workbenches, and projectional
language workbenches in particular, the creation of DSLs has been considerably simplified.
Nonetheless, the creation of non-trivial languages, such as mbeddr (see Section 3.1) for
instance, requires good support for modularity and reuse. For this reason, we set out to
explore modularity and reuse of DSLs from the core, the metamodel. While exploring, we
investigated all kinds of mechanisms for the design, implementation, and use of domain-
specific languages. These explorations were made under the guidance of our main research
question.

RQ: What are effective ways to achieve modular and reusable definition,
implementation, and application of domain-specific languages?

The main research question was split into six other research questions. Among
these, the first research question set the context. This research question was targeted at
motivating modularity and reuse for the creation of DSLs. Furthermore, the first research
question also looked at requirements of language workbenches for supporting modularity
and reuse of DSLs. Thus, we asked

RQ1: What are reasons and requirements for modularity and reuse in language
workbenches?

164 Conclusion

To address this question, we first looked at modularity and reuse in product design, and
in software development, in particular (see Chapter 3). DSLs are, in the end, implemented
by software; thus, DSL implementation is a special kind of software development, viz.
software development focused on implementing DSLs. So, the benefits and challenges
of modularity and reuse from software development should apply to DSLs too. Thus,
benefits such as interchangeability of modules, ease of updating and maintenance, ease of
design and testing, parallel development, improvements in time-to-market, etc., are to be
expected. On the other hand, we should be aware of the challenges brought by modularity
and reuse in general software development, such as more upfront deliberation and even
an increase in complexity if used inappropriately. Moreover, the need for extensibility in
general programming languages offers an insight into why we need modularity and reuse of
DSLs. Extensibility in programming languages was deemed useful for a variety of reasons,
such as security, optimization, static checking, etc. [165]. Besides the advantages we
foresee being carried over from general software development to DSLs, one of the biggest
reasons for modularity and reuse of DSLs probably comes from the use of DSLs in LOP.
Initially, when applying LOP, one might think that one only needs to develop a single DSL
while building a particular software application. However, in practice, it turns out that
usually one ends up defining multiple DSLs that need to work together. The evolution
of DSLs is another case for modularity and reuse. Modular DSLs ease the process of
evolution, i.e., it is easier to evolve modular DSLs than monolithic DSLs. Furthermore,
due to these advantages, modularity and reuse in the creation of domain-specific languages
lead to accomplishing the visions of MDE and LOP.

We return to our observation that a domain-specific language is, in the end, a software
application. Thus, the criteria for the extensibility of software (where extensibility relates
to modularity and reuse) can be reformulated to criteria for modularity and reuse of
domain-specific languages. That is why we took the criteria for the extended expression
problem (see Section 3.4), that assess the extensibility power of a programming language,
and we translated it to language workbenches. That is, we translated it to criteria that
assesses the modularity and reuse powers of a language workbench when it comes to the
creation of domain-specific languages.

After we have established the need for modularity and reuse of DSLs, and we have
formulated requirements for that, we looked into the specifics of achieving modularity
and reuse of DSLs. Specifically, we asked

RQ2: How can we organize metamodels of the DSLs such that we facilitate
modularity and reuse of DSLs?

We addressed this research question through the design of the meta-metamodel of
MetaMod in Chapter 4 and Chapter 5. Besides modularity and reuse, we also had
simplicity as a goal for the meta-metamodel, which is important to mention here because
simplicity shaped features we added for modularity and reuse as well (for instance, the
simple grouping mechanism). The meta-metamodel consists of three parts: a core part,
a group extension, and a fragment abstraction and application extension. The group
extension, and the fragment abstraction and application extension are introduced for
modularity and reuse reasons. Groups, together with properties such as group reuse,
and concept and relation sharing, are used for decomposing metamodels and for reusing
metamodels. They lead to incremental definitions and compositions of metamodels. One
important difference with many other formalisms is that the groups that reuse elements
from elsewhere allow reused concepts to be augmented in the reusing context. Fragment
abstractions and applications, on the other hand, are used to factor out structures with

10.1. Contributions 165

placeholders in the metamodels. This extension combines lambda calculus with modeling
elements, which, to the best of our knowledge, is novel. Moreover, there is a feature for
reuse in the core part of the meta-metamodel as well, and that is the subtype relationship.
The subtype relationship allows reusing the relations of the super-concept in the sub-
concept. Although this feature exists in many OOP-like mechanisms, we use it differently.
We use concepts and their subtype hierarchy in the type system of the processing units,
but we do not create classes from the concepts themselves in the generated code of the
processing units. The code is generated per group instead of per concept, which ultimately
complements the augmentation of concepts in reusing groups.

Although the central part, the metamodel is only one aspect of a DSL definition; so,
we looked at how to organize the other aspects of a DSL as well. Thus, we asked

RQ3: How can we organize processing units of the DSLs and the operations
in the processing units such that we facilitate modularity and reuse of DSLs?

We have addressed the third research question in Chapter 5. One of the biggest
advantages of introducing modularity and reuse early, already in the metamodel, is that
we can take advantage of it in the processing units. Firstly, the metamodels give rise to
two hierarchies: the group hierarchy by group reuse and the concept hierarchy by concept
subtyping. These hierarchies are exploited by the type system of the processing units.
Secondly, processing units are organized around a group and a language aspect. Besides
that, operations from processing units of reused groups and sub-aspects are available
in processing units of the group and the aspect. These two features of the processing
units were influenced directly by the organization of the metamodels. Moreover, reuse
of operations is also facilitated by the fact that processing units are stateless. Another
feature of the processing units is the multiple dynamic dispatch on the concept types,
group types and raw Java types. This allows the adaptation of operations from reused
groups in the reusing groups. All the features of the processing units allow the addition
of operations to reused groups and the adaptation of operations from reused groups. This
is valuable because operations often need to be added and adapted in new contexts, that
of the reusing DSLs.

The previous research questions established modularity and reuse features when two
DSLs have parts of their metamodels almost identical, and one of the metamodels is
reused in the other metamodel. We now asked a different question.

RQ4: How can we facilitate reuse of operations despite structural differences
among domain-specific languages?

The fourth research question departs from this direction, and asks how to reuse only
the processing units associated to a metamodel in another DSL, when the two DSLs are
conceptually similar. To address this question, we created two mechanisms: that of reuse
mapping and that of delegated operations. The first mechanism, based on reuse mappings,
was treated in Chapter 7, and it expresses queries from the base DSL unit in terms of
queries on the reusing DSL unit. Once this mapping is defined, operations from the
processing units of the base DSL can be used in the processing units of the reusing DSL.
Although this mechanism can be applied for non-trivial cases, there are a few constraints
that need to be satisfied in order to be able to apply the mechanism. These constraints
become limiting in some cases as was explained in Chapter 7.

The second mechanism, based on delegated operations, was treated in Chapter 8, and
it does not suffer from some of the limitations of the reuse mapping mechanism. For

166 Conclusion

instance, the reuse of operations defined on a simple state machine in a composite state
machine is possible with delegated operations (as opposed to reuse mappings), but the
reuse of operations that modify the value model is still not possible. This approach is
based on defining a model transformation between the reusing DSL and the base DSL,
and defining the operation signature of the reused operations in the reusing DSL. This
approach is able to cope with bigger differences between the metamodel of the base DSL
and that of the reusing DSL than the mechanism of reuse mapping.

So far, the first four research questions concentrated on the modularity and reuse
features of metamodels. Incidentally, these features can be used for value models as well.
For this reason, we have briefly looked at modularity and reuse at the value model level
as well. Here, we asked

RQ5: What modularity and reuse mechanisms can be applied to models,
irrespective of the DSL?

We addressed this research question mostly in Chapter 4 and Chapter 6. The multilevel
nature of MetaMod, created by incorporating the conformance relationship in the meta-
metamodel (as opposed to having separate definitions of metamodel, models, and their
conformance), allows that features we discussed for RQ2 be applicable to value models as
well. That is, the group mechanism, and the fragment abstractions and applications are
applicable at the value model level as well. We do not consider the subtype relationship
for value models, because this relationship is worth using only if the value model is also a
type model. To understand the benefits that grouping, and fragment abstractions and
applications bring, we have implemented the Kaja language from the samples projects of
MPS in Chapter 6. In Kaja, the modularity and reuse mechanisms that MetaMod offers
for value models come in handy. We used groups and group reuse to replace libraries and
library import, and we used fragment abstractions and applications to replace procedures
and procedure calls. The development effort for Kaja was thus decreased with the help of
these modularity and reuse mechanisms for value models.

Now that we have introduced the mechanisms for the design and implementation of
DSLs, a natural question would be how to assess these mechanisms. More specifically, we
asked

RQ6: How can modularity and reuse features of language workbenches be
evaluated?

We addressed this question in Chapter 9 through presenting an analysis of the domain-
specific languages implemented in MetaMod with respect to their modularity and reuse
characteristics. We have implemented DSLs that range from a small size to a large size,
and from a declarative flavor to an imperative flavor (see Chapter 9). In the process of
analyzing these DSLs, we have highlighted features of MetaMod that eased the creation
of DSLs, and we mentioned the main design decisions we took. We also touched on
the evaluation in Chapter 5, where we compared our implementation of the expression
language with that from MPS. Although MPS is superior in tool maturity and ease of
use, MetaMod does offer some extra features. The extension mechanism in MetaMod
is uniform across all language aspects, and MetaMod allows to augment a concept in a
reusing DSL, unlike in MPS. These two aspects could lead to a smaller learning curve
for the tools and to fewer concepts created only for implementation purposes in the
metamodels (see Section 9.2).

10.2. Discussion 167

10.2 Discussion
The design and implementation of MetaMod was a real exploration. The rapid prototyping
that Jetbrains MPS enables once you become familiar with it, empowered us to implement
each idea easily. Once implemented, we would play with the idea and decide whether to
continue with it or not. It was important to have a short cycle from idea to implementation,
because many ideas seem good at first, but in practice fall short of bringing real value.
Moreover, MetaMod has taken us through all stages of design and implementation of
a language workbench: from the meta-metamodel to the processing units. We spent a
considerable amount of time on the design of the meta-metamodel (which defines the
structure of metamodels and models), because the metamodel is the central part of the
DSL, and the metamodel can shape the types of features one can add to the other DSL
aspects.

We think that another big contribution we make is the complete implementation
(https://github.com/farcasia/MetaMod) of the mechanisms described in this
thesis using MPS. The implementation accompanies the description in the thesis, and the
complete details of the mechanisms can be viewed there.

We can categorize our explorations of modularity and reuse in the context of DSLs
using the three principles mentioned in the introduction: do not use only inheritance-like
mechanisms (that is, inheritance and overriding), treat modularity and reuse starting
from the meta-metamodel itself (the modeling formalism) and leverage characteristics
of DSLs in the features of MetaMod (that is, the central role played by the metamodel
and the hierarchies created by model elements). We expand on these in the next three
paragraphs.

In the first principle, we say that we also use modularity and reuse mechanisms that
are not based on inheritance-like inheritance and overriding mechanisms. We back this up
with features for modularity and reuse that we introduced in both the metamodels and
the processing units. The metamodel uses a form of modularity with groups, group reuse,
and sharing of relations and concepts. The processing units use a form of modularity and
reuse where operations from reused groups and reused aspects can be accessed by the
current processing unit. Moreover, processing units are made only of operations, and
no state. Furthermore, we introduce two reuse mechanisms for reuse of operations only
(reuse mappings and delegated operations), without the reuse of the metamodels. These
two mechanisms are also different from mechanisms encountered in OOP languages. It is
at finer-grained levels that we make use of OOP mechanisms as well. We leverage the
hierarchies created by the groups and the subtype relationships in the type system of
MetaMod and we allow overriding of multi-operations based on these hierarchies.

In the second principle, we target modularity and reuse from the core of a DSL, the
metamodel. These features are captured in the design of the meta-metamodel, and include
the groups with their features, the fragment abstraction and application, and the subtype
relationships. We did not take an existing formalism and added operations on top of it to
cater for the missing modularity. Although there are good reasons for solving modularity
outside of the modeling formalism (e.g., legacy models, or existence of other tools), this
would not be a deep exploration of modularity.

In the third principle, we also make use of the characteristics of DSLs in the explorations;
the ingredients that are constituents of a DSL make the DSL application unique among
other software applications. Firstly, we keep the metamodel separate from the processing
units; only the processing unit has a dependency to the metamodel, and not the other
way around. This is unlike in the MOF world, for instance, where the metamodels have

https://github.com/farcasia/MetaMod

168 Conclusion

also operation signatures assigned to them. Because we keep the metamodel and the
processing unit separated, there can be various alternatives for processing units associated
to a metamodel. Secondly, processing units themselves are organized like the groups in
the metamodels. Thirdly, we also leverage the grouping mechanism and the subtype
relationships from the metamodels at the processing unit level. Lastly, we leverage
the multilevel nature of the meta-metamodel through the use of the same modularity
mechanisms for the value models, as in the type models.

In the previous three paragraphs, we have presented the results we have obtained
in the explorations with MetaMod; each paragraph discussed the results according to
one guiding principle. During these discussions, we also touched on the collection of
mechanisms we developed with MetaMod: metamodels with groups sharing concepts
and relations; metamodels with lambda abstractions and applications; operations from
processing units with multiple dispatch; metamodel hierarchies used in the type system
for processing units; stateless processing units; reuse of processing units; reuse mappings;
and delegated operations. We have revisited these mechanisms through the lenses of the
guiding principles.

We conclude this discussion with the remark that modularity and reuse are difficult
topics. No feature is a panacea for all problems related to modularity and reuse. There
are plenty of features introduced in programming languages that help with the issue of
modularity and reuse, each offering an answer to this issue to a certain degree. On the
other hand, none of these features is considered to be “the way”. Any feature that one
introduces for modularity and reuse needs to be balanced with other qualities, such as
ease of use, understandability or performance. We noticed this with the introduction of
every new feature in MetaMod.

10.3 Future Work
In this section, we mention some of the main directions for future research that are
interesting to pursue with MetaMod.

Having good language mechanisms for modularity and reuse is not by itself a guarantee
for the success of these mechanisms. Using the mechanisms well is another discussion.
That is why, one needs guidelines on how to use them. Although we have hinted at
guidelines in the chapters discussing our mechanisms (e.g., see discussion on number of
combinations of smaller DSL units for reusable DSLs in Section 9.2.2), we did not compile
an extensive list of guidelines to use the mechanisms. Take, for instance, grouping and
group reuse. Group reuse allows the DSL engineer or user to construct arbitrary graph
structures (without cycles), but it must be used with care: low fanout and deep hierarchies
are hard to understand, as are large fanout and very shallow hierarchies. Somewhere
there is a sweet spot, and that brings in cognitive psychology, because it is about making
designs understandable and adaptable by humans, with all their cognitive limitations.

Some of the guidelines we develop could also be integrated in the language workbenches
themselves. Language workbenches could be equipped with means to advice users (on
request, or autonomously) on ways to split their metamodels or processing units, if these
get over a certain threshold. This advice could be given in the form of warnings generated
in some IDEs, like IntelliJ IDEA [64], for code smells.

One of the most important future work direction is to decrease the generation time of
the code created from the processing units and to decrease the run time of this generated
code. This relates to the performance problem we mentioned in Section 9.2.2. Although

10.4. Concluding remarks 169

there are probably many opportunities to optimize the generation and the run times, we
have two ideas that we give priority to. In regard to the generation time, the first thing
we want to implement is the incremental generation we mentioned in Section 5.2. After a
modification in a group or an associated processing unit, only the reusing groups and
their corresponding processing units should be regenerated. This alone would reduce
the generation time significantly and would allow for a smoother development process.
Note that modularity in itself is helpful here; without modularity (so, with monolithic
designs), incremental generation is virtually impossible. Thus, a modular design can be
a facilitator for improved performance. In regard to the runtime of the generated code,
we noticed that the bottleneck can be the querying of the models (see Section 9.2.2).
One possibility is to make the navigation queries faster. For that, we could, for instance,
persist the metamodel in a graph database like Neo4J [61], and then we could query the
models with tools like Cypher [61].

One more interesting direction of future work is to extend the API that navigates and
queries the models to provide information on reused models, and fragment abstraction
and applications. As commented in Chapter 6, this would enable developers to customize
the modularity mechanism for the value models in the processing units of the type models.

Another future work direction is to specialize the processing unit for editor construction.
Building editors for the newly created DSLs should be well supported in any language
workbench. MetaMod is not a complete (stand-alone) language workbench, because it
lacks support for DSL-specific editors, and that is why we say MetaMod is a collection of
meta-tools. This would be a first step towards a more audacious future work direction,
that of making MetaMod ready for large-scale use. Putting MetaMod in the hands of
DSL engineers, would give us more insights into the benefits and challenges of the features
of MetaMod.

Something that might also be valuable to pursue is to study the qualities of a DSL
in more depth. In Chapter 3, we have presented qualities of DSLs as a paraphrasing of
qualities in software systems. In the process, we have noticed that the DSL qualities are
more nuanced because of the various language aspects involved in a DSL: the metamodel
and the variety of processing units. We think that a more in depth investigation is
worthwhile.

10.4 Concluding remarks
We hope that our explorations of features for modularity and reuse have brought the
vision of MDE and LOP closer to completion, and that these explorations will be of
inspiration for the development of future language workbenches.

We conclude the thesis with the following quote, which is attributed to Larry Wall,
known as the creator of Perl [161]. “Computer languages differ not so much in what they
make possible, but in what they make easy.” The word ‘easy’ makes the link between a
computer language and humans. It is about making things easier for humans, that have
cognitive limitations. This further connects to why modularity and reuse are important
not only to DSLs (benefiting the DSL users), but also to language workbenches with their
meta-languages (benefiting the DSL engineers).

Bibliography

[1] Graphviz - Graph Visualization Software. http://www.graphviz.org/. Acces-
sed: 2017-03-13.

[2] AOM ’09: Proceedings of the 13th Workshop on Aspect-oriented Modeling, New
York, NY, USA, 2009. ACM.

[3] A. V. Aho, B. W. Kernighan, and P. J. Weinberger. The AWK programming
language. Addison-Wesley Longman Publishing Co., Inc., 1987.

[4] O. Alam, J. Kienzle, and G. Mussbacher. Concern-oriented software design. In
Model-Driven Engineering Languages and Systems, volume 8107, pages 604–621.
Springer, 2013.

[5] Amalio, N. and de Lara, J. and Guerra, E. Fragmenta: A Theory of Fragmentation
for MDE. In Proc. MODELS, pages 106–115. IEEE, 2015.

[6] Artemis. Crystal - Critical Systems Engineering Acceleration. http://www.
crystal-artemis.eu/. Accessed: 2017-03-13.

[7] U. Aßmann. Invasive software composition. Springer, 2003.

[8] C. Atkinson and T. Kühne. Reducing accidental complexity in domain models.
Software & Systems Modeling, 7(3):345–359, 2008.

[9] C. Y. Baldwin and K. B. Clark. Design rules: The power of modularity, volume 1.
MIT press, 2000.

[10] C. Y. Baldwin and K. B. Clark. Managing in an age of modularity. Managing in
the modular age: Architectures, networks, and organizations, 149:84–93, 2003.

[11] C. Y. Baldwin and K. B. Clark. Modularity in the Design of Complex Engineering
Systems, pages 175–205. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[12] B. Basten, J. van den Bos, M. Hills, P. Klint, A. Lankamp, B. Lisser, A. van der
Ploeg, T. Van Der Storm, and J. Vinju. Modular language implementation in
Rascal–experience report. Science of Computer Programming, 114:7–19, 2015.

http://www.graphviz.org/
http://www.crystal-artemis.eu/
http://www.crystal-artemis.eu/

172 Bibliography

[13] D. Batory. A theory of modularity for automated software development (keynote).
In Companion Proceedings of the 14th International Conference on Modularity,
pages 1–10. ACM, 2015.

[14] H. Berg and B. Moller-Pedersen. Towards non-intrusive composition of executable
models. In Model-Driven Engineering and Software Development (MODELSWARD),
2015 3rd International Conference on, pages 1–11. IEEE, 2015.

[15] L. Bettini. Implementing domain-specific languages with Xtext and Xtend. Packt
Publishing Ltd, 2016.

[16] J. Bézivin. In search of a basic principle for model driven engineering. Novatica
Journal, Special Issue, 5(2):21–24, 2004.

[17] J. T. Boyland. Remote attribute grammars. Journal of the ACM (JACM), 52(4):627–
687, 2005.

[18] G. Bracha and W. Cook. Mixin-based inheritance. ACM Sigplan Notices, 25(10):303–
311, 1990.

[19] G. Brooch. The Promise, the Limits, the Beauty of Software. Turing Lecture, 2007.

[20] M. Chechik, M. Famelis, R. Salay, and D. Strüber. Perspectives of Model Transfor-
mation Reuse. In International Conference on Integrated Formal Methods - Volume
9681, pages 28–44. Springer, 2016.

[21] K. Chen, J. Sztipanovits, S. Abdelwalhed, and E. Jackson. Semantic anchoring
with model transformations. In European Conference on Model Driven Architecture-
Foundations and Applications, pages 115–129. Springer, 2005.

[22] W. Chen. A Theory of Modules Based on Second-Order Logic. In SLP, pages 24–33,
1987.

[23] B. H. Cheng, B. Combemale, R. B. France, J.-M. Jézéquel, and B. Rumpe. Globali-
zing Domain-Specific Languages (Dagstuhl Seminar 14412). 2015.

[24] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. Nusmv 2: An opensource tool for symbolic model
checking. In International Conference on Computer Aided Verification, pages
359–364. Springer, 2002.

[25] T. Clark, A. Evans, and S. Kent. Engineering modelling languages: A precise
meta-modelling approach. In Fundamental Approaches to Software Engineering,
pages 159–173. Springer, 2002.

[26] T. Clark, A. Evans, and S. Kent. Aspect-oriented metamodelling. The Computer
Journal, 46(5):566–577, 2003.

[27] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. MultiJava: Modular
open classes and symmetric multiple dispatch for Java. In ACM Sigplan Notices,
volume 35, pages 130–145. ACM, 2000.

[28] L. L. Constantine. Segmentation and design strategies for modular programming.
In Modular Programming: Proceedings of a National Symposium, Cambridge, MA,
1968.

Bibliography 173

[29] N. Cowan. The magical mystery four: How is working memory capacity limited,
and why? Current directions in psychological science, 19(1):51–57, 2010.

[30] J. Cuadrado, E. Guerra, and J. De Lara. Generic model transformations: write
once, reuse everywhere. In International Conference on Theory and Practice of
Model Transformations, pages 62–77. Springer, 2011.

[31] K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools, and
Applications. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA,
2000.

[32] J. de Lara and E. Guerra. Generic meta-modelling with concepts, templates and
mixin layers. In Model Driven Engineering Languages and Systems, pages 16–30.
Springer, 2010.

[33] J. de Lara and E. Guerra. From types to type requirements: genericity for model-
driven engineering. Software & Systems Modeling, 12(3):453–474, 2013.

[34] J. de Lara, E. Guerra, and J. Cuadrado. Reusable abstractions for modeling
languages. Information Systems, 38(8):1128–1149, 2013.

[35] T. Degueule, B. Combemale, A. Blouin, O. Barais, and J.-M. Jézéquel. Melange: A
meta-language for modular and reusable development of dsls. In Proceedings of the
2015 ACM SIGPLAN International Conference on Software Language Engineering,
pages 25–36. ACM, 2015.

[36] E. W. Dijkstra. A discipline of programming, volume 1. Prentice-Hall Englewood
Cliffs, 1976.

[37] DiverSE team from Inria. Kermeta 3 - Executable Meta-Modeling. http://
diverse-project.github.io/k3/. Accessed: 2017-03-13.

[38] S. Dmitriev. Language Oriented Programming - The Next Programming Paradigm.
http://www.onboard.jetbrains.com/articles/04/10/lop/. Accessed:
2017-03-10.

[39] S. Dmitriev. Language oriented programming: The next programming paradigm.
JetBrains onBoard, 1(2):1–13, 2004.

[40] D. D’souza and A. Wills. Objects, components, and frameworks with UML: the
catalysis approach. Addison-Wesley Longman Publishing Co., Inc., 1998.

[41] S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for
detecting duplicated code. In Software Maintenance, 1999.(ICSM’99) Proceedings.
IEEE International Conference on, pages 109–118. IEEE, 1999.

[42] Eclipse Team. Eclipse. https://eclipse.org/. Accessed: 2017-03-10.

[43] T. Ekman and G. Hedin. The JastAdd extensible java compiler. ACM Sigplan
Notices, 42(10):1–18, 2007.

[44] S. Erdweg, P. G. Giarrusso, and T. Rendel. Language composition untangled.
In Proceedings of the Twelfth Workshop on Language Descriptions, Tools, and
Applications, pages 7:1–7:8. ACM, 2012.

http://diverse-project.github.io/k3/
http://diverse-project.github.io/k3/
http://www.onboard.jetbrains.com/articles/04/10/lop/
https://eclipse.org/

174 Bibliography

[45] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann. SugarJ: library-based
syntactic language extensibility. In ACM SIGPLAN Notices, volume 46, pages
391–406. ACM, 2011.

[46] S. Erdweg and F. Rieger. A framework for extensible languages. In ACM SIGPLAN
Notices, volume 49, pages 3–12. ACM, 2013.

[47] S. Erdweg, T. van der Storm, M. Völter, L. Tratt, R. Bosman, W. R. Cook,
A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, et al. Evaluating and comparing
language workbenches: Existing results and benchmarks for the future. Computer
Languages, Systems & Structures, 44:24–47, 2015.

[48] J. Estublier, G. Vega, and A. D. Ionita. Composing domain-specific languages for
wide-scope software engineering applications. In International Conference on Model
Driven Engineering Languages and Systems, pages 69–83. Springer, 2005.

[49] J.-M. Favre. Towards a basic theory to model model driven engineering. In 3rd
Workshop in Software Model Engineering, WiSME, pages 262–271. Citeseer, 2004.

[50] S. I. Feldman. Make - A program for maintaining computer programs. Software:
Practice and experience, 9(4):255–265, 1979.

[51] M. Fowler. Language workbenches: The killer-app for domain specific languages.
2005. Accessed: 2017-03-10.

[52] M. Fowler. Domain-specific languages. Pearson Education, 2010.

[53] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Abstraction
and reuse of object-oriented design. In European Conference on Object-Oriented
Programming, pages 406–431. Springer, 1993.

[54] R. Garud, A. Kumaraswamy, and R. Langlois. Managing in the modular age:
architectures, networks, and organizations. John Wiley & Sons, 2009.

[55] J. Gershenson, G. Prasad, and Y. Zhang. Product modularity: definitions and
benefits. Journal of Engineering design, 14(3):295–313, 2003.

[56] F. Heidenreich, J. Henriksson, J. Johannes, and S. Zschaler. On language-
independent model modularisation. In Transactions on Aspect-Oriented Software
Development VI, pages 39–82. Springer, 2009.

[57] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and C. Wende. Model-based
language engineering with EMFText. In International Summer School on Generative
and Transformational Techniques in Software Engineering, pages 322–345. Springer,
2011.

[58] L. Heinemann, F. Deissenboeck, M. Gleirscher, B. Hummel, and M. Irlbeck. On the
Extent and Nature of Software Reuse in Open Source Java Projects, pages 207–222.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[59] J. Henriksson, J. Johannes, S. Zschaler, U. Aßmann, et al. Reuseware-Adding
Modularity to Your Language of Choice. Journal of Object Technology, 6(9):127–
146, 2007.

Bibliography 175

[60] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-oriented programming.
Journal of Object Technology, 7(3), 2008.

[61] F. Holzschuher and R. Peinl. Performance of graph query languages: comparison of
cypher, gremlin and native access in Neo4j. In Proceedings of the Joint EDBT/ICDT
2013 Workshops, pages 195–204. ACM, 2013.

[62] B. G. Humm and R. S. Engelschall. Language-Oriented Programming Via DSL
Stacking. In ICSOFT (2), pages 279–287. Citeseer, 2010.

[63] Intentional Software Team. Intentional Software, Language Workbench Competition
2011 Entry. http://www.intentsoft.com/wp-content/uploads/2011/
08/lwc11.pdf. Accessed: 2017-03-10.

[64] D. Jemerov. Implementing refactorings in IntelliJ IDEA. In Proceedings of the 2nd
Workshop on Refactoring Tools, page 13. ACM, 2008.

[65] Jetbrains MPS Team. Meta Programming System - DSL Development Environment.
https://www.jetbrains.com/mps/. Accessed: 2017-03-10.

[66] Jetbrains MPS Team. MPS’s user guide. https://confluence.jetbrains.
com/display/MPSD34/MPS+User’s+Guide. Accessed: 2017-03-10.

[67] J.-M. Jézéquel, B. Combemale, O. Barais, M. Monperrus, and F. Fouquet. Mashup
of metalanguages and its implementation in the kermeta language workbench.
Software & Systems Modeling, 14(2):905–920, 2015.

[68] A. Johnstone, E. Scott, and M. van den Brand. Modular grammar specification.
Science of Computer Programming, 87:23–43, 2014.

[69] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A model transformation
tool. Science of computer programming, 72(1):31–39, 2008.

[70] L. C. Kats and E. Visser. The Spoofax language workbench: rules for declarative
specification of languages and IDEs, volume 45. ACM, 2010.

[71] F. Keller, M. Völter, A. van Hoorn, and K. Birken. Leveraging Palladio for
Performance Awareness in the IETS3 Integrated Specification Environment. 2016.

[72] S. Kelly, K. Lyytinen, and M. Rossi. MetaEdit+ a fully configurable multi-user and
multi-tool case and came environment. In International Conference on Advanced
Information Systems Engineering, pages 1–21. Springer, 1996.

[73] S. Kelly and J.-P. Tolvanen. Domain-specific modeling: enabling full code generation.
John Wiley & Sons, 2008.

[74] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In European conference on object-oriented
programming, pages 220–242. Springer, 1997.

[75] J. Kienzle, W. Al Abed, and J. Klein. Aspect-oriented multi-view modeling. In
Proceedings of the 8th ACM international conference on Aspect-oriented software
development, pages 87–98. ACM, 2009.

http://www.intentsoft.com/wp-content/uploads/2011/08/lwc11.pdf
http://www.intentsoft.com/wp-content/uploads/2011/08/lwc11.pdf
https://www.jetbrains.com/mps/
https://confluence.jetbrains.com/display/MPSD34/MPS+User's+Guide
https://confluence.jetbrains.com/display/MPSD34/MPS+User's+Guide

176 Bibliography

[76] J. Kienzle, G. Mussbacher, O. Alam, M. Schöttle, N. Belloir, P. Collet, B. Combe-
male, J. Deantoni, J. Klein, and B. Rumpe. VCU: The Three Dimensions of Reuse.
In International Conference on Software Reuse, pages 122–137. Springer, 2016.

[77] D. E. Knuth. Structured Programming with go to Statements. ACM Computing
Surveys (CSUR), 6(4):261–301, 1974.

[78] D. E. Knuth and D. Bibby. The texbook, volume 3. Addison-Wesley Reading, 1984.

[79] D. Kolovos, R. Paige, and F. Polack. The epsilon object language (EOL). In Model
Driven Architecture–Foundations and Applications, pages 128–142. Springer, 2006.

[80] D. S. Kolovos, R. F. Paige, and F. A. Polack. The epsilon transformation language.
In International Conference on Theory and Practice of Model Transformations,
pages 46–60. Springer, 2008.

[81] D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige, E. Guerra, J. S. Cuadrado,
J. de Lara, I. Ráth, D. Varró, M. Tisi, et al. A research roadmap towards achieving
scalability in model driven engineering. In Proceedings of the Workshop on Scalability
in Model Driven Engineering. ACM, 2013.

[82] G. Konat, L. E. de Souza Amorim, E. Visser, and S. Erdweg. Bootstrapping, Default
Formatting, and Skeleton Editing in the Spoofax Language Workbench. 2016.

[83] H. Krahn, B. Rumpe, and S. Völkel. Monticore: Modular development of textual
domain specific languages. In International Conference on Objects, Components,
Models and Patterns, pages 297–315. Springer, 2008.

[84] H. Krahn, B. Rumpe, and S. Völkel. MontiCore: a framework for compositional
development of domain specific languages. International Journal on Software Tools
for Technology Transfer (STTT), 12(5):353–372, 2010.

[85] C. W. Krueger. Software reuse. ACM Computing Surveys (CSUR), 24(2):131–183,
1992.

[86] I. Kurtev, J. Bézivin, and M. Akşit. Technological spaces: An initial appraisal.
2002.

[87] I. Kurtev, J. Bézivin, F. Jouault, and P. Valduriez. Model-based DSL frameworks. In
Companion to the 21st ACM SIGPLAN symposium on Object-oriented programming
systems, languages, and applications, pages 602–616. ACM, 2006.

[88] A. Kusel, J. Schönböck, M. Wimmer, G. Kappel, W. Retschitzegger, and W. Schwin-
ger. Reuse in model-to-model transformation languages: are we there yet? Software
& Systems Modeling, 14(2):537–572, 2015.

[89] S. Laurence and E. Margolis. Concepts and cognitive science. Concepts: core
readings, pages 3–81, 1999.

[90] J. Lilius and I. Paltor. Formalising UML state machines for model checking. In
International Conference on the Unified Modeling Language, pages 430–444. Springer,
1999.

[91] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems (TOPLAS), 16(6):1811–1841, 1994.

Bibliography 177

[92] D. H. Lorenz and B. Rosenan. Cedalion: a language for language oriented program-
ming. In ACM SIGPLAN Notices, volume 46, pages 733–752. ACM, 2011.

[93] D. H. Lorenz and B. Rosenan. Code reuse with language oriented programming. In
International Conference on Software Reuse, pages 167–182. Springer, 2011.

[94] D. H. Lorenz and B. Rosenan. CEDALION’s Response to the 2016 Language
Workbench Challenge. 2016.

[95] mbeddr Team. The mbeddr.platform. http://mbeddr.com/platform.html.
Accessed: 2017-03-10.

[96] D. D. McCracken and E. D. Reilly. Backus-naur form (bnf). In Encyclopedia of
Computer Science, pages 129–131. John Wiley and Sons Ltd., Chichester, UK.

[97] J. D. McGregor. Complexity, it’s in the mind of the beholder. Journal of Object
Technology, 5(1):31–37, 2006.

[98] R. Medina-Mora and P. H. Feiler. An incremental programming environment. IEEE
Transactions on Software Engineering, (5):472–482, 1981.

[99] T. Mens and P. Van Gorp. A taxonomy of model transformation. Electronic Notes
in Theoretical Computer Science, 152:125–142, 2006.

[100] M. Mernik. An object-oriented approach to language compositions for software
language engineering. Journal of Systems and Software, 86(9):2451–2464, 2013.

[101] M. Mernik, M. Lenič, E. Avdičaušević, and V. Žumer. LISA: An interactive
environment for programming language development. In International Conference
on Compiler Construction, pages 1–4. Springer, 2002.

[102] M. Mernik, V. Žumer, M. Lenič, and E. Avdičaušević. Implementation of multiple
attribute grammar inheritance in the tool LISA. ACM SIGPLAN Notices, 34(6):68–
75, 1999.

[103] B. Meyer. Object-oriented software construction, volume 2. Prentice-Hall New York,
1988.

[104] B. Meyer. The many faces of inheritance: A taxonomy of taxonomy. Computer,
29(5):105–108, 1996.

[105] Microsoft. Overview of Domain-Specific Language Tools. https://msdn.
microsoft.com/en-us/library/bb126327.aspx. Accessed: 2017-03-13.

[106] G. A. Miller. The magical number seven, plus or minus two: some limits on our
capacity for processing information. Psychological review, 63(2):81, 1956.

[107] T. J. Misa and P. L. Frana. An interview with Edsger W. Dijkstra. Communications
of the ACM, 53(8):41–47, 2010.

[108] N. Moha, V. Mahé, O. Barais, and J.-M. Jézéquel. Generic model refactorings. In
International Conference on Model Driven Engineering Languages and Systems,
pages 628–643. Springer, 2009.

http://mbeddr.com/platform.html
https://msdn.microsoft.com/en-us/library/bb126327.aspx
https://msdn.microsoft.com/en-us/library/bb126327.aspx

178 Bibliography

[109] D. Notkin. The GANDALF project. Journal of Systems and Software, 5(2):91–105,
1985.

[110] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An extensible compiler
framework for Java. In International Conference on Compiler Construction, pages
138–152. Springer, 2003.

[111] Object Management Group. Documents associated with Meta Object Facility 2.0,
Query/View/Transformation (QVT), v1.2. http://www.omg.org/spec/QVT/
1.2/. Accessed: 2017-03-13.

[112] Object Management Group. Meta Object Facility (MOF), Version 2.5. http:
//www.omg.org/spec/MOF/2.5/PDF. Accessed: 2017-03-13.

[113] Object Management Group. Object Constraint Language, Version 2.4. http:
//www.omg.org/spec/OCL/2.4/PDF/. Accessed: 2017-03-13.

[114] Object Management Group. UML Infrastructure Specification, Version 2.4.1. http:
//www.omg.org/spec/UML/2.4.1/Infrastructure/PDF. Accessed: 2017-
03-13.

[115] Object Management Group. UML Superstructure Specification, Version 2.4.1.
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF. Accessed:
2017-03-13.

[116] S. M. Olbrich, D. S. Cruzes, and D. I. Sjøberg. Are all code smells harmful? A study
of God Classes and Brain Classes in the evolution of three open source systems.
In Software Maintenance (ICSM), 2010 IEEE International Conference on, pages
1–10. IEEE, 2010.

[117] T. Parr. Language implementation patterns: create your own domain-specific and
general programming languages. Pragmatic Bookshelf, 2009.

[118] R. Pike. Go at Google: Language Design in the Service of Software Engineering.
https://talks.golang.org/2012/splash.article. Accessed: 2017-03-
13.

[119] P. Pirkelbauer, Y. Solodkyy, and B. Stroustrup. Open multi-methods for C++.
In Proceedings of the 6th international conference on Generative programming and
component engineering, pages 123–134. ACM, 2007.

[120] J. C. Reynolds. Definitional interpreters for higher-order programming languages.
In Proceedings of the ACM annual conference-Volume 2, pages 717–740. ACM, 1972.

[121] J. Sanchez Cuadrado, E. Guerra, and J. De Lara. A component model for model
transformations. Software Engineering, IEEE Transactions on, 40(11):1042–1060,
2014.

[122] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units
of behaviour. In European Conference on Object-Oriented Programming, pages
248–274. Springer, 2003.

[123] E. Schindler, K. Schindler, F. Tomassetti, and A. M. Şutîi. Language Workbench
Challenge 2016: the JetBrains Meta Programming System. 2016.

http://www.omg.org/spec/QVT/1.2/
http://www.omg.org/spec/QVT/1.2/
http://www.omg.org/spec/MOF/2.5/PDF
http://www.omg.org/spec/MOF/2.5/PDF
http://www.omg.org/spec/OCL/2.4/PDF/
http://www.omg.org/spec/OCL/2.4/PDF/
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
https://talks.golang.org/2012/splash.article

Bibliography 179

[124] D. C. Schmidt. Model-driven engineering. COMPUTER-IEEE COMPUTER
SOCIETY-, 39(2):25, 2006.

[125] M. Schöttle, O. Alam, G. Mussbacher, and J. Kienzle. Specification of domain-
specific languages based on concern interfaces. In Proceedings of the 13th workshop
on Foundations of aspect-oriented languages, pages 23–28. ACM, 2014.

[126] E. Scott and A. Johnstone. GLL parsing. Electronic Notes in Theoretical Computer
Science, 253(7):177–189, 2010.

[127] P. Sestoft. Demonstrating lambda calculus reduction. In The essence of computation,
pages 420–435. Springer, 2002.

[128] M. Shaw. Writing good software engineering research papers. In Software Engi-
neering, 2003. Proceedings. 25th International Conference on, pages 726–736. IEEE,
2003.

[129] N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel, D. Batory, M. Rosenmüller,
and G. Saake. Predicting performance via automated feature-interaction detection.
In Software Engineering (ICSE), 2012 34th International Conference on, pages
167–177. IEEE, 2012.

[130] C. Simonyi. The death of computer languages, the birth of intentional programming.
In NATO Science Committee Conference, pages 398–399, 1995.

[131] C. Simonyi, M. Christerson, and S. Clifford. Intentional software. In ACM SIGPLAN
Notices, volume 41, pages 451–464. ACM, 2006.

[132] R. Solmi. Whole Platform. PhD thesis. http://www.cs.unibo.it/~solmi/
papers/Sol05_PhDthesis.pdf. Accessed: 2017-03-10.

[133] S. Sparks, K. Benner, and C. Faris. Managing object oriented framework reuse.
Computer, 29(9):52–61, 1996.

[134] J. Steel and J.-M. Jézéquel. On model typing. Software & Systems Modeling,
6(4):401–413, 2007.

[135] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF: eclipse modeling
framework. Pearson Education, 2008.

[136] B. Stroustrup. The C++ programming language. Pearson Education India, 1995.

[137] A. M. Şutıi. MetaMod: a modeling formalism with modularity at its core. 2015.

[138] A. M. Şutîi, T. Verhoeff, and M. van den Brand. Modular modeling with a compu-
tational twist in MetaMod. In Companion Proceedings of the 15th International
Conference on Modularity, pages 4–7. ACM, 2016.

[139] A. M. Şutîi, T. Verhoeff, and M. van den Brand. Modular multilevel metamodeling
with MetaMod. In Companion Proceedings of the 15th International Conference on
Modularity, pages 212–217. ACM, 2016.

[140] A. M. Şutîi, T. Verhoeff, and M. van den Brand. Exploration of modularity and
reusability of domain-specific languages: an expression DSL in MetaMod. Computer
Languages, Systems & Structures, 2017.

http://www.cs.unibo.it/~solmi/papers/Sol05_PhDthesis.pdf
http://www.cs.unibo.it/~solmi/papers/Sol05_PhDthesis.pdf

180 Bibliography

[141] A. M. Şutîi (Farcaşi). Improving modularity in GLL. Master thesis. http:
//alexandria.tue.nl/extra1/afstversl/wsk-i/farcasi2013.pdf.
Accessed: 2017-03-10.

[142] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton Jr. N degrees of separation:
multi-dimensional separation of concerns. In Proceedings of the 21st international
conference on Software engineering, pages 107–119. ACM, 1999.

[143] C. Taube-Schock, R. J. Walker, and I. H. Witten. Can we avoid high coupling? In
European Conference on Object-Oriented Programming, pages 204–228. Springer,
2011.

[144] P. D. Terry. Compilers and compiler generators: an introduction with C++. 2000.

[145] M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, and G. Reggio. Relevance, benefits,
and problems of software modelling and model driven techniques - A survey in the
Italian industry. Journal of Systems and Software, 86(8):2110–2126, 2013.

[146] TypeFox. Xtext - Language engineering for everyone. https://eclipse.org/
Xtext/. Accessed: 2017-03-13.

[147] E. Vacchi and W. Cazzola. Neverlang: A framework for feature-oriented language
development. Computer Languages, Systems & Structures, 43:1–40, 2015.

[148] M. G. van den Brand, A. van Deursen, J. Heering, H. De Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, et al. The ASF+
SDF meta-environment: A component-based language development environment.
Electronic Notes in Theoretical Computer Science, 44(2):3–8, 2001.

[149] A. Van Deursen, P. Klint, and J. Visser. Domain-Specific Languages: An Annotated
Bibliography. Sigplan Notices, 35(6):26–36, 2000.

[150] E. Van Wyk, D. Bodin, J. Gao, and L. Krishnan. Silver: an extensible attribute
grammar system. Electronic Notes in Theoretical Computer Science, 203(2):103–116,
2008.

[151] E. Van Wyk, O. De Moor, K. Backhouse, and P. Kwiatkowski. Forwarding in
attribute grammars for modular language design. In International Conference on
Compiler Construction, pages 128–142. Springer, 2002.

[152] E. Van Wyk, L. Krishnan, D. Bodin, and A. Schwerdfeger. Attribute grammar-
based language extensions for Java. In European Conference on Object-Oriented
Programming, pages 575–599. Springer, 2007.

[153] D. Varró and A. Pataricza. VPM: A visual, precise and multilevel metamodeling
framework for describing mathematical domains and UML (The Mathematics of
Metamodeling is Metamodeling Mathematics). Software and Systems Modeling,
2(3):187–210, 2003.

[154] D. Varró and A. Pataricza. Generic and meta-transformations for model transfor-
mation engineering. In International Conference on the Unified Modeling Language,
pages 290–304. Springer, 2004.

[155] T. Verhoeff. Personal Communication.

http://alexandria.tue.nl/extra1/afstversl/wsk-i/farcasi2013.pdf
http://alexandria.tue.nl/extra1/afstversl/wsk-i/farcasi2013.pdf
https://eclipse.org/Xtext/
https://eclipse.org/Xtext/

Bibliography 181

[156] E. Visser. Meta-programming with concrete object syntax. In International Con-
ference on Generative Programming and Component Engineering, pages 299–315.
Springer, 2002.

[157] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. Kats, E. Visser,
and G. Wachsmuth. DSL engineering: Designing, implementing and using domain-
specific languages. dslbook. org, 2013.

[158] M. Voelter, B. Kolb, T. Szabó, D. Ratiu, and A. van Deursen. Lessons learned from
developing mbeddr: a case study in language engineering with MPS. Software &
Systems Modeling, pages 1–46, 2017.

[159] M. Voelter and K. Solomatov. Language modularization and composition with
projectional language workbenches illustrated with MPS. Third International
Conference on Software Language Engineering (SLE 2010), 2010.

[160] M. Völter, J. Siegmund, T. Berger, and B. Kolb. Towards user-friendly projectional
editors. In International Conference on Software Language Engineering, pages
41–61. Springer, 2014.

[161] L. Wall, T. Christiansen, and J. Orwant. Programming perl. O’Reilly Media, Inc.,
2000.

[162] M. P. Ward. Language-oriented programming. Software-Concepts and Tools,
15(4):147–161, 1994.

[163] C. Wende, N. Thieme, and S. Zschaler. A role-based approach towards modular
language engineering. In Software Language Engineering, pages 254–273. Springer,
2010.

[164] O. Werner. Sapir-Whorf Hypothesis. Concise Encyclopedia of Philosophy of
Language, pages 76–83, 1997.

[165] G. V. Wilson. Extensible programming for the 21st century. Queue, 2(9):48–57,
2004.

[166] P. H. Winston and B. K. Horn. Lisp. 1986.

[167] E. Yourdon and L. L. Constantine. Structured design: Fundamentals of a discipline
of computer program and systems design. Prentice-Hall, Inc., 1979.

[168] M. Zenger and M. Odersky. Independently extensible solutions to the expression
problem. In Proceedings of Workshop on Foundations of Object-Oriented Languages,
FOOL. 2005.

Appendix A

Code generated from the shapes example

Figure A.1: The Java interfaces and classes generated from the metamodels in the example
DSL with shapes presented in Section 4.3.

184 Code generated from the shapes example

public interface Interface_Shape extends Interface_Position2D {

void multi_drawShape_GroupTypeShape_ConceptTypeShape_Graphics(

node<NamedGroup> inputGroup, node<NamedConcept> shape, Graphics graphics);

}

Figure A.2: The interface generated for group Shape, Interface_Shape. This inter-
face extends interface Interface_Position2D , because group Shape directly reuses group
Position2D (see Figure 4.20). Interface Interface_Shape also contains the signature of a
method originating from a multi-operation for drawing shapes, because multi-operation
drawShape was defined in a processing unit for group Shape (see Figure 4.24).

public class PU_Square extends CodeGen implements Interface_Square {

public PU_Square(node<NamedGroup> group, node<NamedGroup> inputGroup, MetamodelClass callingContext) {

super(group, inputGroup, callingContext);

}

@Override

public boolean checkAllConstraints() {

if (!innerGroups["MetaModPrimitives"].checkThisConstraints()) { return false; }

if (!innerGroups["Position2D"].checkThisConstraints()) { return false; }

if (!innerGroups["Shape"].checkThisConstraints()) { return false; }

if (!innerGroups["Rectangle"].checkThisConstraints()) { return false; }

if (!innerGroups["Square"].checkThisConstraints()) { return false; }

return true;

}

@Override

public boolean checkThisConstraints() {

if (!LengthAndWitdhEqual(inputGroup)) { return false; }

return true;

}

protected void initResolveMaps() {...}

public void multi_drawShape_GroupTypeShape_ConceptTypeShape_Graphics(

node<NamedGroup> inputGroup, node<NamedConcept> shape, Graphics graphics) {

if (Utils.allTrue(inputGroup.metamodel.

getAllSuperConceptsPlusSelf(inputGroup.metamodel.getRepresentativesNamedConcepts().

where({~it => UtilityMethods.areTheSameConcept(shape.conformsTo : RefToNamedConcept.ref, it,

inputGroup.metamodel); }).first, inputGroup.metamodel).

where({~it => UtilityMethods.areTheSameConceptWithString("Rectangle.Rectangle", it, inputGroup.metamodel); }).

size != 0, graphics instanceof Graphics)) {

{

innerGroups["Rectangle"] as PU_Rectangle.

drawShape_GroupTypeRectangle_ConceptTypeRectangle_Graphics(inputGroup, shape, graphics as Graphics);

return;

}

}

innerGroups["Shape"] as PU_Shape.drawShape_GroupTypeShape_ConceptTypeShape_Graphics(inputGroup, shape, graphics);

}

public boolean LengthAndWitdhEqual(node<NamedGroup> inputGroup) {...}

}

Figure A.3: The processing unit generated for group Square, PU_Square. We folded
some methods for readability. This processing unit shows that the method for checking
constraints, checkAllConstraints does so in the order of the reused groups (from the
inner-most group to the outer-most group; see Figure 4.20). The processing unit also
shows that a method corresponding to a multi-operation, in this case the one for drawing
shapes, checks the type of the shape to choose the overridden method to call. Because
Square only knows about Rectangle and Shape, it first checks whether the shape is a
rectangle, and, otherwise, it calls the generic method for Shape.

185

public class PU_CanvasExtExt extends CodeGen implements Interface_CanvasExtExt {

public PU_CanvasExtExt(node<NamedGroup> group, node<NamedGroup> inputGroup, MetamodelClass callingContext) {...}

@Override

public boolean checkAllConstraints() {...}

@Override

public boolean checkThisConstraints() {...}

protected void initResolveMaps() {...}

public Color multi_getColor_GroupTypeColors_ConceptTypeColor(node<NamedGroup> inputGroup, node<NamedConcept> color)

{...}

public void multi_drawShape_GroupTypeShape_ConceptTypeShape_Graphics(

node<NamedGroup> inputGroup, node<NamedConcept> shape, Graphics graphics) {...}

public void setColor(node<NamedGroup> inputGroup, node<NamedConcept> shape, Graphics graphics) {...}

public JPanel createPanelWithColor(final node<NamedGroup> inputGroup) {...}

public void main(node<NamedGroup> inputGroup) {

if (!checkAllConstraints()) {

error "Some constraints do not hold on the model!";

return;

}

JFrame frame = new JFrame(inputGroup.getRepresentativesNamedConcepts().

where({~it => it.conformsTo.isInstanceOf(RefToNamedConcept) &&

Utils.isConceptOrSuperConcept(it.conformsTo : RefToNamedConcept.ref, "Canvas.Canvas", inputGroup.

metamodel); }).toList.first.name);

final JPanel panel = innerGroups["CanvasExtExt"] as PU_CanvasExtExt.createPanelWithColor(inputGroup);

frame.add(panel);

frame.pack();

frame.setVisible(true);

}

}

Figure A.4: The processing unit generated for group CanvasExtExt , PU_CanvasExtExt .
We folded some methods for readability. All the operations that were defined for this
group, such as createPanelWithColor (see Section 4.3.3), appear in this class as methods.
Moreover, one can see that the first instruction in the main method is to check the
constraints.

Index

For indexing, we use the same conventions as Donald Knuth in The TexBook [78].
We underline the page numbers that contain a main description or the definition of the
indexed term. We italicize the page numbers that contain the most relevant examples of
the indexed term.

|...|, 87, 89
::, 14
mechanisms of MetaMod, 35, 168

abstract syntax, 2
accidental complexity, 12
actual name, 60
actual name of operation, 79
aspect

language, 2, 18
aspect reuse, 77, 77, 78
augment concept, 71
augmenting properties, 71

cardinality, 41, 44
concept, 2, 37, 37

augment, 71
concept conformace, 40
concept hierarchy, 75
concept type, 59, 75
concept value, 75
conformance, 40
conforms_to, 38
correctness of DSLs, 30
Crystal, 3

define a DSL, 21

definition of a concept, 43, 70
domain-specific language, 18
DSL

define, 21
external, 19
internal, 19

DSL aspect
auxiliary, 128
central, 128

DSL engineer, 20
DSL unit, 28, 107
DSL user, 20

EAttribute, 16
EClass, 16
Eclipse Modeling Framework, 16
Ecore, 16, 43
EDataType, 16
equivalence class, 50, 51, 53
EReference, 16
essential complexity, 12
Essential Meta-Object Facility, 15
exact same relation, 44
expression problem, 32
expressiveness of DSLs, 31
extended expression problem, 32

188 Index

extension in MPS, 23
external DSL, 19

fragment, 44
fragment abstraction, 46, 66, 103
fragment application, 46, 66, 103

generational concept, 50, 50
group, 43
group hierarchy, 75
group type, 59, 75
group value, 75
groups reuse other groups, 44
groups share concepts, 43
groups share relations, 43
guiding principles MetaMod, 3

hot-spot DSL unit, 160

internal DSL, 19
invariant, 14

language aspect, 2, 18
language workbench, 3, 21
language-oriented programming, 2, 17
learning curve of DSLs, 31
level M0, 13
level M1, 13
level M2, 13
level M3, 13
link, 16

meta-language, 3, 21
meta-metamodel, 5, 13, 35, 36
Meta-Object Facility, 15
meta-tool, 4, 5, 21
MetaMod API functions, 58
MetaMod documentation model, 58, 64
MetaMod types, 58
metamodel, 5, 12, 13
middle-out development, 17
model, 5, 12, 13
model transformation, 12, 12
model-driven engineering, 2, 11, 12

modularity of DSLs, 25
multi-operation, 60, 64, 79
multilevel, 35

object, 16

performance of DSLs, 30
placeholder, 46
processing unit, 2, 20, 64
processing unit aspect, 76
projectional language workbench, 3, 21

raw Java type, 79
relation, 2, 38, 38, 41
relation conformance, 41
relation type, 59, 75
relation value, 75
reuse in MPS, 23
reuse mapping, 108, 112
reuse of DSLs, 28
robustness of DSLs, 30

structurally similar DSLs, 107
sub-concept, 42, 75
subtype, 42
subtype_of, 42
super-concept, 42, 75

top-most group, 91
type concept, 37, 59
type model, 15, 62

understandability of DSLs, 31
Unified Modeling Language, 16
usability, 31
user-defined constraint, 14, 64

validation rules, 14
value concept, 37
value model, 15, 63

well-formedness rules, 14
workbench

language, 3, 21

Summary

Modularity and Reuse of Domain-Specific Languages:
an exploration with MetaMod

The history of software engineering is one of continuously raising the abstraction
level in programming languages. The abstraction level has been raising towards using
concepts from the problem space into the programming languages themselves. The ideal
situation would be to have programming languages and associated interactive development
environments that allow a domain expert to create software applications by instructing
the computer using concepts from her own domain. This situation would also require
a different software development process, with at least two main role players: language
engineers that develop and maintain the domain-specific languages (DSLs), and domain
experts that use these domain-specific languages by creating models in them.

This is advocated by new methodologies, such as model-driven development (MDD)
and language-oriented programming (LOP). Although MDD and LOP have different
focuses (MDD focuses on the models, and LOP focuses on the programming languages),
they both use domain-specific languages to achieve their visions. A big leap in easing the
creation of DSLs occurred with the introduction of language workbenches; nonetheless,
developing non-trivial DSLs is still a daunting task. As already hinted by the discussion
in this paragraph, we have concentrated on the part of easing the development of DSLs
in this thesis. We have done so by employing modularity and reuse in the creation of
domain-specific languages. We have taken the path of modularity and reuse because
DSLs, and especially DSLs from the same domain, have common fragments, or DSL units.
One example is the use of arithmetic expressions, which is common among many DSLs.
This DSL could live in a separate DSL unit for arithmetic expressions. Then, language
engineers should be able to seamlessly integrate the arithmetic expressions DSL unit into
their own DSL.

There are two main parts to the development of a DSL, the metamodel and the associ-
ated processing units. We consider the metamodel to be the core of a DSL because this is
where the main concepts and the relations among them are made explicit; moreover, the
processing units (interpreters, code generators, editors, etc.) are querying and navigating
this metamodel. Getting the metamodel right is essential for both the expressivity of the
DSL and the ease of developing the processing units. Thus, much of the development of a
DSL relies on the metamodel.

This thesis contributes to the community of DSL development with mechanisms and
meta-tools focused on modularity and reuse in the creation of domain-specific languages.
We have approached modularity and reuse in the creation of domain-specific languages

190 Summary

starting from the core, the metamodels, and finishing with the processing units. These
mechanisms are also accompanied by a prototype meta-tool, MetaMod.

First, we investigated reasons and requirements for modularity and reuse in the creation
of domain-specific languages. To this end, we went over advantages and disadvantages of
modularity and reuse in other fields, and especially in software engineering. Advantages
such as increased productivity and ease of updating, or disadvantages such as more
upfront deliberation, are to be expected when carrying over modularity and reuse in the
creation of DSLs. Besides these, LOP itself offers a reason for modularity, because in
LOP, one needs to combine different DSLs in the creation of a software application. As for
requirements, given that DSLs are, in the end, software applications, we have paraphrased
criteria for the extensibility of software to criteria for modularity and reuse of DSLs, with
slight modifications.

Second, we looked at how to organize metamodels of the DSLs to facilitate modularity
and reuse of DSLs. We did that through the design of a new meta-metamodel for
MetaMod. This meta-metamodel introduced the following elements for modularity and
reuse of DSLs: groups with group reuse, and concept and relation sharing, that allow
decomposing and reusing metamodels; fragment abstractions and applications, that allow
factoring out common metamodel structures with placeholders; and a subtype relationship
that allows reuse of relations. This mix of elements allows the creation of modular and
reusable metamodels.

Third, we addressed how to organize processing units of the DSLs and the operations
in the processing units to facilitate modularity and reuse of DSLs. For that, we took
advantage of the organization in the metamodels by leveraging two hierarchies from the
metamodel (the subtype hierarchy and the group hierarchy) in the type system of the
processing units. Moreover, we organized the processing units around groups and aspects.
What further facilitated modularity and reuse, was the reuse of operations in agreement
with the reuse of groups and aspects, and the introduction of multiple dynamic dispatch
on the concept types, group types and raw Java types. All these features allow the reuse
and adaptation of operations from reused DSL units into reusing DSL units.

Fourth, we investigated the reuse of operations in spite of structural differences among
domain-specific languages. That is because, although logically similar, the metamodels of
two DSLs can be significantly different; nonetheless, it is of great value to allow the reuse
of operations defined for one DSL in the other DSL. For this, we created two mechanisms,
the mechanism of reuse mappings and that of delegated operations. The mechanism of
reuse mappings is based on expressing queries from the base DSL in terms of queries
in the reusing DSL, so that operations from the base DSL can be reused in the reusing
DSL. On the other hand, the mechanism of delegated operations is based on creating a
model transformation from the metamodel of the reusing DSL to the metamodel of the
base DSL, and defining the signature of the operations from the base DSL in the reusing
DSL. The latter mechanism is an improvement over the former because it imposes less
constraints on the form of the metamodels of the base DSL and reusing DSL.

Fifth, we addressed mechanisms that can be applied to models, irrespective of the
DSL. At this point, we used the multilevel nature of MPS, that allows to use mechanisms
developed for the metamodel in the models as well. That is, the groups (with group reuse,
and relation and concept sharing), and the fragment abstraction and application can be
used in the models as well. These mechanisms are available for any model, irrespective of
the DSL to which they conform.

Last, we have evaluated our approach, starting with the development of the meta-tools
of MetaMod. We have then created DSLs ranging from small sizes to big sizes, and from

191

imperative-flavoured to declarative-flavoured. Most notably, we have re-implemented a
considerable part of a non-trivial expression language built in Jetbrains MPS. This gave
us confidence that the meta-tools and the ideas behind them are powerful enough to tackle
real-life problems. Moreover, it has also allowed us to make a more direct comparison with
a seasoned language workbench. As a result of the comparison, we have discovered that
MetaMod leads to more conceptually cohesive DSLs because it avoids the introduction of
some implementation-oriented concepts. Moreover, the modularity of MetaMod allowed
us to create smaller-sized DSL units, that are reusable in separation, but that are part of
the overall expression language DSL.

We think that the ideas that we have introduced in this thesis get us a step closer to
the accomplishment of the visions of MDE and LOP, and that they will speed up the
development of domain-specific languages.

Curriculum Vitae

Personal Information
Name: Ana Maria Şutîi

Date of birth: September 11, 1987

Place of birth: Bacău, Romania

Education
MSc. Computer Science and Engineering 2011–2013

Eindhoven University of Technology

Eindhoven, the Netherlands

BSc. Computer Science and Engineering 2007–2011

Politehnica University from Bucharest

Bucharest, Romania

Professional Experience
PhD candidate 2013–2017

Eindhoven University of Technology

Eindhoven, the Netherlands

Software Engineer Intern 2012

Google

Munich, Germany

IPA Dissertation Series

Titles in the IPA Dissertation Series since 2014

J. van den Bos. Gathering Evidence:
Model-Driven Software Engineering in Au-
tomated Digital Forensics. Faculty of
Science, UvA. 2014-01

D. Hadziosmanovic. The Process Mat-
ters: Cyber Security in Industrial Control
Systems. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2014-02

A.J.P. Jeckmans. Cryptographically-
Enhanced Privacy for Recommender Sy-
stems. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2014-03

C.-P. Bezemer. Performance Optimiza-
tion of Multi-Tenant Software Systems. Fa-
culty of Electrical Engineering, Mathema-
tics, and Computer Science, TUD. 2014-04

T.M. Ngo. Qualitative and Quantita-
tive Information Flow Analysis for Multi-
threaded Programs. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2014-05

A.W. Laarman. Scalable Multi-Core Mo-
del Checking. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2014-06

J. Winter. Coalgebraic Characterizations
of Automata-Theoretic Classes. Faculty
of Science, Mathematics and Computer
Science, RU. 2014-07

W. Meulemans. Similarity Measures
and Algorithms for Cartographic Schemati-
zation. Faculty of Mathematics and Com-
puter Science, TU/e. 2014-08

A.F.E. Belinfante. JTorX: Exploring
Model-Based Testing. Faculty of Electri-
cal Engineering, Mathematics & Computer
Science, UT. 2014-09

A.P. van der Meer. Domain Specific
Languages and their Type Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2014-10

B.N. Vasilescu. Social Aspects of Col-
laboration in Online Software Communi-
ties. Faculty of Mathematics and Compu-
ter Science, TU/e. 2014-11

F.D. Aarts. Tomte: Bridging the Gap
between Active Learning and Real-World
Systems. Faculty of Science, Mathematics
and Computer Science, RU. 2014-12

N. Noroozi. Improving Input-Output
Conformance Testing Theories. Faculty of
Mathematics and Computer Science, TU/e.
2014-13

M. Helvensteijn. Abstract Delta Mo-
deling: Software Product Lines and Beyond.
Faculty of Mathematics and Natural Scien-
ces, UL. 2014-14

P. Vullers. Efficient Implementations
of Attribute-based Credentials on Smart

196 IPA Dissertation Series

Cards. Faculty of Science, Mathematics
and Computer Science, RU. 2014-15

F.W. Takes. Algorithms for Analyzing
and Mining Real-World Graphs. Faculty
of Mathematics and Natural Sciences, UL.
2014-16

M.P. Schraagen. Aspects of Record
Linkage. Faculty of Mathematics and Na-
tural Sciences, UL. 2014-17

G. Alpár. Attribute-Based Identity Ma-
nagement: Bridging the Cryptographic De-
sign of ABCs with the Real World. Faculty
of Science, Mathematics and Computer
Science, RU. 2015-01

A.J. van der Ploeg. Efficient Abstracti-
ons for Visualization and Interaction. Fa-
culty of Science, UvA. 2015-02

R.J.M. Theunissen. Supervisory Con-
trol in Health Care Systems. Faculty of
Mechanical Engineering, TU/e. 2015-03

T.V. Bui. A Software Architecture for
Body Area Sensor Networks: Flexibility
and Trustworthiness. Faculty of Mathema-
tics and Computer Science, TU/e. 2015-04

A. Guzzi. Supporting Developers’ Team-
work from within the IDE. Faculty of Elec-
trical Engineering, Mathematics, and Com-
puter Science, TUD. 2015-05

T. Espinha. Web Service Growing Pains:
Understanding Services and Their Clients.
Faculty of Electrical Engineering, Mat-
hematics, and Computer Science, TUD.
2015-06

S. Dietzel. Resilient In-network Aggre-
gation for Vehicular Networks. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2015-07

E. Costante. Privacy throughout the
Data Cycle. Faculty of Mathematics and
Computer Science, TU/e. 2015-08

S. Cranen. Getting the point — Obtai-
ning and understanding fixpoints in mo-
del checking. Faculty of Mathematics and
Computer Science, TU/e. 2015-09

R. Verdult. The (in)security of pro-
prietary cryptography. Faculty of Science,
Mathematics and Computer Science, RU.
2015-10

J.E.J. de Ruiter. Lessons learned in the
analysis of the EMV and TLS security pro-
tocols. Faculty of Science, Mathematics
and Computer Science, RU. 2015-11

Y. Dajsuren. On the Design of an Archi-
tecture Framework and Quality Evaluation
for Automotive Software Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2015-12

J. Bransen. On the Incremental Evalua-
tion of Higher-Order Attribute Grammars.
Faculty of Science, UU. 2015-13

S. Picek. Applications of Evolutio-
nary Computation to Cryptology. Faculty
of Science, Mathematics and Computer
Science, RU. 2015-14

C. Chen. Automated Fault Localization
for Service-Oriented Software Systems. Fa-
culty of Electrical Engineering, Mathema-
tics, and Computer Science, TUD. 2015-15

S. te Brinke. Developing Energy-Aware
Software. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2015-16

R.W.J. Kersten. Software Analysis Met-
hods for Resource-Sensitive Systems. Fa-
culty of Science, Mathematics and Compu-
ter Science, RU. 2015-17

J.C. Rot. Enhanced coinduction. Faculty
of Mathematics and Natural Sciences, UL.
2015-18

M. Stolikj. Building Blocks for the Inter-
net of Things. Faculty of Mathematics and
Computer Science, TU/e. 2015-19

D. Gebler. Robust SOS Specifications of
Probabilistic Processes. Faculty of Sciences,
Department of Computer Science, VUA.
2015-20

M. Zaharieva-Stojanovski. Closer to
Reliable Software: Verifying functional be-
haviour of concurrent programs. Faculty

197

of Electrical Engineering, Mathematics &
Computer Science, UT. 2015-21

R.J. Krebbers. The C standard formali-
zed in Coq. Faculty of Science, Mathema-
tics and Computer Science, RU. 2015-22

R. van Vliet. DNA Expressions – A For-
mal Notation for DNA. Faculty of Mathe-
matics and Natural Sciences, UL. 2015-23

S.-S.T.Q. Jongmans. Automata-
Theoretic Protocol Programming. Faculty
of Mathematics and Natural Sciences, UL.
2016-01

S.J.C. Joosten. Verification of Intercon-
nects. Faculty of Mathematics and Com-
puter Science, TU/e. 2016-02

M.W. Gazda. Fixpoint Logic, Games,
and Relations of Consequence. Faculty of
Mathematics and Computer Science, TU/e.
2016-03

S. Keshishzadeh. Formal Analysis and
Verification of Embedded Systems for He-
althcare. Faculty of Mathematics and Com-
puter Science, TU/e. 2016-04

P.M. Heck. Quality of Just-in-Time
Requirements: Just-Enough and Just-in-
Time. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2016-05

Y. Luo. From Conceptual Models to Sa-
fety Assurance – Applying Model-Based
Techniques to Support Safety Assurance.
Faculty of Mathematics and Computer
Science, TU/e. 2016-06

B. Ege. Physical Security Analysis of Em-
bedded Devices. Faculty of Science, Mathe-
matics and Computer Science, RU. 2016-07

A.I. van Goethem. Algorithms for Cur-
ved Schematization. Faculty of Mathema-
tics and Computer Science, TU/e. 2016-08

T. van Dijk. Sylvan: Multi-core Deci-
sion Diagrams. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2016-09

I. David. Run-time resource management
for component-based systems. Faculty of
Mathematics and Computer Science, TU/e.
2016-10

A.C. van Hulst. Control Synthesis using
Modal Logic and Partial Bisimilarity – A
Treatise Supported by Computer Verified
Proofs. Faculty of Mechanical Engineering,
TU/e. 2016-11

A. Zawedde. Modeling the Dynamics
of Requirements Process Improvement.
Faculty of Mathematics and Computer
Science, TU/e. 2016-12

F.M.J. van den Broek. Mobile Com-
munication Security. Faculty of Science,
Mathematics and Computer Science, RU.
2016-13

J.N. van Rijn. Massively Collaborative
Machine Learning. Faculty of Mathematics
and Natural Sciences, UL. 2016-14

M.J. Steindorfer. Efficient Immuta-
ble Collections. Faculty of Science, UvA.
2017-01

W. Ahmad. Green Computing: Effi-
cient Energy Management of Multipro-
cessor Streaming Applications via Model
Checking. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2017-02

D. Guck. Reliable Systems – Fault tree
analysis via Markov reward automata. Fa-
culty of Electrical Engineering, Mathema-
tics & Computer Science, UT. 2017-03

H.L. Salunkhe. Modeling and Buffer
Analysis of Real-time Streaming Radio Ap-
plications Scheduled on Heterogeneous Mul-
tiprocessors. Faculty of Mathematics and
Computer Science, TU/e. 2017-04

A. Krasnova. Smart invaders of pri-
vate matters: Privacy of communication on
the Internet and in the Internet of Things
(IoT). Faculty of Science, Mathematics and
Computer Science, RU. 2017-05

198 IPA Dissertation Series

A.D. Mehrabi. Data Structures for Ana-
lyzing Geometric Data. Faculty of Mat-
hematics and Computer Science, TU/e.
2017-06

D. Landman. Reverse Engineering
Source Code: Empirical Studies of Limita-
tions and Opportunities. Faculty of Science,
UvA. 2017-07

W. Lueks. Security and Privacy via Cryp-
tography – Having your cake and eating it
too. Faculty of Science, Mathematics and
Computer Science, RU. 2017-08

A.M. Şutîi. Modularity and Reuse of
Domain-Specific Languages: an explora-
tion with MetaMod. Faculty of Mathema-
tics and Computer Science, TU/e. 2017-09

	Acknowledgements
	Table of Contents
	Introduction
	Background
	Highlights of our research
	Research Questions
	Outline
	Research strategy

	Setting the Context
	Model-driven engineering
	Language-oriented programming
	Domain-specific languages
	Language workbenches - Jetbrains MPS

	Language workbench requirements for modularity and reuse
	Modularity
	Reuse
	Other qualities
	Language workbench requirements for modularity and reuse
	Conclusions

	MetaMod
	Meta-metamodel
	Organization of MetaMod meta-languages
	Example DSL and models in MetaMod
	Conclusions

	Features of MetaMod
	Features for modularity and reuse
	Features for language workbench requirements
	Related work
	Conclusions

	Modularity of value models
	Introduction
	The Kaja DSL - Jetbrains MPS implementation
	The Kaja DSL - MetaMod implementation
	Discussion
	Related work
	Conclusions

	Reuse mappings
	Introduction
	Motivating Example
	Reuse mapping
	Reuse mappings in MetaMod
	Execution of a reused operation in MetaMod
	Discussion
	Conclusions

	Delegated operations
	Introduction
	Motivating Examples
	The approach of delegated operations
	The approach of delegated operations in MetaMod
	Discussion
	Related work
	Conclusions

	Evaluation
	Kaja language
	Expression language
	Bootstrapping
	Other DSLs
	Testing
	Discussion
	Conclusions

	Conclusion
	Contributions
	Discussion
	Future Work
	Concluding remarks

	Bibliography
	Code generated from the shapes example
	Summary
	Curriculum Vitae
	IPA Dissertation Series

