14 research outputs found

    Deep space 2: The Mars Microprobe Mission

    Get PDF
    The Mars Microprobe Mission will be the second of the New Millennium Program's technology development missions to planetary bodies. The mission consists of two penetrators that weigh 2.4 kg each and are being carried as a piggyback payload on the Mars Polar Lander cruise ring. The spacecraft arrive at Mars on December 3, 1999. The two identical penetrators will impact the surface at similar to 190 m/s and penetrate up to 0.6 m. They will land within 1 to 10 km of each other and similar to 50 km from the Polar Lander on the south polar layered terrain. The primary objective of the mission is to demonstrate technologies that will enable future science missions and, in particular, network science missions. A secondary goal is to acquire science data. A subsurface evolved water experiment and a thermal conductivity experiment will estimate the water content and thermal properties of the regolith. The atmospheric density, pressure, and temperature will be derived using descent deceleration data. Impact accelerometer data will be used to determine the depth of penetration, the hardness of the regolith, and the presence or absence of 1.0 cm scale layers

    Rover and Telerobotics Technology Program

    Get PDF
    The Jet Propulsion Laboratory's (JPL's) Rover and Telerobotics Technology Program, sponsored by the National Aeronautics and Space Administration (NASA), responds to opportunities presented by NASA space missions and systems, and seeds commerical applications of the emerging robotics technology. The scope of the JPL Rover and Telerobotics Technology Program comprises three major segments of activity: NASA robotic systems for planetary exploration, robotic technology and terrestrial spin-offs, and technology for non-NASA sponsors. Significant technical achievements have been reached in each of these areas, including complete telerobotic system prototypes that have built and tested in realistic scenarios relevant to prospective users. In addition, the program has conducted complementary basic research and created innovative technology and terrestrial applications, as well as enabled a variety of commercial spin-offs

    The First International Conference on Mars Polar Science and Exploration

    Get PDF
    This volume contains abstracts of articles that have been accepted for presentation at the First International Conference on Mars Polar Science and Exploration. Articles about the geology of the Martian Polar regions were presented, and analogs from Earth's geology were also presented. Presentations also were given about the probable contents of the Martian polar cap

    First International Conference on Mars Polar Science and Exploration: held at the Episcopal Conference Center at Camp Allen, Texas

    Get PDF
    Articles about the geology of the Martian Polar regions were presented, and analogs from Earth's geology were also presented. Presentations also were given about the probable contents of the Martian polar caps.sponsored by Geological Survey of Canada ... [and others]organizers Stephen Clifford, David Fisher, James Rice ; compiled by Lunar and Planetary Institute

    In situ observations of the atmospheres of terrestrial planetary bodies

    Get PDF
    Direct observations of planetary atmospheres are scarce and significantly more data are needed for the understanding of their behavior. The principal theme of this dissertation is the exploration of planetary atmospheres by means of in situ observations, focusing on investigations performed by payloads operating on the planetary surface. The contextual frame includes the whole palette of planetary exploration including definition of scientific objectives, observational strategies, scientific payload and data analysis, as well as development of technological solutions and simulation models for planetary missions. This approach also led to the initiation of the planetary missions MetNet and NetLander to Mars. This work contributes to both in situ atmospheric observations and atmospheric modeling, which are strongly intertwined. Modeling efforts require observations to give solid background and foundation for the simulations, and on the other hand, definition of observational strategies and instrumentation gets guidance from modeling efforts to optimize the use of mission resources, as is successfully demonstrated in this dissertation. The dissertation consists of Summary and nine original scientific publications. Publications 1 to 7 and Summary address the development of new atmospheric science payloads for exploration missions to Mars and Titan, a Saturnian moon. Actual and planned missions included are the Mars-96 Program and its Small Surface Stations and Penetrators during the years 1988-1996, PPI/HASI onboard the Cassini/Huygens spacecraft to Saturn and its moon Titan in 1989-2005, the MET-P payload onboard the Mars Polar Lander in 1997-1999, the BAROBIT instrument for the Beagle 2 lander in 2001-2003, the NetLander Mars Mission in 1997-2001 and the ongoing Mars MetNet Mission, started in 2000. Specifically, Publication 4 reviews the sensor qualification process that facilitated the use of new type of atmospheric sensors at Mars, while Publications 2 and 7, as well as Summary, address the highly successful determination of the Titan atmospheric pressure profile. Publication 8 combines in situ observations and simulations by analyzing Mars Pathfinder measurements with the help of a Martian mesoscale atmospheric model. Finally, in Publication 9 the effect of airborne dust and CO2 on the radiative transfer in the Martian atmosphere is assessed and a new radiative transfer paramerization scheme for the mesoscale model is introduced.reviewe

    Concept evaluation of Mars drilling and sampling instrument

    Get PDF
    The search for possible extinct or existing life is the goal of the exobiology investigations to be undertaken during future Mars missions. As it has been learnt from the NASA Viking, Pathfinder and Mars Exploration Rover mission, sampling of surface soil and rocks can gain only limited scientific information. In fact, possible organic signatures tend to be erased by surface processes (weathering, oxidation and exposure to UV radiation from the Sun). The challenge of the missions have mostly been getting there; only roughly one third of all Mars missions have reached their goal, either an orbit around the planet, or landing to the surface. The two Viking landers in the 1970's were the first to touch down the soil of Mars in working order and performing scientific studies there. After that there was a long gap, until 1997 the Pathfinder landed safely on the surface and released a little rover, the Sojourner. In 2004 other rovers came: the Mars Exploration Rover Spirit and a while after that, the sister rover Opportunity. These five successful landings are less than half of all attempts to land on Mars. Russia, Europe and the United States have all had their landers, but Mars is challenging. Even Mars orbit has been tough to reach by many nation's orbiters. It is then understandable that of these five successful landings, performed by National Aeronautics and Space Administration (NASA), there have not yet been very complicated mechanical deep-drilling instruments onboard. The risks to get there are great, and the risk of malfunctioning of a complicated instrument there is also high. Another reason to avoid a deep-driller from the lander payload is simply the mass constrains. A drill is a heavy piece of payload, and the mass allocations for scientific instruments are small. In the launch window of 2009, both European Space Agency (ESA) and NASA have their plans to send a rover to Mars. Both of them will include some means to analyse the subsurface material. ESA's rover, called the ExoMars rover, will carry a deep-driller onboard in its Pasteur payload. At the time of writing this thesis, an exact definition of the Pasteur drill has not yet been defined. The author of this thesis has studied the driller instruments in his past work projects and in his doctoral studies. The main focus of this thesis is to analyse the feasibility of different drill configurations to fit to the requirements of the ExoMars' Pasteur payload drill by using the information gathered from the past projects. In this thesis, the author introduces a new concept of a robotic driller, called the MASA drill. The MASA drill fulfils the needs for the drill instrument onboard the Pasteur payload. The main study in this thesis concentrates on design work of the MASA drill, as well as analysis of its operation and performance capabilities in the difficult task of drilling and sampling.reviewe

    Concepts and Approaches for Mars Exploration

    Get PDF
    Abstracts describe missions, mission elements or experiments for consideration in the 2005-2020 time frame. Also the technologies and the support necessary to achieve the results are discussed.NASA Headquarters; Lunar and Planetary Institutehosted by Lunar and Planetary Institute ; sponsored by NASA Headquarters, Lunar and Planetary Institute ; convener Scott Hubbard

    The Sixth Alumni Conference of the International Space University

    Get PDF
    These proceedings cover the sixth alumni conference of the International Space University, coordinated by the ISU U.S. Alumni Organization, which was held at Rice University in Houston, Texas, on July 11, 1997. The alumni conference gives graduates of the International Space University's interdisciplinary, international, and intercultural program a forum in which they may present and exchange technical ideas, and keep abreast of the wide variety of work in which the ever-growing body of alumni is engaged. The diversity that is characteristic of ISU is reflected in the subject matter of the papers published in this proceedings. This proceedings preserves the order of the alumni presentations given at the 1997 ISU Alumni Conference. As in previous years, a special effort was made to solicit papers with a strong connection to the two ISU 1997 Summer Session Program design projects: (1) Transfer of Technology, Spin-Offs, Spin-Ins; and (2) Strategies for the Exploration of Mars. Papers in the remaining ten sessions cover the departmental areas traditional to the ISU summer session program

    Spectral Imaging for Mars Exploration

    Get PDF
    corecore